• Glossary
  • Support
  • Downloads
  • DataStax Home
Get Live Help
Expand All
Collapse All

CQL for Astra DB Serverless

  • Overview
    • Cassandra structure
    • About CQL
    • CQL quick reference
    • Known issues
  • Getting started
    • Vector Search Quickstart
    • CQL Quickstart
    • SAI Quickstart
  • Planning
    • Data modeling
      • Data modeling concepts
      • Data modeling analysis
  • Connecting
    • cqlsh (startup options)
      • Accessing data using CQL
        • Starting the standalone cqlsh tool
        • Starting cqlsh
    • Developing
      • Introduction to CQL
      • Managing keyspaces
        • Keyspace concepts
        • Check a keyspace
      • Managing tables
        • Table concepts
        • Data types
        • Create a table
        • Check a table
        • Alter a table
        • Truncate a table
        • Drop a table
      • Managing columns
        • Managing columns
        • Create a table column
        • Check column existence
        • Alter a table column
        • Drop a column
        • User-defined type (UDT) overview
          • Create a user-defined type (UDT)
          • Check for user-defined type (UDT) existence
          • Alter a user-defined type (UDT)
          • Drop a user-defined type (UDT)
      • Indexing Tables
        • Indexing concepts
        • Storage-Attached Indexing (SAI) Overview
          • SAI concepts
          • SAI Quickstart
          • SAI FAQ
          • Create SAI index
          • Alter SAI index
          • Drop SAI index
          • Querying with SAI
          • SAI write path and read path
        • Secondary indexes (2i) overview
          • Secondary index (2i) concepts
          • When to use an index
          • Building and maintaining secondary indexes (2i)
          • Create a secondary index (2i)
            • Create a 2i on a collection column
          • Check secondary index (2i) existence
          • Alter a secondary index (2i)
          • Drop a secondary index (2i)
      • Inserting and updating data
        • Insert simple data
        • Set column
        • List fields
        • Map fields
        • Tuple
        • User-defined type (UDT) column
        • Insert static data
        • UUID and timeuuid column
        • Date column
        • Time column
        • Timestamp column
        • Duration column
        • Update counter
        • Lightweight transactions (LWTs)
        • Inserting JSON formatted values
        • Batching inserts and updates
          • Batching inserts, updates, and deletes
          • Good use of BATCH statement
          • Misuse of BATCH statement
        • Importing data from a CSV file
        • Setting the time-to-live (TTL) for value
          • Inserting, updating, and deleting data
      • Deleting data
        • Deleting values from a column or entire row
        • Expiring data with time-to-live
        • Expiring data with TTL example
      • Querying and retrieving data
        • Using a SELECT statement
        • Restricting queries using WHERE clauses
          • Partition keys
          • Clustering columns
          • Retrieval using the IN keyword
          • Sorting and limiting results
        • Returning data from collection columns
        • Aggregating results
        • Using user-defined functions (UDF)
        • Applying user-defined aggregate (UDA) functions
          • Testing performance impact using tracing
        • Formatting query results as JSON
        • Retrieving the write timestamp
        • Using tracing
          • Tracing performance
        • DSE Search index querying
        • Search index filtering best practices
          • Search index syntax
          • search-index:si-query-syntax.adoc#siIndexedColumns
          • search-index:si-query-syntax.adoc#basicSolrSyntax
          • search-index:si-query-syntax.adoc#queriesJSON
          • search-index:si-query-syntax.adoc#siEscapeCharacters
        • Native CQL search queries
        • Identifying the partition key
        • Filtering on terms
          • Filtering on words, phrases, or substrings
          • Fuzzy search
        • UDT query examples
        • Querying a CQL collection set
        • Using date ranges in solr_query
        • Geospatial queries for Point and LineString
        • Spatial queries with polygons require JTS
        • Using dynamic fields
        • Limiting results and paging
        • Restricted query routing
    • Securing overview
      • Security quickstart
      • Using cqlsh with authentication
      • System tables for authentication and authorization
  • Cycling Examples
    • Setting up the cycling keyspace
    • User-defined types (UDTs)
      • basic_info
      • basic_info_withTTL
      • fullname
      • race
    • User-defined functions (UDFs) and user-defined aggregates (UDAs)
      • flog
      • left
      • average_state
      • average_final
      • Cycling user-defined aggregate team_average
    • Tables
      • birthday_list
      • calendar
      • comments
      • country_flag
      • cyclist_alt_stats
      • cyclist_base
      • cyclist_career_teams
      • cyclist_category
      • cyclist_emails
      • cyclist_expenses
      • cyclist_id
      • cyclist_name
      • cyclist_points
      • cyclist_races
      • cyclist_sponsors
      • cyclist_stats
      • cyclist_teams
      • events
      • popular_count
      • race_sponsors
      • race_starts
      • race_times
      • race_winners
      • rank_by_year_and_name
      • team_average
      • upcoming_calendar
    • Materialized views (MVs)
      • cyclist_by_age-mv
    • Search indexes
      • Search index examples
      • comments search index
    • Access control
      • Cycling internal
    • Cycling queries
      • Aggregating cycling data
    • Reference
      • CQL quick reference
      • Understanding the CQL command syntax
      • Data types
        • Creating a blob column
        • Date, time, and timestamp format
      • Operators
      • CQL native functions
      • CQL native aggregates
      • System and virtual tables
        • System tables
          • Keyspace tables
          • Querying system tables
          • Functions, aggregates, and user types
        • Virtual tables
          • Virtual keyspaces and tables
          • Virtual tables for SAI indexes and SSTables
      • cqlsh (startup options)
        • Configuring a cqlshrc file
        • Starting cqlsh on a search node
      • CQL shell (cqlsh) reference
        • CAPTURE
        • CLEAR
        • CONSISTENCY
        • COPY TO
        • COPY FROM
        • DESCRIBE AGGREGATE
        • DESCRIBE CLUSTER
        • DESCRIBE SCHEMA
        • DESCRIBE FUNCTION
        • DESCRIBE INDEX
        • DESCRIBE KEYSPACE
        • DESCRIBE MATERIALIZED VIEW
        • DESCRIBE SEARCH INDEX
        • DESCRIBE TABLE
        • DESCRIBE TYPE
        • EXECUTE AS
        • EXPAND
        • EXIT
        • LOGIN
        • PAGING
        • SERIAL CONSISTENCY
        • SHOW
        • SOURCE
        • TIMING
        • TRACING
      • CQL commands
        • ALTER TABLE
        • ALTER TYPE
        • ALTER USER (Deprecated)
        • BATCH
        • CREATE AGGREGATE
        • CREATE CUSTOM INDEX
        • CREATE INDEX
        • CREATE TABLE
        • CREATE TYPE
        • CREATE USER (Deprecated)
        • DELETE
        • DROP INDEX
        • DROP TABLE
        • DROP TYPE
        • DROP USER (Deprecated)
        • GRANT
        • INSERT
        • RESTRICT
        • REVOKE
        • SELECT
        • TRUNCATE
        • UNRESTRICT
        • UNRESTRICT ROWS
        • UPDATE
        • USE
  • CQL for Astra DB Serverless
  • Planning
  • Data modeling
  • Data modeling analysis
Edit this Page

Data modeling analysis

You’ve created a conceptual model of the entities and their relationships. From the conceptual model, you’ve used the expected queries to create table schema. The last step in data modeling involves completing an analysis of the logical design to discover modifications that might be needed. These modifications can arise from understanding partition size limitations, cost of data consistency, and performance costs due to a number of design choices still to be made.

For efficient operation, partitions must be sized within certain limits. Two measures of partition size are the number of values in a partition and the partition size on disk. The maximum number of rows per partition is not theoretically limited, although practical limits can be found with experimentation. Sizing the disk space is more complex, and involves the number of rows and the number of columns, primary key columns and static columns in each table. Each application will have different efficiency parameters, but a good rule of thumb is to keep the maximum number of values below 100,000 items and the disk size under 100MB.

Data redundancy must be considered as well. Two redundancies that are a consequence of DataStax Enterprise’s distributed design are duplicate data in tables and multiple partition replicates.

Data is generally duplicated in multiple tables, resulting in performance latency during writes and requires more disk space. Consider storing a cyclist’s name and id in more than one table, along with other items like race categories, finished races, and cyclist statistics. Storing the name and id in multiple tables results in linear duplication, with two values stored in each table. Table design must take into account the possibility of higher order duplication, such as unlimited keywords stored in a large number of rows. A case of n keywords stored in m rows is not a good table design. You should rethink the table schema for better design, still keeping the query foremost.

DataStax Enterprise replicates partition data based on the replication factor, using more disk space. Replication is a necessary aspect of distributed databases and sizing disk storage correctly is important.

Application-side joins can be a performance killer. In general, you should analyze your queries that require joins and consider pre-computing and storing the join results in an additional table. In DataStax Enterprise, the goal is to use one table per query for performant behavior. Lightweight transactions (LWT) can also affect performance. Consider whether or not the queries using LWT are necessary and remove the requirement if it is not strictly needed.

Data modeling concepts cqlsh (startup options)

General Inquiries: +1 (650) 389-6000 info@datastax.com

© DataStax | Privacy policy | Terms of use

DataStax, Titan, and TitanDB are registered trademarks of DataStax, Inc. and its subsidiaries in the United States and/or other countries.

Apache, Apache Cassandra, Cassandra, Apache Tomcat, Tomcat, Apache Lucene, Apache Solr, Apache Hadoop, Hadoop, Apache Pulsar, Pulsar, Apache Spark, Spark, Apache TinkerPop, TinkerPop, Apache Kafka and Kafka are either registered trademarks or trademarks of the Apache Software Foundation or its subsidiaries in Canada, the United States and/or other countries.

Kubernetes is the registered trademark of the Linux Foundation.

landing_page landingpage