Class/Object

com.datastax.bdp.graph.spark.graphframe

DseGraphFrame

Related Docs: object DseGraphFrame | package graphframe

Permalink

abstract class DseGraphFrame extends Serializable

Provides DSE Graph-specific methods on GraphFrames. A DseGraphFrame requires a graphName for creating some traversal steps and for writing data back to DSE. Implicit conversions ensure the graphName is preserved or reassigned since it can be lost during a DseGraphFrame->GraphFrame->DseGraphFrame transition chain.

Linear Supertypes
Serializable, Serializable, AnyRef, Any
Known Subclasses
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. DseGraphFrame
  2. Serializable
  3. Serializable
  4. AnyRef
  5. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new DseGraphFrame(gf: GraphFrame, dseGraphName: Option[String] = None, graphOptions: Map[String, String] = Map.empty)

    Permalink

Abstract Value Members

  1. abstract def deleteEdgeProperties(df: DataFrame, properties: String*): Unit

    Permalink

    clean edges properties

    clean edges properties

    properties

    delete only selected properties not entire row

    Annotations
    @varargs()
  2. abstract def deleteEdges(df: DataFrame, cache: Boolean = true): Unit

    Permalink

    delete graph edges.

    delete graph edges. 4 id columns should be passed to the method

    +--------------------+--------------------+-------+--------------------+
    |                 src|                 dst| ~label|                  id|
    +--------------------+--------------------+-------+--------------------+
    |god:THxdAAAAAAAAAAAA|titan:J474AAAAAAA...| father|da0a9900-8fe1-11e...|
    +--------------------+--------------------+-------+--------------------+
    df

    data frame with edge ids: src,dst,~label, id

    cache

    cache df before processing, true by default for consistence updates. two C* entries need to be deleted for one edge, so no reloads expected between this two calls.

  3. abstract def deleteVertexProperties(df: DataFrame, properties: Seq[String], labels: Seq[String] = Seq.empty, cache: Boolean = true): Unit

    Permalink

    clean vertex properties with meta properties

    clean vertex properties with meta properties

    properties

    property names to delete

  4. abstract def deleteVertices(label: String): Unit

    Permalink

    delete all vertices with given label

  5. abstract def deleteVertices(df: DataFrame, labels: Seq[String] = Seq.empty, cache: Boolean = true): Unit

    Permalink

    delete vertices and all related edges

  6. abstract def edgeIdColumnNames: Seq[String]

    Permalink
  7. abstract def idColumn(labelColumn: Column, idColumns: Column*): Column

    Permalink

    Utility method to generate GraphFrame compatible ids, if a mixed set of labels is in the DF.

    Utility method to generate GraphFrame compatible ids, if a mixed set of labels is in the DF. It is slower than idColumn(label: String, idColumns: Column*): Column The id is added automatically when vertex is inserted, if inserted columns has the same names as in graph schema It is not possible for edges as you need to point both src and dst ids. Usage:

    val updateEdgeDF = sourceDF.select(
      gf.idColumn(col("srcLabel"), col("srcId")) as "src",
      gf.idColumn(col("dstLabel"), col("dstId")) as "dst",
      col("label") as "~label",
      gf.randomEdgeIdColumn,
      col("property"))
    
    gf.updateEdges(updateEdgeDF)

    If different labels have different id format use case statement to sort them:

    when(col("srcLabel") === "1format", col("src1Id")).when(col("srcLabel") === "2format", col("src2Id")).otherwise(col("src3Id")) as "src"
    Annotations
    @varargs()
  8. abstract def idColumn(label: String, idColumns: Column*): Column

    Permalink

    Utility method to generate GraphFrame compatible ids.

    Utility method to generate GraphFrame compatible ids. The id is added automatically when vertex is inserted, if inserted columns has the same names as in graph schema It is not possible for edges as you need to point both src and dst ids. Usage:

    val updateEdgeDF = sourceDF.select(
      gf.idColumn("srcLabel", col("srcId")) as "src",
      gf.idColumn("dstLabel", col("dstId")) as "dst",
      col("label") as "~label",
      gf.randomEdgeIdColumn,
      col("property"))
    
    gf.updateEdges(updateEdgeDF)
    Annotations
    @varargs()
  9. abstract def toExternalEdgeId(label: String, srcId: String, dstId: String, ids: Seq[Any], schema: StructType): AnyRef

    Permalink

    label

    Edge label

    srcId

    Source vertex id

    dstId

    Destination vertex id

    ids

    Edge ids

    schema

    Associated DataFrame schema

    returns

    External ID object

  10. abstract def toExternalVertexId(id: String): AnyRef

    Permalink

    id

    String of vertex ID

    returns

    External ID object

  11. abstract def updateEdges(outVertexLabel: String, edgeLabel: String, inVertexLabel: String, df: DataFrame): Unit

    Permalink

    update or insert edges.

    update or insert edges. this method accept natural vertex id columns. Id representation is implementation depended. Classic graph out vertex id column names should start with "out_" prefix and in names with "in_". Core graph uses DSE-DB edge table schema. the minimal df schema is: 2 id and 0 or more properties columns

    +-----+------+-------------------+
    |out_id|in_id|               prop|
    +-----+------+-------------------+
    |   10|     a|              value|
    +-----+------+-------------------+

    outVertexLabel->edgeLabel->inVertexLabel the df is not cached by the function. the dataframe should be persisted by the user if dynamic data source is used.

    df

    data frame with edge ids and update columns

  12. abstract def updateEdges(df: DataFrame, cache: Boolean = true): Unit

    Permalink

    update this graph edges.

    update this graph edges. the minimal df schema is: 4 id columns and at least one property to update

    +--------------------+--------------------+-------+--------------------+-------------------+
    |                 src|                 dst| ~label|                  id|               prop|
    +--------------------+--------------------+-------+--------------------+-------------------+
    |god:THxdAAAAAAAAAAAA|titan:J474AAAAAAA...| father|da0a9900-8fe1-11e...|              value|
    +--------------------+--------------------+-------+--------------------+-------------------+

    if ID column is not present it will be generated and edges will be saved as new.

    df

    data frame with edge ids and update columns

    cache

    cache df before processing, true by default for consistence updates. two C* entries need to be updated for one edge, so no reloads expected between this two calls.

  13. abstract def updateVertices(vertexLabel: String, df: DataFrame): Unit

    Permalink

    update this graph vertices with properties provided in the df.

    update this graph vertices with properties provided in the df. you should provide id in non encoded format

    +-----------------+---------+---------+
    |     community_id|member_id|      age|
    +-----------------+---------+---------+
    |       1182054400|        0|        0|
    +-----------------+---------+---------+

    the df is not cached by the function. the dataframe should be persisted by the user if dynamic data source is used.

    vertexLabel

    vertex label to update

    df

    dataframe with vertex ids and columns to update

  14. abstract def updateVertices(df: DataFrame, labels: Seq[String] = Seq.empty, cache: Boolean = true): Unit

    Permalink

    update this graph vertices with properties provided in the df.

    update this graph vertices with properties provided in the df. the minimal df schema is just vertex "id" and one property to update:

    +-----------------+---------+
    |               id|      age|
    +-----------------+---------+
    |god:AAAAATMAAA...|        0|
    +-----------------+---------+

    label and vertices id will be extracted from the graph frame id. for better performance it is recommended to add/leave "~label" column

    +-----------------+---------+---------+
    |               id|   ~label|      age|
    +-----------------+---------+---------+
    |god:AAAAATMAAA...|      god|        0|
    +-----------------+---------+---------+

    you can also provide id in non encoded format

    +-----------------+---------+---------+---------+
    |     community_id|member_id|   ~label|      age|
    +-----------------+---------+---------+---------+
    |       1182054400|        0|      god|        0|
    +-----------------+---------+---------+---------+

    Note: passing both synthetic "id" and vertex Id columns is an error.

    df

    dataframe with vertex id and update columns

    labels

    empty (means all) by default, it is convenient to group vertexes with the same id format. That group could be passed here, to reduce number of verification steps

    cache

    cache df before processing, true by default for consistence update and performance

Concrete Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. def E(edgesIds: AnyRef*): DseGraphTraversal[Edge]

    Permalink

    Return graph traversal that supports a subset of TinkerPop3 traversal steps

    Return graph traversal that supports a subset of TinkerPop3 traversal steps

    edgesIds

    to start traverse with

    returns

    GraphTraversal[Edge] for the filtered graph

    Annotations
    @varargs()
  5. def E: DseGraphTraversal[Edge]

    Permalink

    Return graph traversal that supports a subset of TinkerPop3 traversal steps

    Return graph traversal that supports a subset of TinkerPop3 traversal steps

    returns

    GraphTraversal[Edge] for the graph

  6. def V(vertexIds: AnyRef*): DseGraphTraversal[Vertex]

    Permalink

    Return graph traversal that supports subset of TinkerPop3 traversal steps

    Return graph traversal that supports subset of TinkerPop3 traversal steps

    vertexIds

    to start traverse with

    returns

    GraphTraversal[Vertex] for the filtered graph

    Annotations
    @varargs()
  7. def V: DseGraphTraversal[Vertex]

    Permalink

    Return graph traversal that supports subset of TinkerPop3 traversal steps

    Return graph traversal that supports subset of TinkerPop3 traversal steps

    returns

    GraphTraversal[Vertex] for the graph

  8. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  9. def cache(): DseGraphFrame.this.type

    Permalink

    proxy call to gf.cache()

    proxy call to gf.cache()

    returns

    this

  10. def cleanUp: String

    Permalink

    Remove any invalid edge entries from the database backend.

  11. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  12. val clusterName: String

    Permalink
    Attributes
    protected
  13. lazy val connector: CassandraConnector

    Permalink
    Attributes
    protected
  14. val connectorOptions: Map[String, String]

    Permalink
    Attributes
    protected
  15. def deleteEdges(df: DataFrame): Unit

    Permalink

    shortcut for deleteEdges(df: DataFrame, cache: Boolean = true) for Java

  16. def deleteVertexProperties(df: DataFrame, properties: String*): Unit

    Permalink

    clean vertex properties with meta properties

    clean vertex properties with meta properties

    properties

    property names to delete

    Annotations
    @varargs()
  17. def dropIsolatedVertices(): DseGraphFrame

    Permalink

    proxy call to gf.dropIsolatedVertices()

    proxy call to gf.dropIsolatedVertices()

    returns

    new filtered DseGraphFrame

  18. var dseGraphName: Option[String]

    Permalink
    Attributes
    protected
  19. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  20. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  21. def filterEdges(conditionExpr: String): DseGraphFrame

    Permalink

    proxy call to gf.filterEdges()

    proxy call to gf.filterEdges()

    returns

    new filtered DseGraphFrame

  22. def filterEdges(condition: Column): DseGraphFrame

    Permalink

    proxy call to gf.filterEdges()

    proxy call to gf.filterEdges()

    returns

    new filtered DseGraphFrame

  23. def filterVertices(conditionExpr: String): DseGraphFrame

    Permalink

    proxy call to gf.filterVertices()

    proxy call to gf.filterVertices()

    returns

    new filtered DseGraphFrame

  24. def filterVertices(condition: Column): DseGraphFrame

    Permalink

    proxy call to gf.filterVertices()

    proxy call to gf.filterVertices()

    returns

    new filtered DseGraphFrame

  25. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  26. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  27. val gf: GraphFrame

    Permalink
  28. def graphName: String

    Permalink

    Returns the graph name of this DseGraphFrame.

    Returns the graph name of this DseGraphFrame.

    Exceptions thrown

    NoSuchElementException if the graph name is not set.

  29. val graphOptions: Map[String, String]

    Permalink
  30. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  31. def io(url: String): DseGraphTraversal[Vertex]

    Permalink

    Performs a read or write based operation on the Graph backing this GraphTraversalSource.

    Performs a read or write based operation on the Graph backing this GraphTraversalSource. This step can be accompanied by the Object) modulator for further configuration and must be accompanied by a GraphTraversal#read() or GraphTraversal#write() modulator step which will terminate the traversal.

    url

    the url of file in distributed file system or JDBC connection or the name of file in default file system for which the read or write will apply - note that the context of how this parameter is used is wholly dependent on the implementation. i.e cassandra read/writer implementation will ignore this path and read table name from parameters.

    returns

    the traversal with the { @link IoStep} added

  32. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  33. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  34. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  35. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  36. def persist(storageLevel: StorageLevel): DseGraphFrame.this.type

    Permalink

    proxy call to gf.persist()

    proxy call to gf.persist()

    returns

    this

  37. def persist(): DseGraphFrame.this.type

    Permalink

    proxy call to gf.persist()

    proxy call to gf.persist()

    returns

    this

  38. lazy val spark: SparkSession

    Permalink
    Attributes
    protected
  39. lazy val sqlContext: SQLContext

    Permalink
    Attributes
    protected
  40. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  41. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  42. def unpersist(blocking: Boolean): DseGraphFrame.this.type

    Permalink

    proxy call to gf.unpersist()

    proxy call to gf.unpersist()

    returns

    this

  43. def unpersist(): DseGraphFrame.this.type

    Permalink

    proxy call to gf.unpersist()

    proxy call to gf.unpersist()

    returns

    this

  44. def updateEdges(df: DataFrame): Unit

    Permalink

    shortcut for updateEdges(df: DataFrame, cache: Boolean = true) for Java

  45. def updateVertices(df: DataFrame): Unit

    Permalink

    shortcut for updateVertices(df: DataFrame, labels: Seq[String] = Seq.empty, cache: Boolean = true) for Java API

    shortcut for updateVertices(df: DataFrame, labels: Seq[String] = Seq.empty, cache: Boolean = true) for Java API

    df

    dataframe with vertex id and update columns

  46. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  47. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  48. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  49. def withCachedDf[T](df: DataFrame, cache: Boolean)(code: ⇒ T): T

    Permalink
    Attributes
    protected

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped