Table of Contents

Getting started.. 19
 About DSE... 19
 New features.. 20
 Key features.. 23

Release notes... 26

DSE 5.1.15... 26
 Cassandra enhancements for 5.1.15... 31
 Upgrade advice for 5.1.15.. 31
 Spark Cassandra Connector changes for 5.1.15.. 31
 TinkerPop changes for DSE 5.1.15... 31

DSE 5.1.14... 31
 Cassandra enhancements for 5.1.14... 36
 Upgrade advice for 5.1.14.. 36
 Spark Cassandra Connector changes for 5.1.14.. 36
 TinkerPop changes for DSE 5.1.14... 36

DSE 5.1.13... 37
 Cassandra enhancements for 5.1.13... 38
 Upgrade advice for 5.1.13.. 38
 Spark Cassandra Connector changes for 5.1.13.. 38
 TinkerPop changes for DSE 5.1.13... 38

DSE 5.1.12... 38
 Cassandra enhancements for 5.1.12... 45
 Upgrade advice for 5.1.12.. 46
 Spark Cassandra Connector changes for 5.1.12.. 46
 TinkerPop changes for DSE 5.1.12... 46

DSE 5.1.11... 47
 Cassandra enhancements for 5.1.11... 52
DSE 5.1 Developer Guide Earlier version, latest patch 5.1.15

Installing Oracle JDK on Debian or Ubuntu Systems... 174
Installing Oracle JDK on RHEL-based Systems... 176
Installing OpenJDK on Debian-based Systems.. 177
Installing OpenJDK on RHEL-based Systems... 178
Uninstalling DSE.. 179
Default file locations... 181
Package and Installer-Services installations... 181
Tarball and Installer-No Services installations... 186
Configuration.. 190

Recommended production settings.. 190

Install the latest Java Virtual Machine... 190
Synchronize clocks... 190
Set kernel parameters.. 191
Disable settings that impact performance.. 194
Optimize disk settings.. 195
Set the heap size for Java garbage collection... 197
Check Java Hugepages settings... 198

YAML and configuration properties... 198

cassandra.yml... 198
dse.yml... 233
cassandra-rackdc.properties... 276
cassandra-topology.properties... 277

Configuring snitches for cloud providers... 279

Ec2Snitch.. 279
Ec2MultiRegionSnitch.. 280
GoogleCloudSnitch... 283
CloudstackSnitch.. 284

Start-up parameters... 284
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choosing a compaction strategy</td>
<td>289</td>
</tr>
<tr>
<td>Configuring Virtual Nodes</td>
<td>290</td>
</tr>
<tr>
<td>Virtual node (vnode) configuration</td>
<td>290</td>
</tr>
<tr>
<td>DSE advanced functionality</td>
<td>293</td>
</tr>
<tr>
<td>DSE Analytics</td>
<td>293</td>
</tr>
<tr>
<td>About DSE Analytics</td>
<td>293</td>
</tr>
<tr>
<td>Setting the replication factor for analytics keyspaces</td>
<td>294</td>
</tr>
<tr>
<td>DSE Analytics and Search integration</td>
<td>295</td>
</tr>
<tr>
<td>About DSE Analytics Solo</td>
<td>297</td>
</tr>
<tr>
<td>Analyzing data using Spark</td>
<td>299</td>
</tr>
<tr>
<td>DSEFS (DataStax Enterprise file system)</td>
<td>398</td>
</tr>
<tr>
<td>Cassandra File System (deprecated)</td>
<td>428</td>
</tr>
<tr>
<td>DSE Search</td>
<td>431</td>
</tr>
<tr>
<td>About DSE Search</td>
<td>431</td>
</tr>
<tr>
<td>Configuring DSE Search</td>
<td>435</td>
</tr>
<tr>
<td>Managing search indexes</td>
<td>461</td>
</tr>
<tr>
<td>Filtering CQL queries with a search index</td>
<td>496</td>
</tr>
<tr>
<td>Tutorials and demos</td>
<td>531</td>
</tr>
<tr>
<td>DSE Search operations</td>
<td>545</td>
</tr>
<tr>
<td>Solr interfaces</td>
<td>550</td>
</tr>
<tr>
<td>HTTP API SolrJ and other Solr clients</td>
<td>561</td>
</tr>
<tr>
<td>DSE Graph</td>
<td>561</td>
</tr>
<tr>
<td>About DSE Graph</td>
<td>562</td>
</tr>
<tr>
<td>DSE Graph Terminology</td>
<td>565</td>
</tr>
<tr>
<td>Quick Start with Studio</td>
<td>566</td>
</tr>
<tr>
<td>DSE Graph, OLTP, and OLAP</td>
<td>592</td>
</tr>
<tr>
<td>Graph anti-patterns</td>
<td>607</td>
</tr>
<tr>
<td>DSE Graph data modeling</td>
<td>610</td>
</tr>
</tbody>
</table>
Using DSE Graph..618
Using the DSE Graph Loader...744
DSE Graph Analysis with DSE Analytics...829
DSE Graph Tools..844
DSE Graph Reference..845
DSE Advanced Replication...872
 About DSE Advanced Replication...872
 Architecture...873
 Traffic between the clusters..876
 Terminology..878
 Getting started..879
 Keyspaces...890
 Data Types...891
 Operations...892
 CQL queries..911
 Metrics...913
 Managing invalid messages..921
 Managing audit logs..922
 DSE Advanced Replication command line tool..924
Tools ..937
 DSE Metrics Collector..937
 Enabling and disabling DSE Metrics Collector..937
 Configuring DSE Metrics Collector..939
 Filtering metrics..941
 Exporting and visualizing metrics with Prometheus and Docker.......................943
 Manually exporting and visualizing metrics with Prometheus............................946
 nodetool..949
 About the nodetool utility..949
abortrebuild..951
assassinate..952
bootstrap..953
cfhistograms...954
cfstats...954
cleanup..954
clearsnapshot...955
compact...956
compactionhistory...959
compactionstats...962
decommission...963
describecluster...964
describeering..965
disableautocompaction...966
disablebackup..968
disablebinary...968
disablegossip..969
disablehandoff..969
disablehintsfordc..970
disablethrift...971
drain...973
enableautocompaction...973
enablebackup..974
enablebinary..975
enablegossip...976
enablehandoff...976
enablehintsfordc..977
enablethrift...978
<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>failedetector</td>
<td>979</td>
</tr>
<tr>
<td>flush</td>
<td>979</td>
</tr>
<tr>
<td>garbagecollect</td>
<td>980</td>
</tr>
<tr>
<td>gcstats</td>
<td>981</td>
</tr>
<tr>
<td>getcompactionthreshold</td>
<td>982</td>
</tr>
<tr>
<td>getcompactionthroughput</td>
<td>983</td>
</tr>
<tr>
<td>getconcurrentcompactors</td>
<td>984</td>
</tr>
<tr>
<td>getendpoints</td>
<td>985</td>
</tr>
<tr>
<td>getinterdcstreamthroughput</td>
<td>987</td>
</tr>
<tr>
<td>getlogginglevels</td>
<td>988</td>
</tr>
<tr>
<td>getseeds</td>
<td>989</td>
</tr>
<tr>
<td>getsstables</td>
<td>989</td>
</tr>
<tr>
<td>getstreamthroughput</td>
<td>991</td>
</tr>
<tr>
<td>gettimeout</td>
<td>991</td>
</tr>
<tr>
<td>gettraceprobability</td>
<td>993</td>
</tr>
<tr>
<td>gossipinfo</td>
<td>993</td>
</tr>
<tr>
<td>help</td>
<td>994</td>
</tr>
<tr>
<td>info</td>
<td>995</td>
</tr>
<tr>
<td>invalidatecountercache</td>
<td>996</td>
</tr>
<tr>
<td>invalidatekeycache</td>
<td>997</td>
</tr>
<tr>
<td>invalidaterowcache</td>
<td>998</td>
</tr>
<tr>
<td>join</td>
<td>1000</td>
</tr>
<tr>
<td>listendpointspendinghints</td>
<td>1001</td>
</tr>
<tr>
<td>listsnapshots</td>
<td>1003</td>
</tr>
<tr>
<td>mark_unrepaired</td>
<td>1003</td>
</tr>
<tr>
<td>move</td>
<td>1004</td>
</tr>
<tr>
<td>netstats</td>
<td>1005</td>
</tr>
<tr>
<td>pausehandoff</td>
<td>1007</td>
</tr>
</tbody>
</table>
proxyhistograms .. 1007
rangekeysample ... 1009
rebuild ... 1009
rebuild_index .. 1011
rebuild_view ... 1012
refresh .. 1013
refreshsizeestimates ... 1014
reloadlocalschema ... 1014
reloadtriggers ... 1016
reloadseeds .. 1016
relocatesstables .. 1017
removenode .. 1018
repair ... 1020
replaybatchlog .. 1024
resetlocalschema ... 1025
resume ... 1026
resumehandoff .. 1027
ring ... 1028
scrub ... 1030
sequence .. 1032
setcachecapacity .. 1034
setcachekeystosave ... 1035
setcompactionthreshold ... 1036
setcompactionthroughput ... 1037
setconcurrentcompactors ... 1038
sethintedhandoffthrottlekb .. 1038
setinterdcstreamthroughput .. 1039
setlogginglevel ... 1040
setstreamthroughput... 1041
settimeout.. 1042
settraceprobability... 1044
sjk... 1045
snapshot... 1051
status.. 1055
statusbackup... 1057
statusbinary.. 1057
statusgossip.. 1058
statushandoff... 1059
statusthrift.. 1059
stop.. 1060
stopdaemon.. 1061
tablehistograms.. 1062
tablestats... 1063
toppartitions.. 1069
tpstats.. 1072
truncatehints... 1078
upgradesstables.. 1078
verify... 1079
version... 1081
viewbuildstatus... 1081
dse commands... 1082
About dse commands... 1082
dse connection options.. 1083
add-node.. 1085
advrep.. 1089
beeline... 1134
autojt..1175
checkcfs..1175
core_indexing_status..1177
create_core..1179
createsystemkey...1182
encryptconfigvalue...1184
get_core_config..1184
get_core_schema..1186
help..1189
index_checks...1190
infer_solr_schema..1192
inmemorystatus..1194
insights_config...1195
insights_filters...1198
list_core_properties...1200
list_index_files..1202
list_subranges...1203
managekmip list..1205
managekmip expirekey...1206
managekmip revoke..1208
managekmip destroy...1209
node_health..1211
partitioner..1212
perf..1213
read_resource..1217
rebuild_indexes...1218
repaircfs..1220
reload_core...1221
ring.. 1223
set_core_property... 1224
sparkmaster cleanup... 1226
sparkworker restart... 1228
status.. 1229
stop_core_reindex... 1230
tieredtablestats.. 1231
tssreload... 1234
unload_core.. 1235
upgrade_index_files.. 1237
write_resource.. 1238
Stress tools... 1240
 The cassandra-stress tool... 1240
 Interpreting the output of cassandra-stress... 1252
cfs-stress tool.. 1254
SSTable utilities... 1255
 sstabledump.. 1255
 sstableexpiredblockers.. 1255
 sstablelevelreset.. 1256
 sstableloader.. 1256
 sstablemetadata.. 1262
 sstableofflinerelevel... 1263
 sstablepartitions... 1264
 ssstablerpairedset... 1268
 sstablescrub... 1269
 sstablesplit.. 1269
 sstableupgrade.. 1270
 sstableutil... 1271
Operations .. 1275

Starting and stopping DSE ... 1275
 Starting as a service ... 1275
 Starting as a stand-alone process ... 1278
 Stopping a node .. 1280

Adding or removing nodes, datacenters, or clusters ... 1281
 Adding vnodes to an existing cluster ... 1281
 Adding a datacenter to a cluster ... 1283
 Adding a datacenter to a cluster using a designated datacenter as a data source ... 1290
 Replacing a dead node or dead seed node ... 1296
 Replacing a running node ... 1300
 Moving a node from one rack to another .. 1302
 Decommissioning a datacenter .. 1302
 Removing a node .. 1305
 Changing the IP address of a node ... 1306
 Switching snitches .. 1307
 Changing keyspace replication strategy ... 1309
 Migrating or renaming a cluster ... 1310
 Adding single-token nodes to a cluster .. 1311
 Adding a datacenter to a single-token architecture cluster 1313
 Replacing a dead node in a single-token architecture cluster 1314

Backing up and restoring data ... 1318
 About snapshots .. 1318
 Taking a snapshot .. 1318
 Deleting snapshot files ... 1319
Enabling incremental backups... 1320
Restoring from a snapshot... 1320
Restoring a snapshot into a new cluster... 1322
Recovering from a single disk failure using JBOD.. 1323
Repairing nodes... 1326
Manual repair: Anti-entropy repair... 1326
When to run anti-entropy repair... 1330
Changing repair strategies... 1331
Monitoring a DSE cluster.. 1334
Getting statistics and metrics... 1334
Thread pool and read/write latency statistics... 1341
Table statistics... 1342
Compaction metrics.. 1343
Endpoint metrics MBean... 1343
Tuning the database... 1344
Tuning Java resources.. 1344
Tuning Bloom filters... 1348
Configuring memtable thresholds... 1349
Data caching... 1350
Configuring data caches... 1350
Monitoring and adjusting caching.. 1352
Compacting and compressing.. 1353
Configuring compaction... 1353
Compression... 1354
Testing compaction and compression... 1356
Migrating data to DSE.. 1357
Collecting node health and indexing scores... 1357
Clearing data from DataStax Enterprise.. 1359
Studio.. 1361
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>About DataStax Studio</td>
<td>1361</td>
</tr>
<tr>
<td>Release notes</td>
<td>1361</td>
</tr>
<tr>
<td>Studio Getting started</td>
<td>1362</td>
</tr>
<tr>
<td>Installing and running DataStax Studio 2.0</td>
<td>1362</td>
</tr>
<tr>
<td>Starting and stopping Studio</td>
<td>1364</td>
</tr>
<tr>
<td>Creating a simple notebook</td>
<td>1365</td>
</tr>
<tr>
<td>Creating a connection</td>
<td>1367</td>
</tr>
<tr>
<td>Using SSL connections</td>
<td>1369</td>
</tr>
<tr>
<td>Creating a graph in a notebook</td>
<td>1370</td>
</tr>
<tr>
<td>Interact with data using CQL</td>
<td>1375</td>
</tr>
<tr>
<td>Using notebooks</td>
<td>1378</td>
</tr>
<tr>
<td>Listing notebooks using Notebook Manager</td>
<td>1379</td>
</tr>
<tr>
<td>Defining run behavior</td>
<td>1379</td>
</tr>
<tr>
<td>Notebook cells</td>
<td>1381</td>
</tr>
<tr>
<td>Notebook code editor</td>
<td>1383</td>
</tr>
<tr>
<td>User data for notebooks</td>
<td>1387</td>
</tr>
<tr>
<td>Configuring Studio</td>
<td>1388</td>
</tr>
<tr>
<td>Basic configuration options</td>
<td>1388</td>
</tr>
<tr>
<td>Advanced configuration options</td>
<td>1391</td>
</tr>
<tr>
<td>Studio reference</td>
<td>1392</td>
</tr>
<tr>
<td>Connections page</td>
<td>1392</td>
</tr>
<tr>
<td>Default imports</td>
<td>1392</td>
</tr>
<tr>
<td>Keyboard shortcuts</td>
<td>1394</td>
</tr>
<tr>
<td>FAQ</td>
<td>1395</td>
</tr>
<tr>
<td>Troubleshooting DataStax Studio</td>
<td>1396</td>
</tr>
<tr>
<td>CQL</td>
<td>1397</td>
</tr>
</tbody>
</table>
Getting started with DataStax Enterprise 5.1

Information about using this guide, plus new and key features in DataStax Enterprise 5.1.

About the DataStax Enterprise 5.1 Developer Guide

The Developer Guide provides information for creating enterprise-level applications that require real-time always available storage, search, and analytics. DataStax Enterprise seamlessly integrates your code, allowing applications to utilize a breadth of techniques to produce a mobile app or online applications.

Tip: Developing applications requires a basic understanding of how DataStax Enterprise works and how it differs from a relational database. In conjunction with this guide, you should refer to the Architecture Guide for background information. This will save you a lot of time when developing your data models, applications, and using the features in DataStax Enterprise. To get started, be sure to read the DataStax Enterprise 5.1 FAQ and Architecture in brief.

As a developer, you must be familiar with data modeling and CQL.

To ensure that you get the best experience in using this document, take a moment to look at the Tips for using DataStax documentation. This page provides information on search, navigational aids, and providing feedback.

For information about which operating systems (OS) are supported, see Supported Platforms.

DataStax supplies a number of drivers so that CQL statements and search commands can be passed from client to cluster and back. Other tasks can be accomplished using OpsCenter.

This guide includes documentation for:

Install methods (page 145)
Types of installs generally used by developers.

DSE Analytics (page 293)
DSE Analytics uses Apache Spark™ to perform analytic queries over large sets of data. Topics include starting, configuring, running commands against a remote cluster, accessing data, and a number of examples.

DSE Graph (page 562)
A graph database for storing information about the relationships between entries. Topics include getting started, terminology, data modeling, anti-patterns, importing data, tools, and graph analytics.

DSE Search (page 431)
DSE Search simplifies using search applications for data stored in a database. DSE Search integrates Apache Solr™ 6.0.1 to manage search indexes with a persistent store.

DSEFS (page 398)
DataStax Enterprise File System is a distributed file system for storing very large sets of data and encapsulated that data across a DSE cluster. It can be stored for processing by DSE analytics and other tools. It's a replacement for CFS (Cassandra File System) and is roughly equivalent to HDFS.

DataStax Studio (page 1361)
DataStax Studio is an interactive tool for CQL (Cassandra Query Language) and DSE Graph.

DataStax DevCenter
DevCenter is not supported for DSE versions 5.1 and later.

Other information sources

<table>
<thead>
<tr>
<th>Architecture Guide</th>
<th>How the DataStax Enterprise database works.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrators Guide</td>
<td>Information about capacity planning, installation, configuration, migration, performance monitoring, security, backup, data recovery and more.</td>
</tr>
<tr>
<td>CQL for DataStax Enterprise 5.1</td>
<td>Cassandra Query Language (CQL) is a query language for the DataStax Enterprise database. You can interact with the database is using the CQL shell, cqlsh, or DataStax Studio (page 1361).</td>
</tr>
<tr>
<td>Landing pages</td>
<td>Getting started with DSE, supported platforms, product compatibility, third-party software, resources for additional information, and earlier documentation.</td>
</tr>
<tr>
<td>OpsCenter</td>
<td>Installing and using DSE OpsCenter and Lifecycle Manager.</td>
</tr>
<tr>
<td>DSE drivers</td>
<td>C/C++ driver, C# driver, Java driver, Node.js driver, PHP driver, Python driver, and Ruby driver.</td>
</tr>
<tr>
<td>Planning and testing DSE deployments</td>
<td>Includes hardware selection, estimating disk capacity, anti-patterns, and cluster testing.</td>
</tr>
<tr>
<td>DSE Troubleshooting Guide</td>
<td>Various troubleshooting topics including Linux settings, search, analytics, security, starting DSE, and installing.</td>
</tr>
<tr>
<td>Upgrade Guide</td>
<td>Information on upgrading various versions of DataStax Enterprise and upgrading from Apache Cassandra to DataStax Enterprise.</td>
</tr>
<tr>
<td>Sources of support</td>
<td>DataStax Support, DataStax Academy forums, Stack Overflow for DataStax Enterprise, Stack Overflow for the DataStax Java client driver and the DataStax PHP driver.</td>
</tr>
</tbody>
</table>

DataStax Enterprise 5.1 new features

DataStax Enterprise 5.1 introduces the following new features and enhancements:

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSE Analytics (page 293)</td>
<td>Support for Apache Spark™ 2.0 including SparkR. Improvements include operational improvements, performance improvements, structured streaming, DSE GraphFrames, Spark SQL, and geospatial types.</td>
</tr>
<tr>
<td>Feature</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>DSEFS (page 398)</td>
<td>DataStax Enterprise File System provides a distributed file system for storing very large data sets, such as Spark Streaming data and analytic processing. DSEFS replaces the CFS (Cassandra File System).</td>
</tr>
<tr>
<td>DSE Graph (page 561)</td>
<td>Improvements includes new fuzzy search; advanced configuration of search indexing; better data loading performance; improved geospatial querying; Kerberos support for Graph Loader; ability to customize graph visualizations; and stability improvements.</td>
</tr>
<tr>
<td>DSE Security</td>
<td>New security features include granular access control that allows permissions on table rows and search indexes; DSE Proxy management for web services; and JMX authentication integrated with DSE Unified Authentication (LDAP or internal). For details, see New security features in DSE 5.1.</td>
</tr>
<tr>
<td>DSE Advanced Replication (page 872)</td>
<td>Re-designed to use CDC (Change Data Capture) logs, CDC is ideal for configurable replication between sources and destinations. Suitable for environments where sporadic connectivity that can occur, such as a network of microservices clusters that report data to a central analytics cluster.</td>
</tr>
<tr>
<td>Drivers</td>
<td>Support for new DSE 5.1 functionality, such as Unified Authentication, proxy login and execution, and the new data types. Additionally, the Java and Python drivers contain a DSE Graph fluent API that use the Gremlin Traversal API for programmatically building Gremlin queries.</td>
</tr>
<tr>
<td>DataStax Studio (page 1361)</td>
<td>Added support for CQL (Cassandra Query Language). This new features provides the ability to visually navigate database objects, create and tune CQL queries. Studio features an intelligent CQL editor providing syntax highlighting, validation, intelligent code completion, configuration options, and query profiling. Improvements in DSE Studio for DSE Graph include better usability; more complete profiling for graph queries; and new customization capabilities for graph visualization, including coloring and sizing vertices by label or property value, and custom shapes and icons. Schema visualization is also improved.</td>
</tr>
<tr>
<td>DSE In-Memory</td>
<td>MemoryOnlyStrategy now works with compression.</td>
</tr>
<tr>
<td>Operations</td>
<td>Performance improvements including faster server startup. Improved help for CQL and cqlsh commands. Tab completion to cqlsh for DSE custom compaction strategies. Improvements to dsetool (page 1172) and dse client-tool (page 1159).</td>
</tr>
</tbody>
</table>
New database features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cassandra-stress -graph option</td>
<td>Results can be automatically graphed (page 1251) for data visualization.</td>
</tr>
<tr>
<td>Clustering columns improvement</td>
<td>Clustering columns without a secondary index can be used in a WHERE clause, provided the ALLOW FILTERING clause is also used.</td>
</tr>
<tr>
<td>CREATE TABLE WITH ID</td>
<td>If a table is accidentally dropped, recreate it with its ID and replay the commitlog to regain data.</td>
</tr>
<tr>
<td>JBOD compaction and backup</td>
<td>Updated SSTable partitioning by token range has improved JBOD compaction and backup. The <code>nodetool relocatesstables ([page 1017](#))</code> command supports the improvement. For details, see the Improving JBOD blog.</td>
</tr>
<tr>
<td>jvm.options file</td>
<td>Garbage collection (GC) and other JVM options moved to the <code>jvm.options ([page 284](#))</code> file from the <code>cassandra-env.sh</code> file.</td>
</tr>
</tbody>
</table>

nodetool updates

- **nodetool compact --user-defined ([page 956](#))**
 - Allows submission of a file list. Useful for low disk space or tombstone purging.
- **nodetool proxyhistograms ([page 1007](#))**
 - CAS read and write latency is displayed for compare-and-set operations.
- **nodetool getsstables --hex-format ([page 989](#))**
 - Option for using a hex-formatted key to get SSTables.
- **nodetool gettimeout ([page 991](#))**
 - Prints value of a timeout.
- **nodetool settimeout ([page 1042](#))**
 - Sets the value of a timeout in milliseconds.

PER PARTITION LIMIT

A query can be limited to return results from each partition, such as a Top 3 listing.

sstableloader -ap option

`sstableloader ([page 1256](#))` (Bulkloader) can use third-party authentication.

Static columns improvements

Static columns can be indexed (experimental).
Static columns can be used with SASI indexes (experimental).

Timestamp in sub-second precision

Timestamp defaults include sub-second precision.

TTL for COPY FROM

Specify a TTL value when copying from CSV files.

user-defined type (UDT) improvements

If a UDT has only non-collection fields, an individual field value can be updated or deleted.
Getting started with DataStax Enterprise 5.1

For more details, see the DataStax Enterprise 5.1 release notes (page 26). To upgrade to DataStax Enterprise 5.1, see the DataStax Upgrade Guide.

DataStax Enterprise 5.1 key features

DataStax Enterprise, powered by the best distribution of Apache Cassandra™, seamlessly integrates your code, allowing applications to utilize a breadth of techniques to produce a mobile app or online applications. DSE makes it easy to distribute your data across datacenters or cloud regions, making your applications always-on, ready to scale, and able to create instant insight and experiences. DataStax Enterprise provides flexibility to deploy on any on-premise, cloud infrastructure, or hybrid cloud, plus the ability to use multiple operational workloads, such as analytics and search, without any operational performance degradation.

Database

DataStax Enterprise has added powerful new capabilities to the Apache Cassandra database with advanced security, tiered storage, row-level access control, and more. Thus, in the DataStax Enterprise 5.1 documentation, the Cassandra database and related commercial-only features are referred to cumulatively as the DataStax Enterprise database, the database, or DataStax Enterprise depending on the context.

The DSE database is a partitioned row store database. It is a massively scalable NoSQL database that provides automatic data distribution across all nodes in a cluster. There is nothing programmatic that a developer or administrator needs to do or code to distribute data across a cluster.

The database provides built-in and customizable replication, which stores redundant copies of data across the cluster. This means that if any node in a cluster goes down, one or more copies of that node’s data are available on other nodes. Replication can be configured to work across one datacenter, many datacenters, and multiple cloud availability zones.

DataStax Enterprise advanced functionality

DSE Analytics (page 293)

Provides real-time, streaming, and batch operational analytics with an enhanced version of Apache Spark™ 2.0 — a distributed, parallel data processing engine.

DSE Graph (page 561)

Handles large, complex, relationship-heavy data sets through a highly scalable graph database, capable of executing both transactional and analytical workloads in an always-on, horizontally scalable data platform.

DSE Search (page 431)

Integrated with Apache Solr™ 6.0 to provide continuously available search. Index management CQL and cqlsh commands (page 461) streamline operations and development.

DSE Advanced Security

A feature suite for protecting data in enterprise environments. It includes advanced mechanisms for authentication and authorization, encryption of data in-flight and at-rest, data auditing, and row-level access control (RLAC).
DSE Advanced Replication (page 872)
Supports configurable distributed data replication from source clusters to destination clusters bi-directionally. It is designed to support microservice analytics commonly found in retail environments and tolerate sporadic connectivity that can occur in constrained environments, such as oil-and-gas remote sites, and cruise ships.

DSE Tiered Storage
Part of the multiple storage options offered in DataStax Enterprise for optimizing performance and cost goals. It automates the smart movement of data across different types of storage media to improve performance, lower costs, and reduce manual processes.

DSE Multi-Instance
Provides multi-tenancy to run multiple DataStax Enterprise nodes on a single host machine to leverage large server capabilities. This allows you to utilize the price-performance sweet spot in the contemporary hardware market and ensures that cost saving goals are met without compromising performance and availability.

DSE In-Memory
Part of the multiple storage options offered in DataStax Enterprise for optimizing performance and cost goals. It provides the ability to set which parts (some or all) of a database to reside fully in RAM. DSE in-memory provides lightning-fast performance for read-intensive situations.

Other DataStax Enterprise docs
Planning and testing DataStax Enterprise deployments
Information on choosing hardware, capacity planning, estimating disk capacity, anti-patterns, planning for the cloud, and testing your cluster before deployment.

Troubleshooting DataStax Enterprise
Troubleshooting for installing and starting DSE, Linux settings, security, DSE Graph, DSE Analytics, DSE Search, DataStax Studio, and more.

Development and production tools
Integrated DataStax products
cqlsh, Gremlin console (page 667)

Developer tools
Javadoc, demos, DataStax Studio (page 1361)

Production tools
OpsCenter and Lifecycle Manager, nodetool (page 949), dsetool (page 1172), DSE Graph Loader (page 744)

DataStax Drivers
DataStax drivers come in two types: DataStax drivers for DataStax Enterprise 5.0 and later and DataStax drivers for Apache Cassandra™.

Download drivers from DataStax Academy. For version compatibility, see the DataStax drivers page.

Drivers for DSE 5.0 and later
These drivers can only be used with DataStax Enterprise and support the advanced functionality of DataStax Enterprise 5.1:
• C/C++ driver
• C# driver
• Java driver
• Node.js driver
• PHP driver
• Python driver
• Ruby driver

DataStax drivers for Apache Cassandra

These drivers can be used with DataStax Enterprise but do not support its advanced functionality:

• C/C++ driver
• C# driver
• Java driver
• Node.js driver
• PHP driver
• Python driver
• Ruby driver
DataStax Enterprise 5.1 release notes

DataStax Enterprise release notes cover cluster requirements, upgrade guidance, components, changes and enhancements, issues, and resolved issues for DataStax Enterprise (DSE) 5.1.

Note: Each point release includes a highlights and executive summary section to provide guidance and add visibility to important improvements.

Requirement for Uniform Licensing

All nodes in each cluster must be uniformly licensed to use the same subscription. For example, if a cluster contains 5 nodes, all 5 nodes within that cluster must be either DataStax Distribution of Apache Cassandra™, or all 5 nodes must be DataStax Enterprise. Mixing different subscriptions within a cluster is not permitted. The DataStax Advanced Workloads Pack may be added to any DataStax Enterprise (not DataStax Distribution of Apache Cassandra) cluster in an incremental fashion. For example, a 10-node DSE cluster may be extended to include 3 nodes of the Advanced Workloads Pack. “Cluster” means a collection of nodes running the software which communicate with one another using gossip. See Enterprise Terms.

Note: For third-party software, see DataStax Enterprise 5.1.x third-party software (not all entries apply to DDAC).

Before you upgrade

<table>
<thead>
<tr>
<th>Upgrade advice</th>
<th>Compatibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before you upgrade to a later major version, upgrade to the latest patch release (5.1.15) on your current version. Be sure to read the relevant upgrade documentation.</td>
<td>Upgrades to DSE 5.1 are supported from: • DSE 5.0</td>
</tr>
<tr>
<td>Check the compatibility page for your products.</td>
<td>DSE 5.1 product compatibility</td>
</tr>
<tr>
<td></td>
<td>• OpsCenter 6.5</td>
</tr>
<tr>
<td></td>
<td>• OpsCenter 6.1</td>
</tr>
<tr>
<td></td>
<td>• Studio 2.0 (page 1361)</td>
</tr>
<tr>
<td>See Upgrading DataStax drivers.</td>
<td>DataStax Drivers: You may need to recompile your client application code.</td>
</tr>
<tr>
<td>Use DataStax Bulk Loader for loading and unloading data.</td>
<td>Loads data into DSE 5.0 or later and unloads data from any Apache Cassandra™ 2.1 or later data source.</td>
</tr>
</tbody>
</table>

DSE 5.1.15

Release notes for DataStax Enterprise 5.1.15.
Important: DataStax recommends the latest patch release for most environments.

11 June 2019

- 5.1.15 Components (page 27)
- 5.1.15 Highlights (page 27)
- 5.1.15 Cassandra enhancements (page 31)
- 5.1.15 General upgrade advice (page 31)
- 5.1.15 TinkerPop changes (page 31)

Table 1: DSE functionality

<table>
<thead>
<tr>
<th>5.1.15 DSE core (page 28)</th>
<th>5.1.15 DSE Graph (page 29)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.15 DSE Analytics (page 28)</td>
<td>5.1.15 DSE Search (page 29)</td>
</tr>
</tbody>
</table>

5.1.15 Components

All components from DSE 5.1.15 are listed. Components that are updated for DSE 5.1.15 are indicated with an asterisk (*).

- Apache Solr™ 6.0.1.0.2463 *
- Apache Spark™ 2.0.2.25
- Apache TinkerPop™ 3.2.11
- Apache Tomcat® 8.0.53
- DataStax Spark Cassandra Connector 2.0.11
- DSE Java Driver 1.2.7
- Netty 4.0.54.Final
- Spark Jobserver 0.6.2.238 requires compatible API
- Select Hadoop libraries

DSE 5.1.15 is compatible with Apache Cassandra™ 3.11 and adds production-certified changes (page 31) to Cassandra.

5.1.15 Highlights

High-value benefits of upgrading to DSE 5.1.15 include these highlights:

5.1.15 DSE Analytics highlights

- When DSE authentication is enabled, Spark security is forced to be enabled. (DSP-17274)

5.1.15 DSE Graph highlights

- DseGraphFrame cannot directly copy graph from one cluster to another. You can now dynamically pass cluster and connection configuration for different graph objects. (DSP-18605)
• UnsatisfiedLinkError when insert multi edge with DseGraphFrame in BYOS (Bring Your Own Spark). (DSP-18916)

5.1.15 DSE Search highlights

• Performance improvements to Solr deletes that correspond to Cassandra rows. (DSP-17419)
• Changes to correct uneven distribution of shard requests with the STATIC set cover finder. (DSP-18197)
• New recommended method for case-insensitive text search, faceting, grouping, and sorting with new `LowerCaseStrField (page 460)` Solr field type. This type sets field values as lowercase and stores them as lowercase in docValues. (DSP-18763)
• The `queryExecutorThreads` and `timeAllowed` Solr parameters can be used together. (DSP-18717)

5.1.15 DataStax Enterprise core

Resolved issues:

• Improved logging identifies which client, keyspace, table, and partition key is rejected when mutation exceeds size threshold. (DB-1051)
• Nodes in a cluster continue trying to connect to a decommissioned node. (DB-2886)
• Bootstrap should fail if the node is not able to fetch the schema from other nodes in the cluster. (DB-3186)
• Slow startup or node hangs when encryption is used. (DB-3050)

5.1.15 DSE Analytics

Changes and enhancements:

• A warning message is displayed when DSE authentication is enabled, but Spark security is not enabled. (DSP-17273)
• When DSE authentication is enabled, Spark security is forced to be enabled. (DSP-17274)

<table>
<thead>
<tr>
<th>dse.yaml</th>
<th>Spark security is enforced</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>authentication_options (page 234)</code></td>
<td>When enabled: true</td>
</tr>
<tr>
<td><code>spark_security_enabled (page 258)</code></td>
<td>This setting is ignored.</td>
</tr>
<tr>
<td><code>spark_security_encryption_enabled (page 258)</code></td>
<td>This setting is ignored.</td>
</tr>
</tbody>
</table>

Known issues

• Spark application Web UI: When TLS is enabled and a driver is submitted in cluster mode, the driver starts on port 4040 and is not secured. (DSP-16926)

 Workaround: To enable SSL for a Spark application Web UI with secure HTTPS on port 4440, see the Spark documentation for SSL Configuration. To pass the SSL
configuration with standard Spark commands, use the `dse spark-sql --conf (page 1152)` command:

```
$ dse spark-submit --conf spark.ssl.ui.enabled=true
   --conf spark.ssl.ui.keyPassword=ctool_keystore
   --conf spark.ssl.ui.keyStore=/home/automaton/ctool_security/
      ctool_keystore
```

- When the Spark security options (page 257) are not configured in dse.yaml, the native CQL protocol authentication can be sidestepped with direct access to the Netty RPC client. Although this access should fail to run Spark applications, the CQL authentication can be bypassed on systems with an open Netty port 7077 using Spark RPC. (DSP-17271)

 Solution: Configure the Spark security options (page 257) in dse.yaml:

```
spark_shared_secret_bit_length: 256
spark_security_enabled: true
spark_security_encryption_enabled: true
```

5.1.15 DSE Graph changes and enhancements

Resolved issues:

- DseGraphFrame cannot directly copy graph from one cluster to another. You can now dynamically pass cluster and connection configuration for different graph objects. (DSP-18605)

 Workaround for earlier versions:

 1. Export graph to DSEFS:

     ```$ g.V.write.format("csv").save("dsefs://culster1/tmp/vertices")
g.E.write.format("csv").save("dsefs://culster1/tmp/edges")```

  2. Import graph to the other cluster:

     ```$ g.updateVertices(spark.read.format("csv").load("dsefs://culster1/tmp/vertices"))
g.updateEdges(spark.read.format("csv").load("dsefs://culster1/tmp/edges"))```

- UnsatisfiedLinkError when insert multi edge with DseGraphFrame in BYOS (Bring Your Own Spark). (DSP-18916)
- DSE Graph does not use primary key predicate in `Search/ .has()` predicate. (DSP-18993)

5.1.15 DSE Search changes and enhancements
Changes and enhancements:

- Changes to correct uneven distribution of shard requests with the STATIC set cover finder. (DSP-18197)
- New recommended method for case-insensitive text search, faceting, grouping, and sorting with new `LowerCaseStrField` (page 460) custom Solr field type. This type sets field values as lowercase and stores them as lowercase in docValues. (DSP-18763)

 Note: DataStax does not support using the `TextField` Solr field type with `solr.KeywordTokenizer` and `solr.LowerCaseFilterFactory` to achieve single-token, case-insensitive indexing on a CQL text field.

Resolved issues:

- SASI queries don’t work on tables with row level access control (RLAC). (DB-3082)
- Documents might not be removed from the index if a key element has value equal to a Solr reserved word. (DSP-17419)
- FQ broken with `queryExecutorThreads` and `timeAllowed` set. (DSP-18717)
- Search should error out, rather than timeout, on Solr query with non-existing field list (fl) fields. (DSP-18218)

- **Select Hadoop libraries**

 Built-in Hadoop and Bring-Your-Own-Hadoop (BYOH) were deprecated in DataStax Enterprise (DSE) 5.0, and were removed in DSE 5.1. Hadoop removal from DSE 5.1 and later means that DSE does not allow for the startup of Hadoop services previously included in DSE, including MapReduce JobTracker and TaskTracker.

 However, DSE has supported built-in Spark since DSE 4.5 and Bring-Your-Own-Spark (BYOS) since DSE 5.0, and that support continues today. Because Spark depends on certain Hadoop libraries on the server and the client, DSE continues to ship with Hadoop libraries that are required for running Spark and BYOS.

 To view the included Hadoop libraries, see DataStax Enterprise 5.1.x third-party software.

dse.yaml

The location of the `dse.yaml` file depends on the type of installation:

<table>
<thead>
<tr>
<th>Package installations</th>
<th>Installer-Services installations</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>/etc/dse/dse.yaml</code></td>
<td></td>
</tr>
</tbody>
</table>
Cassandra enhancements for DSE 5.1.15

DataStax Enterprise (DSE) 5.1.15 includes all changes from previous releases. This production-certified change is an enhancements to Apache Cassandra 3.11. (For Cassandra updates, see CHANGES.txt.)

General upgrade advice for DSE 5.1.15

All upgrade advice from previous versions applies. Carefully review the Upgrading DataStax Enterprise planning and upgrade instructions to ensure a smooth upgrade and avoid pitfalls and frustrations. This general advice applies to the database upgrade and does not replace the upgrade documentation.

- General upgrading advice for any version and new features for Apache Cassandra are in NEWS.txt. Be sure to read the NEWS.txt all the way back to your current version.
- See also the Apache Cassandra changes in CHANGES.txt.

Spark Cassandra Connector changes for DSE 5.1.15

DataStax Enterprise (DSE) 5.1.15 includes DataStax Spark Cassandra Connector 2.0.11 with all changes from earlier versions, and adds these production-certified changes:

- Added case in StringConverter to properly output InetAddress. (SPARKC-559)
- Added java.time.Instant -> java.util.Date conversion. (SPARKC-560)
- RegularStatements not cached by SessionProxy. (SPARKC-558)
- Fix CassandraSourceRelation option Parsing in Spark 2.0. (SPARKC-551)

TinkerPop changes for DSE 5.1.15

DataStax Enterprise (DSE) 5.1.15 includes all changes from previous releases. These production-certified changes are enhancements to Apache TinkerPop™ 3.2.11. For TinkerPop changes, see TinkerPop Upgrade Information.

- Graph OLAP: secret tokens are redacted in log files.
- Masked sensitive configuration options in the logs of KryoShimServiceLoader.
- Changes to the SSL configuration in Gremlin Server. See the TinkerPop SSL Security documentation.

DSE 5.1.14

Release notes for DataStax Enterprise 5.1.14.

Important: DataStax recommends the latest patch release for most environments.

16 April 2019
5.1.14 Components

All components from DSE 5.1.14 are listed. Components that are updated for DSE 5.1.14 are indicated with an asterisk (*).

- Apache Solr™ 6.0.1.0.2414 *
- Apache Spark™ 2.0.2.25 *
- Apache TinkerPop™ 3.2.11 *
- Apache Tomcat® 8.0.53
- DataStax Spark Cassandra Connector 2.0.11 *
- DSE Java Driver 1.2.7
- Netty 4.0.54.Final
- Spark Jobserver 0.6.2.238 requires compatible API
- Select Hadoop libraries

DSE 5.1.14 is compatible with Apache Cassandra™ 3.11 and adds production-certified changes (page 36) to Cassandra.

Table 2: DSE functionality

<table>
<thead>
<tr>
<th>5.1.14 DSE core (page 34)</th>
<th>5.1.14 DSE Graph (page 35)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.14 DSE Analytics (page 34)</td>
<td>5.1.14 DSE Search (page 35)</td>
</tr>
</tbody>
</table>

5.1.14 Highlights

Executive summary highlights for DSE 5.1.14:

- DSE highlights (page 32)
- DSE Analytics and DSEFS (page 33)
- DSE Graph (page 33)
- DSE Search (page 33)

The executive summary highlights are just a top-level view. Be sure to review all of the release notes.

5.1.14 DataStax Enterprise highlights

- DataStax Enterprise Metrics Collector (page 937) aggregates DSE metrics and integrates with existing monitoring solutions to facilitate problem resolution and remediation. (DSP-17869)
- Fixed anti-compaction transaction for atomicity and index building. (DB-3016)
• Remedy deadlock during node startup when calculating disk boundaries. (DB-3028)
• Correct handling of dropped UDT columns in SSTables. (DB-3031)

Workaround: If issues with UDTs in SSTables exist after upgrade from DSE 5.0.x, run `sstablescrub --e fix-only` offline on the SSTables that have or had UDTs that were created in DSE 5.0.x.

5.1.14 DSE Analytics and DSEFS highlights

• Fixed an issue where properties unattached to vertex show up with null values. (DSP-12300)
• DSEFS auth demo is fixed. (DSP-17700)
• Fixed a leak in BulkTableWriter. (DSP-18513)

5.1.14 DSE Graph highlights

• Time, date, inet, and duration data types (page 869) are now supported in graph search indexes (page 656). (DSP-17694)
• Data caching improvements during DSE GraphFrame operations. (DSP-17870)
• DseGraphFrame supports properties with symbols, like period (.), in names. (DSP-17818)
• Improved graph robustness in resource-constrained environments. (DSP-18005)
• Graph OLAP: secret tokens are redacted in log files. (DSP-18074)
• Some minor DSE GraphFrame code fixes. (DSP-18215)

5.1.14 DSE Search highlights

• Fixed a class of SSTable reference leaks. (DSP-17975)
• Indexing rows that contain frozen maps is supported. (DSP-18073)
• Fixed timestamp PK routing with solr_query. (DSP-18223)
• Fixed facets and stats queries when using queryExecutorThreads. (DSP-18237, DSP-18665)

5.1.14 Known issues

DSE Analytics:
• Spark application Web UI: When TLS is enabled and a driver is submitted in cluster mode, the driver starts on port 4040 and is not secured. (DSP-16926)

Workaround: To enable SSL for a Spark application Web UI with secure HTTPS on port 4440, see the Spark documentation for SSL Configuration. To pass the SSL configuration with standard Spark commands, use the `dse spark-sql --conf (page 1152)` command:

```
$ dse spark-submit --conf spark.ssl.ui.enabled=true
--conf spark.ssl.ui.keyPassword=ctool_keystore
```
5.1.14 DataStax Enterprise

Resolved issues:

- Native server Message.Dispatcher.Flusher task stalls under heavy load. (DB-1814)
- Reference leak in SSTableRewriter in sstableupgrade (page 1270) when keepOriginals is true. (DB-2944)
- Anti-compaction transaction causes temporary data loss. (DB-3016)
- Check of two versions of metadata for a column fails on upgrade from DSE 5.0.x when type is not of same class. Loosen the check from CASSANDRA-13776 to prevent Trying to compare 2 different types ERROR on upgrades. (DB-3021)
- Deadlock during node startup when calculating disk boundaries. (DB-3028)
- Correct handling of dropped UDT columns in SSTables. (DB-3031)
- Mishandling of frozen in complex nested types. (DB-3081)
- cqlsh EXECUTE AS command does not work. (DB-3098)
- Security: java-xmlbuilder is vulnerable to XML external entities (XXE). (DSP-13962)
- Timestamp PK routing on solr_query fails. (DSP-18223)
- Leak in BulkTableWriter. (DSP-18513)

5.1.14 DSE Analytics

Resolved issues

- dse client-tool configuration byos-export (page 1165) does not export required Spark properties. (DSP-15938)
- CVE-2018-1334 Apache Spark local privilege escalation vulnerability. (DSP-16715)
- Downloaded Spark JAR files are executable for all users. (DSP-17692)
- Spark Cassandra Connector does properly cache manually prepared RegularStatements, see SPARKC-558. (DSP-18075)
- Invalid options show for dse spark-submit command line help. (DSP-18293)

5.1.14 DSEFS

Resolved issues

- DSEFS demo does not work. (DSP-17700)
- Change dsefs:// default port when the DSEFS setting public_port (page 261) is changed in dse.yaml. (DSP-17962)
- SparkContext closing is faulty with significantly increased shutdown time. (DSP-17699)
- DSEFS WebHDFS API GETFILESTATUS op returns AccessDeniedException for the file even when user has correct permission. (DSP-18044)
5.1.14 DSE Graph

Resolved issues

- Do not report errors for leases when a DC is removed. (DSP-16801)
- Properties unattached to vertex show up with null values. (DSP-12300)
- `g.V().repeat(...).until(...).path()` returns incomplete path without edges. (DSP-17933)
- DseGraphFrame fail to read properties with symbols, like period (.), in names. (DSP-17818)
- DSE GraphFrame operations cache but do not explicitly uncache. (DSP-17870)
- Inconsistent results when using gremlin on static data. (DSP-18005)
- Graph OLAP: secret tokens are unmasked in log files. (DSP-18074)
- Unexpected gossip failure. java.lang.NullPointerException: null. (DSP-18194)
- OLAP traversal duplicates the partition key properties: OLAP g.V().properties() prints 'first' vertex n times with custom ids. (DSP-15688)
- Time, date, inet, and duration data types (page 869) are not supported in graph search indexes (page 656). (DSP-17694)

5.1.14 DSE Search

Resolved issues

- `java.lang.AssertionError: rtDocValues.maxDoc=5230 maxDoc=4488` error is thrown in the system.log during indexing and reindexing. (DSP-17529)
- Strong self-ref loop detected after reindex is finished. (DSP-17975)
- Loading frozen map columns fails during search read-before-write. (DSP-18073)
- Avoid interrupting request threads when an internode handshake fails so that the Lucene file channel lock cannot be interrupted. (DSP-18211)
- Facets and stats queries broken when using queryExecutorThreads. (DSP-18237, DSP-18665)

Select Hadoop libraries

Built-in Hadoop and Bring-Your-Own-Hadoop (BYOH) were deprecated in DataStax Enterprise (DSE) 5.0, and were removed in DSE 5.1. Hadoop removal from DSE 5.1 and later means that DSE does not allow for the startup of Hadoop services previously included in DSE, including MapReduce JobTracker and TaskTracker.

However, DSE has supported built-in Spark since DSE 4.5 and Bring-Your-Own-Spark (BYOS) since DSE 5.0, and that support continues today. Because Spark depends on certain Hadoop libraries on the server and the client, DSE continues to ship with Hadoop libraries that are required for running Spark and BYOS.
To view the included Hadoop libraries, see DataStax Enterprise 5.1.x third-party software.

dse.yaml

The location of the dse.yaml file depends on the type of installation:

<table>
<thead>
<tr>
<th>Package installations</th>
<th>/etc/dse/dse.yaml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer-Services installations</td>
<td>/etc/dse/dse.yaml</td>
</tr>
<tr>
<td>Tarball installations</td>
<td>installation_location/resources/dse/conf/dse.yaml</td>
</tr>
<tr>
<td>Installer-No Services installations</td>
<td>installation_location/resources/dse/conf/dse.yaml</td>
</tr>
</tbody>
</table>

Cassandra enhancements for DSE 5.1.14

DataStax Enterprise (DSE) 5.1.14 includes all changes from previous releases. This production-certified change is an enhancements to Apache Cassandra 3.11. (For Cassandra updates, see CHANGES.txt.)

- Severe concurrency issues in STCS,DTCS,TWCS,TMD.Topology,TypeParser (CASSANDRA-14781)

General upgrade advice for DSE 5.1.14

All upgrade advice from previous versions applies. Carefully review the Upgrading DataStax Enterprise planning and upgrade instructions to ensure a smooth upgrade and avoid pitfalls and frustrations. This general advice applies to the database upgrade and does not replace the upgrade documentation.

- General upgrading advice for any version and new features for Apache Cassandra are in NEWS.txt. Be sure to read the NEWS.txt all the way back to your current version.
- See also the Apache Cassandra changes in CHANGES.txt.

Spark Cassandra Connector changes for DSE 5.1.14

DataStax Enterprise (DSE) 5.1.14 includes DataStax Spark Cassandra Connector 2.0.11 with all changes from earlier versions, and adds these production-certified changes:

- Added case in StringConverter to properly output InetAddress (SPARKC-559)
- Added java.time.Instant -> java.util.Data conversion (SPARKC-560)
- RegularStatements not Cached by SessionProxy (SPARKC-558)
- Fix CassandraSourceRelation option Parsing in Spark 2.0 (SPARKC-551)

TinkerPop changes for DSE 5.1.14

DataStax Enterprise (DSE) 5.1.14 includes all changes from previous releases. These production-certified changes are enhancements to Apache TinkerPop™ 3.2.11. For TinkerPop changes, see TinkerPop Upgrade Information.

- Graph OLAP: secret tokens are redacted in log files.
• Masked sensitive configuration options in the logs of KryoShimServiceLoader.
• Changes to the SSL configuration in Gremlin Server. See the TinkerPop SSL Security documentation.

DSE 5.1.13

Release notes for DataStax Enterprise 5.1.13.

Important: DataStax recommends the latest patch release for most environments.

27 February 2019

5.1.13 Components

All components from DSE 5.1.13 are listed.

• Apache Solr™ 6.0.1.0.2370
• Apache Spark™ 2.0.2.22
• Apache TinkerPop™ 3.2.9-20181026-f24c1d4b
• Apache Tomcat® 8.0.53
• DataStax Spark Cassandra Connector 2.0.10
• DSE Java Driver 1.2.7
• Netty 4.0.54.Final
• Spark Jobserver 0.6.2.238 requires compatible API
• Select Hadoop libraries

DSE 5.1.13 is compatible with Apache Cassandra™ 3.11 and includes all production-certified changes (page 38) from previous releases.

5.1.13 Resolved issue

• DSE 5.0 SSTables with UDTs will be corrupted after migrating to DSE 5.1, DSE 6.0, and DSE 6.7. (DB-2954, CASSANDRA-15035)

 If the DSE 5.0.x schema contains user-defined types (UDTs), the SSTable serialization headers are fixed when DSE is started with DSE 5.1.13 or later.

• Select Hadoop libraries

 Built-in Hadoop and Bring-Your-Own-Hadoop (BYOH) were deprecated in DataStax Enterprise (DSE) 5.0, and were removed in DSE 5.1. Hadoop removal from DSE 5.1 and later means that DSE does not allow for the startup of Hadoop services previously included in DSE, including MapReduce JobTracker and TaskTracker.

 However, DSE has supported built-in Spark since DSE 4.5 and Bring-Your-Own-Spark (BYOS) since DSE 5.0, and that support continues today. Because Spark depends on certain Hadoop libraries on the server and the client, DSE continues to ship with Hadoop libraries that are required for running Spark and BYOS.
To view the included Hadoop libraries, see DataStax Enterprise 5.1.x third-party software.

Cassandra enhancements for DSE 5.1.13

DataStax Enterprise (DSE) 5.1.13 includes all changes from previous releases that are enhancements to Apache Cassandra 3.11. (For Cassandra updates, see CHANGES.txt.)

General upgrade advice for DSE 5.1.13

All upgrade advice from previous versions applies. Carefully review the Upgrading DataStax Enterprise planning and upgrade instructions to ensure a smooth upgrade and avoid pitfalls and frustrations. This general advice applies to the database upgrade and does not replace the upgrade documentation.

- General upgrading advice for any version and new features for Apache Cassandra are in NEWS.txt. Be sure to read the NEWS.txt all the way back to your current version.
- See also the Apache Cassandra changes in CHANGES.txt.

DSE 5.1.13

Upgrading

- SSTables for tables using with a frozen UDT written by DSE 5.0 or Cassandra 3.0 appear as corrupted. See DB-2954, CASSANDRA-15035 in the DSE resolved issues (page 37) release notes.

Spark Cassandra Connector changes for DSE 5.1.13

DataStax Enterprise (DSE) 5.1.13 includes DataStax Spark Cassandra Connector 2.1.10 and all production-certified changes from earlier versions.

TinkerPop changes for DSE 5.1.13

DataStax Enterprise (DSE) 5.1.13 includes all changes from previous releases. These production-certified changes are enhancements to Apache TinkerPop™ 3.2.9. For TinkerPop changes, see TinkerPop Upgrade Information.

Resolved issues:

- Gremlin materializes snapshots lazily. (DSP-17576, TINKERPOP-2081)

DSE 5.1.12

Release notes for DataStax Enterprise 5.1.12.

Important: DataStax recommends the latest patch release for most environments.

26 December 2018

- 5.1.12 Components (page 39)
5.1.12 Highlights (page 39)
5.1.12 Components
All components from DSE 5.1.12 are listed. Components that are updated for DSE 5.1.12 are indicated with an asterisk (*).

- Apache Solr™ 6.0.1.0.2370 *
- Apache Spark™ 2.0.2.22 *
- Apache TinkerPop™ 3.2.9-20181026-f24c1d4b *
- Apache Tomcat® 8.0.53 *
- DataStax Spark Cassandra Connector 2.0.10
- DSE Java Driver 1.2.7 *
- Netty 4.0.54.Final
- Spark Jobserver 0.6.2.238 requires compatible API
- Select Hadoop libraries

DSE 5.1.12 is compatible with Apache Cassandra™ 3.11 and includes production-certified changes (page 45) to Cassandra.

5.1.12 Highlights
Executive summary highlights for DSE 5.1.12:

- DSE core (page 39)
- DSE Analytics and DSEFS (page 40)
- DSE Graph (page 40)
- DSE Search (page 40)

The executive summary highlights are just a top-level view. Be sure to review all of the release notes.

5.1.12 DataStax Enterprise database core highlights

- Skip fetching streamed range in repair during consistent-replace. (DB-2596)
- Fixed user-defined aggregates (UDAs) that instantiate user-defined types (UDTs) break after restart. (DB-2771)
• Fixed NullPointerException that can occur during compaction if users use TWCS and allow_unsafe_aggressive_sstable_expiration. (DB-2472)
• Fixed resource leak related to streaming operations that affects tiered storage users. Excessive number of TieredRowWriter threads causing java.lang.OutOfMemoryError. (DB-2463)
• General stability improvements:
 # Invalidate chunk cache on SSTable rename. (DB-2594)
 # Fixes to several thread-safety bugs. (DB-2602, DB-2609)
 # Fix for static and regular collision when using same ColumnIdentifier and ComposedTypes. (DB-1630)

• Upgrade improvements:
 # Fixed handling of deletions for dropped collections in static rows in mixed-version clusters. (DB-2341)

• Operational improvements:
 # Support for QUORUM/LOCAL_QUORUM consistent replace_address. (DB-1577, DB-2596)
 # Expose information about stored hints by using JMX/nodetool listendpointsendinghints (page 1001). (DB-1674)
 # New sstablepartitions (page 1264) tool to identify large partitions. (DB-803)
 # Fixed incorrect order of application of nodetool garbagecollect leaves tombstones that should be deleted. (DB-2658)
 # Custom HeapDumpPath is not overwritten. (DB-714)
 # By default, rebuild only locally replicated keyspaces. (DB-2301)

5.1.12 DSE Analytics and DSEFS highlights

• Jetty 9.4.1 upgrade addresses security vulnerabilities in Spark dependencies packaged with DSE. (DSP-16893)
• DSE 5.0.x DSEFS client is now able to list files when connected to DSE 5.1.x and later DSEFS server. (DSP-17600)

5.1.12 DSE Graph highlights

• Fix unresponsive nodes following Gremlin timeouts. (DSP-16544)
• # Graph/Search escaping fixes. (DSP-17216, DSP-17277, DSP-17816)

5.1.12 DSE Search highlights

• Security fixes. (DSP-17029, DSP-17303)
• Critical memory leak and corruption fixes for encrypted indexes. (DSP-17111)
• Change to the default merge scheduler configuration. See config option MaxMergeCount. (DSP-17597)
• CQL timestamp field can be part of a Solr unique key. (DSP-17761)
• Minor query memory usage improvements. (DSP-17147)

5.1.12 DataStax Enterprise

Changes and enhancements:

• New DSE start-up parameter -Ddse.consistent_replace (page 285) improves LOCAL_QUORUM and QUORUM consistency on new node after node replacement. (DB-1577)
• New nodetool listendpointspendinghints (page 1001) command prints hint information about the endpoints this node has hints for. (DB-1674)
• New sstablepartitions (page 1264) tool to identify large partitions. (DB-803)
• New JMX operations for graph MBeans. (DSP-15928)
 # adjacency-cache.size - adjacency cache size attribute
 # adjacency-cache.clear - operation to clean adjacency cache
 # index-cache.size - vertex cache size attribute
 # index-cache.clear - operation to clean vertex cache

JMX operations are not cluster-aware. Invoke on each node as appropriate to your environment.
• Improved encryption key error reporting. (DSP-17723)
• New -Dcassandra.range_tombstone_bound_check_chance (page 286) start-up parameter checks for bad range tombstones on a percentage of queries. (DSP-17969)

Resolved issues:

• Custom HeapDumpPath is overwritten. (DB-714)
• Deleting a static column and adding it back as a non-static column introduces corruption. (DB-1630)
• Rebuild should not fail when a keyspace is not replicated to other datacenters. (DB-2301)
• Corrupted static collection deletions for dropped collections in mixed-version clusters. (DB-2341)
• repair may skip some ranges due to received range cache. (DB-2432)
• Excessive number of TieredRowWriter threads causing java.lang.OutOfMemoryError (DB-2463)
• NullPointerException during compaction on table with TimeWindowCompactionStrategy (TWCS). (DB-2472)
• Prevent potential SSTable corruption with nodetool refresh. (DB-2594)
• The nodetool gcstats command output incorrectly reports the GC reclaimed metric in bytes, instead of the expected MB. (DB-2598)
• TypeParser is not thread safe. (DB-2602)
• STCS, DTCS, TWCS, TMD aren't thread-safe. (DB-2609)
• Incorrect order of application of nodetool garbagecollect leaves tombstones that should be deleted. (DB-2658)
• User-defined aggregates (UDAs) that instantiate user-defined types (UDTs) break after restart. (DB-2771)
• Fix sstableloader error when internode encryption, client_encryption, and config encryption are enabled. (DSP-17536)
• EverywhereStrategy picks non-token-owning nodes as endpoints. (DSP-16951)

5.1.12 DSE Analytics

Changes and enhancements:
• Improved error handling: only submission-related error exceptions from Spark submitted applications are wrapped in a Dse Spark Submit Bootstrapper Failed to Submit error. (DSP-16359)
• Jetty 9.4.1 upgrade addresses security vulnerabilities in Spark dependencies packaged with DSE. (DSP-16893)
 # Jetty Http Utility CVE-2017-7656
 # Jetty Http Utility CVE-2017-7657
 # Jetty Http Utility CVE-2017-7658
 # Jetty Server Core CVE-2018-12538
 # Jetty Utilities CVE-2018-12536
• dse spark-submit kill and status commands support optionally explicit master address. (DSP-16910, DSP-16991)

Resolved issues:
• Redirect to cluster mode for Spark applications whose public DNS is set. (DSP-15705)
• Race condition allows Spark Executor working directories to be removed before stopping those executors. (DSP-15769)
• Restore DseGraphFrame support in BYOS and spark-dependencies artifacts. Include graph frames python library in graphframe.jar. (DSP-16383)
• Search optimizations for search analytics Spark SQL queries are applied to a datacenter that no longer has search enabled. Queries launched from a search-enabled datacenter cause search optimizations even when the target datacenter does not have search enabled. (DSP-16465)
• DSE 5.0.x DSEFS client is not able to list files when connected to 5.1.x (and up) DSEFS server. (DSP-17600)
• dse spark-sql-metastore-migrate does not work with DSE Unified Authentication and internal authentication. (DSP-17632)

5.1.12 DSEFS

Changes and enhancements:
• Improved error message when no available chunks are found. (DSP-16623)

Resolved issues:
• DSEFS throws exceptions and cannot initialize when listen_address is left blank. (DSP-16296)
• Timeout issues in DSEFS startup. (DSP-16875)
Initialization would fail with error messages similar to:

```
com.datastax.driver.core.exceptions.NoHostAvailableException: All host(s) tried for query failed (no host was tried)
```

- DSEFS exit code not set in some cases (DSP-17266)
- DSEFS does not support `listen_on_broadcast_address (page 213)` as configured in cassandra.yaml. (DSP-17363)
- Moving a directory under itself causes data loss and orphan data structures. (DSP-17347)

5.1.12 DSE Graph

Resolved issues:

- Graph OLAP KryoException for geometry types. (DSP-16955)
- A Gremlin query with search predicate containing \u2028 or \u2029 characters fails. (DSP-17227)
- Geo.inside predicate with Polygon no longer works on secondary index if JTS is not installed. (DSP-17284)
- Search indexes on key fields work only with non-tokenized queries. (DSP-17386)

5.1.12 DSE Search

Changes and enhancements:

- If a client executes a query that results in a shard attempting to send an internode frame larger than the size specified in `frame_length_in_mb (page 268)`, the client receive an error message with a message like this:

```
Attempted to write a frame of <n> bytes with a maximum frame size of <n> bytes
```

In earlier versions, the query timed out with no message. Information was provided only as error in the logs.

- Avoid unnecessary exception and error creation in the Solr query parser. (DSP-17147)
- In earlier releases, CQL search queries failed with UTFDataFormatException on very large SELECT clauses and when tables have a very large number of columns. (DSP-17220)

With this fix, CQL search queries fail with UTFDataFormatException only when SELECT clauses constitute a string larger than 64k UTF-8 encode bytes.

- Requesting a core reindex with `dsetool reload_core (page 1221)` or `REBUILD SEARCH INDEX` no longer builds up a queue of reindexing tasks on a node. Instead, a single starting reindexing task handles all reindex requests that are already submitted to that node. (DSP-17045, DSP-13030)
- Security improvements:
Upgrade Apache Tomcat to prevent Denial Of Service (DoS), CVE-2018-1336. (DSP-17303)

Upgrade Apache Commons Compress to prevent Denial Of Service (DoS) vulnerability present in Commons Compress 1.16.1, CVE-2018-11771. (DSP-17019)

- The calculated value for maxMergeCount is changed to improve indexing performance. (DSP-17597)

\[
\text{max(max(<maxThreadCount * 2>, <num_tokens * 8>), <maxThreadCount + 5>)}
\]

where \text{num_tokens (page 214)} is the number of token ranges to assign to the \text{virtual node (page 290)} (vnode) as configured in cassandra.yaml. See config option MaxMergeCount.

Resolved issues:

- Memory leak and corruption for encrypted indexes. (DSP-17111)
- Solr parsing error on Gremlin statement that contains OR, AND, or NOT and uses a search index. (DSP-17216)
- CQL search queries failed with UTFDataFormatException on very large SELECT clauses and when tables have a very large number of columns. (DSP-17220)
- CQL timestamp field can be part of a Solr unique key. (DSP-17761)

5.1.12 DataStax Enterprise known issues

- DSE 5.0 SSTables with UDTs will be corrupted after migrating to DSE 5.1, DSE 6.0, and DSE 6.7. (DB-2954, CASSANDRA-15035)

 \textbf{Important:} If the DSE 5.0.x schema contains user-defined types (UDTs), upgrade to at least DSE 5.1.13, DSE 6.0.6, or DSE 6.7.2. The SSTable serialization headers are fixed when DSE is started with the upgraded versions.

- Upgrades from DSE 5.0.x to DSE 5.1.x on \textbf{RHEL-based systems} incorrectly install DSE 6.x when demos are installed. (DSP-15937)

 Workaroud: For upgrades on RHEL-based systems that have demos installed, you must specify the package installation in a single line, and specify the version for dse-full and dse-demos. For example:

 \[
 \$\text{ sudo yum install dse-full-5.1.15-1 dse-demos-5.1.15-1}
 \]

- If the wrong DSE version was incorrectly installed:

 1. Uninstall the incorrect DSE version:

 \[
 \$\text{ sudo yum remove "dse-*" "datastax-*"}
 \]

 2. Install the DSE 5.1.x version again:
$ sudo yum install dse-full-5.1.15-1 dse-demos-5.1.15-1

- Spark shutdown stops executors but does not wait for everything else to close, causing CoarseGrainedScheduler errors on app termination: org.apache.spark.SparkException: Could not find CoarseGrainedScheduler or it has been stopped. (DSP-16751)

dse.yaml
The location of the dse.yaml file depends on the type of installation:

<table>
<thead>
<tr>
<th>Package installations</th>
<th>/etc/dse/dse.yaml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer-Services installations</td>
<td></td>
</tr>
<tr>
<td>Tarball installations</td>
<td>installation_location/</td>
</tr>
<tr>
<td>Installer-No Services installations</td>
<td>resources/dse/conf/dse.yaml</td>
</tr>
</tbody>
</table>

- Select Hadoop libraries

Built-in Hadoop and Bring-Your-Own-Hadoop (BYOH) were deprecated in DataStax Enterprise (DSE) 5.0, and were removed in DSE 5.1. Hadoop removal from DSE 5.1 and later means that DSE does not allow for the startup of Hadoop services previously included in DSE, including MapReduce JobTracker and TaskTracker.

However, DSE has supported built-in Spark since DSE 4.5 and Bring-Your-Own-Spark (BYOS) since DSE 5.0, and that support continues today. Because Spark depends on certain Hadoop libraries on the server and the client, DSE continues to ship with Hadoop libraries that are required for running Spark and BYOS.

To view the included Hadoop libraries, see DataStax Enterprise 5.1.x third-party software.

Cassandra enhancements for DSE 5.1.12

DataStax Enterprise (DSE) 5.1.12 includes all changes from previous releases. These production-certified changes are enhancements to Apache Cassandra™ 3.11. (For Cassandra updates, see CHANGES.txt.)

- Legacy sstables with multi block range tombstones create invalid bound sequences (CASSANDRA-14823)
- Expand range tombstone validation checks to multiple interim request stages (CASSANDRA-14824)
- Reverse order reads can return incomplete results (CASSANDRA-14803)
- Avoid calling iter.next() in a loop when notifying indexers about range tombstones (CASSANDRA-14794)
- Fix purging semi-expired RT boundaries in reversed iterators (CASSANDRA-14672)
- DESC order reads can fail to return the last Unfiltered in the partition (CASSANDRA-14766)
DataStax Enterprise 5.1 release notes

- Fix corrupted collection deletions for dropped columns in 3.0 <-> 2.{1,2} messages (CASSANDRA-14568)
- Handle failures in parallelAllSSTableOperation (cleanup/upgradesstables/etc) (CASSANDRA-14657)
- Improve TokenMetaData cache populating performance avoid long locking (CASSANDRA-14660)
- Fix static column order for SELECT * wildcard queries (CASSANDRA-14638)
- sstableloader should use discovered broadcast address to connect intra-cluster (CASSANDRA-14522)
- Fix reading columns with non-UTF names from schema (CASSANDRA-14468)
- Fix incorrect cqlsh results when selecting same columns multiple times (CASSANDRA-13262)
- Returns null instead of NaN or Infinity in JSON strings (CASSANDRA-14377)

General upgrade advice for DSE 5.1.12

All upgrade advice from previous versions applies. Carefully review the Upgrading DataStax Enterprise planning and upgrade instructions to ensure a smooth upgrade and avoid pitfalls and frustrations. This general advice applies to the database upgrade and does not replace the upgrade documentation.

- General upgrading advice for any version and new features for Apache Cassandra are in NEWS.txt. Be sure to read the NEWS.txt all the way back to your current version.
- See also the Apache Cassandra changes in CHANGES.txt.

DSE 5.1.12 Operations

- A new property cassandra.range_tombstone_bound_check_chance checks for bad range tombstone on a percentage of queries. The default is 0.01 (can be set in range of 0.0 - 1.0).

Spark Cassandra Connector changes for DSE 5.1.12

DataStax Enterprise (DSE) 5.1.12 includes DataStax Spark Cassandra Connector 2.1.10 and all production-certified changes from earlier versions.

TinkerPop changes for DSE 5.1.12

DataStax Enterprise (DSE) 5.1.12 includes all changes from previous releases. These production-certified changes are enhancements to Apache TinkerPop™ 3.2.9. For TinkerPop changes, see TinkerPop Upgrade Information.

Resolved issues:
• Gremlin materializes snapshots lazily. (DSP-17576, TINKERPOP-2081)

DSE 5.1.11

Release notes for DataStax Enterprise 5.1.11.

Important: DataStax recommends the latest patch release for most environments.

14 September 2018

- 5.1.11 Components *(page 47)*
- 5.1.11 Highlights *(page 47)*
- 5.1.11 Known issues *(page 52)*
- 5.1.11 Cassandra enhancements *(page 52)*
- 5.1.11 General upgrade advice *(page 53)*
- 5.1.11 TinkerPop changes *(page 54)*

Table 4: DSE functionality

<table>
<thead>
<tr>
<th>5.1.11 DSE core (page 48)</th>
<th>5.1.11 DSE Graph (page 50)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.11 DSE Analytics (page 49)</td>
<td>5.1.11 DSE Search (page 51)</td>
</tr>
<tr>
<td>5.1.11 DSEFS (page 50)</td>
<td></td>
</tr>
</tbody>
</table>

5.1.11 Components

All components from DSE 5.1.11 are listed. Components that are updated for DSE 5.1.11 are indicated with an asterisk (*).

- Apache Solr™ 6.0.1.0.2304 *
- Apache Spark™ 2.0.2.21 *
- Apache TinkerPop™ 3.2.9-20180507-f6ead8b2
- Apache Tomcat® 8.0.47
- DataStax Spark Cassandra Connector 2.0.10 *
- DSE Java Driver 1.2.6
- Netty 4.0.54.Final *
- Spark Jobserver 0.6.2.238 requires compatible API
- Select Hadoop libraries

DSE 5.1.11 is compatible with Apache Cassandra™ 3.11.0 and adds production-certified changes *(page 52)* and enhancements.

5.1.11 Highlights

Executive summary highlights for DSE 5.1.11:

- DSE Analytics and DSEFS *(page 48)*
- DSE Graph *(page 48)*
- DSE Search *(page 48)*
The executive summary highlights are just a top-level view. Be sure to review all of the release notes.

5.1.11 DSE Analytics and DSEFS highlights

- Improved security with Spark user isolation. (DSP-16093)
- Client and internode connection improvements. Configurable connections and pools. (DSP-14284, DSP-16065)
- Improved security: DSEFS uses an isolated native memory pool for file data and metadata sent between nodes. This isolation makes it harder to exploit potential memory management bugs. (DSP-16492)
- Fix for duration type in a keyspace that prevented DSEFS from starting. (DSP-16825)
- Fix for failures in Spark when wrong type of exceptions occur on file not found. (DSP-16933)

5.1.11 DSE Graph highlights

- Fix unresponsive nodes following Gremlin timeouts. (DSP-16544)

5.1.11 DSE Search highlights

- Fixes NoSuchMethodError or NoClassDefFoundError exceptions when attempting to use a Snowball-generated stemmer. (DSP-16116)
- DSE will not start without appropriate Tomcat JAR scanning exclusions. (DSP-16841)

5.1.11 DSE

Changes and enhancements:

- Connections on non-serialization errors are not dropped. (DB-2233)
- Create a log message when DDL statements are executed. (DB-2383)
- Improved error handling and logging for TDE encryption key management. (DSP-15314)
- sstableloader ([page 1256](#)) supports custom config file locations. (DSP-16092)
- DataStax does more extensive testing on OpenJDK 8 due to the end of public updates for Oracle JRE/JDK 8. (DSP-16179)

Resolved issues:

- Set MX4J_ADDRESS to 127.0.0.1 if not explicitly set. (DB-1950)
- Digest mismatch for same data between nodes with flushed memtables and nodes with non-flushed memtables. (DB-1980)
- Fix handling of start bound in legacy paged queries. (DB-1984)
- Move TWCS message "No compaction necessary for bucket size" to Trace level or NoSpam. (DB-2022)
- Limit max cached direct buffer on NIO to 1 MB. (DB-2028)
- Compaction strategy instantiation errors don't generate meaningful error messages, instead return only InvocationTargetException. (DB-2404)
• Non-portable syntax (MX4J bash-isms) in cassandra-env.sh broke service scripts. (DB-2123)
• nodetool describecluster incorrectly shows DseDelegateSnitch instead of the snitch configured in cassandra.yaml. (DSP-16158)
• nodetool upgradesstables fails with 20-year TTL. After upgrade to 5.1.11, take required action. (DB-2109)
• Add missing equality sign to SASI schema snapshot. (DB-2129)
• For tables using DSE Tiered Storage, nodetool cleanup places cleaned SSTables in the wrong tier. (DB-2173)
• sstableloader options assume the RPC/native (client) interface is the same as the internode (node-to-node) interface. (DB-2184)
• Audit events for CREATE ROLE and ALTER ROLE with incorrect spacing exposes PASSWORD in plain text. (DB-2285)
• Client warnings are not always propagated via LocalSessionWrapper. (DB-2304)
• Timestamps inserted with ISO 8601 format are saved with wrong millisecond value. (DB-2312)
• Compaction fails with IllegalArgumentException: null. (DB-2329)
• BulkLoader class exits without printing the stack trace for throwable error. (DB-2377)
• sstableloader does not decrypt passwords using config encryption in DSE. (DSP-13492)
• Support creating system keys before the output directory is configured in dse.yaml. (DSP-15380)
• Using geo types does not work when memtable allocation type is set to offheap_objects. (DSP-16302)
• Improved compatibility with external tables stored in the DSE Metastore in remote systems. (DSP-16561)
• Heap-size calculation is incorrect for RpcCallStatement + SearchIndexStatement. (DSP-16731)
• Non-internal users are unable to use permissions granted on CREATE. (DSP-16824)
• The -graph option for the cassandra-stress tool failed on generating the target output html in the JAR file. (DSP-17046)

5.1.11 DSE Analytics

Changes and enhancements:

• DSE client applications, like Spark, hard stop if user home is not defined, does not exist, or the current user does not have write permissions. (DSP-15476)

Resolved issues

• A Spark application can be registered twice in rare instances. (DSP-15247)
• Java driver in Spark Connector uses daemon threads to prevent shutdown hooks from being blocked by driver thread pools. (DSP-16051)
• dse client-tool spark sql-schema --all exports definitions for solr_admin keyspace. (DSP-16073)
• Improved security prevents run_as runner for Spark from running a malicious program. (DSP-16093)
• DSEFS silently fails when TCP port 5599 is not open between nodes. (DSP-16101)
• cassandra nonsuperuser gets dsefs AccessDeniedException due to Insufficient permissions. (DSP-16713)
• Unable to get available memory before Spark Workers are registered. (DSP-16790)

5.1.11 DSEFS

Changes and enhancements:
• DSEFS operations (page 406): chown, chgrp, and chmod support recursive (-R) and verbose (-v) flag. (DSP-14238)
• Client and internode connection improvements. (DSP-14284, DSP-16065)

 # DSEFS clients close idle connections after 60 seconds, configurable in dse.yaml (page 263).

 # Idle DSEFS internode connections are closed after 120 seconds. Configurable with new dse.yaml option internode_idle_connection_timeout_ms (page 263).

 # Configurable connection pool with core_max_concurrent_connections_per_host (page 263).
• Improved error message when performing an operation on a corrupted path. (DSP-16340)
• Security improvements:

 # Only super users are able to remove corrupted non-empty directories when authentication is enabled for DSEFS. (DSP-16340)

 # DSEFS uses an isolated native memory pool for file data and metadata sent between nodes. This isolation makes it harder to exploit potential memory management bugs. (DSP-16492)

5.1.11 DSEFS resolved issues

Resolved issues
• DSEFS fails to start when there is a table with duration type or other type DSEFS that can't understand. (DSP-16825)
• Under high loads, DSEFS reports temporary incorrect state for various files/directories. (DSP-17178)
• IllegalStateException during plugin shutdown causes Failed to abort request body error. (DSP-17003)

5.1.11 DSE Graph

Changes and enhancements:
• Improved Gremlin console authentication configuration. (DSP-9905)
• Maximum evaluation timeout is 1094 days. (DSP-16709)
Gremlin evaluation_timeout parameter:

```java
schema.config().option('graph.traversal_sources.g.evaluation_timeout').set(Duration.ofDays(1094))
```

dse.yaml options: analytic_evaluation_timeout (page 270), realtime_evaluation_timeout (page 270)

- Default write consistency level (CL) for Graph is LOCAL_QUORUM. (DSP-17140)

 Attention: In earlier DSE versions, the default QUORUM write consistency level (CL) was not appropriate for multi-datacenter production environments.

- Added convenience methods for reading graph configuration: getEffectiveAllowScan and getEffectiveSchemaMode. (DSP-16650)
- The hardcoded default `schema_mode (page 271)` is changed from Development to Production. (DSP-16650)

Resolved issues

- Search indexes are broken for multi cardinality properties. (DSP-14802)
- Changing search index schema using a gremlin script might fail with `Search index may not be modified while it is being reindexed. Please wait until reindexing has finished. message`. (DSP-15831)
- Align query behavior using `geo.inside()` predicate for polygon search with and without search indexes. (DSP-16108)
- Classpath conflict between Lucene and SASI versions of Snowball. (DSP-16116)
- Avoid looping indefinitely when a thread making internode requests is interrupted while trying to acquire a connection. (DSP-16544)
- Setting `graph.traversal_sources.g.evaluation_timeout` breaks graph. (DSP-16709)
- Deleting a search index that was defined inside a graph fails. (DSP-16765)
- DSEFS Hadoop layer doesn't properly translate DSEFS exceptions to Hadoop exceptions in some methods. (DSP-16933)

5.1.11 DSE Search

Changes and enhancements:

- Log fewer messages at INFO level in TTLIndexRebuildTask. (DSP-15600)
- Search index permissions can be applied at keyspace level. (DSP-15385)
- CQL solr_query supports Solr facet heatmaps. (DSP-16404)
- Drop operations (ALTER SEARCH INDEX SCHEMA DROP) on the schema now require including at least one attribute on the element being dropped and support dropping only one element at a time. (DSP-15947)

The required attributes by element are:

```plaintext
# field - name
# fieldType - name
# dynamicField - name
```
Resolved issues

- Avoid accumulating redundant router state updates during schema disagreement. (DSP-15615)
- Servlet container shutdown (Tomcat) prematurely stops logback context. (DSP-15807)
- DSE should not start without appropriate Tomcat JAR scanning exclusions. (DSP-16841)
- Node health score of 1 is not obtainable. Search node gets stuck at 0.00 node health score after replacing a node in a cluster. (DSP-17107)

5.1.11 Known issues

- DSE 5.0 SSTables with UDTs will be corrupted after migrating to DSE 5.1, DSE 6.0, and DSE 6.7. (DB-2954, CASSANDRA-15035)

 Important: If the DSE 5.0.x schema contains user-defined types (UDTs), upgrade to at least DSE 5.1.13, DSE 6.0.6, or DSE 6.7.2. The SSTable serialization headers are fixed when DSE is started with the upgraded versions.

dse.yaml

The location of the `dse.yaml` file depends on the type of installation:

<table>
<thead>
<tr>
<th>Package installations</th>
<th>Installer-Services installations</th>
<th>/etc/dse/dse.yaml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tarball installations</td>
<td>Installer-No Services installations</td>
<td>installation_location/resources/dse/conf/dse.yaml</td>
</tr>
</tbody>
</table>

- **Select Hadoop libraries**

 Built-in Hadoop and Bring-Your-Own-Hadoop (BYOH) were deprecated in DataStax Enterprise (DSE) 5.0, and were removed in DSE 5.1. Hadoop removal from DSE 5.1 and later means that DSE does not allow for the startup of Hadoop services previously included in DSE, including MapReduce JobTracker and TaskTracker.

 However, DSE has supported built-in Spark since DSE 4.5 and Bring-Your-Own-Spark (BYOS) since DSE 5.0, and that support continues today. Because Spark depends on certain Hadoop libraries on the server and the client, DSE continues to ship with Hadoop libraries that are required for running Spark and BYOS.

 To view the included Hadoop libraries, see [DataStax Enterprise 5.1.x third-party software](https://www.datastax.com/products/datastax-enterprise#third-party).

Cassandra enhancements for DSE 5.1.11

DataStax Enterprise (DSE) 5.1.11 includes all changes from previous releases. These production-certified changes are enhancements to Apache Cassandra™ 3.11.0. (For Cassandra updates, see [CHANGES.txt](https://www.datastax.com/products/datastax-enterprise#third-party).)
• Fix static column order for SELECT * wildcard queries (CASSANDRA-14638)
• sstableloader should use discovered broadcast address to connect intra-cluster (CASSANDRA-14522)
• Fix reading columns with non-UTF names from schema (CASSANDRA-14468)
• Validate supported column type with SASI analyzer (CASSANDRA-13669)
• Remove BTree.Builder Recycler to reduce memory usage (CASSANDRA-13929)
• Reduce nodetool GC thread count (CASSANDRA-14475)
• Fix New SASI view creation during Index Redistribution (CASSANDRA-14055)
• Remove string formatting lines from BufferPool hot path (CASSANDRA-14416)
• Update metrics to 3.1.5 (CASSANDRA-12924)
• Detect OpenJDK jvm type and architecture (CASSANDRA-12793)
• Don't use guava collections in the non-system keyspace jmx attributes (CASSANDRA-12271)
• Fix corrupted static collection deletions in 3.0 -> 2.{1,2} messages (CASSANDRA-14568)
• Fix potential IndexOutOfBoundsException with counters (CASSANDRA-14167)
• Always close RT markers returned by ReadCommand#executeLocally() (CASSANDRA-14515)
• Reverse order queries with range tombstones can cause data loss (CASSANDRA-14513)
• Fix regression of lagging commitlog flush log message (CASSANDRA-14451)
• Add Missing dependencies in pom-all (CASSANDRA-14422)
• Cleanup StartupClusterConnectivityChecker and PING Verb (CASSANDRA-14447)
• Fix deprecated repair error notifications from 3.x clusters to legacy JMX clients (CASSANDRA-13121)
• Cassandra not starting when using enhanced startup scripts in windows (CASSANDRA-14418)
• Fix progress stats and units in compactionstats (CASSANDRA-12244)
• Better handle missing partition columns in system_schema.columns (CASSANDRA-14379)
• Delay hints store excise by write timeout to avoid race with decommission (CASSANDRA-13740)
• Incorrect counting of pending messages in OutboundTcpConnection (CASSANDRA-11551)
• Fix compaction failure caused by reading un-flushed data (CASSANDRA-12743)

General upgrade advice for DSE 5.1.11

All upgrade advice from previous versions applies. Carefully review the Upgrading DataStax Enterprise planning and upgrade instructions to ensure a smooth upgrade and avoid pitfalls and frustrations. This general advice applies to the database upgrade and does not replace the upgrade documentation.
• General upgrading advice for any version and new features for Apache Cassandra are in NEWS.txt. Be sure to read the NEWS.txt all the way back to your current version.
• See also the Apache Cassandra changes in CHANGES.txt.

Spark Cassandra Connector changes for DSE 5.1.11

DataStax Enterprise (DSE) 5.1.11 includes DataStax Spark Cassandra Connector 2.1.10 with all changes from earlier versions, and adds these production-certified changes.

2.0.9
• All updates to 1.6.1

2.0.8
• Allow non-cluster prefixed options in sqlConf (SPARKC-531)
• Change Str Literal Match to Be Greedy (SPARKC-532)
• Restore support for various timezone formats to TimestampParser (SPARKC-533)
• UDT converters optimization (SPARKC-536)

TinkerPop changes for DSE 5.1.11

DataStax Enterprise (DSE) 5.1.11 includes all changes from previous releases. There are no production-certified enhancements to Apache TinkerPop™ 3.2.9. For TinkerPop changes, see TinkerPop Upgrade Information.

DSE 5.1.10

Release notes for DataStax Enterprise 5.1.10.

Important: DataStax recommends the latest patch release for most environments.

5 June 2018

• 5.1.10 Components (page 55)
• 5.1.10 Highlights (page 55)
• 5.1.10 Known issues (page 58)
• 5.1.10 Cassandra enhancements (page 59)
• 5.1.10 General upgrade advice (page 59)
• 5.1.10 TinkerPop changes (page 60)

Table 5: DSE functionality

<table>
<thead>
<tr>
<th>5.1.10 DSE core (page 56)</th>
<th>5.1.10 DSE Graph (page 57)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.10 DSE Advanced Replication (page 56)</td>
<td>5.1.10 DSE Search (page 57)</td>
</tr>
<tr>
<td>5.1.10 DSE Analytics (page 56)</td>
<td></td>
</tr>
</tbody>
</table>
5.1.10 Components

All components from DSE 5.1.10 are listed. Components that are updated for DSE 5.1.10 are indicated with an asterisk (*).

- Apache Cassandra™ 3.11.0.2323 *
- Apache Solr™ 6.0.1.0.2284 *
- Apache Spark™ 2.0.2.19 *
- Apache TinkerPop™ 3.2.9-20180507-f6ead8b2 *
- Apache Tomcat® 8.0.47
- DataStax Spark Cassandra Connector 2.0.7
- DSE Java Driver 1.2.6 *
- Netty 4.0.42.Final
- Spark Jobserver 0.6.2.238 requires compatible API *
- Select Hadoop libraries

5.1.10 Highlights

Executive summary highlights for DSE 5.1.10:

- DSE Analytics and DSEFS (page 55)
- DSE Graph (page 55)
- DSE Search (page 55)

The executive summary highlights are just a top-level view. Be sure to review all of the release notes.

5.1.10 DSE Analytics and DSEFS highlights

- Resolved an issue with reading corrupted data from DSEFS caused by incorrect handling of file offsets, if requested offset does not align exactly at the file block boundary. This critical issue was triggered by some Spark usages. (DSP-15907)
- Rare problems with multiple Spark Masters are resolved. Improved Spark Master and Spark Worker stability. (DSP-15636, DSP-15906, DSP-14405, DSP-15801)
- Resolved the missing /tmp directory in DSEFS after fresh cluster installation. (DSP-16058)
- Parquet files with partitions is improved. (DSP-16067)

5.1.10 DSE Graph highlights

- Improved performance with DSE Graph fluent API. (DSP-15686)
- Support for non-text IDs when using graph frames for bulk loading data. (DSP-15614)

5.1.10 DSE Search highlights

- Search index TTL Expiration thread loops without effect with live indexing (RT indexing). (DSP-16038)
- Solr 6.0.1 security upgrades. (DSP-15978)
5.1.10 DataStax Enterprise

Changes and enhancements:

- CVE-2016-1000031: Security vulnerability in Apache Commons FileUpload. (DSP-15908)
- Configuration parameters for LDAP tuning (page 287) allow all connection pool options to be set. (DSP-15948)
- Solr security upgrades bundle. (DSP-15978)
 # Apache Directory API All: CVE-2015-3250
 # Apache Hadoop Common: CVE-2016-5393, CVE-2016-3086, CVE-2017-15713
 # Apache Tika parsers: CVE-2018-1339
 # Bouncy Castle Provider: CVE-2018-5382
 # Guava: Google Core Libraries for Java: CVE-2018-10237
 # Simple XML: CVE-2017-1000190
 # Xerces2-j: CVE-2013-4002
 # uimaj-core: CVE-2017-15691

Resolved issues:

- CVE-2017-7525: FasterXML Jackson-databind is prone to a remote-code execution vulnerability. (DSP-14784)
- Fix legacy complex range tombstone serialization+deserialization for static and regular columns. (DSP-15878)
- Fix error in MVs referencing a function with uppercase letters on its name. (DSP-15878)
- Ignore empty Counter cells on digest calculation (DSP-16096)
- Upgrade netty to 4.0.54. Ignore log spam for unclean client shutdown. (DSP-16096)
- Avoid log spam for unclean client shutdown. (DSP-16096)
- Reusing table ID with CREATE TABLE causes failure on restart. (DSP-16096)
- Add getConcurrentCompactors to JMX to avoid loading DatabaseDescriptor to check its value in nodetool. (DSP-16096)
- Fix binding JMX to any address. (DSP-16192)

5.1.10 DSE Advanced Replication

Resolved issues:

- dse client-tool help doesn't work if ~/.dserc file exists. (DSP-15869)

5.1.10 DSE Analytics

Changes and enhancements:
• Decreased the number of exceptions logged during master move from node to node. (DSP-14405)
• Spark Master REST API is disabled. If enabled in spark-defaults.conf, the following error is logged: ERROR Spark Master REST API is not available in DSE. (DSP-15491)
• DSEFS fetching a file from an offset returns empty content. (DSP-15907)
• In Portfolio demo, pricer is no longer required to be run with sudo. (DSP-15970)

Resolved issues:

• Running Spark processes as separate users (page 348) does not work. (DSP-15723)
• Multiple Spark masters can be started on the same machine. (DSP-15636)
• DSE client tool returns wrong Spark Master address. (DSP-15801)
• Unnecessary Spark Worker restarts. (DSP-15906)
• Portfolio demo does not work on package installs. (DSP-15970)
• During misconfigured cluster bootstrap, the AlwaysOn SqlServer does not start due to missing /tmp/hive directory in DSEFS. (DSP-16058)
• CassandraHiveMetastore is prevented from adding multiple partitions for File based datasources. Fixes MSCK REPAIR TABLE command. (DSP-16067)

5.1.10 DSE Graph

Changes and enhancements:

• DseGraphFrame performance improvement reduces number of joins for count() and other id-only queries. (DSP-15554)
• Performance improvements for traversal execution with Fluent API and script-based executions. (DSP-15686)

Resolved issues:

• GraphSON parsing error prevents proper type detection under certain conditions. (DSP-14066)
• When using graph frames, cannot upload edges when ids for vertices are complex non-text ids. (DSP-15614)
• DseGraphFrame fails with StackOverflowError if property is meta-property. (DSP-15939)

5.1.10 DSE Search

Changes and enhancements:

• Solr 6.0.1 security upgrades. (DSP-15978)
• Output Solr foreign filter cache warning only on classes other than DSE classes. (DSP-15625)

Resolved issues:

• A shard request timeout caused an assertion error from Lucene getNumericDocValues in the log. (DSP-14216)
• Offline sstable tools fail is DSE Search index is present on a table. (DSP-15628)
• HTTP read on solr_stress doesn't inject random data into placeholders. (DSP-15727)
• ERROR 500 on distributed http json.facet with non-zero offset. (DSP-15946)
• Search index TTL Expiration thread loops without effect with live indexing (RT indexing). (DSP-16038)

5.1.10 Known issues

DataStax Enterprise:
• DSE 5.0 SSTables with UDTs will be corrupted after migrating to DSE 5.1, DSE 6.0, and DSE 6.7. (DB-2954, CASSANDRA-15035)
 Important: If the DSE 5.0.x schema contains user-defined types (UDTs), upgrade to at least DSE 5.1.13, DSE 6.0.6, or DSE 6.7.2. The SSTable serialization headers are fixed when DSE is started with the upgraded versions.

DSE Analytics:
• The Spark Jobserver demo has an incorrect version for the Spark Jobserver API. (DSP-15832)
 Workaround: In the demo's gradle.properties file, change the version from 0.6.2 to 0.6.2.238.
• If manually deleted, the DSEFS keyspace (dsefs) is not automatically recreated by a node restart. DSE will not start if the DSEFS keyspace was dropped in a datacenter that was removed and then added back to a cluster as a new datacenter. (DSP-16785)
 Workaround:
 # To reuse a DSEFS keyspace that was manually deleted, you must manually create the DSEFS keyspace for the datacenter being added back to the cluster before starting DSE.
 # If you manually deleted the DSEFS keyspace named dsefs, you can define a new DSEFS keyspace name with a different name. For example, if you deleted dsefs in the old datacenter, create a new DSEFS keyspace named dsefs2. Be sure to specify the case-sensitive DSEFS keyspace name in the dse.yaml file. See Using DSEFS (page 403).
 # Do not delete the DSEFS keyspace that points to the previously removed datacenter.
 # DataStax recommends not manually deleting the DSEFS keyspace or system keyspaces.

• Select Hadoop libraries
 Built-in Hadoop and Bring-Your-Own-Hadoop (BYOH) were deprecated in DataStax Enterprise (DSE) 5.0, and were removed in DSE 5.1. Hadoop removal from DSE 5.1 and later means that DSE does not allow for the startup of Hadoop services previously included in DSE, including MapReduce JobTracker and TaskTracker.
However, DSE has supported built-in Spark since DSE 4.5 and Bring-Your-Own-Spark (BYOS) since DSE 5.0, and that support continues today. Because Spark depends on certain Hadoop libraries on the server and the client, DSE continues to ship with Hadoop libraries that are required for running Spark and BYOS.

To view the included Hadoop libraries, see DataStax Enterprise 5.1.x third-party software.

Cassandra enhancements for DSE 5.1.10

DataStax Enterprise (DSE) 5.1.10 includes all changes from earlier DSE releases. These production-certified changes are enhancements to Apache Cassandra™ 3.11.0. (For Cassandra updates, see CHANGES.txt.)

• Allow existing nodes to use all peers in shadow round (CASSANDRA-13851)
• Fix cqlsh to read connection.ssl cqlshrc option again (CASSANDRA-14299)
• Downgrade log level to trace for CommitLogSegmentManager (CASSANDRA-14370)
• CQL fromJson(null) throws NullPointerException (CASSANDRA-13891)
• Serialize empty buffer as empty string for json output format (CASSANDRA-14245)
• Deprecate background repair and probabilistic read_repair_chance table options (CASSANDRA-13910)
• Add missed CQL keywords to documentation (CASSANDRA-14359)
• Avoid deadlock when running nodetool refresh before node is fully up (CASSANDRA-14310)
• Handle all exceptions when opening sstables (CASSANDRA-14202)
• Handle incompletely written hint descriptors during startup (CASSANDRA-14080)
• Handle repeat open bound from SRP in read repair (CASSANDRA-14330)
• Fix JSON queries with IN restrictions and ORDER BY clause (CASSANDRA-14286)
• Check checksum before decompressing data (CASSANDRA-14284)

General upgrade advice for DSE 5.1.10

All upgrade advice from previous versions applies. Carefully review the Upgrading DataStax Enterprise planning and upgrade instructions to ensure a smooth upgrade and avoid pitfalls and frustrations. This general advice applies to the database upgrade and does not replace the upgrade documentation.

• General upgrading advice for any version and new features for Apache Cassandra are in NEWS.txt. Be sure to read the NEWS.txt all the way back to your current version.
• See also the Apache Cassandra changes in CHANGES.txt.

Spark Cassandra Connector changes for DSE 5.1.10

DataStax Enterprise (DSE) 5.1.10 includes DataStax Spark Cassandra Connector 2.0.7 and all production-certified changes from earlier versions.

TinkerPop changes for DSE 5.1.10

DataStax Enterprise (DSE) 5.1.10 includes all changes from previous releases. These production-certified changes are enhancements to Apache TinkerPop™ 3.2.9. For TinkerPop changes, see TinkerPop Upgrade Information.

• Performance enhancement to Bytecode deserialization. (TINKERPOP-1936)
• Path history isn't preserved for keys in mutations. (TINKERPOP-1947)
• Traversal construction performance enhancements (TINKERPOP-1950)
• Bump to Groovy 2.4.15 - resolves a Groovy bug preventing Lambda creation in GLVs in some cases. (TINKERPOP-1953)

DSE 5.1.9

Release notes for DataStax Enterprise 5.1.9.

Important: DataStax recommends the latest patch release for most environments.

Avoid upgrading to DSE 5.1.9 or DSE 5.1.8 if you use TTL (time-to-live) with DSE Search live indexing (RT indexing). (DSP-16038 (page 61))

24 April 2018

• 5.1.9 Resolved issues (page 61)
• 5.1.9 Known issues (page 61)

5.1.9 Components

All components from DSE 5.1.9 are listed. Components that are updated for DSE 5.1.9 are indicated with an asterisk (*).

• Apache Cassandra™ 3.11.0.2261
• Apache Solr™ 6.0.1.0.2224
• Apache Spark™ 2.0.2.17
• Apache TinkerPop™ 3.2.8-20180327-292ccbfd
• Apache Tomcat® 8.0.47
• DataStax Spark Cassandra Connector 2.0.7
• DSE Java Driver 1.2.6 *
• Netty 4.0.42.Final
• Spark Jobserver 0.6.2.237 requires compatible API
• Select Hadoop libraries
DSE 5.1.9 includes Apache Cassandra 3.11 and includes all additional production-certified enhancements from earlier DSE versions.

5.1.9 Resolved issue

Fix LDAP library issue. (DSP-15927)

5.1.9 Known issues

- DSE 5.0 SSTables with UDTs will be corrupted after migrating to DSE 5.1, DSE 6.0, and DSE 6.7. (DB-2954, CASSANDRA-15035)

 Important: If the DSE 5.0.x schema contains user-defined types (UDTs), upgrade to at least DSE 5.1.13, DSE 6.0.6, or DSE 6.7.2. The SSTable serialization headers are fixed when DSE is started with the upgraded versions.

- DSE Search: Search index TTL Expiration thread loops without effect with live indexing (RT indexing). (DSP-16038)

- DSE Graph: LIMIT clause does not work in a graph traversal with search predicate TOKEN. (DSP-16292)

- **Select Hadoop libraries**

 Built-in Hadoop and Bring-Your-Own-Hadoop (BYOH) were deprecated in DataStax Enterprise (DSE) 5.0, and were removed in DSE 5.1. Hadoop removal from DSE 5.1 and later means that DSE does not allow for the startup of Hadoop services previously included in DSE, including MapReduce JobTracker and TaskTracker.

 However, DSE has supported built-in Spark since DSE 4.5 and Bring-Your-Own-Spark (BYOS) since DSE 5.0, and that support continues today. Because Spark depends on certain Hadoop libraries on the server and the client, DSE continues to ship with Hadoop libraries that are required for running Spark and BYOS.

 To view the included Hadoop libraries, see DataStax Enterprise 5.1.x third-party software.

General upgrade advice for DSE 5.1.9

All upgrade advice from previous versions applies. Carefully review the Upgrading DataStax Enterprise planning and upgrade instructions to ensure a smooth upgrade and avoid pitfalls and frustrations. This general advice applies to the database upgrade and does not replace the upgrade documentation.

- General upgrading advice for any version and new features for Apache Cassandra are in NEWS.txt. Be sure to read the NEWS.txt all the way back to your current version.

- See also the Apache Cassandra changes in CHANGES.txt.

DSE 5.1.8

Release notes for DataStax Enterprise 5.1.8.
Important: DataStax recommends the latest patch release for most environments.

Avoid upgrading to DSE 5.1.9 or DSE 5.1.8 if you use TTL (time-to-live) with DSE Search live indexing (RT indexing). (DSP-16038 (page 61))

5 April 2018

- 5.1.8 Components (page 62)
- 5.1.8 Highlights (page 62)
- 5.1.8 Known issues (page 66)
- 5.1.8 Cassandra enhancements (page 67)
- 5.1.8 General upgrade advice (page 68)
- 5.1.8 TinkerPop changes (page 69)

Table 6: DSE functionality

<table>
<thead>
<tr>
<th>5.1.8 DSE core (page 63)</th>
<th>5.1.8 DSEFS (page 65)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.8 DSE Advanced Replication (page 64)</td>
<td>5.1.8 DSE Graph (page 65)</td>
</tr>
<tr>
<td>5.1.8 DSE Analytics (page 64)</td>
<td>5.1.8 DSE Search (page 66)</td>
</tr>
</tbody>
</table>

5.1.8 Components

All components from DSE 5.1.8 are listed. Components that are updated for DSE 5.1.8 are indicated with an asterisk (*).

- Apache Cassandra™ 3.11.0.2261 *
- Apache Solr™ 6.0.1.0.2224 *
- Apache Spark™ 2.0.2.17 *
- Apache TinkerPop™ 3.2.8-20180327-292ccbfd *
- Apache Tomcat® 8.0.47 *
- DataStax Spark Cassandra Connector 2.0.7
- DSE Java Driver 1.2.6 *
- Netty 4.0.42.Final
- Spark Jobserver 0.6.2.237 requires compatible API *
- Select Hadoop libraries

5.1.8 Highlights

Executive summary highlights for DSE 5.1.8:

- DSE Advanced Replication (page 63)
- DSE Analytics and DSEFS (page 63)
- DSE Search (page 63)

The executive summary highlights are just a top-level view. Be sure to review all of the release notes.
5.1.8 DSE Advanced Replication highlights

- Fixed misleading warning messages about a non-replicating cluster in a multi-datacenter source cluster. (DSP-15808)

5.1.8 DSE Analytics and DSEFS highlights

- Fixed a permissions (page 351) issue affecting Spark History Server results visibility through the web UI. (DSP-15693)
- Fixed a permission issue affecting non-superusers and DSEFS. (DSP-15276)

5.1.8 DSE Search highlights

- Fixed reindexing and query performance regression for delete heavy workload. (DSP-15653, DSP-15667)

5.1.8 DataStax Enterprise

Changes and enhancements:

- Automatic fallback of GossipingPropertyFileSnitch to PropertyFileSnitch (cassandra-topology.properties) is disabled by default and can be enabled by using the -Dcassandra.gpfs.enable_pfs_compatibility_mode=true startup flag (page 284). (DB-1663)
- Improved security: Decimals with a scale > 100 are no longer converted to a plain string to prevent DecimalSerializer.toString() being used as an attack vector. (DB-1848)
- DSE demos use Jetty Runner 9.4.8. (DSP-14772)
- ANY, SUBMISSION, and WORKPOOL are unreserved keywords and can be used as keyspace, table, and column identifiers. (DSP-15353)
- Improve replace fail messages when a replace is retried before QUARANTINE_DELAY. (DSP-15824)
- Harden txn log files against exceptions when adding records and improve log messages. (DSP-15824)

Resolved issues:

- The JVM version check in conf/cassandra-env.sh does not work. (DB-1882)
- Enabling and disabling dbsummary and clustersummary performance objects through dsetool does not work. (DSP-15539)
- Delay closing connection when nodes are removed to allow inflight commands to complete. (DSP-15824)
- JVM startup check not working. (DSP-15824)
- Materialized view schema file for snapshots is created as tables. (DSP-15486)
- Init timestamp with Long.MIN_VALUE instead of -1. (DSP-15486)
- AssertionError in ThrottledUnfilteredIterator due to empty UnfilteredRowIterator. (DSP-15486)
- Make sstableloader use cassandra.config.loader instead of hard-coded YamlConfigurationLoader. (DSP-15486)
- Backport CASSANDRA-9241, fix nodetool toppartitions. (DSP-15486)
- Ignore lost+found directory on startup checks. (DSP-15486)
- Protect against BigDecimals with large scale. (DSP-15486)

5.1.8 DSE Advanced Replication

Changes and enhancements:
- To ensure tombstones are removed often by compaction, the default value for gc_grace_seconds is reduced from 86400 (10 days) to 600 (10 minutes) for the dse_advrep.transmissions_crc table. (DSP-15749)

Resolved issues:
- Replog count never goes down to zero in a multi-node source cluster. (DSP-15060)
- Plugin error during shutdown: Error while fetching mutations. (DSP-15342)
- Add support again for empty quoted name (""") as selectable to select SuperColumns. (DSP-15486)
- Read connection ssl option from cqlshrc. (DSP-15486)
- SASI AND/OR semantics are incorrect for StandardAnalyzer. (DSP-15486)
- NPE Error whilst purging staled mutation files. (DSP-15502)
- Channel creation fails with NPE when using mixed case destination name. (DSP-15538)
- Unable to recover metadata from block file error due to NoSuchFileException. (DSP-15627)
- Errors during shutdown. (DSP-15637)
- advrep replog count command does not work with mixed case keyspace or table names. (DSP-15641)
- AdvRep CommitLogConsumer logging NoSuchFileException. (DSP-15753)
- Incorrect status that CDC was active when only a single advrep channel was defined in the datacenter. (DSP-15808)

5.1.8 DSE Analytics

Changes and enhancements:
- Improve logging on unsupported operation failure and remove the failed mutation from replog. (DSP-15043)
- Spark Master REST API is disabled. If enabled in spark-defaults.conf, the following error is logged: ERROR Spark Master REST API is not available in DSE. (DSP-15491)

Resolved issues:
- JSch is susceptible to a path traversal vulnerability. (DSP-13961)
- Worker UI does not display the actual class name of driver application running in cluster mode. (DSP-15028)
- DSEFS transactions not always replayed at startup. (DSP-15462)
- Running Spark processes as separate users (page 348) does not work. (DSP-15723)

5.1.8 DSEFS

Changes and enhancements:

- Improved security with default file permissions -770 for event log files. Change permissions (page 351) with spark.eventLog.permissions. (DSP-15693)
- DSEFS programmatic access demos are available. (DSP-13799)

Resolved issues:

- InvalidTypeException is thrown while running DSEFS commands on node upgraded from 5.0.x to 5.1.x. (DSP-15266)
- Timeout when trying to umount a dsefs location. (DSP-15453)
- Exception is thrown by DseFsPlugin during shutdown and is not reported. (DSP-15474)
- DSE might not shutdown properly when DSEFS encounters a problem, and exceptions are not logged. (DSP-15482)
- DSEFS programmatic access demo project is available. (DSP-13799)
- SPARK/DSEFS non-super users are unable to run SQL queries in secured DSEFS. Spark SQL applications utilize a scratch directory in DSEFS. This scratch directory is automatically created in DSE 5.1.7 and later. (DSP-15276)
- Insufficient permissions to path / error when putting a file with the dse hadoop -put command on secured DSEFS cluster. (DSP-15480)
- Small probability of duplicated predefined directories (/tmp/hive) when bootstrapping cluster with multiple datacenters and incorrect NetworkTopologyStrategy (SimpleStrategy). (DSP-15639)

5.1.8 DSE Graph

Changes and enhancements:

- Improved performance of anonymous traversals and bytecode-based traversals that made use of withStrategy() configurations. (DSP-15673)

Resolved issues:

- 0 (zero) is not treated as unlimited abort of max num errors. (DGL-307)
- Synchronization hurts graph OLAP on multi-core executors. Improve scalability of OLAP queries with remote traverses. (DSP-15068)
- Failures reported from CassandraPersistenceEngine during upgrade, especially in Graph Analytics workloads. (DSP-15130)
- DseGRaphFrame timestamp base query do not work for bot java.sql.Timestamp and String representations. (DSP-15146)
- graph solr phrase() predicate shows IndexOutOfBound error. (DSP-15408)

 # Single-character tokens used in search index queries, for example with predicate token(“a”) are erroneously dropped.
Search index queries using `phrase(...)` predicates fail exceptionally when processing values that end in a prefix of the search phrase.

- DseGraphFrames throws `InvalidQueryException` when search index is enabled. (DSP-15411)
- `g.V().hasId([])` and `g.V().has(id, [])` query results are incorrect in DseGraphFrames. (DSP-15501)
- `toJSON()` does not always work with geo types. (DSP-15650)
- ObjectMapper contention for fluent API requests. (DSP-15732)

5.1.8 DSE Search

Changes and enhancements:

- Reduce the overhead of `DeleteByQueryWrapper` used by Solr `deleteByQuery()`.
 (DSP-15667)
- Streamline misleading Solr filter cache eviction logging. (DSP-15741)
- Support for specifying different Solr field types ([page 483](#)) for each CQL map key.
 (DSP-15622)

Resolved issues:

- NPE during loading data with RT geonames. (DSP-12361)
- Solr resource reading failure on init after copying data from another cluster. (DSP-15419)
- Prohibit Solr `timeAllowed` use with partial results and allow it with deep paging.
 (DSP-15475)
- `deleteById` and `deleteByQuery` overflow prepared statement cache. (DSP-15620)
- ERROR 500 on distributed http `json.facet` with non-zero offset. (DSP-15633)
- Reindex with tombstones in the data performs slower than earlier DSE versions.
 (DSP-15653)

5.1.8 DataStax Enterprise known issues

- DSE 5.0 SSTables with UDTs will be corrupted after migrating to DSE 5.1, DSE 6.0, and DSE 6.7. (DB-2954, CASSANDRA-15035)

 Important: If the DSE 5.0.x schema contains user-defined types (UDTs), upgrade to at least DSE 5.1.13, DSE 6.0.6, or DSE 6.7.2. The SSTable serialization headers are fixed when DSE is started with the upgraded versions.

- DSE Analytics: Additional configuration is required when enabling context-per-jvm in the Spark Jobserver (page 382). (DSP-15163)
- DSE Analytics: Spark Master does not launch successfully after upgrade from DSE 5.1.x to DSE 5.1.8. (DSP-15679)

To resolve the issue:

```
$ dsetool sparkmaster cleanup
```
$ dsetool sparkworker restart

- DSE 5.0 SSTables with UDTs will be corrupted after migrating to DSE 5.1, DSE 6.0, and DSE 6.7. (DB-2954, CASSANDRA-15035)

 Important: If the DSE 5.0.x schema contains user-defined types (UDTs), upgrade to at least DSE 5.1.13, DSE 6.0.6, or DSE 6.7.2. The SSTable serialization headers are fixed when DSE is started with the upgraded versions.

- DSE Search: Search index TTL Expiration thread loops without effect with live indexing (RT indexing). (DSP-16038)

dse.yaml

The location of the dse.yaml file depends on the type of installation:

<table>
<thead>
<tr>
<th>Package installations</th>
<th>/etc/dse/dse.yaml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer-Services installations</td>
<td></td>
</tr>
<tr>
<td>Tarball installations</td>
<td>installation_location/ resources/dse/conf/dse.yaml</td>
</tr>
<tr>
<td>Installer-No Services installations</td>
<td></td>
</tr>
</tbody>
</table>

- **Select Hadoop libraries**

 Built-in Hadoop and Bring-Your-Own-Hadoop (BYOH) were deprecated in DataStax Enterprise (DSE) 5.0, and were removed in DSE 5.1. Hadoop removal from DSE 5.1 and later means that DSE does not allow for the startup of Hadoop services previously included in DSE, including MapReduce JobTracker and TaskTracker.

 However, DSE has supported built-in Spark since DSE 4.5 and Bring-Your-Own-Spark (BYOS) since DSE 5.0, and that support continues today. Because Spark depends on certain Hadoop libraries on the server and the client, DSE continues to ship with Hadoop libraries that are required for running Spark and BYOS.

 To view the included Hadoop libraries, see DataStax Enterprise 5.1.x third-party software.

Cassandra enhancements for DSE 5.1.8

DataStax Enterprise (DSE) 5.1.8 includes all changes from earlier DSE releases. These production-certified changes are enhancements to Apache Cassandra™ 3.11.0. (For Cassandra updates, see CHANGES.txt.)

- SASI tokenizer for simple delimiter based entries (CASSANDRA-14247)
- Fix Loss of digits when doing CAST from varint/bigint to decimal (CASSANDRA-14170)
- SASI tokenizer for simple delimiter based entries (CASSANDRA-14247)
- Fix Loss of digits when doing CAST from varint/bigint to decimal (CASSANDRA-14170)
- RateBasedBackPressure unnecessarily invokes a lock on the Guava RateLimiter (CASSANDRA-14163)
- Fix wildcard GROUP BY queries (CASSANDRA-14209)
• Use zero as default score in DynamicEndpointSnitch (CASSANDRA-14252)
• Respect max hint window when hinting for LWT (CASSANDRA-14215)
• Adding missing WriteType enum values to v3, v4, and v5 spec (CASSANDRA-13697)
• Don't regenerate bloomfilter and summaries on startup (CASSANDRA-11163)
• Fix NPE when performing comparison against a null frozen in LWT (CASSANDRA-14087)
• Log when SSTables are deleted (CASSANDRA-14302)
• Fix batch commitlog sync regression (CASSANDRA-14292)
• Write to pending endpoint when view replica is also base replica (CASSANDRA-14251)
• Chain commit log marker potential performance regression in batch commit mode (CASSANDRA-14194)
• Fully utilise specified compaction threads (CASSANDRA-14210)
• Pre-create deletion log records to finish compactions quicker (CASSANDRA-12763)
• Backport circleci yaml (CASSANDRA-14240)
• CVE-2017-5929 Security vulnerability in Logback warning in NEWS.txt (CASSANDRA-14183)
• Fix ReadCommandTest (CASSANDRA-14234)
• Remove trailing period from latency reports at keyspace level (CASSANDRA-14233)
• Correctly count range tombstones in traces and tombstone thresholds (CASSANDRA-8527)
• Add MinGW uname check to start scripts (CASSANDRA-12840)
• Use the correct digest file and reload sstable metadata in nodetool verify (CASSANDRA-14217)
• Handle failure when mutating repaired status in Verifier (CASSANDRA-13933)
• Protect against overflow of local expiration time (CASSANDRA-14092)

General upgrade advice for DSE 5.1.8

All upgrade advice from previous versions applies. Carefully review the [Upgrading DataStax Enterprise](https://docs.datastax.com/en/dse/5.1/docs/Upgrading_DSE.html) planning and upgrade instructions to ensure a smooth upgrade and avoid pitfalls and frustrations. This general advice applies to the database upgrade and does not replace the upgrade documentation.

- General upgrading advice for any version and new features for Apache Cassandra are in NEWS.txt. Be sure to read the NEWS.txt all the way back to your current version.
• See also the Apache Cassandra changes in CHANGES.txt.

Spark Cassandra Connector changes for DSE 5.1.8

DataStax Enterprise (DSE) 5.1.7 includes DataStax Spark Cassandra Connector 2.0.7 and all production-certified changes from earlier versions.

TinkerPop changes for DSE 5.1.8

DataStax Enterprise (DSE) 5.1.8 includes all changes from previous releases. These production-certified changes are enhancements to Apache TinkerPop™ 3.2.8. For TinkerPop changes, see TinkerPop Upgrade Information.

- Fixed a bug in NumberHelper that led to wrong min/max results if numbers exceeded the Integer limits. (TINKERPOP-1873)
- Improved error messaging for failed serialization and deserialization of request/response messages.
- Fixed bug in handling of Direction.BOTH in Messenger implementations to pass the message to the opposite side of the `StarGraph` in VertexPrograms for OLAP traversals. (TINKERPOP-1862)
- Fixed a bug in Gremlin Console which prevented handling of gremlin.sh flags that had an equal sign (=) between the flag and its arguments. (TINKERPOP-1879)
- Fixed a bug where SparkMessenger was not applying the edgeFunction`from MessageScope` in VertexPrograms for OLAP-based traversals. (TINKERPOP-1872)
- TinkerPop drivers prior to 3.2.4 won’t authenticate with Kerberos anymore. A long-deprecated option on the Gremlin Server protocol was removed.

DSE 5.1.7

Release notes for DataStax Enterprise 5.1.7.

Important: DataStax recommends the latest patch release for most environments.

15 February 2018

- 5.1.7 Components (page 70)
- 5.1.7 Highlights (page 70)
- 5.1.7 Known issues (page 73)
- 5.1.7 Cassandra enhancements (page 74)
- 5.1.7 General upgrade advice (page 75)
- 5.1.7 TinkerPop changes (page 75)

Table 7: DSE functionality

<table>
<thead>
<tr>
<th>5.1.7 DSE core (page 70)</th>
<th>5.1.7 DSE Graph (page 72)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.7 DSE Analytics (page 71)</td>
<td>5.1.7 DSE Search (page 72)</td>
</tr>
<tr>
<td>5.1.7 DSEFS (page 72)</td>
<td></td>
</tr>
</tbody>
</table>
5.1.7 Components

All components from DSE 5.1.7 are listed. Components that are updated for DSE 5.1.7 are indicated with an asterisk (*).

- Apache Cassandra™ 3.11.0.2130 *
- Apache Solr™ 6.0.1.0.2139 *
- Apache Spark™ 2.0.2.16 *
- Apache TinkerPop™ 3.2.8-20180125-cd910875 *
- Apache Tomcat® 8.0.47 *
- DataStax Spark Cassandra Connector 2.0.7 *
- DSE Java Driver 1.2.2
- Netty 4.0.42.Final
- Spark Jobserver 0.6.2.234 (requires compatible API)
- Select Hadoop libraries

5.1.7 Highlights

Executive summary highlights for DSE 5.1.7:

- DataStax Enterprise core (page 70)
- DSE Search (page 70)

The executive summary highlights are just a top-level view. Be sure to review all of the release notes.

5.1.7 DataStax Enterprise core highlights

- Fix for the possible data loss scenario caused by the TTL expiration timestamps susceptible to the year 2038 problem. (DSP-15412)

 When using a long TTL, DataStax strongly recommends upgrading to DSE 5.1.7 or later and taking required action.

5.1.7 DSE Search highlights

- Better defaults when using JTS for polygon queries. (DSP-15182)
- More responsive shutdown and index unloading while index rebuild is in progress. (DSP-12452)

5.1.7 DataStax Enterprise

Changes and enhancements:

- Custom index and iTrigger implementations are not supported. Use only implementations bundled with DSE.
• Default number of threads used by performance objects is increased from 1 to 4; configure threads with new dse.yaml `performance_core_threads` (page 250) parameter. (DSP-14643)
• New nodetool `getseeds` (page 989) and `reloadseeds` (page 1016) commands. (DSP-15412)

Resolved issues:

• `dbsummary` does not work with default `performance_core_threads`. (DSP-14643)
• CVE-2017-15095 `jackson-databind` is vulnerable to remote code execution (RCE) attacks. (DSP-15096)
• Fix for possible data loss scenario caused by the TTL expiration timestamps susceptible to the year 2038 problem. (DSP-15412)

When using a long TTL, DataStax strongly recommends upgrading to DSE 5.1.7 or later and taking required action.

• Remove invalid path from compaction-stress script, populate data base on initial size. (DSP-15412)
• Fix infinite loop when replaying a truncated commit log file and truncation is tolerated. (DSP-15412)
• Kerberos protocol and QoP parameters are not correctly propagated. (DSP-15455)
• Fetch/query no columns in priming connections to avoid errors if system.local columns are changed. (DSP-15484)
• Upgrade from DSE 5.0.11 to DSE 5.1.6 fails with deserialization exception on column "workloads". (DSP-15484)
• Fix connections per host in nodetool `getstreamthroughput`. (DSP-15412)
• Avoid hibernate on startup for bootstrap node to avoid WTE due to not being marked alive. (DSP-15412)
• Prevent received SSTables with tombstones during repair from being compacted. (DSP-15412)
• Non-disruptive seed node list reload. (DSP-15412)
• Make `ReservedKeywords` mutable. (DSP-15412)
• Fix tpc connection being reset due to dc compression and flush socket before reset. (DSP-15412)
• Skip legacy range tombstones if only their clustering is corrupted. (DSP-15412)
• Fix `AssertionError` in `ReadResponse$Serializer.serializedSize`. (DSP-15412)
• Allow ALTER of system_distributed keyspace tables. (DSP-15412)
• Improve live-node-replacement. (DSP-15412)
• Allow skipping commit log replay does not fail on descriptor errors. (DSP-15435)

5.1.7 DSE Analytics

Resolved issues:

• Fix for possible scenario where newly-added nodes can have a schema mismatch for system keyspaces. (DSP-11787)
• Message is not consistently displayed when SparkContext is created with different configuration. (DSP-14758)
• Spark SQL applications with DSE authentication enabled will throw errors if the DSEFS scratch directory doesn’t exist. (DSP-15276)

5.1.7 DSEFS

Resolved issues:
• DSEFS does not use ssl_native_port for internal connections between DSEFS node and Cassandra when client encryption is enabled. (DSP-15029)
• SPARK/DSEFS non-super users are unable to run sql queries in secured DSEFS. (DSP-15276)
• Rare NullPointerException during DSEFS startup. (DSP-15289)
• Occasional NoHostAvailable exceptions when shutting down DSE with DSEFS enabled. (DSP-15404)
• Setting permissions/owner on a file in DSEFS through Hadoop's interfaces does not take effect. (DSP-15255)

5.1.7 DSE Graph

Resolved issues:
• Do not log or send back full Groovy script when the script is too large. (DSP-14410)
• Retryable failures have severity DEBUG. Only terminal failures have severity ERROR or WARN. (DSP-15045)

5.1.7 DSE Search changes and enhancements

Changes and enhancements:
• Wikipedia demo path error. (DSP-11327)
• DeleteById is deprecated. (DSP-13436)

Resolved issues:
• dsetool search commands should return non-zero if operation was not successful. (DSP-9631)
• Add warnings to DSE Search reload and reindex that reloads impact entire datacenter and reindex is asynchronous. (DSP-9820)
• CQL solr queries with JSON clause miss singlePass optimizations. (DSP-11407)
• Inconsistent behavior from dsetool when SSL is enabled. (DSP-15171)
• Default useJtsMulti to false to avoid performance issues with JTS multipolygon handling. (DSP-15182)
• Incorrect connection limiter scheduler shutdown order for internode transport clients. (DSP-14256)
• Avoid potentially indefinite shutdown delay with active reindexing. (DSP-12452)
5.1.7 DataStax Enterprise known issues

- DSE 5.0 SSTables with UDTs will be corrupted after migrating to DSE 5.1, DSE 6.0, and DSE 6.7. (DB-2954, CASSANDRA-15035)

 Important: If the DSE 5.0.x schema contains user-defined types (UDTs), upgrade to at least DSE 5.1.13, DSE 6.0.6, or DSE 6.7.2. The SSTable serialization headers are fixed when DSE is started with the upgraded versions.

- CVE-2017-15095 jackson-databind is vulnerable to remote code execution (RCE) attacks. Applies only to workloads using `--framework spark-2.0 spark-submit`. (DSP-15441)

- Potential data loss for INSERTs with very large TTLs. TTL expiration timestamps are susceptible to the **year 2038 problem**. (DSP-15412)

 The maximum expiration timestamp that can be represented by the storage engine is 2038-01-19T03:14:06+00:00, which means that inserts with TTL that expire after this date are not currently supported. There is no protection against INSERTS with TTL expiring after the maximum supported date, causing the expiration time field to overflow and the records to expire immediately. TTLs are considered "very large" when close to the maximum allowed value of 630720000 seconds (20 years), starting from 2018-01-19T03:14:06+00:00. As time progresses, the maximum supported TTL is gradually reduced as the maximum expiration date approaches. For instance, on 2028-01-19T03:14:06 with a TTL of 10 years is impacted. The maximum expiration timestamp that can be represented by the storage engine is 2038-01-19T03:14:06+00:00, which means that inserts with TTL that expire after this date are not currently supported. There is no protection against INSERTS with TTL expiring after the maximum supported date, causing the expiration time field to overflow and the records to expire immediately.

 Warning: With DSE 5.1.7 and later, DSE provides troubleshooting strategies to protect against overflow of local expiration time.

- Spark Master might not recover after upgrades from DSE 5.1.0 through 5.1.5 to DSE 5.1.6 or 5.1.7. (DSP-15679)

 In some scenarios, the Spark Master might not recover directly after upgrade, and all the Spark applications must be stopped and restarted. Follow these steps to ensure Spark Master launches successfully for upgrades from any DSE 5.1.x to 5.1.8:

 $ dsetool sparkmaster cleanup

 $ dsetool sparkworker restart

- DSE 5.0 SSTables with UDTs will be corrupted after migrating to DSE 5.1, DSE 6.0, and DSE 6.7. (DB-2954, CASSANDRA-15035)
Important: If the DSE 5.0.x schema contains user-defined types (UDTs), upgrade to at least DSE 5.1.13, DSE 6.0.6, or DSE 6.7.2. The SSTable serialization headers are fixed when DSE is started with the upgraded versions.

dse.yaml

The location of the `dse.yaml` file depends on the type of installation:

<table>
<thead>
<tr>
<th>Package installations</th>
<th>Installer-Services installations</th>
</tr>
</thead>
<tbody>
<tr>
<td>/etc/dse/dse.yaml</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tarball installations</th>
<th>Installer-No Services installations</th>
</tr>
</thead>
<tbody>
<tr>
<td>installation_location/</td>
<td>resources/dse/conf/dse.yaml</td>
</tr>
</tbody>
</table>

- **Select Hadoop libraries**

 Built-in Hadoop and Bring-Your-Own-Hadoop (BYOH) were deprecated in DataStax Enterprise (DSE) 5.0, and were removed in DSE 5.1. Hadoop removal from DSE 5.1 and later means that DSE does not allow for the startup of Hadoop services previously included in DSE, including MapReduce JobTracker and TaskTracker.

 However, DSE has supported built-in Spark since DSE 4.5 and Bring-Your-Own-Spark (BYOS) since DSE 5.0, and that support continues today. Because Spark depends on certain Hadoop libraries on the server and the client, DSE continues to ship with Hadoop libraries that are required for running Spark and BYOS.

 To view the included Hadoop libraries, see DataStax Enterprise 5.1.x third-party software.

Cassandra enhancements for DSE 5.1.7

DataStax Enterprise (DSE) 5.1.7 includes all changes from earlier DSE releases. These production-certified changes are enhancements to Apache Cassandra™ 3.11.0. (For Cassandra updates, see CHANGES.txt.)

- Add DEFAULT, UNSET, MBEAN and MBEANS to `ReservedKeywords` (CASSANDRA-14205)
- Add Unittest for schema migration fix (CASSANDRA-14140)
- Print correct snitch info from nodetool describecluster (CASSANDRA-13528)
- Close socket on error during connect on OutboundTcpConnection (CASSANDRA-9630)
- Enable CDC unittest (CASSANDRA-14141)
- Acquire read lock before accessing CompactionStrategyManager fields (CASSANDRA-14139)
- Split CommitLogStressTest to avoid timeout (CASSANDRA-14143)
- Set encoding for javadoc generation (CASSANDRA-14154)
- RPM package spec: fix permissions for installed jars and config files (CASSANDRA-14181)
• More PEP8 compliance for cqlsh (CASSANDRA-14021)

General upgrade advice for DSE 5.1.7

All upgrade advice from previous versions applies. Carefully review the Upgrading DataStax Enterprise planning and upgrade instructions to ensure a smooth upgrade and avoid pitfalls and frustrations. This general advice applies to the database upgrade and does not replace the upgrade documentation.

- General upgrading advice for any version and new features for Apache Cassandra are in NEWS.txt. Be sure to read the NEWS.txt all the way back to your current version.
- See also the Apache Cassandra changes in CHANGES.txt.

DSE 5.1.7

Upgrading

Automatic fallback of GossipingPropertyFileSnitch to PropertyFileSnitch (cassandra-topology.properties) is disabled by default and can be enabled via the -Dcassandra.gpfs.enable_pfs_compatibility_mode=true startup flag.

Spark Cassandra Connector changes for DSE 5.1.7

DataStax Enterprise (DSE) 5.1.7 includes DataStax Spark Cassandra Connector 2.0.7 with all changes from earlier versions, and adds these production-certified changes.

- Adds Timestamp, Improve Conversion Perf (SPARKC-522)
- Allow setting spark.cassandra.concurrent.reads (SPARKC-520)
- Allow splitCount to be set for Dataframes (SPARKC-527)

TinkerPop changes for DSE 5.1.7

DataStax Enterprise (DSE) 5.1.7 includes all changes from previous releases. These production-certified changes are enhancements to Apache TinkerPop™ 3.2.7. For TinkerPop changes, see TinkerPop Upgrade Information.

- Performance enhancement for OLAP: n^2 synchronous operation in OLAP WorkerExecutor.execute() method. (TINKERPOP-1870)
- union() can produce extra traversers. (TINKERPOP-1867)

DSE 5.1.6

Release notes for DataStax Enterprise 5.1.6.

Important: DataStax recommends the latest patch release for most environments.

Attention: TTL expiration timestamps are susceptible to the year 2038 problem. If the TTL value is long and an expiration date is greater than the maximum threshold of 2038-01-19T03:14:06+00:00, the data is immediately expired and purged on the next compaction. When using a long TTL, DataStax strongly recommends upgrading to DSE 5.1.7 or later and taking required action.
22 January 2018

- 5.1.6 Components (page 76)
- 5.1.6 Highlights (page 76)
- 5.1.6 Known issues (page 82)
- 5.1.6 Cassandra enhancements (page 84)
- 5.1.6 General upgrade advice (page 85)

Table 8: DSE functionality

<table>
<thead>
<tr>
<th>5.1.6 DSE core (page 77)</th>
<th>5.1.6 DSEFS (page 80)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.6 DSE Advanced Replication (page 79)</td>
<td>5.1.6 DSE Graph (page 81)</td>
</tr>
<tr>
<td>5.1.6 DSE Analytics (page 80)</td>
<td>5.1.6 DSE Search (page 81)</td>
</tr>
</tbody>
</table>

5.1.6 Components

All components from DSE 5.1.6 are listed. Components that are updated for DSE 5.1.6 are indicated with an asterisk (*).

- Apache Cassandra™ 3.11.0.2070 *
- Apache Solr™ 6.0.1.0.2123 *
- Apache Spark™ 2.0.2.6
- Apache TinkerPop™ 3.2.7-20171213-77c0c764 *
- Apache Tomcat® 8.0.44
- DataStax Spark Cassandra Connector 2.0.6 *
- DSE Java Driver 1.2.2
- Netty 4.0.42.Final
- Spark Jobserver 0.6.2.234 (requires compatible API)
- Select Hadoop libraries

5.1.6 Highlights

Executive summary highlights for DSE 5.1.6:

- DataStax Enterprise core (page 76)
- DSE Advanced Replication (page 77)
- DSE Analytics (page 77)
- DSE Graph (page 77)
- DSE Search (page 77)

The executive summary highlights are just a top-level view. Be sure to review all of the release notes.

5.1.6 DataStax Enterprise core highlights
• Commands to support migrating from compact storage. These commands are required to upgrade to DSE 6.0. (DSP-14966)

DSE Advanced Replication highlights

• Improved handling and bug fixes in scenarios where the source cluster has multiple logical data centers. (DSP-14767, DSP-14515, DSP-15121)

5.1.6 DSE Analytics and DSEFS highlights

• Fixed a DSEFS issue that could prevent upgrades from 5.0.x to 5.1.5. (DSP-15237)
• Fixed a bug in DSEFS that in rare circumstances could cause a live lock on the server when reading files, manifesting with high CPU usage and timeouts. (DSP-15107)
• Fixed an infrequent bug where Spark worker directories could be deleted while the job is running. (DSP-15076, SPARK-22976).

5.1.6 DSE Graph highlights

• Graph loader supports GraphSON V2.
• Resolved issue of retrieving multiple edges by ID. (DSP-14580)
• Allow vertex lookup through index on id property keys. (DSP-9028)

5.1.6 DSE Search highlights

• Performance and corruption issues with encrypted indexes are addressed with a full reindex after upgrade. (DSP-14943, DSP-14485, DSP-15265).
• All installations from DSE 5.0.x or earlier versions of DSE 5.1.x should upgrade to DSE 5.1.6 to avoid potentially incorrect queries while nodes are at different versions during upgrade. (DSP-14898, DSP-14993)
• Improved protection against abusing the Solr filter cache with too many entries. (DSP-14534)
• Performance improvements with RF=(# nodes) DCs. (DSP-12962)

5.1.6 DataStax Enterprise

Changes and enhancements:

• New seed_gossip_probability (page 222) property in cassandra.yaml reduces the time for gossip changes to propagate across the cluster. (DB-671)
• New metric for replayed batchlogs and trace-level logging include the age of the replayed batchlog. (DB-1314)
• By default, enable heap histogram logging on OutOfMemoryError. To disable, set the cassandra.printHeapHistogramOnOutOfMemoryError system property to false. (DB-1498)
• Generate Kerberos debug output. (DSP-12430)
• JMX SSL is supported for use with dsetool and dse advrep. See Setting up SSL for nodetool, dsetool, and dse advrep. (DSP-14200)
DataStax Enterprise 5.1 release notes

- New skip-read-validation (page 1242) flag for stress test error handling. (DSP-14775)
- Ensure that the list and set selectors elements are all of the same type. (DSP-14775)
- Do not leak body buffer in case of protocol exceptions and upgrade Netty to 4.0.52. (DSP-14775)
- Added -Dcassandra.native_transport_startup_delay_seconds (page 286) start-up parameter to delay startup of native transport. (DSP-14839)
- Add nodetool rebuild (page 1009) mode reset-no-snapshot option. (DSP-14827)
- Add nodetool abortrebuild (page 951) command. (DSP-14827)
- Add metrics on coordination of read commands; see type=ReadCoordination. (DSP-14775)
- Add cross_dc_rtt_in_ms to cross dc requests, default 0. (DSP-14775)
- New metrics for batchlog-replays. (DSP-14839)
- New CQL ALTER TABLE DROP COMPACT STORAGE option to remove Thrift-compatibility from tables. (DSP-14839)
- Handle continuous paging state for empty partitions with static rows. (DSP-14959)
- Skip building views during base table streams on range movements. (DSP-14959)
- Allow DiskBoundaryManager to cache different directories. (DSP-15024)
- Do not apply read timeouts to aggregated queries and use a minimum internal page size. New cassandra.yaml aggregated_request_timeout_in_ms (page 217) setting. (DSP-15024)
- Only MODIFY permission is required on base when updating table with MV. (DSP-15087).
- Generate LDAP debug output. (DSP-15176)

Resolved issues:

- Audit logging does not support UNSET values from prepared statements. (DSP-13043)
- dssetool does not work with JMX SSL. To use, follow steps in Setting up SSL for nodetool, dssetool, and dse advrep. (DSP-14200)
- DataStax Installer upgrades within 5.1.x prevent Spark shell from working. (DSP-14637)
- Memory leak causes executor descriptions to accumulate in DSE process. (DSP-14868)
- Handle continuous paging state for empty partitions with static rows. (DSP-14959)
- Skip building views during base table streams on range movements. (DSP-14959)
- Add invalid-sstable-root JVM argument to all relevant test entries in build.xml. (DSP-14827)
- Do not leak body buffer in case of protocol exceptions and upgrade Netty to 4.0.52 (DSP-14775)
- Ensure that the list and set selectors elements are all of the same type. (DSP-14775)
- nodetool arguments with spaces print script errors. (DSP-14959)
- Change token allocation to use RF=1 method when RF equals rack count. (DSP-14959)
- Failed bootstrap streaming leaves auth uninitialized. (DSP-14839)
- Eliminate thread roundtrip for version handshake. (DSP-14827)
- Make nodetool assassinate more resilient to missing tokens. (DSP-14827)
- Throttle base partitions during MV repair streaming to prevent OOM. (DSP-14775)
• Register SizeEstimatesRecorder earlier and enable cleanup of invalid entries. (DSP-15024)
• Only serialize failed batchlog replay mutations to hints. (DSP-15024)
• Allow selecting static column only when querying static index. (DSP-15087)
• Force sstableloader exit to prevent hanging due to non-daemon threads running. (DSP-15087)
• Add autoclosable to CompressionMetadata and fix leaks in SSTableMetadataViewer. (DSP-15087)
• Use all columns to calculate estimatedRowSize for aggregation internal query. (DSP-15087)
• Prevent continuous schema exchange between DSE 5.0 and DSE 5.1 nodes. (DSP-15087)
• Separate commit log replay and commit throwable inspection and policy handling. (DSP-15087)
• Fix for local DC when connections are compressed despite internode_compression: dc. (DSP-15087)
• Expanded hinted handoff instrumentation. (DSP-15087)
• Improve gossip dissemination time. (DSP-15087)
• Use more intelligent level picking for non-l0 file. (DSP-15087)
• LCS levels are not respected for nodetool refresh and replacing a node. (DSP-15087)
• Keep SSTable level for decommission, remove, and move operations. (DSP-15087)
• More quickly detect down nodes for batchlogs using the incoming connections. (DSP-15087)
• Fixes for waitForGossiper. (DSP-15087)
• Print heap histogram on OOM errors by default. (DSP-15087)
• Support frozen collection list and set in stress. (DSP-15087)
• Improved streams logging. (DSP-15087)
• Make migration-delay configurable. (DSP-15087)
• Improved schema migration logging. (DSP-15087)
• Switch RMIExporter to dynamic proxy. (DSP-15277).
• Do not fetch columns that are not in the filter fetched set. (DSP-15277)
• DataStax Enterprise will not run with Java 1.8u161 or later. (DSP-15277)

5.1.6 DSE Advanced Replication

Changes and enhancements:

• Gremlin Console command line (page 686) options for connecting to host. (DSP-12726)

 --ssl-enabled true is the same as the new --ssl option for JMX SSL support. See Setting up SSL for nodetool, dsetool, and dse advrep. (DSP-14200)

Resolved issues:
• Datacenter not consistently passed into TokenService causes multi-datacenter replication errors. (DSP-14767)
• Incompatibility with durable_writes=false, but no warning/error. (DSP-15205)
• CDC on a table should be disabled only when no channels are enabled for that source table. (DSP-15121)
• CDC files are left in a DC that's not collecting. (DSP-15105)

5.1.6 DSE Analytics

Changes and enhancements:

• Default logging level for org.apache.spark.rpc has been changed to ERROR. (DSP-14651)
• Improved Spark shell startup time. (DSP-14704)
• Spark executors are not restarted if the driver port is closed or unreachable. (DSP-14824)
• Notebooks and other third-party tool integration with Spark. (DSP-14489)

Resolved issues:

• dse client-tool configuration export/import incorrectly uses cfs as the default file system. (DSP-14535)
• Spark shuffle service fails to update secret on application re-attempts. (DSP-15038)
• Need a dedicated user to run Graph OLAP Spark Driver. (DSP-14869)
• Logs from Spark Jobserver job are missing. (DSP-14981)
• Poor handling of task notifications in Spark Driver, including possible memory leak. (DSP-15044)
• Cluster-deployed drivers are not cleaned up by the Spark Worker cleanup service. (DSP-15078)

5.1.6 DSEFS

Resolved issues:

• "ERROR: Request body rejected, ConnectionClosedException" message is not logged in system.log if the client disconnects in the middle of the request. (DSP-14597)
• Added getScheme, getDefaultPort, and concat method implementations to DseFileSystem Hadoop API. (DSP-14605)
• Reads incorrectly show Response body rejected errors. (DSP-14615)
• DSEFS authorization is enabled when DSE authorization is enabled. DSEFS supports DseAuthorizer transitional mode. (DSP-14616)
• DSEFS does not retry queries. (DSP-14649)
• Incorrect return of 0 exit code for failed command execution. (DSP-14652)
• Performing cat operation on a directory is prohibited and causes a Not a regular file <path> message. (DSP-14696)
• User name/password was not provided warning is in the DSEFS shell log when security is not enabled. (DSP-14708)
• DSEFS fsck command does not fix File not found: / problem which can occur in rare cases after new cluster nodes are started in parallel. (DSP-15048)
• A live lock on the server when reading files manifests with high CPU usage and timeouts. (DSP-15107)
• DSEFS files created through Hadoop API do not properly inherit RF and block size from the parent directory. (DSP-15139)
• "Promise already completed" error in DSEFS connection pool. (DSP-15122)
• No check if parent element of a given target path is a directory for mkdir, put, move operations. (DSP-15100)

5.1.6 DSE Graph

Changes and enhancements:
• Gremlin console plugins.txt is read-only by default. (DSP-13372)
• Traversal does not timeout with the Fluent API. (DSP-13156)
• Graph traversals over a vertex-centric index with an ordering and result limit are more efficient. (DSP-15191)
• CQL Statement latency metrics. (DSP-15124)
• Improve error messaging on failed bytecode translation. Long forms of e and -i are working. (DSP-15091)

Resolved issues:
• Whitelist org.apache.tinkerpop.gremlin.spark.structure.Spark in sandbox so that Apache TinkerPop Spark-Gremlin application can be stopped programmatically. (DSP-14678)
• Queries with multiple conditions using heterogeneous operators that cover the same property value cause an error. (DSP-14623)
• Error when retrieving multiple edges by edge IDs when the list of IDs is greater than 3. (DSP-14580)
• Unlabelled index queries occur even when labels were indexed by the appropriate key. (DSP-14579)
• graph.io read does not work with custom IDs. Limitations apply, intended for use with small graphs only. (DSP-14568)
• Setting a TraversalSource option from the DSE Driver isn't effective. (DSP-14713)
• QueryStrategy illegally moves HasStep condition across edge traversal. (DSP-15081)
• Date, Time, Duration, Timestamp, Blob Graph types are represented by incorrect java types in OLAP. Converters were added to have the same types as in OLTP. (DSP-15104)

5.1.6 DSE Search

Changes and enhancements:
• Avoid token filtering on single-node CQL solr_query. (DSP-12962)
• Maximum number of entries in SolrFilterCache is limited to 32K. (DSP-14534)
DataStax Enterprise 5.1 release notes

- **CREATE SEARCH INDEX** indexed true|false option for more performant indexes. (DSP-14364)
- Eliminate delay for scheduled snapshot collection for DSE Search performance objects. (DSP-14561)
- Added log message for filter cache evictions. (DSP-14944)
- After compact storage is dropped from a table that also has a search index, HTTP writes and deletes-by-ID on the search index are disabled. (DSP-14966)

Resolved issues:

- NPE when dropping the Solr core while indexing is in progress. (DSP-13252)
- dsetool upgrade_index_files does not work with authentication enabled. (DSP-14114)
- UpdateMetrics::Latency::Mean is "unavailable" when writes are in progress. (DSP-14392)
- When executing CQL search queries with a keyspace RF=(number of nodes), then the token filter is no longer created resulting in faster queries. (DSP-14468)
- EncryptedFSDirectory#outputLengthCache corruption makes encrypted index files unreadable. (DSP-14485)
- Solr filter cache fails after restart. (DSP-14608)
- CREATE SEARCH INDEX does not have direct control over tuple and UDT fields. (DSP-14639)
- Remove code execution vulnerability: CVE-2016-6809. (DSP-14747)
- Infinite parsing loop possible with Extended DisMax (eDisMax) query parser and local parameters. (DSP-14748)
- Internal server error 500 on solr/admin/cores?action=STATUS&memory=true. (DSP-14783)
- ExtendedDismaxQParser (edismax) ignores Boolean OR when q.op=AND and mm is not explicitly set. (DSP-14799)
- Grouping by TrieDateField and DatePointField fails. (DSP-14808)
- Token filtering might be missed on mixed versions clusters. (DSP-14898)
- Support the json.facet parameter in Solr UI. (DSP-14893)
- Excessive time spent reading unencrypted segment sizes during search index (Solr core) loading. Slow startup on nodes with large encrypted indexes is resolved after upgrade to DSE 5.1.6 is completed with a full reindex for all search indexes using encryption. (DSP-14943, DSP-14485, DSP-15265)
- Shutdown order in SolrCore causes RejectedExecutionExceptions around CommitTracker. (DSP-15040)
- Cannot create core using HTTP due to missing create permission (page 550). (DSP-15046)

5.1.6 DataStax Enterprise known issues

- DSE 5.0 SSTables with UDTs will be corrupted after migrating to DSE 5.1, DSE 6.0, and DSE 6.7. (DB-2954, CASSANDRA-15035)
Important: If the DSE 5.0.x schema contains user-defined types (UDTs), upgrade to at least DSE 5.1.13, DSE 6.0.6, or DSE 6.7.2. The SSTable serialization headers are fixed when DSE is started with the upgraded versions.

- Potential data loss for INSERTs with very large TTLs. TTL expiration timestamps are susceptible to the year 2038 problem. (DSP-15412)

 The maximum expiration timestamp that can be represented by the storage engine is 2038-01-19T03:14:06+00:00, which means that inserts with TTL that expire after this date are not currently supported. There is no protection against INSERTS with TTL expiring after the maximum supported date, causing the expiration time field to overflow and the records to expire immediately. TTLs are considered "very large" when close to the maximum allowed value of 630720000 seconds (20 years), starting from 2018-01-19T03:14:06+00:00. As time progresses, the maximum supported TTL is gradually reduced as the maximum expiration date approaches. For instance, on 2028-01-19T03:14:06 with a TTL of 10 years is impacted. The maximum expiration timestamp that can be represented by the storage engine is 2038-01-19T03:14:06+00:00, which means that inserts with TTL that expire after this date are not currently supported. There is no protection against INSERTS with TTL expiring after the maximum supported date, causing the expiration time field to overflow and the records to expire immediately.

 Warning: Upgrade to DSE 5.1.7 or later and take required action to protect against overflow of local expiration time.

- Spark SQL applications with DSE authentication enabled will throw errors if the DSEFS scratch directory doesn't exist. (DSP-15276)

 Spark SQL applications utilize a scratch directory located in DSEFS. Make sure the dsefs://tmp/hive directory exists and that it has 733 permissions. If dsefs://tmp/hive does not exist, it must be created by a role with superuser permissions. Create the scratch directory with proper permissions:

  ```
  $ dse fs 'mkdir -p -m 733 /tmp/hive'
  ```

- Spark Master might not recover after upgrades from DSE 5.1.0 through 5.1.5 to DSE 5.1.6 or 5.1.7. (DSP-15679)

 In some scenarios, the Spark Master might not recover directly after upgrade, and all the Spark applications must be stopped and restarted. Follow these steps to ensure Spark Master launches successfully for upgrades from any DSE 5.1.x to 5.1.8:

  ```
  $ dsetool sparkmaster cleanup
  $ dsetool sparkworker restart
  ```

dse.yaml
The location of the dse.yaml file depends on the type of installation:
DataStax Enterprise 5.1 release notes

Package installations
Installer-Services installations /etc/dse/dse.yaml

Tarball installations
Installer-No Services installations installation_location/resources/dse/conf/dse.yaml

• Select Hadoop libraries

Built-in Hadoop and Bring-Your-Own-Hadoop (BYOH) were deprecated in DataStax Enterprise (DSE) 5.0, and were removed in DSE 5.1. Hadoop removal from DSE 5.1 and later means that DSE does not allow for the startup of Hadoop services previously included in DSE, including MapReduce JobTracker and TaskTracker.

However, DSE has supported built-in Spark since DSE 4.5 and Bring-Your-Own-Spark (BYOS) since DSE 5.0, and that support continues today. Because Spark depends on certain Hadoop libraries on the server and the client, DSE continues to ship with Hadoop libraries that are required for running Spark and BYOS.

To view the included Hadoop libraries, see DataStax Enterprise 5.1.x third-party software.

Cassandra enhancements for DSE 5.1.6

DataStax Enterprise (DSE) 5.1.6 includes all changes from earlier DSE releases. These production-certified changes are enhancements to Apache Cassandra™ 3.11.0. (For Cassandra updates, see CHANGES.txt.)

• Switch RMIExporter to dynamic proxy. (DSP-15277)
• Do not fetch columns that are not in the filter fetched set. (DSP-15277)
• Allow selecting static column only when querying static index. (DSP-15087)
• Require only MODIFY permission on base when updating table with MV. (DSP-15087)
• Force sstableloader exit to prevent hanging due to non-daemon threads running. (DSP-15087)
• Add autoclosable to CompressionMetadata and fix leaks in SSTableMetadataViewer. (DSP-15087)
• Use all columns to calculate estimatedRowSize for aggregation internal query. (DSP-15087)
• Prevent continuous schema exchange between DSE 5.0 and DSE 5.1 nodes. (DSP-15087)
• Allow DiskBoundaryManager to cache different Directories (DSP-15024)
• Do not apply read timeouts to aggregated queries and use a minimum internal page size. (DSP-15024)
• Handle cont paging state for empty partitions with static rows. (DSP-14959)
• Skip building views during base table streams on range movements. (DSP-14959)
• Add invalid-sstable-root JVM argument to all relevant test entries in build.xml. (DSP-14827)
• Do not leak body buffer in case of protocol exceptions and upgrade Netty to 4.0.52. (DSP-14775)
• Ensure that the list and set selectors elements are all of the same type. (DSP-14775)

General upgrade advice for DSE 5.1.6

All upgrade advice from previous versions applies. Carefully review the [Upgrading DataStax Enterprise](https://docs.datastax.com/en/datastax-enterprise/5.1/datastax-enterprise/release-notes/index.html) planning and upgrade instructions to ensure a smooth upgrade and avoid pitfalls and frustrations. This general advice applies to the database upgrade and does not replace the upgrade documentation.

- General upgrading advice for any version and new features for Apache Cassandra are in NEWS.txt. Be sure to read the NEWS.txt all the way back to your current version.
- See also the Apache Cassandra changes in CHANGES.txt.

DSE 5.1.6

Upgrading

- Upgrades from DSE 5.0 might have produced unnecessary schema migrations while there was at least one DSE 5.0 node in the cluster. It is therefore highly recommended to upgrade from DSE 5.0 to at least DSE 5.1.6. The root cause of this schema mismatch was a difference in the way how schema digests were computed in DSE 5.0 and DSE 5.1. To mitigate this issue, DSE 5.1.6 and newer announce DSE 5.0 compatible digests as long as there is at least one DSE 5.0 node in the cluster. Once all nodes have been upgraded, the "real" schema version will be announced. Note: this fix is required only for DSE 5.1. (DB-1477)
- DSE is now relying on the JVM options to properly shutdown on OutOfMemoryError. By default it will reply on the OnOutOfMemoryError option as the ExitOnOutOfMemoryError and CrashOnOutOfMemoryError options are not supported by the older 1.7 and 1.8 JVMs. A warning will be logged at startup if none of those JVM options are used. See CASSANDRA-13006 for more details
- Improved gossip settling added. On startup DSE waits till all nodes are seen before fully joining the cluster. This improves latency spikes when restarting nodes. - LeveledCompactionStrategy SSTables will keep their existing level on nodetool refresh, nodetool move, and nodetool decommission.

Metrics

New storage metrics were added:

- TotalHintsReplayed: how many hints were successfully replayed on the _target_ node.
- HintsOnDisk: how many hints are currently persistent on disk on this node. Metric is updated for the amount of hints contained in the hints file when hints file is written or removed. Values is restored on node startup.

New features

- Statistics file component was added to Hint Store in order to provide information about amount of hints contained in the hints file without replaying it. Stats component is
completely backward-compatible; hint files without this component will not be counted. All new hint files will be created with this component. See DB-853 for more details.

Spark Cassandra Connector changes for DSE 5.1.6

DataStax Enterprise (DSE) 5.1.6 includes DataStax Spark Cassandra Connector 2.0.6 with all changes from earlier versions, including these production-certified changes.

- All patches up to 1.6.10

TinkerPop changes for DSE 5.1.6

DataStax Enterprise (DSE) 5.1.6 includes all changes from previous releases. These production-certified changes are enhancements to Apache TinkerPop™ 3.2.7. For TinkerPop changes, see [TinkerPop Upgrade Information](#).

- Improve type-safety in Gremlin.Net methods. (TINKERPOP-1752)
- Fix for problems with hasId() fails for empty collections. (TINKERPOP-1802)
- Python supports GraphSON types g:Date, g:Timestamp and g:UUID. (TINKERPOP-1807)
- Improve error messaging on failed bytecode translation. (TINKERPOP-1811)
- Graph API removed from usage in the process test suite. (TINKERPOP-1813/TINKERPOP-1814)
- Consistent behavior of self-referencing edges. (TINKERPOP-1821)
- Improve flexibility of detachment for EventStrategy. (TINKERPOP-1829)
- Race condition in TinkerGraph index creation. (TINKERPOP-1830)
- Bug fix in TraversalHelper.replaceStep. (TINKERPOP-1832)
- API fix for DetachedEdge.Builder#setInV and setOutV doesn't return the builder. (TINKERPOP-1833)
- Long forms of e and -i are now working. (TINKERPOP-1851)

DSE 5.1.5

Release notes for DataStax Enterprise 5.1.5.

Important: DataStax recommends the latest patch release for most environments.

Attention: TTL expiration timestamps are susceptible to the year 2038 problem. If the TTL value is long and an expiration date is greater than the maximum threshold of 2038-01-19T03:14:06+00:00, the data is immediately expired and purged on the next compaction. When using a long TTL, DataStax strongly recommends upgrading to DSE 5.1.7 or later and taking required action.

19 October 2017

- 5.1.5 Components ([page 87](#))
- 5.1.5 Highlight ([page 87](#))
- 5.1.5 Known issues ([page 87](#))
5.1.5 Components

All components from DSE 5.1.5 are listed. Components that are updated for DSE 5.1.5 are indicated with an asterisk (*).

- Apache Cassandra™ 3.11.0.1900
- Apache Solr™ 6.0.1.0.1984 *
- Apache Spark™ 2.0.2.6
- Apache TinkerPop™ 3.2.7-20170926-2e5c13b7
- Apache Tomcat® 8.0.44
- DataStax Spark Cassandra Connector 2.0.5
- DSE Java Driver 1.2.2
- Netty 4.0.42.Final
- Spark Jobserver 0.6.2.234 (requires compatible API)
- Select Hadoop libraries

5.1.5 Highlight

A single change for DSE Search:

- Due to CVE-2017-12629, added Solr XMLParser protection from XML External Entity (XXE) attacks and removed Solr RunExecutableListener to harden security for DSE Search enabled clusters. (DSP-14618)

5.1.5 DataStax Enterprise known issues

- DataStax Enterprise will not run with Java 1.8u161 or later. (DSP-15277)
- Spark SQL applications with DSE authentication enabled will throw errors if the DSEFS scratch directory doesn’t exist. (DSP-15276)

Spark SQL applications utilize a scratch directory located in DSEFS. Make sure the dsefs://tmp/hive directory exists and that it has 733 permissions. If dsefs://tmp/hive does not exist, it must be created by a role with superuser permissions. Create the scratch directory with proper permissions:

```
$ dse fs 'mkdir -p -m 733 /tmp/hive'
```

- Potential data loss for INSERTs with very large TTLs. TTL expiration timestamps are susceptible to the year 2038 problem. (DSP-15412)

The maximum expiration timestamp that can be represented by the storage engine is 2038-01-19T03:14:06+00:00, which means that inserts with TTL that expire after this date are not currently supported. There is no protection against INSERTS with TTL expiring after the maximum supported date, causing the expiration time field to overflow and the records to expire immediately. TTLs are considered "very large" when close to the maximum allowed value of 630720000 seconds (20 years), starting from 2018-01-19T03:14:06+00:00. As time progresses, the maximum supported TTL is gradually reduced as the maximum expiration date approaches. For instance, on 2028-01-19T03:14:06 with a TTL of 10 years is impacted. The
maximum expiration timestamp that can be represented by the storage engine is 2038-01-19T03:14:06+00:00, which means that inserts with TTL that expire after this date are not currently supported. There is no protection against INSERTS with TTL expiring after the maximum supported date, causing the expiration time field to overflow and the records to expire immediately.

Warning: Upgrade to DSE 5.1.7 or later and take required action to protect against overflow of local expiration time.

- DSE 5.0 SSTables with UDTs will be corrupted after migrating to DSE 5.1, DSE 6.0, and DSE 6.7. (DB-2954, CASSANDRA-15035)

 Important: If the DSE 5.0.x schema contains user-defined types (UDTs), upgrade to at least DSE 5.1.13, DSE 6.0.6, or DSE 6.7.2. The SSTable serialization headers are fixed when DSE is started with the upgraded versions.

- **Select Hadoop libraries**

 Built-in Hadoop and Bring-Your-Own-Hadoop (BYOH) were deprecated in DataStax Enterprise (DSE) 5.0, and were removed in DSE 5.1. Hadoop removal from DSE 5.1 and later means that DSE does not allow for the startup of Hadoop services previously included in DSE, including MapReduce JobTracker and TaskTracker.

 However, DSE has supported built-in Spark since DSE 4.5 and Bring-Your-Own-Spark (BYOS) since DSE 5.0, and that support continues today. Because Spark depends on certain Hadoop libraries on the server and the client, DSE continues to ship with Hadoop libraries that are required for running Spark and BYOS.

 To view the included Hadoop libraries, see [DataStax Enterprise 5.1.x third-party software](#).

DSE 5.1.4

Release notes for DataStax Enterprise 5.1.4.

Important: DataStax recommends the latest patch release for most environments.

Attention: TTL expiration timestamps are susceptible to the year 2038 problem. If the TTL value is long and an expiration date is greater than the maximum threshold of 2038-01-19T03:14:06+00:00, the data is immediately expired and purged on the next compaction. When using a long TTL, DataStax strongly recommends upgrading to DSE 5.1.7 or later and taking required action.

12 October 2017

- 5.1.4 Components *(page 89)*
- 5.1.4 Highlights *(page 89)*
- 5.1.4 Known issues *(page 92)*
- 5.1.4 Cassandra enhancements *(page 94)*
• 5.1.4 General upgrade advice (*page 98*)

Table 9: DSE functionality

<table>
<thead>
<tr>
<th>Component</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.4 DSE core</td>
<td>90</td>
</tr>
<tr>
<td>5.1.4 DSE Advanced Replication</td>
<td>90</td>
</tr>
<tr>
<td>5.1.4 DSE Analytics</td>
<td>90</td>
</tr>
<tr>
<td>5.1.4 DSEFS</td>
<td>90</td>
</tr>
<tr>
<td>5.1.4 DSE Graph</td>
<td>91</td>
</tr>
<tr>
<td>5.1.4 DSE Search</td>
<td>91</td>
</tr>
</tbody>
</table>

5.1.4 Components

All components from DSE 5.1.4 are listed. Components that are updated for DSE 5.1.4 are indicated with an asterisk (*).

- Apache Cassandra™ 3.11.0.1900 *
- Apache Solr™ 6.0.1.0.1949 *
- Apache Spark™ 2.0.2.6
- Apache TinkerPop™ 3.2.7-20170926-2e5c13b7 *
- Apache Tomcat® 8.0.44
- DataStax Spark Cassandra Connector 2.0.5
- DSE Java Driver 1.2.2
- DSEFS 5.1.2 *
- Netty 4.0.42.Final
- Spark Jobserver 0.6.2.234 (requires compatible API)
- Select Hadoop libraries

5.1.4 Highlights

Executive summary highlights for DSE 5.1.4:

- DSE Graph (*page 89*)
- DSE Search (*page 89*)

The executive summary highlights are just a top-level view. Be sure to review all of the release notes.

5.1.4 DSE Graph highlights

- Security: Graph Sandbox is enabled and configured by default. (DSP-11679)
- Vertices with custom IDs return ID components as properties. (DSP-14262)

5.1.4 DSE Search highlights

- Improved stability and performance when dealing with non-indexed fields. (DSP-6501)
 Full validation on all schema fields might result in validation failures after upgrade. See (*page 91*).
- Fixed the search performance objection regression issues. (DSP-14241)
• Fixed the memory leak issue when encrypting the index. (DSP-13826)

5.1.4 DataStax Enterprise

Changes and enhancements:

• scrub validates the partition key. Validation is added to schema mutation creation. (DSP-14366)
• Always define execution_profiles in cqlsh.py. (DSP-14494)
• Issue warning before running full repair when increasing replication factor. (DSP-14494)
• Add anti-compaction metrics and warn users when incremental repair is inefficient. (DSP-14494)

Resolved issues:

• Node does not start with "unable to activate HistogramInfoPlugin" message after upgrade to DSE 5.1. (DSP-13301)
• Apache HttpClient directory traversal through malformed URI. (DSP-13580)
• Token create, cancel, and renew security needs tightening. (DSP-14311)
• stress-tool does not output rows. (DSP-14494)

5.1.4 DSE Advanced Replication

Changes and enhancements:

• Command line interface should use non-zero exit code for unknown commands. (DSP-13590)

Resolved issues:

5.1.4 DSE Analytics

Resolved issues:

• Session management in Hive metastore is broken. (DSP-12363)
• When an application is submitted by a user without submit permission, exception message does not identify problem. (DSP-13234)
• Spark shell not usable after standalone installation with services option. (DSP-14361)
• Port setting not respected in DseCassandraConnectionFactory. (DSP-14442)
• Spark Master/Worker Web UI should bind to RPC listen address and advertise RPC broadcast address by default. (DSP-14433)

5.1.4 DSEFS

Changes and enhancements:

• Improved error message for DSEFS shell commands. (DSP-14157)
• Improved error messages are passed to the DSEFS clients, including DSEFS shell, if error occurs while reading a file. (DSP-14371)
• Improved error message when Spark fails to connect to DSEFS server. (DSP-14388)
• HTTP communication logging level changed from DEBUG to TRACE to improve filtering. (DSP-14400)
• Improve DSEFS stability on large workloads: DSEFS is less likely to overload Java Cassandra driver and cause BusyPoolException. Fixed edge-cases that might cause StackOverflowException and DSEFS lockup. (DSP-14408)

Resolved issues:
• The service dse stop command does not wait for the process to be completely stopped. (DSP-14014)
• DSEFS does not support symlink for data directories. (DSP-14110)
• DSEFS fsck always prints number of blocks processed, even if file system is empty. (DSP-14235)

5.1.4 DSE Graph

Changes and enhancements:
• Enable and configure the graph sandbox by default to improve security. (DSP-11679)
• GraphFrame 0.5 fixes graph frame algorithms. (DSP-14271)
• Gremlin console uses the default plugins.txt in the DSE distribution. If a user home is specified with bin/dse gremlin-console ~/gremlin-console then extra checks are performed to ensure that plugins.txt is populated. (DSP-14286)
• Prevent multi-properties for the partition/clustering key. (DSP-14300)
• graph.tx().commit(); call is not allowed on graph.tx().commit(); graph.tx().config().option("allow_scan", true).open(); g.V().count(). Instead, use graph.tx().config().option("allow_scan", true).open(); g.V().count(). (DSP-14482)

Resolved issues:
• Vertex index on id property keys doesn't work. (DSP-9208)
• Unnecessary INSERT and DELETE to dse_security.digest_tokens for every graph statement executed over native protocol. (DSP-13670)
• Streamline configuration for gremlin-console connection to cluster with Kerberos authentication enabled. (DSP-14164)
• DataFrames deletes do not leverage range or partition level tombstones. (DSP-14249)
• Vertices with custom IDs do not return ID components as properties (as in g.V().properties() or g.V().values() for OLTP, OLAP, and GraphFrames. (DSP-14262)
• DseResourceManager warning message when shutting down Spark+Graph nodes. (DSP-14276)
• Graph sandbox should have org.apache.tinkerpop.gremlin.structure.io whitelisted by default. (DSP-14540)

5.1.4 DSE Search
DataStax Enterprise 5.1 release notes

Changes and enhancements:

- Full validation on all schema fields might result in validation failures after upgrade. (DSP-6501)

 # All field definitions in the schema are validated and must be DSE Search compatible, even if the fields are not indexed, have docValues applied, or used for copy-field source.

 # Tune the schema before you upgrade. All field definitions in the schema are validated and must be DSE Search compatible, even if the fields are not indexed, have docValues applied, or used for copy-field source. With the tuned index, performance gains are especially recognized for unused large blobs.

Resolved issues:

- Allow dynamic multi-valued fields without a corresponding CQL column. (DSP-13277)
- Non-indexed frozen map column produces unexpected results without error message. (DSP-13997)
- Non-indexed field prevents data from being indexed. (DSP-14001)
- Single-pass CQL Solr queries cannot select some data types. (DSP-14022)
- Text field does not work for group by operations; unexpected docvalues type SORTED_SET error message for text fields. (DSP-14106)
- Parsing error on cleanup of Solr secondary index with empty string in partition ID. (DSP-14234)
- Solr indexing statistics are not collected for solr_index_stats_options. (DSP-14241)
- CPU layout assertions on startup should show in log file instead of stopping startup. (DSP-14281)
- Cannot turn tracing off after running queries with tracing on. (DSP-14439)
- Indexing wiki demo fails when solrslowlog is enabled. (DSP-14521)
- Search performance objects are not working. (DSP-14241)
- Memory leak during index encryption. (DSP-13826)

5.1.4 DataStax Enterprise known issues

- DataStax Enterprise will not run with Java 1.8u161 or later. (DSP-15277)
- Spark SQL applications with DSE authentication enabled will throw errors if the DSEFS scratch directory doesn't exist. (DSP-15276)

 Spark SQL applications utilize a scratch directory located in DSEFS. Make sure the dsefs://tmp/hive directory exists and that it has 733 permissions. If dsefs://tmp/hive does not exist, it must be created by a role with superuser permissions. Create the scratch directory with proper permissions:

  ```bash
  $ dse fs 'mkdir -p -m 733 /tmp/hive'
  ```

- Potential data loss for INSERTs with very large TTLs. TTL expiration timestamps are susceptible to the year 2038 problem. (DSP-15412)
The maximum expiration timestamp that can be represented by the storage engine is 2038-01-19T03:14:06+00:00, which means that inserts with TTL that expire after this date are not currently supported. There is no protection against INSERTS with TTL expiring after the maximum supported date, causing the expiration time field to overflow and the records to expire immediately. TTLs are considered "very large" when close to the maximum allowed value of 630720000 seconds (20 years), starting from 2018-01-19T03:14:06+00:00. As time progresses, the maximum supported TTL is gradually reduced as the maximum expiration date approaches. For instance, on 2028-01-19T03:14:06 with a TTL of 10 years is impacted. The maximum expiration timestamp that can be represented by the storage engine is 2038-01-19T03:14:06+00:00, which means that inserts with TTL that expire after this date are not currently supported. There is no protection against INSERTS with TTL expiring after the maximum supported date, causing the expiration time field to overflow and the records to expire immediately.

Warning: Upgrade to DSE 5.1.7 or later and take required action to protect against overflow of local expiration time.

- DSE 5.0 SSTables with UDTs will be corrupted after migrating to DSE 5.1, DSE 6.0, and DSE 6.7. (DB-2954, CASSANDRA-15035)

 Important: If the DSE 5.0.x schema contains user-defined types (UDTs), upgrade to at least DSE 5.1.13, DSE 6.0.6, or DSE 6.7.2. The SSTable serialization headers are fixed when DSE is started with the upgraded versions.

dse.yaml
The location of the dse.yaml file depends on the type of installation:

<table>
<thead>
<tr>
<th>Package installations</th>
<th>/etc/dse/dse.yaml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer-Services installations</td>
<td>installation_location/resources/dse/conf/dse.yaml</td>
</tr>
</tbody>
</table>

- **Select Hadoop libraries**

 Built-in Hadoop and Bring-Your-Own-Hadoop (BYOH) were deprecated in DataStax Enterprise (DSE) 5.0, and were removed in DSE 5.1. Hadoop removal from DSE 5.1 and later means that DSE does not allow for the startup of Hadoop services previously included in DSE, including MapReduce JobTracker and TaskTracker.

 However, DSE has supported built-in Spark since DSE 4.5 and Bring-Your-Own-Spark (BYOS) since DSE 5.0, and that support continues today. Because Spark depends on certain Hadoop libraries on the server and the client, DSE continues to ship with Hadoop libraries that are required for running Spark and BYOS.
To view the included Hadoop libraries, see DataStax Enterprise 5.1.x third-party software.

Cassandra enhancements for DSE 5.1.4

DataStax Enterprise (DSE) 5.1.4 includes all changes from earlier DSE releases. These production-certified changes are enhancements to Apache Cassandra™ 3.11.0. (For Cassandra updates, see CHANGES.txt.)

- Handle limit correctly on tables with strict liveness (CASSANDRA-13883)
- AbstractTokenTreeBuilder#serializedSize returns wrong value when there is a single leaf and overflow collisions (CASSANDRA-13869)
- BTree.Builder memory leak (CASSANDRA-13754)
- Revert CASSANDRA-10368 of supporting non-pk column filtering due to correctness (CASSANDRA-13798)
- Fix cassandra-stress hang issues when an error during cluster connection happens (CASSANDRA-12938)
- Better bootstrap failure message when blocked by (potential) range movement (CASSANDRA-13744)
- "ignore" option is ignored in sstableloader (CASSANDRA-13721)
- Deadlock in AbstractCommitLogSegmentManager (CASSANDRA-13652)
- Duplicate the buffer before passing it to analyser in SASI operation (CASSANDRA-13512)
- Properly evict pstmts from prepared statements cache (CASSANDRA-13641)
- Fix support for SuperColumn tables (CASSANDRA-12373)
- Remove non-rpc-ready nodes from counter leader candidates (CASSANDRA-13043)
- Improve short read protection performance (CASSANDRA-13794)
- Fix sstable reader to support range-tombstone-marker for multi-slices (CASSANDRA-13787)
- Fix short read protection for tables with no clustering columns (CASSANDRA-13880)
- Make isBuilt volatile in PartitionUpdate (CASSANDRA-13619)
- Prevent integer overflow of timestamps in CellTest and RowsTest (CASSANDRA-13866)
- Fix counter application order in short read protection (CASSANDRA-12872)
- Don't block RepairJob execution on validation futures (CASSANDRA-13797)
- Wait for all management tasks to complete before shutting down CLSM (CASSANDRA-13123)
- INSERT statement fails when Tuple type is used as clustering column with default DESC order (CASSANDRA-13717)
- Fix pending view mutations handling and cleanup batchlog when there are local and remote paired mutations (CASSANDRA-13069)
- Improve config validation and documentation on overflow and NPE (CASSANDRA-13622)
- Range deletes in a CAS batch are ignored (CASSANDRA-13655)
• Avoid assertion error when IndexSummary > 2G (CASSANDRA-12014)
• Change repair midpoint logging for tiny ranges (CASSANDRA-13603)
• Better handle corrupt final commitlog segment (CASSANDRA-11995)
• StreamingHistogram is not thread safe (CASSANDRA-13756)
• Fix MV timestamp issues (CASSANDRA-11500)
• Better tolerate improperly formatted bcrypt hashes (CASSANDRA-13626)
• Fix race condition in read command serialization (CASSANDRA-13363)
• Fix AssertionError in short read protection (CASSANDRA-13747)
• Don't skip corrupted sstables on startup (CASSANDRA-13620)
• Fix the merging of cells with different user type versions (CASSANDRA-13776)
• Copy session properties on cqlsh.py do_login (CASSANDRA-13640)
• Potential AssertionError during ReadRepair of range tombstone and partition deletions (CASSANDRA-13719)
• Don't let stress write warmup data if n=0 (CASSANDRA-13773)
• Gossip thread slows down when using batch commit log (CASSANDRA-12966)
• Randomize batchlog endpoint selection with only 1 or 2 racks (CASSANDRA-12884)
• Fix digest calculation for counter cells (CASSANDRA-13750)
• Fix ColumnDefinition.cellValueType() for non-frozen collection and change SSTabledump to use type.toJSONString() (CASSANDRA-13573)
• Skip materialized view addition if the base table doesn't exist (CASSANDRA-13737)
• Drop table should remove corresponding entries in dropped_columns table (CASSANDRA-13730)
• Log warn message until legacy auth tables have been migrated (CASSANDRA-13371)
• Fix incorrect [2.1 <- 3.0] serialization of counter cells created in 2.0 (CASSANDRA-13691)
• Fix invalid writetime for null cells (CASSANDRA-13711)
• Fix ALTER TABLE statement to atomically propagate changes to the table and its MVs (CASSANDRA-12952)
• Fix Digest mismatch Exception if hints file has UnknownColumnFamily (CASSANDRA-13696)
• Fixed ambiguous output of nodetool tablestats command (CASSANDRA-13722)
• Purge tombstones created by expired cells (CASSANDRA-13643)
• Make concat work with iterators that have different subsets of columns (CASSANDRA-13482)
• Set test.runners based on cores and memory size (CASSANDRA-13078)
• Allow different NUMACTL_ARGS to be passed in (CASSANDRA-13557)
• Fix secondary index queries on COMPACT tables (CASSANDRA-13627)
• Nodetool listsnapshots output is missing a newline, if there are no snapshots (CASSANDRA-13568)
• sstabledump reports incorrect usage for argument order (CASSANDRA-13532)
• Safely handle empty buffers when outputting to JSON (CASSANDRA-13868)
• Copy session properties on cqlsh.py do_login (CASSANDRA-13847)
• Fix load over calculated issue in IndexSummaryRedistribution (CASSANDRA-13738)
• Fix compaction and flush exception not captured (CASSANDRA-13833)
• Uncaught exceptions in Netty pipeline (CASSANDRA-13649)
• Prevent integer overflow on exabyte filesystems (CASSANDRA-13067)
• Fix queries with LIMIT and filtering on clustering columns (CASSANDRA-11223)
• Fix potential NPE when resume bootstrap fails (CASSANDRA-13272)
• Fix toJSONString for the UDT, tuple and collection types (CASSANDRA-13592)
• Fix nested Tuples/UDTs validation (CASSANDRA-13646)
• Clone HeartBeatState when building gossip messages. Make its generation/version volatile (CASSANDRA-13700)
• Allow native function calls in CQLSSTableWriter (CASSANDRA-12606)
• Replace string comparison with regex/number checks in MessagingService test (CASSANDRA-13216)
• Fix formatting of duration columns in CQLSH (CASSANDRA-13549)
• Fix the problem with duplicated rows when using paging with SASI (CASSANDRA-13302)
• Allow CONTAINS statements filtering on the partition key and it’s parts (CASSANDRA-13275)
• Fall back to even ranges calculation in clusters with vnodes when tokens are distributed unevenly (CASSANDRA-13229)
• Fix duration type validation to prevent overflow (CASSANDRA-13218)
• Forbid unsupported creation of SASI indexes over partition key columns (CASSANDRA-13228)
• Reject multiple values for a key in CQL grammar. (CASSANDRA-13369)
• UDA fails without input rows (CASSANDRA-13399)
• Fix compaction-stress by using daemonInitialization (CASSANDRA-13188)
• V5 protocol flags decoding broken (CASSANDRA-13443)
• Use write lock not read lock for removing sstables from compaction strategies. (CASSANDRA-13422)
• Use corePoolSize equal to maxPoolSize in JMXEnabledThreadPoolExecutors (CASSANDRA-13329)
• Avoid rebuilding SASI indexes containing no values (CASSANDRA-12962)
• Add charset to Analyser input stream (CASSANDRA-13151)
• Delete illegal character from StandardTokenizerImpl.jflex (CASSANDRA-13417)
• Fix cqlsh automatic protocol downgrade regression (CASSANDRA-13307)
• Tracing payload not passed from QueryMessage to tracing session (CASSANDRA-12835)
• Ensure int overflow doesn't occur when calculating large partition warning size (CASSANDRA-13172)
• Ensure consistent view of partition columns between coordinator and replica in ColumnFilter (CASSANDRA-13004)
• Failed unregistering mbean during drop keyspace (CASSANDRA-13346)
• nodetool scrub/cleanup/upgradessstables exit code is wrong (CASSANDRA-13542)
- Fix the reported number of sstable data files accessed per read (CASSANDRA-13120)
- Fix schema digest mismatch during rolling upgrades from versions before 3.0.12 (CASSANDRA-13559)
- Upgrade JNA version to 4.4.0 (CASSANDRA-13072)
- Interned ColumnIdentifiers should use minimal ByteBuffers (CASSANDRA-13533)
- ReverseIndexedReader may drop rows during 2.1 to 3.0 upgrade (CASSANDRA-13525)
- Fix repair process violating start/end token limits for small ranges (CASSANDRA-13052)
- Add storage port options to SSTableLoader (CASSANDRA-13518)
- Properly handle quoted index names in cqlsh DESCRIBE output (CASSANDRA-12847)
- Avoid reading static row twice from old format sstables (CASSANDRA-13236)
- Fix NPE in StorageService.excise() (CASSANDRA-13163)
- Expire OutboundTcpConnection messages by a single Thread (CASSANDRA-13265)
- Fail repair if insufficient responses received (CASSANDRA-13397)
- Fix SSTableLoader fail when the loaded table contains dropped columns (CASSANDRA-13276)
- Avoid name clashes in CassandraIndexTest (CASSANDRA-13427)
- Handling partially written hint files (CASSANDRA-12728)
- Interrupt replaying hints on decommission (CASSANDRA-13308)
- Handling partially written hint files (CASSANDRA-12728)
- Fix NPE issue in StorageService (CASSANDRA-13060)
- Make reading of range tombstones more reliable (CASSANDRA-12811)
- Fix startup problems due to schema tables not completely flushed (CASSANDRA-12213)
- Fix view builder bug that can filter out data on restart (CASSANDRA-13405)
- Fix 2i page size calculation when there are no regular columns (CASSANDRA-13400)
- Fix the conversion of 2.X expired rows without regular column data (CASSANDRA-13395)
- Fix hint delivery when using ext+internal IPs with prefer_local enabled (CASSANDRA-13020)
- Nodetool upgradessatables/scrub/compact ignores system tables (CASSANDRA-13410)
- Fix schema version calculation for rolling upgrades (CASSANDRA-13441)
- Nodes started with join_ring=False should be able to serve requests when authentication is enabled (CASSANDRA-11381)
- cqlsh COPY FROM: increment error count only for failures, not for attempts (CASSANDRA-13209)
- Avoid starting gossiper in RemoveTest (CASSANDRA-13407)
- Fix weightedSize() for row-cache reported by JMX and NodeTool (CASSANDRA-13393)
- Fix JVM metric names (CASSANDRA-13103)
- Coalescing strategy sleeps too much (CASSANDRA-13090)
- Fix 2ndary index queries on partition keys for tables with static columns (CASSANDRA-13147)
• Fix ParseError unhashable type list in cqlsh copy from (CASSANDRA-13364)

General upgrade advice for DSE 5.1.4

All upgrade advice from previous versions applies. Carefully review the Upgrading DataStax Enterprise planning and upgrade instructions to ensure a smooth upgrade and avoid pitfalls and frustrations. This general advice applies to the database upgrade and does not replace the upgrade documentation.

- General upgrading advice for any version and new features for Apache Cassandra are in NEWS.txt. Be sure to read the NEWS.txt all the way back to your current version.
- See also the Apache Cassandra changes in CHANGES.txt.

Spark Cassandra Connector changes for DSE 5.1.4

DataStax Enterprise (DSE) 5.1.4 includes DataStax Spark Cassandra Connector 2.0.5 includes all changes from earlier versions.

DSE 5.1.3

Release notes for DataStax Enterprise 5.1.3.

Important: DataStax recommends the latest patch release for most environments.

Attention: TTL expiration timestamps are susceptible to the year 2038 problem. If the TTL value is long and an expiration date is greater than the maximum threshold of `2038-01-19T03:14:06+00:00`, the data is immediately expired and purged on the next compaction. When using a long TTL, DataStax strongly recommends upgrading to DSE 5.1.7 or later and taking required action.

6 September 2017

- [5.1.3 Components](#)
- [5.1.3 Highlights](#)
- [5.1.3 Known issues](#)
- [5.1.3 Cassandra enhancements](#)
- [5.1.3 General upgrade advice](#)

Table 10: DSE functionality

<table>
<thead>
<tr>
<th>5.1.3 DSE core (page 100)</th>
<th>5.1.3 DSEFS (page 101)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.3 DSE Advanced Replication (page 101)</td>
<td>5.1.3 DSE Graph (page 102)</td>
</tr>
<tr>
<td>5.1.3 DSE Analytics (page 101)</td>
<td>5.1.3 DSE Search (page 103)</td>
</tr>
</tbody>
</table>

5.1.3 Components
All components from DSE 5.1.3 are listed. Components that are updated for DSE 5.1.3 are indicated with an asterisk (*).

- Apache Cassandra™ 3.11.0.1855 *
- Apache Solr™ 6.0.1.0.1833 *
- Apache Spark™ 2.0.2.6
- Apache TinkerPop™ 3.2.6-20170821-ac1bba27 *
- Apache Tomcat® 8.0.44 *
- DataStax Spark Cassandra Connector 2.0.5 *
- DSE Java Driver 1.2.2 *
- DSEFS 5.1.2 *
- Netty 4.0.42.Final
- Spark Jobserver 0.6.2.234 (requires compatible API)
- Select Hadoop libraries

5.1.3 Highlights

Executive summary highlights for DSE 5.1.3:

- DataStax Enterprise core (page 99)
- DSE Analytics (page 99)
- DSE Graph (page 100)
- DSE Search (page 100)

The executive summary highlights are just a top-level view. Be sure to review all of the release notes.

5.1.3 DataStax Enterprise core highlights

- Incremental repairs are no longer the default for nodetool repair. Even with nodetool repair -full of nodetool repair -pr, DSE 5.1.0-5.1.2 were run as incremental and marked sstables as repaired causing anti-compaction. (DSP-14464)

After upgrades from DSE 5.1.0-5.1.2 to DSE 5.1.3 or later, you must follow instructions in the upgrade guide to migrate off of incremental repairs. To continue running incremental repairs, use nodetool repair -inc.

5.1.3 DSE Analytics and DSEFS highlights

- New -framework option (page 1147) for dse spark commands to accommodate applications that were originally written for open source Apache Spark. Specify which classpath is used, either the DSE version (default) or a similar path to open source Spark 2.0. (DSP-12954)
- DSEFS includes several important stability fixes and performance improvements. To use DSEFS in production, DataStax strongly recommends upgrading to DSE 5.1.3 to leverage these improvements.
5.1.3 DSE Graph highlights

- Significantly improved graph query performance. (DSP-11534)
- Domain specific language support. (DSP-13545)
- Graph custom id support for multiple keyed vertices. (DGL-258)

5.1.3 DSE Search highlights

- Extend TieredMergePolicy (page 441) to support automatic removal of deletes. (DSP-13626)

5.1.3 DataStax Enterprise

Changes and enhancements:

- `nodetool rebuild` (page 1010) and `nodetool bootstrap` (page 953) improvements. (DSP-13870, DB-581)

 # New nodetool rebuild operations:

 # refetch - resets locally available ranges. Streams all ranges but leaves current data untouched.

 # reset - resets locally available ranges. Removes all locally present data (like a TRUNCATE). Streams all ranges.

- Simplify role-permissions handling. (DSP-14159)

 The table `system_auth.resource_role_permissions_index` is no longer used. Drop this table after all nodes are upgraded to DSE 5.0.10. Upgrades from DSE 5.0.10+ to DSE versions earlier than 5.1.3 are not recommended. See Restrictions when upgrading to DSE 5.1.3.

- New nodetool `nodetool mark_unrepaired` (page 1003) command unifies repaired and unrepaired compaction buckets. (DSP-14255)

- Changes to `nodetool repair` (page 1020). (DSP-14464)

 # When run without options on new tables, the default behavior is nodetool repair --full. (Earlier versions were incremental when no options were specified.)

 # When run without options on a keyspace or set of tables, nodetool repair runs incremental repair on tables previously repaired and full repair on new tables.

 # Anti-compaction is no longer run after full repairs. Use nodetool repair --run-anticompaction to restore the previous behavior.

 # Incremental repair is no longer supported on tables with MVs and CDC. An incremental repair executed on table with MVs or CDC will run full repair instead.

After upgrades from DSE 5.1.0-5.1.2 to DSE 5.1.3 or later, you must follow instructions in the upgrade guide to migrate off of incremental repairs. To continue running incremental repairs, use `nodetool repair --inc`.
Resolved issues:

- Adjust and check directory ownership when starting DSE. (DSP-13245)
- CVE-2017-7957 xstream-core is vulnerable to Denial of Service (DoS) attacks. (DSP-13419)
- After restore, data cannot be queried after streaming SSTables with sstableloader to tiered storage. (DSP-14188)
- MemoryOnlyStrategy regions not immediately loaded into physical memory with new kernels. (DSP-14169)
- Make full repair default and disallow incremental repair on MV/CDC tables. (DSP-14255)
- Revert CASSANDRA-11223 behavior in AbstractReadCommandBuilder. (DSP-14135)
- Prevent marking remote SSTables shadowing compacted data as repaired. (DSP-14141)
- Rebuild logging always says 0 bytes. (DSP-13870)
- Allow aggressive expiration of fully expired sstables without timestamp/key overlap checks. (DSP-13870)
- SSTable index files can become corrupted due to StreamingHistogram bug. (DSP-14279)

5.1.3 DSE Advanced Replication

Resolved issues:

- DataStax installer does not set up DSE Advanced Replication correctly. (DSP-13472)
- Ingestion might miss or drop data at higher insertion rates. CDC log file might be deleted even if not processed. (DSP-14043)
- DSEFS clients unnecessarily switch between remote nodes. (DSP-14108)
- Race condition under heavy load sent confusing exceptions to the log file. (DSP-14180)

5.1.3 DSE Analytics

Changes and enhancements:

- Improved error on Spark:// Master URLs. (DSP-13366)
- New -framework option (page 1147) for dse spark commands to accommodate applications that were originally written for open source Apache Spark. Specify which classpath is used, either the DSE version (default) or a similar path to open source Spark 2.0. (DSP-12954)
- Improved error messages when no target datacenter provided for Spark application. (DSP-13236)

Resolved issues:

- Decrease logging level for RPC methods failures. (DSP-13282)
- JoinWithCassandra and SaveToCassandra blocked on adding to requests to the async execute pool. (DSP-14178)

5.1.3 DSEFS
Changes and enhancements:

- Expand DSEFS repair capability. DSEFS fsck checks if data blocks exist on the remote node that claims to have them. Mixed versions during upgrades are not supported. Upgrade all nodes in the cluster before using DSEFS fsck. (DSP-13081)
- DSEFS read performance is improved. (DSP-13309)
- Launch DSEFS shell with precedence (page 406) given to the specified hosts. (DSP-14108)
- Connection reuse is improved. Closing idle connections is disabled by default. New idle_connection_timeout_ms (page 263) option in dse.yaml defines how long to wait before an idle client-server connection is closed. (DSP-14010)
- Protocol change improves efficiency of passing JSON arrays between DSEFS server and client. Mixed versions during upgrades are not supported. Upgrade all nodes in the cluster before using the DSEFS shell. (DSP-14107)

Resolved issues:

- DataStax installer does not set up DSEFS correctly for No Services installations. (DSP-13473)
- NullPointerException: Unexpected null value of column valid_from in <dse keyspace>.inodes while running fsck. (DSP-12615)
- Memory leak occurs with incorrect use of WebHDFS API. (DSP-13813)
- Rare client-side ParsingException. (DSP-14000)
- Incorrect FileNotFound errors when using Spark with DSEFS. (DSP-14105)

5.1.3 DSE Graph

Changes and enhancements:

- Improved and simplified data batch loading of pre-formatted data. (DGL-235)

Supporting changes:

- Schema discovery and schema generation are deprecated. (DGL-246)
- Standard IDs are deprecated. (DGL-247)
- Transformations are deprecated. (DGL-248)
- Standard vertex IDs are deprecated. Use custom vertex IDs instead. (DSP-13485)

- Schema discovery and schema generation are deprecated. (DGL-246)
- Graph custom id support for multiple keyed vertices. (DGL-258)
- Query engine significantly improved to allow more queries to be satisfied by using indexes. In particular, AND and OR queries are now handled and translate transparently to multiple backend queries or, if possible, single search queries. (DSP-11534)
- Allow for indexes to be used with ORDER BY clause. (DSP-11931)
- Checking for edge connectedness no longer performs an unnecessary backend query. (DSP-12863)
- Edge queries using between predicate now use an index, if available. (DSP-13541)
• Improved support for domain-specific languages (DSL) in Gremlin enables the DataStax driver to specify TraversalSource. (DSP-13545)
• cache=false at the transaction level now includes disabling AdjacencyListStoreImpl and IndexStoreImpl. (DSP-13560)
• Vertices without multi-properties fetch all properties in a single query, rather than requesting properties one at a time. Using multi-properties as vertices is not recommended, because multiple cardinality (multi-properties) are retrieved in graph traversals more slowly than single cardinality properties. Vertices with multi-properties default to the previous behavior of requesting properties individually. (DSP-13646)
• More Gremlin APIs are supported in DSEGraphFrames: dedup, sort, limit, filter, + as()/select(), or(). (DSP-13649)
• Do partition deletes for the property/edge table entries if possible. (DSP-13671)
• Timeouts for graph traversals now start from the time the request is received. Earlier releases started timeouts for graph traversals at processing start time. Timeouts will appear more readily on an overloaded server. (DSP-13828)
• Numeric sack values no longer need to be explicitly typed (for example, 3.0D). You can still provide for greater specificity in the expected return type. (DSP-14026)
• Lambdas provided to the sack() step are now recognized by the LambdaRestrictionStrategy. You must disable the restrict_lambda setting to call this method. (DSP-14118)
• Support user-supplied IDs for edges (page 845) and properties (page 847). ID must be Java UUID. (DSP-12932)

Resolved issues:
• -help prints help twice. (DGL-257)
• DGL prints warning excessively. (DGL-262)
• The number of vertex labels is limited to 200 per graph. (DSP-11078)
• Graph frames error if meta-property is not populated. (DSP-13063)
• Gremlin server log directory setting doesn’t work if default log location is moved. Use dse-env.sh to change log locations. (DSP-13508)
• DseGraphFrame throws UnsupportedOperationException for graph with empty schema. (DSP-13858)
• DseGraphRpc.getSchemaBlob should request EXECUTE permissions instead of SELECT. (DSP-13888)
• Single cardinality edge updates work incorrectly. (DSP-14185)
• DseGraphFrames.updateVertices() requires unnecessary ID columns. (DSP-14175)
• The within predicate is not working for unindexed edges. (DSP-13209)

5.1.3 DSE Search changes and enhancements

• OffheapPostings is present by default in demo and auto-generated solrconfig.xml files. (DSP-10088)
• The default filter cache settings are changed. (DSP-13153)
• Streamlined autoSolrConfig.xml template for auto-generated search indexes. CQL
ALTER SEARCH INDEX CONFIG, ALTER SEARCH INDEX Schema, and CREATE
SEARCH INDEX shortcuts for TieredMergePolicyFactory. (DSP-13229)
• DeleteByld is deprecated. (DSP-13988)
• Extend TieredMergePolicy (page 441) to support automatic removal of deletes.
(DSP-13626)
• DSE Search indexing optimizes for SSDs by default. Spinning disk detection logic is
removed. (DSP-13924)
• Improved error messages on invalid solr_query are more descriptive for invalid queries
and syntax errors. (DSP-14003)

Resolved issues:
• Shard request exceptions are not logged at the replica level. (DSP-12691)
• Unnecessary double segment flushing on hard commit. (DSP-13971)
• Reintroduce provisioning/dropping states for backward compatibility. Issue a warning
when a graph is found. (DSP-14111)
• Search permissions cannot be managed on non-search nodes in the cluster.
(DSP-14242)

5.1.3 DataStax Enterprise known issues
• DataStax Enterprise will not run with Java 1.8u161 or later. (DSP-15277)
• Potential data loss for INSERTs with very large TTLs. TTL expiration timestamps are
susceptible to the year 2038 problem. (DSP-15412)

The maximum expiration timestamp that can be represented by the storage engine
is 2038-01-19T03:14:06+00:00, which means that inserts with TTL that expire after
this date are not currently supported. There is no protection against INSERTS
with TTL expiring after the maximum supported date, causing the expiration time
field to overflow and the records to expire immediately. TTLs are considered "very
large" when close to the maximum allowed value of 630720000 seconds (20 years),
starting from 2018-01-19T03:14:06+00:00. As time progresses, the maximum
supported TTL is gradually reduced as the maximum expiration date approaches.
For instance, on 2028-01-19T03:14:06 with a TTL of 10 years is impacted. The
maximum expiration timestamp that can be represented by the storage engine is
2038-01-19T03:14:06+00:00, which means that inserts with TTL that expire after this
date are not currently supported. There is no protection against INSERTS with TTL
expiring after the maximum supported date, causing the expiration time field to overflow
and the records to expire immediately.

Warning: Upgrade to DSE 5.1.7 or later and take required action to protect
against overflow of local expiration time.

• DSE 5.0 SSTables with UDTs will be corrupted after migrating to DSE 5.1, DSE 6.0, and
DSE 6.7. (DB-2954, CASSANDRA-15035)
Important: If the DSE 5.0.x schema contains user-defined types (UDTs), upgrade to at least DSE 5.1.13, DSE 6.0.6, or DSE 6.7.2. The SSTable serialization headers are fixed when DSE is started with the upgraded versions.

dse.yaml

The location of the `dse.yaml` file depends on the type of installation:

<table>
<thead>
<tr>
<th>Package installations</th>
<th>/etc/dse/dse.yaml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer-Services installations</td>
<td></td>
</tr>
<tr>
<td>Tarball installations</td>
<td>installation_location/</td>
</tr>
<tr>
<td>Installer-No Services installations</td>
<td>resources/dse/conf/dse.yaml</td>
</tr>
</tbody>
</table>

- **Select Hadoop libraries**

 Built-in Hadoop and Bring-Your-Own-Hadoop (BYOH) were deprecated in DataStax Enterprise (DSE) 5.0, and were removed in DSE 5.1. Hadoop removal from DSE 5.1 and later means that DSE does not allow for the startup of Hadoop services previously included in DSE, including MapReduce JobTracker and TaskTracker.

 However, DSE has supported built-in Spark since DSE 4.5 and Bring-Your-Own-Spark (BYOS) since DSE 5.0, and that support continues today. Because Spark depends on certain Hadoop libraries on the server and the client, DSE continues to ship with Hadoop libraries that are required for running Spark and BYOS.

 To view the included Hadoop libraries, see [DataStax Enterprise 5.1.x third-party software](#).

Cassandra enhancements for DSE 5.1.3

DataStax Enterprise (DSE) 5.1.3 includes all changes from earlier DSE releases. These production-certified changes are enhancements to Apache Cassandra™ 3.11.0. (For Cassandra updates, see [CHANGES.txt](#).)

- Fix cassandra-stress hang issues when an error during cluster connection happens (CASSANDRA-12938)
- Better bootstrap failure message when blocked by (potential) range movement (CASSANDRA-13744)
- "ignore" option is ignored in sstableloader (CASSANDRA-13721)
- Deadlock in AbstractCommitLogSegmentManager (CASSANDRA-13652)
- Duplicate the buffer before passing it to analyser in SASI operation (CASSANDRA-13512)
- Copy session properties on cqlsh.py do_login (CASSANDRA-13640)
- Potential AssertionError during ReadRepair of range tombstone and partition deletions (CASSANDRA-13719)
- Don’t let stress write warmup data if n=0 (CASSANDRA-13773)
- Gossip thread slows down when using batch commit log (CASSANDRA-12966)
• Randomize batchlog endpoint selection with only 1 or 2 racks (CASSANDRA-12884)
• Fix digest calculation for counter cells (CASSANDRA-13750)
• Fix ColumnDefinition.cellValueType() for non-frozen collection and change SSTabledump to use type.toJSONString() (CASSANDRA-13573)
• Skip materialized view addition if the base table doesn't exist (CASSANDRA-13737)
• Drop table should remove corresponding entries in dropped_columns table (CASSANDRA-13730)
• Log warn message until legacy auth tables have been migrated (CASSANDRA-13371)
• Fix incorrect [2.1 < 3.0] serialization of counter cells created in 2.0 (CASSANDRA-13691)
• Fix invalid writetime for null cells (CASSANDRA-13711)
• Fix ALTER TABLE statement to atomically propagate changes to the table and its MVs (CASSANDRA-12952)
• Fix Digest mismatch Exception if hints file has UnknownColumnFamily (CASSANDRA-13696)
• Fixed ambiguous output of nodetool tablestats command (CASSANDRA-13722)
• Purge tombstones created by expired cells (CASSANDRA-13643)
• Make concat work with iterators that have different subsets of columns (CASSANDRA-13482)
• Set test.runners based on cores and memory size (CASSANDRA-13078)
• sstabledump reports incorrect usage for argument order (CASSANDRA-13532)
• Uncaught exceptions in Netty pipeline (CASSANDRA-13649)
• Prevent integer overflow on exabyte filesystems (CASSANDRA-13067)
• Fix queries with LIMIT and filtering on clustering columns (CASSANDRA-11223)
• Fix potential NPE when resume bootstrap fails (CASSANDRA-13272)
• Fix toJSONString for the UDT, tuple and collection types (CASSANDRA-13592)
• Clone HeartBeatState when building gossip messages. Make its generation/version volatile (CASSANDRA-13700)

General upgrade advice for DSE 5.1.3

All upgrade advice from previous versions applies. Carefully review the Upgrading DataStax Enterprise planning and upgrade instructions to ensure a smooth upgrade and avoid pitfalls and frustrations. This general advice applies to the database upgrade and does not replace the upgrade documentation.

• General upgrading advice for any version and new features for Apache Cassandra are in NEWS.txt. Be sure to read the NEWS.txt all the way back to your current version.
• See also the Apache Cassandra changes in CHANGES.txt.

DSE 5.1.3

Upgrading

• Creating Materialized View with filtering on non-primary-key base column (added in CASSANDRA-10368) is disabled, because the liveness of view row is depending on multiple filtered base non-key columns and base non-key column used in view
primary-key. This semantic cannot be supported without storage format change, see CASSANDRA-13826. For append-only use case, you may still use this feature with a startup flag: `-Dcassandra.mv.allow_filtering_nonkey_columns_unsafe=true`.

- The table `system_auth.resource_role_permissions_index` is no longer used and should be dropped after all nodes are on 5.1.3. Note that upgrades from DSE 5.0 series since 5.0.10 to DSE versions before 5.1.3 are not recommended.
- Full repairs are now default if no option is specified on nodetool repair, unless incremental repair was already run on the table/keyspace being repaired, to maintain backward compatibility. Incremental repair may be run on new tables by using the `-inc` option.
- Full repairs will no longer run repair unless the `--run-anticompaction` option is specified. Incremental repairs are no longer supported on tables with materialized views or CDC until its limitations are addressed. An incremental repair triggered on a base table or materialized view run a full repair instead. See CASSANDRA-12888 for details.

Materialized Views

For upgrades from DSE 5.1.1 or 5.1.2 or any version earlier than DSE 5.0.10

- Cassandra will no longer allow dropping columns on tables with Materialized Views.
- A change was made in the way the Materialized View timestamp is computed, which may cause an old deletion to a base column which is view primary key (PK) column to not be reflected in the view when repairing the base table post-upgrade. This condition is only possible when a column deletion to an MV primary key (PK) column not present in the base table PK (via UPDATE base SET view_pk_col = null or DELETE view_pk_col FROM base) is missed before the upgrade and received by repair after the upgrade. If such column deletions are done on a view PK column which is not a base PK, it's advisable to run repair on the base table of all nodes prior to the upgrade. Alternatively it's possible to fix potential inconsistencies by running repair on the views after upgrade or drop and re-create the views. See CASSANDRA-11500 for more details.
- Removal of columns not selected in the Materialized View (via UPDATE base SET unselected_column = null or DELETE unselected_column FROM base) may not be properly reflected in the view in some situations so we advise against doing deletions on base columns not selected in views until this is fixed on CASSANDRA-13826.

Spark Cassandra Connector changes for DSE 5.1.3

DataStax Enterprise (DSE) 5.1.3 includes DataStax Spark Cassandra Connector 2.0.5 with all changes from earlier versions, and adds these production-certified changes:

- Allow 'YYYY' format LocalDate
- Add metrics for write batch Size (SPARKC-501)
- Type Converters for java.time.LocalDate (SPARKC-495)

DSE 5.1.2

Release notes for DataStax Enterprise 5.1.2.
Important: DataStax recommends the latest patch release. The latest version of DataStax Enterprise 5.1 is 5.1.15. Due to **Potential data loss for INSERTs with very large TTLs. (DSP-15412) (page 130),** DataStax does not recommend DSE 5.1.0-5.1.2 for production.

Attention: TTL expiration timestamps are susceptible to the **year 2038 problem.** If the TTL value is long and an expiration date is greater than the maximum threshold of `2038-01-19T03:14:06+00:00`, the data is immediately expired and purged on the next compaction. When using a long TTL, DataStax strongly recommends upgrading to DSE 5.1.7 or later and **taking required action.**

18 July 2017

- 5.1.2 Components *(page 108)*
- 5.1.2 Highlights *(page 108)*
- 5.1.2 Known issues *(page 112)*
- 5.1.2 Cassandra enhancements *(page 113)*
- 5.1.2 General upgrade advice *(page 115)*

5.1.2 Components

All components from DSE 5.1.2 are listed. Components that are updated for DSE 5.1.1 are indicated with an asterisk (*).

- Apache Cassandra™ 3.11.0.1758 *
- Apache Solr™ 6.0.1.0.1716 *
- Apache Spark™ 2.0.2.6
- Apache TinkerPop™ 3.2.6-20170623-d59f0b40 *
- Apache Tomcat® 8.0.43 *
- DataStax Spark Cassandra Connector 2.0.3 *
- DSE Java Driver 1.2.2
- DSEFS 5.1.2 *
- Netty 4.0.42.Final
- Spark Jobserver 0.6.2.234 (requires compatible API)
- Select Hadoop libraries

5.1.2 Highlights

Executive summary highlights for DSE 5.1.2:

- DataStax Enterprise core *(page 109)*
- DSE Analytics *(page 109)*
- DSE Graph *(page 109)*
- DSE Search *(page 109)*

The executive summary highlights are just a top-level view. Be sure to review all of the release notes.
5.1.2 DataStax Enterprise core highlights

DataStax Enterprise 5.1.2 includes CASSANDRA-13004 that fixes possible corruption while adding a column to a table or removing a column from a table. (DSP-13684)

This fix requires a messaging protocol version change to VERSION_3014. DataStax strongly recommends additional steps for the following upgrade paths:

<table>
<thead>
<tr>
<th>Upgrade from</th>
<th>Upgrade to</th>
<th>Upgrade steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0.0 through</td>
<td>5.1.2 and later</td>
<td>See the Upgrades from DSE 5.0.0 to 5.0.8 and from DSE 5.1.0 and 5.1.1 to DSE 5.1.2 only step in the Preparing to upgrade section in Upgrading from DataStax Enterprise 5.0 to 5.1.</td>
</tr>
<tr>
<td>5.1.0 through</td>
<td>5.1.2 and later</td>
<td>See Preparing to upgrade in Upgrades for DataStax Enterprise patch releases.</td>
</tr>
</tbody>
</table>

5.1.2 DSE Analytics and DSEFS highlights

- DSE will not start if DSEFS is enabled (which is the default for all Analytics nodes in 5.1) and the DSEFS work directory or data directories are missing and cannot be created. In earlier releases, DSE would start but the Analytics nodes would experience hard-to-detect problems later on. (DSP-13238)
- DSEFS performance is improved when authorization is enabled. New dse.yaml advanced DSEFS options: query_cache_size (page 262) and query_cache_expire_after_ms (page 262) adjust the credential caching. (DSP-13107)

5.1.2 DSE Graph highlights

- Performance improvement: Gremlin script compilation. (DSP-12789)
- Significant improvement on vertex properties retrieval. (DSP-13467)
- Partitioned vertex tables (PVT) are deprecated. (DSP-13501)
- Graph Loader: Support loading geospatial data type. (DGL-225)

5.1.2 DSE Search highlights

- Re-indexing performance improvements. (DSP-13751), (DSP-12923)
- Fixes to solr indexing management tasks. (DSP-13778), (DSP-10088), (DSP-13793)

5.1.2 DataStax Enterprise

Changes and enhancements:

- Jackson Deserializer vulnerability. (DSP-13414)
- New nodetool sjk (page 1045) command for troubleshooting and monitoring that runs Swiss Java Knife (SJK) on the local node. (DSP-13544)
- Make o.a.c.metrics extend org.codahale.metrics to fix Metrics Reporter. (DSP-13840)
DataStax Enterprise 5.1 release notes

- Make sure to handle range queries while filtering. (DSP-13840)
- Allow mapping a single column to multiple SASI indexes. (DSP-13045)
- Properly evict psmnts from prepared statements cache (DSP-13770).
- Add nodetool sequence batch functionality. (DSP-13770).
- Show correct protocol version in cqlsh (DSP-13544)
- null assertion in MemtablePostFlush. (DSP-13544)

Resolved issues:

- CqlSlowLogPlugin can fail to determine the table name of a DropIndexStatement if the index was dropped already. (DSP-11811)
- Installer overrides for workload don't work in No Services + Analytics. (DSP-13475)

5.1.2 DSE Analytics

Changes and enhancements:

- When ALLOW_SPARK_HOME=true, support to specify a user-specific Spark home directory with the SPARK_HOME environment variable. (DSP-8100)
- Change lease manager log message to improve Spark Master troubleshooting. (DSP-12846)

Resolved issues:

- Default and provided Spark executor or driver JVM options could get jumbled. (DSP-12857)
- DSEFS min_free_space default value in dse.yaml is changed to 5 GB. (DSP-13178)
- Cannot interrupt Spark Shell when unable to connect to DSE and keeps retrying. (DSP-13339)
- Configuration connection for Spark applications should use a load balancing policy to choose only nodes that are running Spark in the target DC. (DSP-13325)
- When stopping Spark drivers and executors when a supervising DSE process dies, Spark executors might stay alive even after worker death due to a race condition. (DSP-13688)
- MultipleRetry policy may retry with an incorrect consistency level. (DSP-13542)

5.1.2 DSE Graph

Changes and enhancements:

- Specify file matching pattern for directory load. (DGL-177)
- Graph Loader: Support loading geospatial data type. (DGL-225)
- Improved error message when Spark submit has connection problems on initialization. (DSP-12632)
- Partitioned vertex tables (PVT) are deprecated. (DSP-13501)
- **A change is required** if more than 256 parameters are passed on a graph query request for TinkerPop drivers and drivers using Cassandra native protocol. Passing very large numbers of parameters on requests is an anti-pattern, because the script evaluation time increases proportionally. DataStax recommends reducing the number of parameters to
reduce script compilation times. Consider alternate methods for parameterizing scripts, like passing a single map. If the graph query request requires many arguments, pass a list. If you pass more than 256 parameters, increase the `max_query_params` option in `dse.yaml`. (DSP-12789)

- Don't instantiate DseQueryHandler for each statement in graph. (DSP-13287)
- GraphSON 2.0 serialization performance enhancements. (DSP-13467)
- DSEFS keyspace visible in Spark SQL. (DSP-13510)
- Remove provisioning state during graph creation. Graph is either live or non-existing. (DSP-13686)
- Improve schema migration. Remove schema provisioning. (DSP-13665)

5.1.2 DSE Graph resolved issues

Resolved issues:

- Graph loader loads entire graphson and gryo files in to memory. (DGL-209)
- Properly parse dates from strings. (DSP-12259)
- Race condition can cause Spark Executor creation loop during DSE node shutdown. (DSP-12589)
- Order propertyKeys correctly in `schema.describe()`. (DSP-12761)
- Gremlin scripts taking a long time to compile. See required change (page 110) if more than 256 parameters are passed on a graph query request. (DSP-12789)
- gremlin-console isn't properly initialized when started in debug mode. (DSP-12900)
- Change ranking of indices so that Search index < Secondary Index < MV index. (DSP-13212)
- Graph profile() results should display CQL by default even in console. (DSP-13293)
- Cache empty result sets for queries that didn't return elements. (DSP-13342)
- GraphFrames allow grouping by properties which can potentially be null. (DSP-13406)
- DseGraphFrame needs to be serializable for the spark-shell graph data export. (DSP-13427)
- Backward compatibility issue with .select() .by() or local(). (DSP-13607)
- DseGraphFrame.updateEdges() insert single cardinality edges properly. (DSP-13865)
- Spark shell seems to hang indefinitely when running graph frame drop command. (DSP-13795)

5.1.2 DSEFS

Changes and enhancements:

- Improve authorization performance. New `dse.yaml` advanced DSEFS options: `query_cache_size` and `query_cache_expire_after_ms`. (DSP-13107)
- Improve error message when DSEFS is low on storage space. (DSP-13324)
- DSEFS keyspace creation uses SimpleStrategy with replication factor of 1. After starting the cluster for the first time, you must alter the keyspace to use NetworkTopologyStrategy with proper RF. (DSP-12662)
Resolved issues:

- DSE will not start if DSEFS is enabled and fails to start due to a configuration problem. (DSP-13238)

5.1.2 DSE Search

Changes and enhancements:

- rtOffheapPostings is present and true by default in demo and auto-generated solrconfig.xml files. (DSP-10088, DSP-13228)
- Repair-driven re-indexing is significantly faster because individual partition indexing tasks are executed in parallel. Override Cassandra's default post-repair index builder. (DSP-12923)
- The default filter cache settings are changed. (DSP-13153)
- The Tika functionality that is bundled with Apache Solr is deprecated. Instead, use the stand-alone Apache Tika project. (DSP-14002)

Resolved issues:

- Gremlin inside() function no longer uses search index. (DSP-13553)
- CREATE SEARCH INDEX fails with custom resources. (DSP-13778)
- Improved error message when running dse cassandra-stop when there are multiple DSE processes. (DSP-12938)
- Solr 2i invalidation deadlocks if invalidation runs with index unregistered. (DSP-13751)
- Auto-generation options need to be validated correctly. (DSP-13793)

5.1.2 DataStax Enterprise known issues

- DataStax Enterprise will not run with Java 1.8u161 or later. (DSP-15277)
- Potential data loss for INSERTs with very large TTLs. TTL expiration timestamps are susceptible to the year 2038 problem. (DSP-15412)

The maximum expiration timestamp that can be represented by the storage engine is 2038-01-19T03:14:06+00:00, which means that inserts with TTL that expire after this date are not currently supported. There is no protection against INSERTS with TTL expiring after the maximum supported date, causing the expiration time field to overflow and the records to expire immediately. TTLs are considered "very large" when close to the maximum allowed value of 630720000 seconds (20 years), starting from 2018-01-19T03:14:06+00:00. As time progresses, the maximum supported TTL is gradually reduced as the maximum expiration date approaches. For instance, on 2028-01-19T03:14:06 with a TTL of 10 years is impacted. The maximum expiration timestamp that can be represented by the storage engine is 2038-01-19T03:14:06+00:00, which means that inserts with TTL that expire after this date are not currently supported. There is no protection against INSERTS with TTL expiring after the maximum supported date, causing the expiration time field to overflow and the records to expire immediately.
Warning: Upgrade to DSE 5.1.7 or later and take required action to protect against overflow of local expiration time.

- DSE 5.0 SSTables with UDTs will be corrupted after migrating to DSE 5.1, DSE 6.0, and DSE 6.7. (DB-2954, CASSANDRA-15035)

Important: If the DSE 5.0.x schema contains user-defined types (UDTs), upgrade to at least DSE 5.1.13, DSE 6.0.6, or DSE 6.7.2. The SSTable serialization headers are fixed when DSE is started with the upgraded versions.

dse.yaml
The location of the dse.yaml file depends on the type of installation:

<table>
<thead>
<tr>
<th>Type of Installation</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package installations</td>
<td>/etc/dse/dse.yaml</td>
</tr>
<tr>
<td>Installer-Services installations</td>
<td></td>
</tr>
<tr>
<td>Tarball installations</td>
<td>installation_location/resources/dse/conf/dse.yaml</td>
</tr>
<tr>
<td>Installer-No Services installations</td>
<td></td>
</tr>
</tbody>
</table>

- Select Hadoop libraries

Built-in Hadoop and Bring-Your-Own-Hadoop (BYOH) were deprecated in DataStax Enterprise (DSE) 5.0, and were removed in DSE 5.1. Hadoop removal from DSE 5.1 and later means that DSE does not allow for the startup of Hadoop services previously included in DSE, including MapReduce JobTracker and TaskTracker.

However, DSE has supported built-in Spark since DSE 4.5 and Bring-Your-Own-Spark (BYOS) since DSE 5.0, and that support continues today. Because Spark depends on certain Hadoop libraries on the server and the client, DSE continues to ship with Hadoop libraries that are required for running Spark and BYOS.

To view the included Hadoop libraries, see DataStax Enterprise 5.1.x third-party software.

Cassandra enhancements for DSE 5.1.2

DataStax Enterprise (DSE) 5.1.2 includes all changes from earlier DSE releases. These production-certified changes are enhancements to Apache Cassandra™ 3.11.0. (For Cassandra updates, see CHANGES.txt.)

- Properly evict pstmts from prepared statements cache (CASSANDRA-13641)
- Allow different NUMACTL_ARGS to be passed in (CASSANDRA-13557)
- Fix secondary index queries on COMPACT tables (CASSANDRA-13627)
- Nodetool listsnapshots output is missing a newline, if there are no snapshots (CASSANDRA-13568)
- Fix toJSONString for the UDT, tuple and collection types (CASSANDRA-13592)
- Fix nested Tuples/UDTs validation (CASSANDRA-13646)
• Replace string comparison with regex/number checks in MessagingService test (CASSANDRA-13216)
• Fix formatting of duration columns in CQLSH (CASSANDRA-13549)
• Ensure int overflow doesn't occur when calculating large partition warning size (CASSANDRA-13172)
• Ensure consistent view of partition columns between coordinator and replica in ColumnFilter (CASSANDRA-13004)
• Failed unregistering mbean during drop keyspace (CASSANDRA-13346)
• nodetool scrub/cleanup/upgradesstables exit code is wrong (CASSANDRA-13542)
• Fix the reported number of sstable data files accessed per read (CASSANDRA-13120)
• Fix schema digest mismatch during rolling upgrades from versions before 3.0.12 (CASSANDRA-13559)
• Upgrade JNA version to 4.4.0 (CASSANDRA-13072)
• Interned ColumnIdentifiers should use minimal ByteBuffers (CASSANDRA-13533)
• ReverseIndexedReader may drop rows during 2.1 to 3.0 upgrade (CASSANDRA-13525)
• Fix repair process violating start/end token limits for small ranges (CASSANDRA-13052)
• Nodes started with join_ring=False should be able to serve requests when authentication is enabled (CASSANDRA-11381)
• cqlsh COPY FROM: increment error count only for failures, not for attempts (CASSANDRA-13209)
• Fix the problem with duplicated rows when using paging with SASI (CASSANDRA-13302)
• Allow CONTAINS statements filtering on the partition key and it's parts (CASSANDRA-13275)
• Fall back to even ranges calculation in clusters with vnodes when tokens are distributed unevenly (CASSANDRA-13229)
• Fix duration type validation to prevent overflow (CASSANDRA-13218)
• Forbid unsupported creation of SASI indexes over partition key columns (CASSANDRA-13228)
• Reject multiple values for a key in CQL grammar. (CASSANDRA-13369)
• UDA fails without input rows (CASSANDRA-13399)
• Fix compaction-stress by using daemonInitialization (CASSANDRA-13188)
• V5 protocol flags decoding broken (CASSANDRA-13443)
• Use write lock not read lock for removing sstables from compaction strategies. (CASSANDRA-13422)
• Use corePoolSize equal to maxPoolSize in JMXEnabledThreadPoolExecutors (CASSANDRA-13329)
• Avoid rebuilding SASI indexes containing no values (CASSANDRA-12962)
• Add charset to Analyser input stream (CASSANDRA-13151)
• Delete illegal character from StandardTokenizerImpl.jflex (CASSANDRA-13417)
• Fix cqlsh automatic protocol downgrade regression (CASSANDRA-13307)
• Tracing payload not passed from QueryMessage to tracing session (CASSANDRA-12835)
• Add storage port options to sstableloader (CASSANDRA-13518)
• Properly handle quoted index names in cqlsh DESCRIBE output (CASSANDRA-12847)
• Avoid reading static row twice from old format sstables (CASSANDRA-13236)
• Fix NPE in StorageService.excise() (CASSANDRA-13163)
• Expire OutboundTcpConnection messages by a single Thread (CASSANDRA-13265)
• Fail repair if insufficient responses received (CASSANDRA-13397)
• Fix SSTableLoader fail when the loaded table contains dropped columns (CASSANDRA-13276)
• Avoid name clashes in CassandraIndexTest (CASSANDRA-13427)
• Handling partially written hint files (CASSANDRA-12728)
• Interrupt replaying hints on decommission (CASSANDRA-13308)
• Handling partially written hint files (CASSANDRA-12728)
• Fix NPE issue in StorageService (CASSANDRA-13060)
• Make reading of range tombstones more reliable (CASSANDRA-12811)
• Fix startup problems due to schema tables not completely flushed (CASSANDRA-12213)
• Fix view builder bug that can filter out data on restart (CASSANDRA-13405)
• Fix 2i page size calculation when there are no regular columns (CASSANDRA-13400)
• Fix the conversion of 2.X expired rows without regular column data (CASSANDRA-13395)
• Fix hint delivery when using ext+internal IPs with prefer_local enabled (CASSANDRA-13020)
• Nodetool upgradesstables/scrub/compact ignores system tables (CASSANDRA-13410)
• Fix schema version calculation for rolling upgrades (CASSANDRA-13441)
• Avoid starting gossiper in RemoveTest (CASSANDRA-13407)
• Fix weightedSize() for row-cache reported by JMX and NodeTool (CASSANDRA-13393)
• Fix JVM metric names (CASSANDRA-13103)
• Coalescing strategy sleeps too much (CASSANDRA-13090)
• Fix 2ndary index queries on partition keys for tables with static columns (CASSANDRA-13147)
• Fix ParseError unhashable type list in cqlsh copy from (CASSANDRA-13364)

General upgrade advice for DSE 5.1.2

All upgrade advice from previous versions applies. Carefully review the Upgrading DataStax Enterprise planning and upgrade instructions to ensure a smooth upgrade and avoid pitfalls and frustrations. This general advice applies to the database upgrade and does not replace the upgrade documentation.

• General upgrading advice for any version and new features for Apache Cassandra are in NEWS.txt. Be sure to read the NEWS.txt all the way back to your current version.
• See also the Apache Cassandra changes in CHANGES.txt.

Spark Cassandra Connector changes for 5.1.2

DataStax Enterprise (DSE) 5.1.2 includes DataStax Spark Cassandra Connector 2.0.3 with all changes from earlier versions, and adds these production-certified changes:

• All patches up to 1.6.8.

DSE 5.1.1

Release notes for DataStax Enterprise 5.1.1.

Important: DataStax recommends the latest patch release. The latest version of DataStax Enterprise 5.1 is 5.1.15. Due to Potential data loss for INSERTs with very large TTLs. (DSP-15412) (page 130), DataStax does not recommend DSE 5.1.0-5.1.2 for production.

Attention: TTL expiration timestamps are susceptible to the year 2038 problem. If the TTL value is long and an expiration date is greater than the maximum threshold of 2038-01-19T03:14:06+00:00, the data is immediately expired and purged on the next compaction. When using a long TTL, DataStax strongly recommends upgrading to DSE 5.1.7 or later and taking required action.

23 May 2017

• 5.1.1 Components (page 116)
• 5.1.1 Highlights (page 117)
• 5.1.1 Known issues (page 120)
• 5.1.1 Cassandra enhancements (page 121)
• 5.1.1 General upgrade advice (page 123)

Table 11: DSE functionality

<table>
<thead>
<tr>
<th>5.1.1 DSE core (page 117)</th>
<th>5.1.1 DSE Graph (page 118)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.1 DSE Analytics (page 118)</td>
<td>5.1.1 DSE Search (page 120)</td>
</tr>
</tbody>
</table>

5.1.1 Components

All components from DSE 5.1.1 are listed. Components that are updated for DSE 5.1.1 are indicated with an asterisk (*).

• Apache Cassandra™ 3.10.0.1695 *
• Apache Solr™ 6.0.1.0.1705 *
• Apache Spark™ 2.0.2.6
• Apache TinkerPop™ 3.2.5-20170321-f3032b39 *
• Apache Tomcat® 8.0.43 *
• DataStax Spark Cassandra Connector 2.0.2 *
• DSE Java Driver 1.2.2
• DSEFS 5.1.26 *
• Netty 4.0.42.Final
• Spark Jobserver 0.6.2.234 (requires compatible API)
• Select Hadoop libraries

5.1.1 Highlights

Executive summary highlights for DSE 5.1.1:

• DSE Analytics (page 117)
• DSE Graph (page 117)
• DSE Search (page 117)

The executive summary highlights are just a top-level view. Be sure to review all of the release notes.

DSE Analytics and DSEFS highlights

DSE 5.1.1 improves the reliability of Spark workers reconnecting when the Spark Master changes to a different node. For example, if the current master node goes down. Although this scenario was rarely encountered, it would sometimes require running a command to restart the Spark workers. The affected versions are DSE 5.0.7 and 5.1.0. (DSP-11306)

DSE Graph highlights

DSE 5.1.1 highlights include:

• Failing OLAP queries if meta-properties were used in graph schema. (DSP-13016)
• Script synchronization to prevent multiple threads trying to compile the same Gremlin script. In multi-threaded scenarios, Gremlin scripts would hang. (DSP-12814)

DSE Search highlights

Skip DSE 5.1.0 and upgrade directly to DSE 5.1.1 if you:

• Use the HTTP interface. (DSP-13318), (DSP-13270)
• Have a Thrift column family backing an active Solr core. (DSP-13019)
• Use TTL to expire data. (DSP-12960)
• Use index encryption. (DSP-13155), (DSP-12620)
• Use live indexing. (DSP-12040), (DSP-12941)

5.1.1 DataStax Enterprise

Changes and enhancements:

• Security fix with commons-collections4 version 4.1 due to CVE-2015-6420. (DSP-13060)
• Guard mapped memory accesses with an assertion instead of causing a segmentation fault in JVM. (DSP-13344)
Resolved issues:

- dsetool logs clear credentials on logs. (DSP-12985)
- Plain text authentication handled incorrectly in DseAuthenticator causes performance degradation. (DSP-13201)
- Installer deletes user directories under /etc/dse/conf during upgrade to 5.1. (DSP-13296)
- SafeNet/KMIP authentication failure via LDAP. (DSP-12739)
- CVE-2012-2098 vulnerability in Apache Ant Core 1.7.0. (DSP-12925)

5.1.1 DSE Advanced Replication

Changes and enhancements:

- Increased robustness of CDC processor. (DSP-12852)
- Add audit log (page 922) compression parameter. (DSP-12949)

Resolved issues:

- Error while refreshing configuration. (DSP-13148)
- In flight Advanced Replication mutations are not encrypted when commitlog encryption is enabled. (DSP-12961)
- MutationFileSource fails when a transmission file is not found. (DSP-11633)
- AdvRep channel status NPE. (DSP-12522)
- AdvRep CLI metrics list output showing negative message count. (DSP-12788)
- advrep log count Serializer Not Defined Error MultiNode. (DSP-13032)

5.1.1 DSE Analytics

Changes and enhancements:

- Spark Cassandra Connector should make DseSession compatible sessions. (DSP-12737)

Resolved issues:

- On start, Spark worker registers with master that is then changed, but doesn’t reregister with new master. (DSP-11306)
- A new CQL type tinyint (page 472). (DSP-11940)
- When DSE node with Spark Master gracefully shuts down at the same time that an application is submitted or stopped, Spark Master fails to save the recovery storage information. (DSP-12795)
- Weather sensor demo website not graphing all data values. (DSP-13041)
- Extra unnecessary messages when starting Spark shell. (DSP-13239)
- The spark-submit --driver-class-path option does not place a jar only on the Driver Classpath. (DSP-13289)

5.1.1 DSE Graph

Changes and enhancements:
• Make explicit parameter for setting tmp dir for mapdb and netty. (DGL-167)
• Support recursive loading of directories. (DGL-172)
• Remove double cluster client in ClusterBuilder. Instead, use a single client and configure the CL in a {{SimpleGraphStatement}} for creating the graph. (DGL-183)
• VertexInputRDD.getOrCreateVertex method performance improvement; Graph OLAP query running time reduced by ~10%. (DSP-12782)
• DseGraphFrames library is included in com.datastax.dse:dse-spark-dependencies to support application build. (DSP-13074)

Resolved issues:
• Support secondary indexes. (DGL-202)
• DGL creates duplicate edges when rerunning when using custom ids. (DGL-205)
• Properties with empty strings are skipped. New graph loader -skip_blank_values (page 810) option. (DGL-215)
• Tab-delimited data cannot be read correctly with File.text. (DGL-222)
• RangeStep fails when used with negative values. (DSP-11671)
• Logging level in DigestTokensManager lowered from INFO to DEBUG. (DSP-12234)
• Decimal type does not work, for both read and write, when reading a graph from Spark. (DSP-12299)
• Comparing IDs of newly created elements with normal elements causes a class cast exception. (DSP-12738)
• Allow graph.allow_scan to be set on tx level. (DSP-12794)
• Improve handling of ASM "Method code too large" exception when processing large Gremlin script. (DSP-12802)
• Many threads get stuck compiling the same script. (DSP-12814)
• Check that a new ID given to a schema element has not already been used. (DSP-12826)
• Optimize solr .within() queries correctly. (DSP-12830)
• Vertex properties without meta-properties defined in schema create invalid RDD data. (DSP-13016)
• OLAP case sensitivity for edges and meta-properties. (DSP-13085)
• Exception thrown when attempting to read IDs of vertices retrieved through a full-graph scan. (DSP-13210)
• Graph should start listening to schema updates only after DSE system keyspace is set up. (DSP-13251)
• DseGraphFrame fail with UUID as a custom id. (DSP-13302)

5.1.1 DSEFS

Changes and enhancements:
• Local node is preferred for placing new data blocks to save network bandwidth usage by DSEFS. (DSP-12746)

Resolved issues:
• DSEFS memory leaks. (DSP-13023)
• Cannot write file to WebHDFS REST interface with Spark. (DSP-13154)

5.1.1 DSE Search

Changes and enhancements:
• Solr demos updated to use CQL index management to create cores. (DSP-11451)
• Runtime node blacklisting for distributed search queries; the EndpointStateTracker MBean now has Blacklisted boolean attribute. (DSP-12965)
• Display reindexing progress with dsetool core_indexing_status (page 1177) --progress option. (DSP-12617)
• Support for indexing frozen sets and lists of native and user-defined (tuple/UDT) element types. Indexing frozen maps is not supported. (DSP-12983)

Resolved issues:
• Remove <dataDir> option from solrConfig files in demo apps. (DSP-9402)
• CQL Search queries time out when a column has a colon (:) in it. Solr field name policy applies to DSE Search field names (page 433). (DSP-11296)
• Make TimeUUIDField epoch not platform-dependent. (DSP-11424)
• Term vector (TV) file handles leak when an empty DWPT gets discarded in RT setup. (DSP-12040)
• DistributedRequestException isn't created with a detail message. (DSP-12493)
• BlockCache corruption with high concurrency. (DSP-12620)
• Poor performance when searching with UDT sub-fields. (DSP-12812)
• Better TTL logging. (DSP-12885)
• Term frequency inconsistencies in RT. (DSP-12941)
• The TTL task is never de-scheduled. (DSP-12960)
• Cannot reload core after Thrift table upgrade. (DSP-13019)
• Solr listens only on port 8080 regardless of configuration. (DSP-13187)
• Solr is accepting HTTP requests before all cores have loaded. (DSP-13270)
• Excessive StatefulEncryptorAdapter usage by evicting StatefulEncryptorAdapter cache when index output gets closed. (DSP-13155)
• Upgrade Tomcat to 8.0.43 to fix CVE-2016-8735 and other security issues. (DSP-13318)

5.1.1 DataStax Enterprise known issues

• DataStax Enterprise will not run with Java 1.8u161 or later. (DSP-15277)
• Potential data loss for INSERTs with very large TTLs. TTL expiration timestamps are susceptible to the year 2038 problem. (DSP-15412)

The maximum expiration timestamp that can be represented by the storage engine is 2038-01-19T03:14:06+00:00, which means that inserts with TTL that expire after this date are not currently supported. There is no protection against INSERTS with TTL expiring after the maximum supported date, causing the expiration time field to overflow and the records to expire immediately. TTLs are considered "very
large” when close to the maximum allowed value of 630720000 seconds (20 years), starting from 2018-01-19T03:14:06+00:00. As time progresses, the maximum supported TTL is gradually reduced as the maximum expiration date approaches. For instance, on 2028-01-19T03:14:06 with a TTL of 10 years is impacted. The maximum expiration timestamp that can be represented by the storage engine is 2038-01-19T03:14:06+00:00, which means that inserts with TTL that expire after this date are not currently supported. There is no protection against INSERTS with TTL expiring after the maximum supported date, causing the expiration time field to overflow and the records to expire immediately.

Warning: Upgrade to DSE 5.1.7 or later and take required action to protect against overflow of local expiration time.

- DSE 5.0 SSTables with UDTs will be corrupted after migrating to DSE 5.1, DSE 6.0, and DSE 6.7. (DB-2954, CASSANDRA-15035)

Important: If the DSE 5.0.x schema contains user-defined types (UDTs), upgrade to at least DSE 5.1.13, DSE 6.0.6, or DSE 6.7.2. The SSTable serialization headers are fixed when DSE is started with the upgraded versions.

dse.yaml
The location of the dse.yaml file depends on the type of installation:

<table>
<thead>
<tr>
<th>Package installations</th>
<th>/etc/dse/dse.yaml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer-Services installations</td>
<td>installation_location/resources/dse/conf/dse.yaml</td>
</tr>
</tbody>
</table>

- Select Hadoop libraries

Built-in Hadoop and Bring-Your-Own-Hadoop (BYOH) were deprecated in DataStax Enterprise (DSE) 5.0, and were removed in DSE 5.1. Hadoop removal from DSE 5.1 and later means that DSE does not allow for the startup of Hadoop services previously included in DSE, including MapReduce JobTracker and TaskTracker.

However, DSE has supported built-in Spark since DSE 4.5 and Bring-Your-Own-Spark (BYOS) since DSE 5.0, and that support continues today. Because Spark depends on certain Hadoop libraries on the server and the client, DSE continues to ship with Hadoop libraries that are required for running Spark and BYOS.

To view the included Hadoop libraries, see DataStax Enterprise 5.1.x third-party software.

Cassandra enhancements for DSE 5.1.1

DataStax Enterprise (DSE) 5.1.1 includes all changes from earlier DSE releases. These production-certified changes are enhancements to Apache Cassandra™ 3.10.0. (For Cassandra updates, see CHANGES.txt.)
• Fix the problem with duplicated rows when using paging with SASI (CASSANDRA-13302)
• Allow CONTAINS statements filtering on the partition key and its parts (CASSANDRA-13275)
• Fall back to even ranges calculation in clusters with vnodes when tokens are distributed unevenly (CASSANDRA-13229)
• Fix duration type validation to prevent overflow (CASSANDRA-13218)
• Forbid unsupported creation of SASI indexes over partition key columns (CASSANDRA-13228)
• Reject multiple values for a key in CQL grammar. (CASSANDRA-13369)
• UDA fails without input rows (CASSANDRA-13399)
• Fix compaction-stress by using daemonInitialization (CASSANDRA-13188)
• V5 protocol flags decoding broken (CASSANDRA-13443)
• Use write lock not read lock for removing sstables from compaction strategies. (CASSANDRA-13422)
• Use corePoolSize equal to maxPoolSize in JMXEnabledThreadPoolExecutors (CASSANDRA-13329)
• Avoid rebuilding SASI indexes containing no values (CASSANDRA-12962)
• Add charset to Analyser input stream (CASSANDRA-13151)
• Delete illegal character from StandardTokenizerImpl.jflex (CASSANDRA-13417)
• Fix cqlsh automatic protocol downgrade regression (CASSANDRA-13307)
• Tracing payload not passed from QueryMessage to tracing session (CASSANDRA-12835)
• Add storage port options to sstableloader (CASSANDRA-13518)
• Properly handle quoted index names in cqlsh DESCRIBE output (CASSANDRA-12847)
• Avoid reading static row twice from old format sstables (CASSANDRA-13236)
• Fix NPE in StorageService.excise() (CASSANDRA-13163)
• Expire OutboundTcpConnection messages by a single Thread (CASSANDRA-13265)
• Fail repair if insufficient responses received (CASSANDRA-13397)
• Fix SSTableLoader fail when the loaded table contains dropped columns (CASSANDRA-13276)
• Avoid name clashes in CassandraIndexTest (CASSANDRA-13427)
• Handling partially written hint files (CASSANDRA-12728)
• Interrupt replaying hints on decommission (CASSANDRA-13308)
• Handling partially written hint files (CASSANDRA-12728)
• Fix NPE issue in StorageService (CASSANDRA-13060)
• Make reading of range tombstones more reliable (CASSANDRA-12811)
• Fix startup problems due to schema tables not completely flushed (CASSANDRA-12213)
• Fix view builder bug that can filter out data on restart (CASSANDRA-13405)
• Fix 2i page size calculation when there are no regular columns (CASSANDRA-13400)
• Fix the conversion of 2.X expired rows without regular column data (CASSANDRA-13395)
• Fix hint delivery when using ext+internal IPs with prefer_local enabled (CASSANDRA-13020)
• Nodetool upgradesstables/scrub/compact ignores system tables (CASSANDRA-13410)
• Fix schema version calculation for rolling upgrades (CASSANDRA-13441)
• Avoid starting gossiper in RemoveTest (CASSANDRA-13407)
• Fix weightedSize() for row-cache reported by JMX and NodeTool (CASSANDRA-13393)
• Fix JVM metric names (CASSANDRA-13103)
• Coalescing strategy sleeps too much (CASSANDRA-13090)
• Fix 2ndary index queries on partition keys for tables with static columns (CASSANDRA-13147)
• Fix ParseError unhashable type list in cqlsh copy from (CASSANDRA-13364)

General upgrade advice for DSE 5.1.1

All upgrade advice from previous versions applies. Carefully review the Upgrading DataStax Enterprise planning and upgrade instructions to ensure a smooth upgrade and avoid pitfalls and frustrations. This general advice applies to the database upgrade and does not replace the upgrade documentation.

• General upgrading advice for any version and new features for Apache Cassandra are in NEWS.txt. Be sure to read the NEWS.txt all the way back to your current version.
• See also the Apache Cassandra changes in CHANGES.txt.

Spark Cassandra Connector changes for DSE 5.1.1

DataStax Enterprise (DSE) 5.1.1 includes DataStax Spark Cassandra Connector 2.0.2 with all changes from earlier versions, and adds these production-certified changes:

• Protect against Size Estimate Overflows (SPARKC-492)
• Add java.time classes support to converters and sparkSQL (SPARKC-491)
• Allow Writes to Static Columnns and Partition Keys (SPARKC-470)

DSE 5.1.0

Release notes for DataStax Enterprise 5.1.0.

Important: DataStax recommends the latest patch release. The latest version of DataStax Enterprise 5.1 is 5.1.15. Due to Potential data loss for INSERTs with very large TTLs. (DSP-15412) (page 130), DataStax does not recommend DSE 5.1.0-5.1.2 for production.

Attention: TTL expiration timestamps are susceptible to the year 2038 problem. If the TTL value is long and an expiration date is greater than the maximum threshold of 2038-01-19T03:14:06+00:00, the data is immediately expired and purged on the next compaction. When using a long TTL, DataStax strongly recommends upgrading to DSE 5.1.7 or later and taking required action.
18 April 2017

- 5.1.0 Components (page 124)
- 5.1.0 New features (page 124)
- 5.1.0 Experimental features (page 124)
- 5.1.0 Changes and enhancements (page 125)
- 5.1.0 Known issues (page 130)
- 5.1.0 Resolved issues (page 132)
- 5.1.0 Cassandra enhancements (page 134)
- 5.1.0 General upgrade advice (page 136)

5.1.0 Components

All components from DSE 5.1.0 are listed.

- Apache Cassandra™ 3.10.0.1652
- Apache Solr™ 6.0.1.0.1596
- Apache Spark™ 2.0.2.6
- Apache TinkerPop™ 3.2.5-20170222-de2f4034
- Apache Tomcat® 8.0.37
- DataStax Spark Cassandra Connector (page 143) 2.0.1
- DSE Java Driver 1.2.2
- DSEFS 5.1.24
- Netty 4.0.42.Final
- Spark Jobserver 0.6.2.234 (requires compatible API)
- Select Hadoop libraries

5.1.0 New features

See DataStax Enterprise 5.1 new features (page 20).

5.1.0 Experimental features

These features are experimental. DataStax does not support these experimental features for production:

- Partitioned vertex tables (PVT) for handling supernodes in DSE Graph.

 Used for vertices that have a very large number of edges, a partitioned vertex consists of a portion of a vertex's data that results from dividing the vertex into smaller components for graph database storage.

- Importing graphs using DseGraphFrame (page 840).
- The dsetool index_checks use an Apache Lucene® experimental feature.
- SASI indexes.
- Structured streaming operations to and from DSEFS use a Spark ALPHA feature.
- A DSEFS file system that spans multiple data centers.
5.1.0 Changes and enhancements

Changes and enhancements for:

- DataStax Enterprise core (page 125)
- DSE Advanced Replication (page 127)
- DSE Analytics (page 127)
- DSE Graph (page 128)
- DSEFS (page 128)
- DSE Search (page 129)

5.1.0 DataStax Enterprise changes and enhancements

- Add proxy authentication to DSE authentication model. (DSP-3800), (DSP-8467)
- TimeWindowCompactionStrategy (TWCS) is set on dse_perf tables. To use TWCS on tables that were created in earlier releases, alter the tables after upgrade to DSE 5.1. (DSP-5560)
- MemoryOnlyStrategy works with compression. (DSP-6715)
- Add metrics for dropped mutations in Performance Object. (DSP-7936)
- DSE server startup time is improved. (DSP-9545)
- DateTieredStorageStrategy is deprecated. Use TimeWindowStorageStrategy instead. (DSP-9740)
- Add tab completion to cqlsh for DSE custom compaction strategies. (DSP-9864)
- Slow query log includes trace ID. (DSP-10055)
- Support for setting row-level permissions. Setting row-level permissions with row-level access control (RLAC) is not supported for use with DSE Search or DSE Graph. (DSP-10093)
- For G1GC the max heap size (page 1345) cap increased from 8192 MB to 32765 MB. See also Java performance tuning. (DSP-10459)
- Change compaction strategy used by CassandraAuditWriter. (DSP-11508)
- Implement dsetool command (page 1213) for printing most recent slowest queries. (DSP-11152)
- Improved performance and changed defaults (page 251) for CQL slow query logs. (DSP-11171)
- Upgrades to DataStax Enterprise 5.1 are supported only from DataStax Enterprise 5.0. Upgrades from earlier versions require an interim upgrade to DSE 5.0. (DSP-11281)
- The default authenticator is DseAuthenticator and default authorizer is DseAuthorizer in cassandra.yaml. Review and adjust your security settings after upgrading to DSE 5.1. (DSP-12211)
- Authenticators other than DseAuthenticator and authorizers other than DseAuthorizer were deprecated in DSE 5.0; in DSE 5.1 some security features might not work correctly if other authenticators or authorizers are used. (DSP-12542)
- Improved help for CQL and cqlsh commands. (DSP-12845)
In cqlsh, type \texttt{help} to list all available topics. Type \texttt{help name} to find out more about the \texttt{name} command. For example, \texttt{help CAPTURE} or \texttt{help ALTER_KEYSPACE}.

- Only perform drop below RF check on decommission for non-partitioned(keyspaces. (DSP-13054)
- Fix SmallInt and TinyInt serialization. (DSP-12916)
- Check for null/empty password before calling legacyAuthenticate from CassandraLoginModule. (DSP-8573)
- Allow registering user expression on SELECT statement. (DSP-12549)
- Apply request timeout in cqlsh COPY correctly, after upgrading to execution profiles. (DSP-12698)
- Update Java driver to DSE driver version 1.2.0-eap5. (DSP-11964)
- Fix AssertionError in continuous paging request on select count(*) query. (DSP-11964)
- Update internal DSE driver and fix formatting for Duration type. (DSP-11964)
- Replace open source Python driver with DataStax Enterprise driver. (DSP-11964)
- Fix OutOfSpaceTest. (DSP-12239)
- Allow to add index restrictions to SELECT in an immutable way. (DSP-12239)
- Allow grammar extensions to be added to cqlsh for tab completion. (DSP-12150)
- Improve compaction performance. (DSP-11695)
- Add client warning to SASI index. (DSP-11695)
- Add support for UNSET values to cqlsh COPY FROM command. (DSP-11695)
- Improve error message for incompatible authentication and authorization configuration. (DSP-11695)
- Implement optimized continuous paging. (DSP-11695)
- Allow large partition generation in cassandra-stress user mode. (DSP-9476)
- Optimize variable sized integer (VIntCoding) and DataOutputStreamPlus interface using a ByteBuffer to stage writes (BufferedDataOutputStreamPlus). (DSP-9476)
- Improve metrics and reduce overhead under resource contention. (DSP-9476)
- Performance improvement: Make SinglePartitionReadCommand::queriesMulticellType() faster. (DSP-9476)
- Accept internal resource name in GRANT/REVOKE statements. (DSP-11746)
- Improve StatementRestrictions::getPartitionKeys() execution speed. (DSP-11724)
- Move responsibility for qualifying keyspace in authorization statements to IResource. (DSP-11588)
- Insert default superuser role with fixed timestamp. (DSP-11600)
- Make permissions extensible. (DSP-11600)
- Make IResource more easily extensible. (DSP-11600)
- Add method to IAuthenticator to login by user, as well as by role. (DSP-11600)
- Add private protocol version. (DSP-11535)
5.1.0 DSE Advanced Replication changes and enhancements

DSE Advanced Replication (V2) is CDC based and provides substantial improvements. CDC must be enabled in Cassandra. Migration from DSE 5.0 Advanced Replication (V1) to DSE 5.1 Advanced Replication (V2) is required.

- DSE Advanced Replication certified for use with DSE Multi-Instance. (DSP-10738)
- Support replication to multiple clusters. (DSP-8352)
- Support multi-DC edge (source) cluster configurations. (DSP-8744)
- Implement DSE Advanced Replication using Cassandra CDC (Change data capture). (DSP-9822)
- Support for setting row-level permissions. (DSP-10727)
 - Row-level access control (RLAC) security on the destination cluster. (DSP-10893)
- Added support for migration. Migration from DSE 5.0 Advanced Replication (V1) to DSE 5.1 Advanced Replication (V2). (DSP-12280)
- Performance metrics (page 920) enhancements, including gauge metric type and Transmission group metrics. (DSP-12922).

5.1.0 DSE Analytics changes and enhancements

- Implement WebHDFS REST interface on DSEFS. (DSP-2347)
- Enable optional running Spark executor (page 348) as a separate user. (DSP-4252)
- Opaquely use Solr indexes to optimize SparkSQL queries. (DSP-5028)
- The dsetool listjt command is removed and replaced with Automatic Spark Master election (page 341). (DSP-5944)
- DSEFS support in BYOS. (DSP-8888)
- Support SSL in the Spark Master and Worker UI. (DSP-9928)
 - In dse.yaml, the spark_encryption_options are no longer valid.

- Hive connector is removed. CassandraHive Metastore is used by Spark SQL. Hive cql/cassandra handler are removed. (DSP-10333)
- BYOHadoop and DSE Hadoop are removed. (Deprecated in DSE 5.0) (DSP-10408)
- Faster locking in DSEFS and support for shared locks. (DSP-11145)
- Geo types are supported in DSE SparkSQL and represented as well known text. (DSP-11173)
- Create CQL-based Resource Manager comm channel for Spark. (DSP-11331)
- Analytics jobs run through dse spark-submit can take advantage of continuous paging for performance gains. See Enabling continuous paging (page 340). (DSP-11343)
- Access DSEGraphFrame tables through SparkSQL. (DSP-11898)
- Enable authentication for server side Spark UIs. (DSP-11955)
- Enhanced dse client-tool spark (page 1169). (DSP-12048)
- Programmatically setting the shuffle parameter using conf.set("spark.shuffle.service.port", port) is not supported. Instead, use
dse spark-submit which automatically sets the correct service port based on the authentication state. (DSP-12471)

• Spark Jobserver has been upgraded to 0.6.2.234. This custom version requires applications to be recompiled using the compatible DataStax Spark Jobserver API (recommended) or jobserver 0.7.0. (DSP-12478)

5.1.0 DSE Graph changes and enhancements

• The default number of threads used for loading vertices (load_vertex_threads (page 810)) or edges (load_edge_threads (page 810)) is changed from 1 to 0. (DGL-124)
• When query fails due to timeout, state in error message which timeout was exceeded. (DSP-9393)
• Add ifExists to drop graph. (DSP-9511)
• Database errors related to graph queries go directly to drivers. (DSP-9567)
• The format of edge IDs changed. There is no user impact. (DSP-10566)
• Reject out of bounds geo data. (DSP-10748)
• Disable graph#io. (DSP-10804)
• Improve Graph and Spark integration for performance and usability with DSEGraphFrame framework for batch graph queries. (DSP-11104)
• Prevent external Solr schema changes from being overwritten by DSE Graph. (DSP-11226)
• Support Date type in Graph. (DSP-11287)
• Graph-specific MBeans moved from datastore-latencies to request-latencies category. (DSP-11521)
• Support for Solr-based fuzzy search in graph. (DSP-11273)
• DSE Graph API support for edit distance queries. (DSP-11880)
• Search regex '.' now matches all whitespace. (DSP-11952)
• Kryo version conflict. (DSP-11984)
• Add DSEG snapshot config mutator. (DSP-12072)
• Setting Spark properties (page 830) from Gremlin. (DSP-12296)
• The Geo interfaces for distance and polygon queries (page 728) are changed in the driver. (DSP-12710)
• Changes in Geo predicates. (DSP-12467)

5.1.0 DSEFS changes and enhancements

• DSEFS commands for controlling file permissions and ownership. (DSP-10582)
• Tab autocompletion is supported. (DSP-10584)
• Support for file compression. (DSP-10655)
• Enhanced local file system operations in DSEFS shell. (DSP-10933)
• Add comment (#) support in DSEFS shell. (DSP-10935)
• Expose DSEFS metrics via JMX. (DSP-11375)
• Improve DSEFS user experience: human readable sizes (-h) and single column output (-1). (DSP-11675)
• Fix recursive ls parameter (page 406) name: change -r to -R. (DSP-12016)
• Make name_id part of primary key in names table. Improved DSEFS Cassandra schema to improve recovery of all metadata from inconsistency caused by concurrent writes. Upgrades to DataStax Enterprise 5.1 require steps to get new schema. (DSP-12450)
• Although DSEFS is enabled by default in DSE 5.1.0, the dsefs.enabled setting is commented out in the new DSE 5.1.0 dse.yaml file. To enable DSEFS, uncomment the dsefs_options.enabled (page 261) setting after upgrade to DSE 5.1.0. (DSP-13310)

5.1.0 DSE Search changes and enhancements

DSE Search in DataStax Enterprise 5.1 uses Apache Solr 6.0. (DSP-9748) This significant change requires advanced planning and specific actions before and after the upgrade.

Important: To upgrade DSE Search and SearchAnalytics workloads, you must follow the specific steps in upgrading to DSE 5.1.

• DataImportHandler is no longer supported. The import handler tab is removed from Solr Admin UI. Before upgrading to DSE 5.1, remove all data import handlers from solrconfig files. (DSP-6266)
• Remove the legacy netty (page 248)-based inter-node communication protocol. See https://docs.datastax.com/en/upgrade/doc/upgrade/datastax_enterprise/upgdDSE51.html#upgdDSE51__prepUpg51Search
• Timeout for non-query search requests like core creation and distributed deletes is set in the internode_messaging_options with the client_request_timeout_seconds (page 268) option. (DSP-6933)
• Automatically index both analyzed and non-analyzed versions of textual vertex properties. (DSP-7633)
• Check for index integrity (page 1190) with dsetool using lucene CheckIndex. (DSP-8875)
• New DSE Search index management commands (page 461) to manage cluster-wide search indexes. (DSP-9204)
• Lucene merge scheduling and lack of parallelism cause periods of 0 throughput. (DSP-9325)

In earlier releases, the default mergeScheduler settings in solrconfig.xml were not set appropriately. The default settings are now set automatically and appropriately, unless a custom mergeScheduler configuration is provided.

• Deprecated Solr field types require action before upgrade to DSE 5.1. (DSP-9509)
• HTTP writes are deprecated. Insert data into DSE by using CQL. (DSP-9540)
• dsetool search commands use the CQL index management commands. dsetool create_core (page 1179) no longer supports deleteAll. (DSP-9762)
• DateRangeField support with new DateRangeType data type (page 472). (DSP-10225)
• Improved asynchronous indexing performance. (DSP-10617)
• Add more checks to CassandraSolrConfig for unwanted config elements. (DSP-10677)
• LUCENE-7299 Optimized segment flushing with radix sort. (DSP-10685)
• Changes in default behavior for auto-generated schemas (page 442) to enable DocValues. (DSP-10690)
• XML correctly indented to improve readability for auto-generated resources. (DSP-10795)

• When using SpatialRecursivePrefixTreeFieldtype (RPT) in search schemas, replace the units field type with distanceUnits after Upgrading to DSE 5.1. (DSP-10802)

• Optimize Solr query parser to use filter boolean queries. (DSP-10916)

• Stored=true copy fields are not supported and cause schema validation to fail. Before upgrading to 5.1, you must change the stored attribute value of a copyField directive from true to false in the schema.xml file and reload the core. (DSP-11087)

• PER PARTITION clause is not supported for DSE Search solr_query queries. (DSP-11050)

• Support limiting queries by time with the Solr timeAllowed (page 522) parameter, DSE Search differences (page 433) apply. (DSP-11165)

• Improve client-side mapping of DSE Search exceptions. (DSP-11315)

• Default batch size for the search TTL Process is changed. (DSP-11493)

When a value is not specified for ttl_index_rebuild_options.max_docs_per_batch in dse.yaml (page 246), the default is changed from 100 to 4096.

• DSE Search does not support the duration Cassandra data type. (DSP-11825)

• Improved error handling for authentication and authorization of Solr HTTP requests and Solr Admin UI. (DSP-12550)

Requests that fail due to lack of permissions return a 403 error, not a 401 error that was returned in earlier versions.

• Add support for unfrozen tuples. (DSP-12347)

• Improve default selection for dse.yaml and solrconfig.xml write path configuration. See Configuring and tuning indexing performance. (DSP-12491)

5.1.0 Known issues

Known issues for DSE core:

• sstableloader incorrectly detects keyspace when working with snapshots. (DB-2649)

Workaround: create a directory that matches the keyspace name, and then create symbolic links into that directory from snapshot directory with name of the destination table. For example:

```bash
$ mkdir -p /var/tmp/keystore1
ln -s <path>/cassandra/data/keystore1/
standard1-0e65b961deb311e88daf5581c30c2cd4/snapshots/data-load /var/
tmp/keystore1/standard1
```

• Potential data loss for INSERTs with very large TTLs. TTL expiration timestamps are susceptible to the year 2038 problem. (DSP-15412)

The maximum expiration timestamp that can be represented by the storage engine is 2038-01-19T03:14:06+00:00, which means that inserts with TTL that expire after this date are not currently supported. There is no protection against INSERTS
with TTL expiring after the maximum supported date, causing the expiration time field to overflow and the records to expire immediately. TTLs are considered "very large" when close to the maximum allowed value of 630720000 seconds (20 years), starting from 2018-01-19T03:14:06+00:00. As time progresses, the maximum supported TTL is gradually reduced as the maximum expiration date approaches. For instance, on 2028-01-19T03:14:06 with a TTL of 10 years is impacted. The maximum expiration timestamp that can be represented by the storage engine is 2038-01-19T03:14:06+00:00, which means that inserts with TTL that expire after this date are not currently supported. There is no protection against INSERTS with TTL expiring after the maximum supported date, causing the expiration time field to overflow and the records to expire immediately.

Warning: Upgrade to DSE 5.1.7 or later and take required action to protect against overflow of local expiration time.

- Even with `nodetool repair -full` or `nodetool repair -pr`, DSE DSE 5.1.0-5.1.2 are run as incremental and mark sstables as repaired causing anti-compaction. (DSP-14464)
- DataStax Enterprise will not run with Java 1.8u161 or later. (DSP-15277)
- Potential data loss for INSERTs with very large TTLs, where "very large" is close to the maximum allowed value of 630720000 seconds (20 years), starting from 2018-01-19T03:14:06+00:00. As time progresses, the maximum supported TTL is gradually reduced as the maximum expiration date approaches. For instance, on 2028-01-19T03:14:06 with a TTL of 10 years is impacted. If you use very large TTLs, DataStax strongly recommends upgrading to 5.1.7 or later. (DSP-15412)
- DSE 5.0 SSTables with UDTs will be corrupted after migrating to DSE 5.1, DSE 6.0, and DSE 6.7. (DB-2954, CASSANDRA-15035)

Important: If the DSE 5.0.x schema contains user-defined types (UDTs), upgrade to at least DSE 5.1.13, DSE 6.0.6, or DSE 6.7.2. The SSTable serialization headers are fixed when DSE is started with the upgraded versions.

Known issue for DSE Analytics:

- The "remember me" feature used by the Shiro 1.2.4 library and also used by the Spark Job Server is vulnerable to malicious attackers. Do not enable the "remember me" feature in a custom `shiro.ini` file if you defined one in `application.conf`. DSE does not enable the "remember me" feature by default. (DSP-11072)

Known issues for DSE Search:

- Upgrades from 5.0.x to DSE 5.1.0-5.1.5 continuously exchange schema, which can possibly lead to compactions backing up. DataStax recommends upgrading to the latest version, 5.1.15. (DB-1477)
- DateRange parsing improperly rolls over month, day, hour, min, seconds when invalid dates in a date range are specified. (DSP-12480)
• DSE Search might miss token filtering on mixed versions clusters. Upgrade all nodes to DSE 5.1.6 or later for correct token filtering. (DSP-14998)

• Skip DSE 5.1.0 and upgrade directly to DSE 5.1.1 if you:
 # Use the HTTP interface. (DSP-13318), (DSP-13270)
 # Have a Thrift column family backing an active Solr core. (DSP-13019)
 # Use TTL to expire data. (DSP-12960)
 # Use index encryption. (DSP-13155), (DSP-12620)
 # Use live indexing. (DSP-12040), (DSP-12941)

• Solr listens only on port 8080 regardless of configuration. (DSP-13187)
• Auto generated solrconfig.xml has invalid requestHandler for JSON core creations after upgrade to 5.1.0. (DSP-13188)

If you make HTTP writes with JSON documents (deprecated) (page 129), then change the auto generated solrconfig.xml:

```xml
<requestHandler name="/update/json" class="solr.UpdateUpdateRequestHandler" startup="lazy"/>
```

to

```xml
<requestHandler name="/update/json" class="solr.UpdateRequestHandler" startup="lazy"/>
```

5.1.0 Resolved issues

Resolved issues for:
• DataStax Enterprise core (page 132)
• DSE Advanced Replication (page 132)
• DSE Analytics (page 133)
• DSE Graph (page 133)
• DSE Search (page 133)

5.1.0 DataStax Enterprise core resolved issues

• Recent worst queries for slow query log. (DSP-5088)
 New configurable cql_slow_log_options (page 252).
• dse lib has old metrics core version. (DSP-11389)
• cqlsh SOURCE command shouldn't assume PlainTextAuthenticator. (DSP-12773)

5.1.0 DSE Advanced Replication resolved issues

• Fix authentication and encryption settings for SSL remote cluster connections. (DSP-9470)
5.1.0 DSE Analytics resolved issues

- Make dse client-tool (page 1159) sql-schema command consistent with double-dash parameters. (DSP-10557)
- CFS repair (page 1220) can repair only the default file system as defined in Hadoop configuration. (DSP-12481)

5.1.0 DSE Graph resolved issues

- Search.tokenRegex() is case sensitive. (DSP-9425)
- Graph not working properly with Kerberos with serializeResultToString: true. (DSP-12201)
- Enable split-DC graph ID (page 271) allocation. (DSP-12516)
- geo.distance(lng,lat,radius) expresses radius in degrees rather than kilometers. (DSP-12415)
- Align distance query (page 629) behavior between vertex properties with and without search indexes. (DSP-12673)

5.1.0 DSE Search resolved issues

- Solr range facets before, after, and between return incorrect and inconsistent results on multinode clusters. (DSP-4485)
- Validate auto generated resources before writing them. (DSP-7638)
- Support for non-frozen UDTs (page 522). Solr field name policy (page 433) applies. (DSP-11412)
- Users require SELECT permissions on any search index that they view. Specific permissions (page 550) are required for all core operations when using the Solr Admin UI. (DSP-11910)
- QueryUtils#getStandardVertexIdComponents is not thread safe. (DSP-12254)
- Core is not correctly unloaded on restarted nodes. (DSP-12434)
- Native driver connections in dsetool aren't isolated to specified host. (DSP-12438)
- Heap is exhausted while search reindexes very wide partitions. New IndexPool MBean attributes. (DSP-12547)
- Concurrent sorting issue with RT. (DSP-12600)
- Disable redundant, experimental, and other Solr 6 features. (DSP-13093)

- Select Hadoop libraries

 Built-in Hadoop and Bring-Your-Own-Hadoop (BYOH) were deprecated in DataStax Enterprise (DSE) 5.0, and were removed in DSE 5.1. Hadoop removal from DSE 5.1 and later means that DSE does not allow for the startup of Hadoop services previously included in DSE, including MapReduce JobTracker and TaskTracker.

 However, DSE has supported built-in Spark since DSE 4.5 and Bring-Your-Own-Spark (BYOS) since DSE 5.0, and that support continues today. Because Spark depends on
certain Hadoop libraries on the server and the client, DSE continues to ship with Hadoop libraries that are required for running Spark and BYOS.

To view the included Hadoop libraries, see DataStax Enterprise 5.1.x third-party software.

Cassandra enhancements for DSE 5.1.0

DataStax Enterprise (DSE) 5.1.0 includes all changes from earlier DSE releases. These production-certified changes are enhancements to Apache Cassandra™ 3.10.0. (For Cassandra updates, see CHANGES.txt.)

- Fix testLimitSSTables flake caused by concurrent flush (CASSANDRA-12820)
- cdc column addition strikes again (CASSANDRA-13382)
- Fix static column indexes (CASSANDRA-13277)
- DataOutputBuffer.asNewBuffer broken (CASSANDRA-13298)
- unittest CipherFactoryTest failed on MacOS (CASSANDRA-13370)
- Forbid SELECT restrictions and CREATE INDEX over non-frozen UDT columns (CASSANDRA-13247)
- Default logging we ship will incorrectly print "?:?" for "%F:%L" pattern (CASSANDRA-13317)
- Possible AssertionError in UnfilteredRowIteratorWithLowerBound (CASSANDRA-13366)
- Support unaligned memory access for AArch64 (CASSANDRA-13326)
- Improve SASI range iterator efficiency on intersection with an empty range (CASSANDRA-12915).
- Fix equality comparisons of columns using the duration type (CASSANDRA-13174)
- Obfuscate password in stress-graphs (CASSANDRA-12233)
- Move to FastThreadLocalThread and FastThreadLocal (CASSANDRA-13034)
- nodetool stopdaemon errors out (CASSANDRA-13030)
- Tables in system_distributed should not use gcgs of 0 (CASSANDRA-12954)
- Fix primary index calculation for SASI (CASSANDRA-12910)
- More fixes to the TokenAllocator (CASSANDRA-12990)
- NoReplicationTokenAllocator should work with zero replication factor (CASSANDRA-12983)
- Address message coalescing regression (CASSANDRA-12676)
- Fix possible NPE on upgrade to 3.0/3.X in case of IO errors (CASSANDRA-13389)
- Legacy deserializer can create empty range tombstones (CASSANDRA-13341)
- Legacy caching options can prevent 3.0 upgrade (CASSANDRA-13384)
- Use the Kernel32 library to retrieve the PID on Windows and fix startup checks (CASSANDRA-13333)
- Fix code to not exchange schema across major versions (CASSANDRA-13274)
- Dropping column results in "corrupt" SSTable (CASSANDRA-13337)
- Bugs handling range tombstones in the sstable iterators (CASSANDRA-13340)
• Fix CONTAINS filtering for null collections (CASSANDRA-13246)
• Applying: Use a unique metric reservoir per test run when using Cassandra-wide metrics residing in MBeans (CASSANDRA-13216)
• Propagate row deletions in 2i tables on upgrade (CASSANDRA-13320)
• Slice.isEmpty() returns false for some empty slices (CASSANDRA-13305)
• Add formatted row output to assertEmpty in CQL Tester (CASSANDRA-13238)
• Prevent data loss on upgrade 2.1 - 3.0 by adding component separator to LogRecord absolute path (CASSANDRA-13294)
• Improve testing on macOS by eliminating sigar logging (CASSANDRA-13233)
• Cqlsh copy-from should error out when csv contains invalid data for collections (CASSANDRA-13071)
• Update c.yaml doc for offheap memtables (CASSANDRA-13179)
• Faster StreamingHistogram (CASSANDRA-13038)
• Legacy deserializer can create unexpected boundary range tombstones (CASSANDRA-13237)
• Remove unnecessary assertion from AntiCompactionTest (CASSANDRA-13070)
• Fix cqlsh COPY for dates before 1900 (CASSANDRA-13185)
• Use keyspace replication settings on system.size_estimates table (CASSANDRA-9639)
• Add vm.max_map_count StartupCheck (CASSANDRA-13008)
• Hint related logging should include the IP address of the destination in addition to host ID (CASSANDRA-13205)
• Reloading logback.xml does not work (CASSANDRA-13173)
• Lightweight transactions temporarily fail after upgrade from 2.1 to 3.0 (CASSANDRA-13109)
• Duplicate rows after upgrading from 2.1.16 to 3.0.10/3.9 (CASSANDRA-13125)
• Fix UPDATE queries with empty IN restrictions (CASSANDRA-13152)
• Fix handling of partition with partition-level deletion plus live rows in stabledump (CASSANDRA-13177)
• Provide user workaround when system_schema.columns does not contain entries for a table that's in system_schema.tables (CASSANDRA-13180)
• Honor truststore-password parameter in cassandra-stress (CASSANDRA-12773)
• Discard in-flight shadow round responses (CASSANDRA-12653)
• Don't anti-compact repaired data to avoid inconsistencies (CASSANDRA-13153)
• Wrong logger name in AnticompactionTask (CASSANDRA-13343)
• Commitlog replay may fail if last mutation is within 4 bytes of end of segment (CASSANDRA-13282)
• Fix queries updating multiple time the same list (CASSANDRA-13130)
• Fix GRANT/REVOKE when keyspace isn't specified (CASSANDRA-13053)
• Avoid race on receiver by starting streaming sender thread after sending init message (CASSANDRA-12886)
• Fix "multiple versions of ant detected..." when running ant test (CASSANDRA-13232)
• Coalescing strategy sleeps too much (CASSANDRA-1309)
• Fix flaky LongLeveledCompactionStrategyTest (CASSANDRA-12202)
• Fix failing COPY TO STDOUT (CASSANDRA-12497)
• Fix ColumnCounter::countAll behaviour for reverse queries (CASSANDRA-13222)
• Exceptions encountered calling getSeeds() breaks OTC thread (CASSANDRA-13018)
• Fix negative mean latency metric (CASSANDRA-12876)
• Use only one file pointer when creating commitlog segments (CASSANDRA-12539)
• Remove unused repositories (CASSANDRA-13278)
• Log stacktrace of uncaught exceptions (CASSANDRA-13108)
• Use portable stderr for java error in startup (CASSANDRA-13211)
• Fix Thread Leak in OutboundTcpConnection (CASSANDRA-13204)
• Coalescing strategy can enter infinite loop (CASSANDRA-13159)

General upgrade advice for DSE 5.1.0

General upgrade advice for DataStax Enterprise 5.1.0.

Carefully review all planning and upgrade documentation in the Upgrading DataStax Enterprise guide. This general advice applies to the database upgrade and does not replace the upgrade documentation.

• General upgrading advice for any version and New features for Apache Cassandra are in NEWS.txt. Be sure to read the NEWS.txt all the way back to your current version.
• See also the Apache Cassandra changes in CHANGES.txt.

DataStax Enterprise 5.1.0 includes Apache Cassandra™ 3.10.0.

New features in Cassandra 3.10

• New `DurationType` (cql duration). See CASSANDRA-11873
• Runtime modification of concurrent_compactors is now available via nodetool
• Support for the assignment operators +=/-= has been added for update queries.
• An Index implementation may now provide a task which runs prior to joining the ring. See CASSANDRA-12039
• Filtering on partition key columns is now also supported for queries without secondary indexes.
• A slow query log has been added: slow queries will be logged at DEBUG level. For more details refer to CASSANDRA-12403 and slow_query_log_timeout_in_ms in cassandra.yaml.
• Support for GROUP BY queries has been added.
• A new compaction-stress tool has been added to test the throughput of compaction for any cassandra-stress user schema. see compaction-stress help for how to use.
• Compaction can now take into account overlapping tables that don't take part in the compaction to look for deleted or overwritten data in the compacted tables. Then such data is found, it can be safely discarded, which in turn should enable the removal of tombstones over that data.

The behavior can be engaged in two ways:
as a "nodetool garbagecollect -g CELL/ROW" operation, which applies single-table compaction on all sstables to discard deleted data in one step

as a "provide_overlapping_tombstones:CELL/ROW/NONE" compaction strategy flag, which uses overlapping tables as a source of deletions/overwrites during all compactions.

The argument specifies the granularity at which deleted data is to be found:

- If ROW is specified, only whole deleted rows (or sets of rows) will be discarded.
- If CELL is specified, any columns whose value is overwritten or deleted will also be discarded.
- NONE (default) specifies the old behavior, overlapping tables are not used to decide when to discard data.

Which option to use depends on your workload, both ROW and CELL increase the disk load on compaction (especially with the size-tiered compaction strategy), with CELL being more resource-intensive. Both should lead to better read performance if deleting rows (resp. overwriting or deleting cells) is common.

- Prepared statements are now persisted in the table prepared_statements in the system keyspace. Upon startup, this table is used to preload all previously prepared statements - i.e. in many cases clients do not need to re-prepare statements against restarted nodes.
- cqlsh can now connect to older Cassandra versions by downgrading the native protocol version. Please note that this is currently not part of our release testing and, as a consequence, it is not guaranteed to work in all cases. See CASSANDRA-12150 for more details.
- Snapshots that are automatically taken before a table is dropped or truncated will have a "dropped" or "truncated" prefix on their snapshot tag name.
- Metrics are exposed for successful and failed authentication attempts. These can be located using the object names org.apache.cassandra.metrics:type=Client,name=AuthSuccess and org.apache.cassandra.metrics:type=Client,name=AuthFailure respectively.
- Add support to "unset" JSON fields in prepared statements by specifying DEFAULT UNSET. See CASSANDRA-11424 for details
- Allow TTL with null value on insert and update. It will be treated as equivalent to inserting a 0.
- Removed outboundBindAny configuration property. See CASSANDRA-12673 for details.

Advice for upgrades to Cassandra 3.10

- Support for alter types of already defined tables and of UDTs fields has been disabled. If it is necessary to return a different type, please use casting instead. See CASSANDRA-12443 for more details.
- Specifying the default_time_to_live option when creating or altering a materialized view was erroneously accepted (and ignored). It is now properly rejected.
• Only Java and JavaScript are now supported UDF languages. The sandbox in 3.0 already prevented the use of script languages except Java and JavaScript.

• Compaction now correctly drops sstables out of CompactionTask when there isn't enough disk space to perform the full compaction. This should reduce pending compaction tasks on systems with little remaining disk space.

• Request timeouts in cassandra.yaml (read_request_timeout_in_ms, etc) now apply to the "full" request time on the coordinator. Previously, they only covered the time from when the coordinator sent a message to a replica until the time that the replica responded. Additionally, the previous behavior was to reset the timeout when performing a read repair, making a second read to fix a short read, and when subranges were read as part of a range scan or secondary index query. In 3.10 and higher, the timeout is no longer reset for these "subqueries". The entire request must complete within the specified timeout. As a consequence, your timeouts may need to be adjusted to account for this. See CASSANDRA-12256 for more details.

• Logs written to stdout are now consistent with logs written to files. Time is now local (it was UTC on the console and local in files). Date, thread, file and line info where added to stdout. (see CASSANDRA-12004)

• The 'clientutil' jar, which has been somewhat broken on the 3.x branch, is not longer provided. The features provided by that jar are provided by any good java driver and we advise relying on drivers rather on that jar, but if you need that jar for backward compatibility until you do so, you should use the version provided on previous Cassandra branch, like the 3.0 branch (by design, the functionality provided by that jar are stable accross versions so using the 3.0 jar for a client connecting to 3.x should work without issues).

• (Tools development) DatabaseDescriptor no longer implicitly startups components/services like commit log replay. This may break existing 3rd party tools and clients. In order to startup a standalone tool or client application, use the DatabaseDescriptor.toolInitialization() or DatabaseDescriptor.clientInitialization() methods. Tool initialization sets up partitioner, snitch, encryption context. Client initialization just applies the configuration but does not setup anything. Instead of using Config.setClientMode() or Config.isClientMode(), which are deprecated now, use one of the appropiate new methods in DatabaseDescriptor.

• Application layer keep-almes were added to the streaming protocol to prevent idle incoming connections from timing out and failing the stream session (CASSANDRA-11839). This effectively deprecates the streaming_socket_timeout_in_ms property in favor of streaming_keep_alive_period_in_secs. See cassandra.yaml for more details about this property. - Duration litterals support the ISO 8601 format. By consequence, identifiers matching that format (e.g P2Y or P1MT6H) will not be supported anymore (CASSANDRA-11873).

New features in Cassandra 3.8

• Shared pool threads are now named according to the stage they are executing tasks for. Thread names mentioned in traced queries change accordingly.

• A new option has been added to cassandra-stress "-rate fixed={number}/s" that forces a scheduled rate of operations/sec over time. Using this, stress can accurately account for coordinated omission from the stress process.
The cassandra-stress "-rate limit=" option has been renamed to "-rate throttle=".

- hdr histograms have been added to stress runs, it's output can be saved to disk using:
 "-log hdrfile=" option. This histogram includes response/service/wait times when used with the fixed or throttle rate options. The histogram file can be plotted on http://hdrhistogram.github.io/HdrHistogram/plotFiles.html

- TimeWindowCompactionStrategy has been added. This has proven to be a better approach to time series compaction and new tables should use this instead of DTCS. See CASSANDRA-9666 for details.

- Change-Data-Capture is now available. See cassandra.yaml and for cdc-specific flags and a brief explanation of on-disk locations for archived data in CommitLog form. This can be enabled via ALTER TABLE ... WITH cdc=true. Upon flush, CommitLogSegments containing data for CDC-enabled tables are moved to the data/cdc_raw directory until removed by the user and writes to CDC-enabled tables will be rejected with a WriteTimeoutException once cdc_total_space_in_mb is reached between unflushed CommitLogSegments and cdc_raw. NOTE: CDC is disabled by default in the .yaml file. Do not enable CDC on a mixed-version cluster as it will lead to exceptions which can interrupt traffic. Once all nodes have been upgraded to 3.8 it is safe to enable this feature and restart the cluster.

Advice for upgrades to Apache Cassandra 3.8

- The ReversedType behaviour has been corrected for clustering columns of BYTES type containing empty value. Scrub should be run on the existing SSTables containing a descending clustering column of BYTES type to correct their ordering. See CASSANDRA-12127 for more details.

- Ec2MultiRegionSnitch will no longer automatically set broadcast_rpc_address to the public instance IP if this property is defined on cassandra.yaml.

- The name "json" and "distinct" are not valid anymore a user-defined function names (they are still valid as column name however). In the unlikely case where you had defined functions with such names, you will need to recreate those under a different name, change your code to use the new names and drop the old versions, and this _before_ upgrade (see CASSANDRA-10783 for more details).

- DateTieredCompactionStrategy has been deprecated - new tables should use TimeWindowCompactionStrategy. Note that migrating an existing DTCS-table to TWCS might cause increased compaction load for a while after the migration so make sure you run tests before migrating. Read CASSANDRA-9666 for background on this.

Advice for upgrades to Apache Cassandra 3.7

- A maximum size for SSTables values has been introduced, to prevent out of memory exceptions when reading corrupt SSTables. This maximum size can be set via max_value_size_in_mb in cassandra.yaml. The default is 256MB, which matches the default value of native_transport_max_frame_size_in_mb. SSTables will be considered corrupt if they contain values whose size exceeds this limit. See CASSANDRA-9530 for more details.

New features in Apache Cassandra 3.6
- JMX connections can now use the same auth mechanisms as CQL clients. New options in cassandra-env.(sh|ps1) enable JMX authentication and authorization to be delegated to the IAuthenticator and IAuthorizer configured in cassandra.yaml. The default settings still only expose JMX locally, and use the JVM's own security mechanisms when remote connections are permitted. For more details on how to enable the new options, see the comments in cassandra-env.sh. A new class of IResource, JMXResource, is provided for the purposes of GRANT/REVOKE via CQL. See CASSANDRA-10091 for more details. Also, directly setting JMX remote port via the com.sun.management.jmxremote.port system property at startup is deprecated. See CASSANDRA-11725 for more details.

- JSON timestamps are now in UTC and contain the timezone information, see CASSANDRA-11137 for more details.

- Collision checks are performed when joining the token ring, regardless of whether the node should bootstrap. Additionally, replace_address can legitimately be used without bootstrapping to help with recovery of nodes with partially failed disks. See CASSANDRA-10134 for more details.

- Key cache will only hold indexed entries up to the size configured by column_index_cache_size_in_kb in cassandra.yaml in memory. Larger indexed entries will never go into memory. See CASSANDRA-11206 for more details.

- For tables having a default_time_to_live specifying a TTL of 0 will remove the TTL from the inserted or updated values.

- Startup is now aborted if corrupted transaction log files are found. The details of the affected log files are now logged, allowing the operator to decide how to resolve the situation.

- Filtering expressions are made more pluggable and can be added programatically via a QueryHandler implementation. See CASSANDRA-11295 for more details.

New features in Apache Cassandra 3.4

- Internal authentication now supports caching of encrypted credentials. Reference cassandra.yaml:credentials_validity_in_ms

- Remote configuration of auth caches via JMX can be disabled using the the system property cassandradisable_auth_caches_remote_configuration

- sstabledump tool is added to be 3.0 version of former sstable2json. The tool only supports v3.0+ SSTables. See tool's help for more detail.

- The mbean interfaces org.apache.cassandra.auth.PermissionsCacheMBean and org.apache.cassandra.auth.RolesCacheMBean are deprecated in favor of org.apache.cassandra.auth.AuthCacheMBean. This generalized interface is common across all caches in the auth subsystem. The specific mbean interfaces for each individual cache will be removed in a subsequent major version.

New features in Apache Cassandra 3.2

- We now make sure that a token does not exist in several data directories. This means that we run one compaction strategy per data_file_directory and we use one thread per directory to flush. Use nodetool relocatesstable to make sure your tokens are in the
correct place, or just wait and compaction will handle it. See CASSANDRA-6696 for more details.

- bound maximum in-flight commit log replay mutation bytes to 64 megabytes tunable via cassandra.commitlog_max_outstanding_replay_bytes
- Support for type casting has been added to the selection clause.
- Hinted handoff now supports compression. Reference cassandra.yaml:hints_compression. Note: hints compression is currently disabled by default.

Advice for upgrades to Apache Cassandra 3.2

- The compression ratio metrics computation has been modified to be more accurate.
- Running Cassandra as root is prevented by default.
- JVM options are moved from cassandra-env.(sh|ps1) to jvm.options file
- The Thrift API is deprecated and will be removed in Cassandra 4.0.

Advice for upgrades to Apache Cassandra 3.1

- The return value of SelectStatement::getLimit as been changed from DataLimits to int.
- Custom index implementation should be aware that the method Indexer::indexes() has been removed as its contract was misleading and all custom implementation should have almost surely returned true inconditionally for that method.
- GC logging is now enabled by default (you can disable it in the jvm.options file if you prefer).

New features in Apache Cassandra 3.0

- EACH_QUORUM is now a supported consistency level for read requests.
- Support for IN restrictions on any partition key component or clustering key as well as support for EQ and IN multicolumn restrictions has been added to UPDATE and DELETE statement.
- Support for single-column and multi-colum slice restrictions (>, >=, <= and <) has been added to DELETE statements
- nodetool rebuild_index accepts the index argument without the redundant table name
- Materialized Views, which allow for server-side denormalization, is now available. Materialized views provide an alternative to secondary indexes for non-primary key queries, and perform much better for indexing high cardinality columns. See http://www.datastax.com/dev/blog/new-in-cassandra-3-0-materialized-views
- Hinted handoff has been completely rewritten. Hints are now stored in flat files, with less overhead for storage and more efficient dispatch. See CASSANDRA-6230 for full details.
- Option to not purge unrepaired tombstones. To avoid users having data resurrected if repair has not been run within gc_grace_seconds, an option has been added to only allow tombstones from repaired sstables to be purged. To enable, set the compaction option 'only_purge_repaired_tombstones':true but keep in mind that if you do not run repair for a long time, you will keep all tombstones around which can cause other problems.
• Enabled warning on GC taking longer than 1000ms. See cassandra.yaml:gc_warn_threshold_in_ms

Advice for upgrades to Apache Cassandra 3.0

• Clients must use the native protocol version 3 when upgrading from 2.2.X as the native protocol version 4 is not compatible between 2.2.X and 3.Y. See https://www.mail-archive.com/user@cassandra.apache.org/msg45381.html for details.
• A new argument of type InetAddress has been added to IAuthenticator::newSaslNegotiator, representing the IP address of the client attempting authentication. It will be a breaking change for any custom implementations.
• token-generator tool has been removed.
• Upgrade to 3.0 is supported from Cassandra 2.1 versions greater or equal to 2.1.9, or Cassandra 2.2 versions greater or equal to 2.2.2. Upgrade from Cassandra 2.0 and older versions is not supported.
• The 'memtable_allocation_type: offheap_objects' option has been removed. It should be re-introduced in a future release and you can follow CASSANDRA-9472 to know more.
• Configuration parameter memory_allocator in cassandra.yaml has been removed.
• The native protocol versions 1 and 2 are not supported anymore.
• Max mutation size is now configurable via max_mutation_size_in_kb setting in cassandra.yaml; the default is half the size commitlog_segment_size_in_mb * 1024.
• 3.0 requires Java 8u40 or later.
• Garbage collection options were moved from cassandra-env to jvm.options file.
• New transaction log files have been introduced to replace the compactions_in_progress system table, temporary file markers (tmp and tmplink) and sstable ancestors. Therefore, compaction metadata no longer contains ancestors. Transaction log files list sstable descriptors involved in compactions and other operations such as flushing and streaming. Use the sstableutil tool to list any sstable files currently involved in operations not yet completed, which previously would have been marked as temporary. A transaction log file contains one sstable per line, with the prefix "add:" or "remove:". They also contain a special line "commit", only inserted at the end when the transaction is committed. On startup we use these files to cleanup any partial transactions that were in progress when the process exited. If the commit line is found, we keep new sstables (those with the "add" prefix) and delete the old sstables (those with the "remove" prefix), vice-versa if the commit line is missing. Should you lose or delete these log files, both old and new sstable files will be kept as live files, which will result in duplicated sstables. These files are protected by incremental checksums so you should not manually edit them. When restoring a full backup or moving sstable files, you should clean-up any left over transactions and their temporary files first. You can use this command: ====> sstableutil -c ks table See CASSANDRA-7066 for full details.
• New write stages have been added for batchlog and materialized view mutations you can set their size in cassandra.yaml
• User defined functions are now executed in a sandbox. To use UDFs and UDA, you have to enable them in cassandra.yaml.
• New SSTable version 'la' with improved bloom-filter false-positive handling compared to previous version 'ka' used in 2.2 and 2.1. Running sstableupgrade is not necessary but recommended.
• Before upgrading to 3.0, make sure that your cluster is in complete agreement (schema versions outputted by `nodetool describecluster` are all the same).
• Schema metadata is now stored in the new `system_schema` keyspace, and legacy `system.schema_*` tables are now gone; see CASSANDRA-6717 for details.
• Pig's support has been removed.
• Hadoop BulkOutputFormat and BulkRecordWriter have been removed; use CqlBulkOutputFormat and CqlBulkRecordWriter instead.
• Hadoop ColumnFamilyInputFormat and ColumnFamilyOutputFormat have been removed; use CqlInputFormat and CqlOutputFormat instead.
• Hadoop ColumnFamilyRecordReader and ColumnFamilyRecordWriter have been removed; use CqlRecordReader and CqlRecordWriter instead.
• hinted_handoff_enabled in cassandra.yaml no longer supports a list of data centers. To specify a list of excluded data centers when hinted_handoff_enabled is set to true, use hinted_handoff_disabled_datacenters, see CASSANDRA-9035 for details.
• The `sstable_compression` and `chunk_length_kb` compression options have been deprecated. The new options are `class` and `chunk_length_in_kb`. Disabling compression should now be done by setting the new option `enabled` to `false`.
• The compression option `crc_check_chance` became a top-level table option, but is currently enforced only against tables with enabled compression.
• Only map syntax is now allowed for caching options. ALL/NONE/KEYS_ONLY/ROWS_ONLY syntax has been deprecated since 2.1.0 and is removed in 3.0.0.
• The `index_interval` option for `CREATE TABLE` statements, which has been deprecated since 2.1 and replaced with the `min_index_interval` and `max_index_interval` options, has now been removed.
• Batchlog entries are now stored in a new table - system.batches. The old one has been deprecated.
• JMX methods set/getCompactionStrategyClass have been removed, use set/getCompactionParameters or set/getCompactionParametersJson instead.
• SizeTieredCompactionStrategy parameter cold_reads_to_omit has been removed.
• The secondary index API has been comprehensively reworked. This will be a breaking change for any custom index implementations, which should now look to implement the new org.apache.cassandra.index.Index interface. New syntax has been added to create and query row-based indexes, which are not explicitly linked to a single column in the base table.

Spark Cassandra Connector changes for DSE 5.1.0

DataStax Enterprise (DSE) 5.1.0 includes DataStax Spark Cassandra Connector 2.0.1 with this production-certified change:
• Refactor Custom Scan Method (SPARKC-481)

DSE 5.1.0 includes these production-certified changes from earlier versions of the DataStax Spark Cassandra Connector.

2.0.0
• Upgrade driver version for 2.0.0 Release to 3.1.4 (SPARKC-474)
• Extend SPARKC-383 to All Row Readers (SPARKC-473)

2.0.0 RC1

• Includes all patches up to 1.6.5
• Automatic adjustment of Max Connections (SPARKC-471)
• Allow for Custom Table Scan Method (SPARKC-459)
• Enable PerPartitionLimit (SPARKC-446)
• Support client certificate authentication for two-way SSL Encryption (SPARKC-359)
• Change Config Generation for Cassandra Runners (SPARKC-424)
• Remove deprecated QueryRetryDelay parameter (SPARKC-423)
• User ConnectionHostParam.default as default hosts String
• Update usages of deprecated SQLContext so that SparkSession is used instead (SPARKC-400)
• Test Reused Exchange SPARK-17673 (SPARKC-429)
• Module refactoring (SPARKC-398)
• Recognition of Java Driver Annotated Classes (SPARKC-427)
• RDD.deleteFromCassandra (SPARKC-349)
• Coalesce Pushdown to Cassandra (SPARKC-161)
• Custom Conf options in Custom Pushdowns (SPARKC-435)
• Upgrade CommonBeatUtils to 1.9.3 to Avoid SID-760 (SPARKC-457)

2.0.0 M3

• Includes all patches up to 1.6.2

2.0.0 M2

• Includes all patches up to 1.6.1

2.0.0 M1

• Added support for left outer joins with Cassandra table (SPARKC-181)
• Removed CassandraSqlContext and underscore based options (SPARKC-399)
• Upgrade to Spark 2.0.0-preview (SPARKC-396)
 # Removed Twitter demo because there is no spark-streaming-twitter package available anymore
 # Removed Akka Actor demo because there is no support for such streams anymore
 # Bring back Kafka project and make it compile
 # Update several classes to use our Logging instead of Spark Logging because Spark Logging became private
 # Update plugins and Scala version
Installing DataStax Enterprise 5.1

Which install method should I use?

You can install DataStax Enterprise (DSE) in several ways, depending on the purpose of the installation, and the type of operating system. Be sure to install on a supported platform.

Important: End User License Agreement (EULA). By downloading this DataStax product, you agree to the terms of the EULA.

Table 12: DataStax Enterprise installation types

<table>
<thead>
<tr>
<th>Installation method</th>
<th>About</th>
</tr>
</thead>
</table>
| Using the DataStax Installer to install (root permissions required) *(page 146)* | A Linux GUI-based/text installer with multiple options such as:
 - Services or No Services installation. A No Services installation is similar to a tarball installation.
 - Ability to install with or without root *(page 154)* permissions. (You cannot update system packages and dependencies without root permissions.)
 - Ability to install on Mac OS X *(page 162)* (development only).
 - Ability fully configure DSE using command line or a properties file *(page 168)* during the installation.
 - Set node type, such as analytics, graph, search, or transactional.
 - Configure cluster, node, and DSE settings.
 - Update some system packages and dependencies.
 - Upgrade nodes and provides a list of changes and backup files.
 - Install Developer tools such as DataStax Studio *(page 1361)*, Javadoc, DSE Graph Loader *(page 744)*, and DSE demos.
 - Run the Preflight check tool *(page 1272)*, which is a tool for detecting and optionally fixing many invalid or suboptimal configuration settings. |
Installing DataStax Enterprise 5.1

Installation method

<table>
<thead>
<tr>
<th>Installation method</th>
<th>About</th>
</tr>
</thead>
<tbody>
<tr>
<td>OpsCenter Lifecycle Manager</td>
<td>The DataStax Lifecycle Manager (LCM) can install DSE. It is fully integrated with DSE OpsCenter. LCM provides:</td>
</tr>
<tr>
<td></td>
<td>• A web-based graphical interface for installing and configuring DSE.</td>
</tr>
<tr>
<td></td>
<td>• Performs a Services installation using RHEL or Debian packages.</td>
</tr>
<tr>
<td></td>
<td>• Ability to configure and update all DSE settings.</td>
</tr>
<tr>
<td></td>
<td>• Installs the necessary system requirements automatically, including Java.</td>
</tr>
<tr>
<td></td>
<td>• Integrates with OpsCenter Best Practice Service, which detects many suboptimal configuration settings.</td>
</tr>
<tr>
<td></td>
<td>• Automation via the LCM API.</td>
</tr>
<tr>
<td>To install DSE using LCM, requires installing OpsCenter,</td>
<td>bringing your own instances on a supported platform with SSH and Python installed, and root permissions on the target nodes.</td>
</tr>
<tr>
<td>bringing your own instances on a supported platform with</td>
<td></td>
</tr>
<tr>
<td>SSH and Python installed, and root permissions on the</td>
<td></td>
</tr>
<tr>
<td>target nodes.</td>
<td></td>
</tr>
<tr>
<td>Installing DataStax Enterprise 5.1 on RHEL-based systems using Yum</td>
<td>Installs DSE using Yum repositories on RHEL-based systems. Requires root permissions. Typically used in production environments.</td>
</tr>
<tr>
<td>Installing DataStax Enterprise 5.1 on Debian-based systems using APT</td>
<td>Installs DSE on Debian-based systems using APT. Requires root permissions. Typically used in production environments.</td>
</tr>
<tr>
<td>Binary installer</td>
<td>Installs DSE on any supported Linux-based platform.</td>
</tr>
<tr>
<td>Installing and deploying DSE on cloud platforms</td>
<td>Instructions for installing and deploying DSE on Google Compute Engine, Microsoft Azure, and Amazon EC2.</td>
</tr>
</tbody>
</table>

Caution: If you have installed hot fixes, be sure to manually remove the hot fix JAR files before upgrading DataStax Enterprise.

Installing DataStax Enterprise drivers

For version compatibility and installation information, see the [DataStax drivers](#) page.

DataStax Installers

DataStax provides several methods for installing DataStax Enterprise from the DataStax Installer.

Using the DataStax Installer to install (root permissions required)

Instructions for installing or upgrading DataStax Enterprise (DSE) 5.1 using the DataStax Installer when you have root permissions.
If you don't have root permissions or want to install in a custom directory, see Using the DataStax Installer to install (root permissions not required) (page 154) or use the binary tarball.

Warning: When DSE is installed, it creates a cassandra user in the database and runs as this user. It also creates a cassandra user in the operating system. Do not use the cassandra user in production. Using the cassandra user is a security risk. See Adding a superuser login.

Prerequisites:

- A supported platform.
- Root or sudo access.
- Latest build of a Technology Compatibility Kit (TCK) Certified OpenJDK version 8 or Oracle Java SE Runtime Environment 8 (JRE or JDK). Earlier or later versions are not supported.

Attention: Although Oracle JRE/JDK 8 is supported, DataStax does more extensive testing on OpenJDK 8. This change is due to the end of public updates for Oracle JRE/JDK 8. Java 9 is not supported.

- Python 2.7.x

Hardware requirements

See Recommended production settings (page 190) and the DataStax Enterprise Reference Architecture white paper.

About DataStax installer

The DataStax installer installs DataStax Enterprise and DataStax Agent. It does not install OpsCenter. If you select Developer Related Tools during installation, DataStax Studio (page 1361) is installed.

The installer sets some but not all cassandra.yaml parameters. It does not set dse.yaml properties. Set the remaining parameters in the following ways:

- Manually after installation.
- To specify pre-configured cassandra.yaml and dse.yaml files, use the unattended install (page 168) with either command line (page 169) or property file (page 169).

Note: The latest version of DataStax Enterprise 5.1 is 5.1.15.

Important: End User License Agreement (EULA). By downloading this DataStax product, you agree to the terms of the EULA.

In a terminal window:

1. Download the installer for your computer from the DataStax download page or use the following command:
Installing DataStax Enterprise 5.1

```
$ curl -O https://downloads.datastax.com/enterprise/DataStaxEnterprise-5.1.15-linux-x64-installer.run
```

Note: To install earlier versions, replace the version number in the above command. To view the available versions, see the Release notes (page 26).

2. From the directory where you downloaded the install file, change the permission to executable:
```
$ chmod +x DataStaxEnterprise-5.1.15-linux-x64-installer.run
```

3. To view the installer help:
```
$ ./DataStaxEnterprise-5.1.15-linux-x64-installer.run --help
```

Help displays a list of the available options and their default settings.

4. Start the installation:
 - No configuration parameters:
     ```
     $ sudo ./DataStaxEnterprise-5.1.15-linux-x64-installer.run
     $ sudo ./DataStaxEnterprise-5.1.15-linux-x64-installer.run --mode text
     ```
 - Configuration parameters:
     ```
     sudo ./DataStaxEnterprise-5.1.15-linux-x64-installer.run --enable_vnodes 0 ## Command line option.
     $ sudo ./DataStaxEnterprise-5.1.15-linux-x64-installer.run --optionfile ../datastax/DC4-analytics.prop ## Property file option.
     ```

For configuration parameter information, see the installer options described in Using the DataStax Installer to install using command line or properties file commands (page 168).

The installer launches.
5. After accepting the License Agreement, select the type of install. In **Service Setup**, select **Services and Utilities**.
 - **Services and Utilities**: Sets up DataStax Enterprise as a service. It installs DataStax Enterprise in system locations.
 - **No Services**: Sets up DataStax Enterprise as a standalone process. It does not require root or sudo access.

6. Select the **Install Type**:
 - **Simple**: Installs DataStax Enterprise using the default path names and options:
 - **Advanced**: Allows you to configure path names and options:
     ```
     # User Setup (page 152)
     # Ring Options (page 151)
     # Directory Locations (page 152)
     # Ports (page 152)
     ```

7. Set up the node:

 Table 13: Node Setup

<p>| Default Interface | Network interface for the DataStax Enterprise server. Single node clusters: use 127.0.0.0. |</p>
<table>
<thead>
<tr>
<th>Cluster Name</th>
<th>Name of the cluster. You must use the same cluster name for each node in the cluster.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seeds</td>
<td>All nodes use the seed node list for finding each other and learning the topology of the ring.</td>
</tr>
<tr>
<td></td>
<td>Single node clusters: Set to empty.</td>
</tr>
<tr>
<td></td>
<td>Multiple node clusters: List of seed nodes. (Do not make all nodes seed nodes.)</td>
</tr>
<tr>
<td></td>
<td>Additional information:</td>
</tr>
<tr>
<td></td>
<td>• Internode communications (gossip)</td>
</tr>
<tr>
<td></td>
<td>• Initializing a single datacenter per workload type</td>
</tr>
<tr>
<td></td>
<td>• Initializing multiple datacenters per workload type</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Install developer related tools</th>
<th>Includes the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Javadocs</td>
</tr>
<tr>
<td></td>
<td>• DataStax Enterprise demos</td>
</tr>
<tr>
<td></td>
<td>• DataStax Studio (page 1361)</td>
</tr>
<tr>
<td></td>
<td>• DSE Graph Loader (page 744)</td>
</tr>
</tbody>
</table>

8. If an installation of DataStax Enterprise already exists, the installer displays upgrade information and installs DSE in the following locations:

- Installer-Services installations: `/usr/share/dse`
- No Services installations: Previous installation location

Important: Before upgrading an existing cluster, see the DataStax Upgrade Guide.

The important files to review for upgrade are `dse.yaml`, `cassandra.yaml`, and for service installs `/etc/default/dse`

If `dse.in.sh` or `cassandra.in.sh` have been modified, make modifications to the `cassandra-env.sh` or the `dse-env.sh` instead. Changing these files is not recommended.

9. Set up the node type:

Table 14: DSE Setup

<table>
<thead>
<tr>
<th>DSE Analytics</th>
<th>DSE Analytics (page 293) includes integration with Apache Spark™.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSE Search</td>
<td>DSE Search (page 431) includes integration with Apache Solr™.</td>
</tr>
</tbody>
</table>
DSE Graph

DSE Graph (page 562) is a graph database for managing, analyzing, and searching highly-connected data.

DSE Advanced Replication

DSE Advanced Replication (page 872) supports configurable distributed data replication from source clusters to destination clusters bi-directionally that can experience sporadic connectivity.

10. Set the ring options:

Table 15: Ring Options

<table>
<thead>
<tr>
<th>Enable Virtual Nodes (vnodes)</th>
<th>Enable or disable Virtual nodes (page 290).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of tokens</td>
<td>Token recommendations (page 290) for vnodes:</td>
</tr>
<tr>
<td></td>
<td>• Transactional nodes: 128</td>
</tr>
<tr>
<td></td>
<td>• Analytical nodes (Spark): 128</td>
</tr>
<tr>
<td></td>
<td>• Search nodes: 8</td>
</tr>
<tr>
<td></td>
<td>• DSE Graph: 128. When used with DSE Search: 8</td>
</tr>
<tr>
<td>Listen Address</td>
<td>cassandra.yaml: listen_address (page 200)</td>
</tr>
<tr>
<td>RPC Address</td>
<td>cassandra.yaml: rpc_address (page 205)</td>
</tr>
</tbody>
</table>

11. Set up the miscellaneous options:

Table 16: Misc Options

Update Operating System	Update some system packages and dependencies. Does not upgrade or install major components such as Java.
Start services	• Yes starts all services when the installation is complete.
	• No, select when additional configuration is needed after installation.
OpsCenter Address	Optional. The server name or IP address for OpsCenter.

If performing a Simple installation, go to 16 (page 153).

The following steps are displayed when Advanced is selected in 5 (page 149).

12. Set up the Preflight Check (Advanced Installations only):
Table 17: Preflight Check Options

<table>
<thead>
<tr>
<th>Run Preflight Check</th>
<th>A collection of tests (page 1272) that can detect and fix a node's configuration. The tool can detect and fix many invalid or suboptimal configuration settings. It is not available in No Services installations.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attempt to Fix Issues</td>
<td>Enable DataStax Enterprise to attempt to fix invalid or suboptimal configuration settings.</td>
</tr>
<tr>
<td>SSD Drives</td>
<td>Enter the paths to the Solid State Drives. Separate the drives by a comma.</td>
</tr>
<tr>
<td>Drives</td>
<td>Enter the paths to the hard drives. Separate the drives by a comma.</td>
</tr>
<tr>
<td>Time to run Disk Benchmarks</td>
<td>Set to simulate a normal load.</td>
</tr>
<tr>
<td>Threads per Disk Benchmark</td>
<td>Set to simulate a normal load.</td>
</tr>
</tbody>
</table>

13. Change the default user and user group (Advanced Installations only):

Table 18: User Setup

<table>
<thead>
<tr>
<th>OS User ID for Service</th>
<th>Default: cassandra. Because the DataStax Agent relies on user cassandra, DataStax does not recommend changing the default. If changed, you must manually install, update, and configure the DataStax Agent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS User Group for Service</td>
<td>Default: cassandra. See above.</td>
</tr>
</tbody>
</table>

14. Change the default directory locations (Advanced Installations only):

Table 19: Directory Locations

<table>
<thead>
<tr>
<th>Data Directory</th>
<th>cassandra.yaml data_file_directories (page 201)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commitlog Directory</td>
<td>cassandra.yaml: commitlog_directory (page 201)</td>
</tr>
<tr>
<td>Saved Caches Directory</td>
<td>cassandra.yaml: saved_caches_directory (page 201)</td>
</tr>
<tr>
<td>Hints Directory</td>
<td>cassandra.yaml: hints_directory (page 223)</td>
</tr>
<tr>
<td>Logs Directory</td>
<td>Log data for the database, Spark, and Tomcat. See the default file locations for Installer-Services and package installations (page 181) or Installer-No Services and tarball installations (page 186).</td>
</tr>
</tbody>
</table>

15. Change the default ports (Advanced Installations only):
Table 20: Ports

<table>
<thead>
<tr>
<th>Port Type</th>
<th>Configuration File</th>
<th>Port Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage Port</td>
<td>cassandra.yaml</td>
<td>storage_port</td>
</tr>
<tr>
<td>SSL Storage Port</td>
<td>cassandra.yaml</td>
<td>ssl_storage_port</td>
</tr>
<tr>
<td>RPC Port</td>
<td>cassandra.yaml</td>
<td>rpc_port</td>
</tr>
</tbody>
</table>

16. In **System Configuration**, review any warnings about potential issues.

17. After the installation completes, review the installation logs to verify the installation.

 Note: If you have closed the logs, see Services (page 182) or No-Services (page 187) installer locations.

 DataStax Enterprise is ready for additional configuration (page 154).

18. Single-node cluster installations only:

 a. If DataStax Enterprise is not already running:

 • Package and Installer-Services installations:

      ```bash
      $ sudo service dse start
      ```

 For more start options, see Starting DataStax Enterprise as a service (page 1275).

 • Tarball and Installer-No Services installations:

      ```bash
      $ installation_location/bin/dse cassandra
      ```

 where the `installation_location` is either:

      ```text
      # /usr/share/dse
      # the directory where you installed DataStax Enterprise.
      ```

 For more start options, see Starting DataStax Enterprise as a stand-alone process (page 1278)

 b. Verify that DataStax Enterprise is running:

 • Package and Installer-Services installations:

      ```bash
      $ nodetool status
      ```

 • Tarball and Installer-No Services installations:

      ```bash
      $ installation_location/bin/nodetool status
      ```
Installing DataStax Enterprise 5.1

Results using vnodes:

<table>
<thead>
<tr>
<th>Datacenter: Cassandra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status=Up/Down</td>
</tr>
<tr>
<td>State=Normal/Leaving/Joining/Moving</td>
</tr>
<tr>
<td>-- Address Load Tokens Owns Host ID Rack</td>
</tr>
<tr>
<td>UN 127.0.0.1 82.43 KB 128 ? 40725dc8-7843-43ae-9c98-7c532b1f517e rack1</td>
</tr>
</tbody>
</table>

Results not using vnodes:

<table>
<thead>
<tr>
<th>Datacenter: Analytics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status=Up/Down</td>
</tr>
<tr>
<td>State=Normal/Leaving/Joining/Moving</td>
</tr>
<tr>
<td>-- Address Load Owns Host ID Token Rack</td>
</tr>
<tr>
<td>UN 172.16.222.136 103.24 KB ? 3c1d0657-0990-4f78-a3c0-3e0c37fc3a06 1647352612226902707 rack1</td>
</tr>
</tbody>
</table>

What’s next:

- Configuration and log file locations *(page 181)* - Services and package installations.
- Configuration and log file locations *(page 186)* - No Services and tarball installations.
- Starting and stopping DataStax Enterprise *(page 1275)*.
- Planning and testing DSE cluster deployments.
- DataStax Studio *(page 1361)* documentation.

Using the DataStax Installer to install (root permissions not required)

Instructions for installing or upgrading DataStax Enterprise 5.1 on any Linux-based platform using the DataStax Installer when you do not have root permissions or want to install in a custom directory. If you have root permissions, use Using the DataStax Installer to install (root permissions required) *(page 146)*.

Warning: When DSE is installed, it creates a cassandra user in the database and runs as this user. It also creates a cassandra user in the operating system. Do not use the cassandra user in production. Using the cassandra user is a security risk. See Adding a superuser login.

Prerequisites:

- A supported platform.
• Latest build of a Technology Compatibility Kit (TCK) Certified OpenJDK version 8 or Oracle Java SE Runtime Environment 8 (JRE or JDK). Earlier or later versions are not supported.

 Attention: Although Oracle JRE/JDK 8 is supported, DataStax does more extensive testing on OpenJDK 8. This change is due to the end of public updates for Oracle JRE/JDK 8. Java 9 is not supported.

• Python 2.7.x

Hardware requirements

See Recommended production settings *(page 190)* and the DataStax Enterprise Reference Architecture white paper.

About DataStax installer

The DataStax installer installs DataStax Enterprise and DataStax Agent. It does not install OpsCenter. If you select Developer Related Tools during installation, DataStax Studio *(page 1361)* is installed.

The installer sets some but not all cassandra.yaml parameters. It does not set dse.yaml properties. Set the remaining parameters in the following ways:

• Manually after installation.
• To specify pre-configured cassandra.yaml and dse.yaml files, use the unattended install *(page 168)* with either command line *(page 169)* or property file *(page 169)*.

Note: The latest version of DataStax Enterprise 5.1 is 5.1.15.

Important: End User License Agreement (EULA). By downloading this DataStax product, you agree to the terms of the EULA.

In a terminal window:

1. Download the installer for your computer from the DataStax download page or use the following command:

   ```
   $ curl -O https://downloads.datastax.com/enterprise/DataStaxEnterprise-5.1.15-linux-x64-installer.run
   ```

 Note: To install earlier versions, replace the version number in the above command. To view the available versions, see the Release notes *(page 26)*.

2. From the directory where you downloaded the install file, change the permission to executable:

   ```
   $ chmod +x DataStaxEnterprise-5.1.15-linux-x64-installer.run
   ```
Installing DataStax Enterprise 5.1

3. To view the installer help:

```
$ ./DataStaxEnterprise-5.1.15-linux-x64-installer.run --help
```

Help displays a list of the available options and their default settings.

4. Start the installation:

- No configuration parameters:

```
$ ./DataStaxEnterprise-5.1.15-linux-x64-installer.run
$ ./DataStaxEnterprise-5.1.15-linux-x64-installer.run --mode text
```

- Configuration parameters:

```
$ ./DataStaxEnterprise-5.1.15-linux-x64-installer.run --enable_vnodes 0  ## Command line option.
$ ./DataStaxEnterprise-5.1.15-linux-x64-installer.run --optionfile ../datastax/DC4-analytics.prop  ## Property file option.
```

For configuration parameter information, see the installer options described in Using the DataStax Installer to install using command line or properties file commands (page 168).

The installer launches.
5. After accepting the License Agreement, select the type of install. In **Service Setup**, select **No Services**.
 - **Services and Utilities**: Sets up DataStax Enterprise as a service. It installs DataStax Enterprise in system locations.
 - **No Services**: Sets up DataStax Enterprise as a standalone process. It does not require root or sudo access.

6. Select the **Install Type**:
 - **Simple**: Installs DataStax Enterprise using the default path names and options:
 - **Advanced**: Allows you to configure path names and options:
 - # User Setup (page 152)
 - # Ring Options (page 151)
 - # Directory Locations (page 151)
 - # Ports (page 152)

7. Set the installation directory.

8. Set up the node:
Table 21: Node Setup

| Default Interface | Network interface for the DataStax Enterprise server.
| | Single node clusters: use 127.0.0.0. |
| Cluster Name | Name of the cluster. You must use the same cluster name for each node in the cluster. |
| Seeds | All nodes use the seed node list for finding each other and learning the topology of the ring.
| | **Single node clusters**: Set to empty.
| | **Multiple node clusters**: List of seed nodes. (Do not make all nodes seed nodes.)
| | Additional information:
| | • Internode communications (gossip)
| | • Initializing a single datacenter per workload type
| | • Initializing multiple datacenters per workload type |

Install developer related tools

Includes the following:
• Javadocs
• DataStax Enterprise demos
• DataStax Studio (page 1361)
• DSE Graph Loader (page 744)

9. Set up the node type:

Table 22: DSE Setup

<table>
<thead>
<tr>
<th>DSE Analytics</th>
<th>DSE Analytics (page 293) includes integration with Apache Spark™.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSE Search</td>
<td>DSE Search (page 431) includes integration with Apache Solr™.</td>
</tr>
<tr>
<td>DSE Graph</td>
<td>DSE Graph (page 562) is a graph database for managing, analyzing, and searching highly-connected data.</td>
</tr>
<tr>
<td>DSE Advanced Replication</td>
<td>DSE Advanced Replication (page 872) supports configurable distributed data replication from source clusters to destination clusters bi-directionally that can experience sporadic connectivity.</td>
</tr>
</tbody>
</table>

10. If an installation of DataStax Enterprise already exists, the installer displays upgrade information and installs DSE in the following locations:
• Installer-Services installations: /usr/share/dse
• No Services installations: Previous installation location

Important: Before upgrading an existing cluster, see the [DataStax Upgrade Guide](#).

The important files to review for upgrade are dse.yaml, cassandra.yaml, and for service installs /etc/default/dse.

If dse.in.sh or cassandra.in.sh have been modified, make modifications to the cassandra-env.sh or the dse-env.sh instead. Changing these files is not recommended.

11. Set the ring options:

Table 23: Ring Options

<table>
<thead>
<tr>
<th>Enable Virtual Nodes (vnodes)</th>
<th>Enable or disable Virtual nodes (page 290)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of tokens</td>
<td>Token recommendations (page 290) for vnodes:</td>
</tr>
<tr>
<td></td>
<td>• Transactional nodes: 128</td>
</tr>
<tr>
<td></td>
<td>• Analytical nodes (Spark): 128</td>
</tr>
<tr>
<td></td>
<td>• Search nodes: 8</td>
</tr>
<tr>
<td></td>
<td>• DSE Graph: 128. When used with DSE Search: 8</td>
</tr>
<tr>
<td>Listen Address</td>
<td>cassandra.yaml: listen_address (page 200)</td>
</tr>
<tr>
<td>RPC Address</td>
<td>cassandra.yaml: rpc_address (page 205)</td>
</tr>
</tbody>
</table>

12. Set up the miscellaneous options:

Table 24: Misc Options

<table>
<thead>
<tr>
<th>Update Operating System</th>
<th>Update some system packages and dependencies. Does not upgrade or install major components such as Java.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start services</td>
<td>• Yes starts all services when the installation is complete.</td>
</tr>
<tr>
<td></td>
<td>• No, select when additional configuration is needed after installation.</td>
</tr>
<tr>
<td>OpsCenter Address</td>
<td>Optional. The server name or IP address for OpsCenter.</td>
</tr>
</tbody>
</table>

If performing a Simple installation, go to 16 ([page 160](#)).

The following steps are displayed when Advanced is selected in 5 ([page 157](#)).

13. Set up the Preflight Check (Advanced Installations only):
Table 25: Preflight Check Options

<table>
<thead>
<tr>
<th>Run Preflight Check</th>
<th>A collection of tests (page 1272) that can detect and fix a node's configuration. The tool can detect and fix many invalid or suboptimal configuration settings. It is not available in No Services installations.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attempt to Fix Issues</td>
<td>Enable DataStax Enterprise to attempt to fix invalid or suboptimal configuration settings.</td>
</tr>
<tr>
<td>SSD Drives</td>
<td>Enter the paths to the Solid State Drives. Separate the drives by a comma.</td>
</tr>
<tr>
<td>Drives</td>
<td>Enter the paths to the hard drives. Separate the drives by a comma.</td>
</tr>
<tr>
<td>Time to run Disk Benchmarks</td>
<td>Set to simulate a normal load.</td>
</tr>
<tr>
<td>Threads per Disk Benchmark</td>
<td>Set to simulate a normal load.</td>
</tr>
</tbody>
</table>

14. Change the default directory locations (Advanced Installations only):

Table 26: Directory Locations

<table>
<thead>
<tr>
<th>Commitlog Directory</th>
<th><code>cassandra.yaml:commitlog_directory</code> (page 201)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saved Caches Directory</td>
<td><code>cassandra.yaml:saved_caches_directory</code> (page 201)</td>
</tr>
<tr>
<td>Hints Directory</td>
<td><code>cassandra.yaml:hints_directory</code> (page 223)</td>
</tr>
<tr>
<td>Logs Directory</td>
<td>Log data for the database, Spark, and Tomcat. See the default file locations for Installer-No Services and tarball installations (page 186).</td>
</tr>
</tbody>
</table>

15. Change the default ports (Advanced Installations only):

Table 27: Ports

<table>
<thead>
<tr>
<th>Storage Port</th>
<th><code>cassandra.yaml:storage_port</code> (page 215)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSL Storage Port</td>
<td><code>cassandra.yaml:ssl_storage_port</code> (page 231)</td>
</tr>
<tr>
<td>RPC Port</td>
<td><code>cassandra.yaml:rpc_port</code> (page 220)</td>
</tr>
</tbody>
</table>

16. In **System Configuration**, review any warnings about potential issues.

17. After the installation completes, review the installation logs to verify the installation.
Note: If you have closed the logs, see Services (page 182) or No-Services (page 187) installer locations.

DataStax Enterprise is ready for additional configuration (page 154).

18. Single-node cluster installations only:

a. Start DataStax Enterprise from the installation directory:

 $ bin/dse cassandra

 where the installation directory is either:

 • /usr/share/dse
 • the directory where you installed DataStax Enterprise.

 Note: For other start options, see Starting DataStax Enterprise as a stand-alone process (page 1278).

b. Verify that DataStax Enterprise is running. From the installation directory:

 $ bin/nodetool status

 Results using vnodes:

 Datacenter: Cassandra
 =====================
 Status=Up/Down
 ├/ State=Normal/Leaving/Joining/Moving
 ├── Address Load Tokens Owns Host ID
 │ Rack
 └UN 127.0.0.1 82.43 KB 128 ?
 40725dc8-7843-43ae-9c98-7c532b1f517e rack1

 Results not using vnodes:

 Datacenter: Analytics
 ======================
 Status=Up/Down
 ├/ State=Normal/Leaving/Joining/Moving
 │ Token Rack
 └UN 172.16.222.136 103.24 KB ? 3c1d0657-0990-4f78-a3c0-3e0c37fc3a06
 1647352612226902707 rack1

What's next:
Using the DataStax Installer to install on Mac OS X

Use these instructions for installing DataStax Enterprise 5.1 using the DataStax Installer on Mac OS X.

Prerequisites:

- Mac OS X is supported for development only.
- Latest version of Oracle Java 8 is recommended.
- On some versions of Mac OS X, you may need to install readline: `easy_install readline`.

Hardware requirements

See Recommended production settings (page 190) and the DataStax Enterprise Reference Architecture white paper.

About DataStax installer

The DataStax installer installs DataStax Enterprise and DataStax Agent. It does not install OpsCenter. If you select Developer Related Tools during installation, DataStax Studio (page 1361) is installed.

The installer sets some but not all cassandra.yaml parameters. It does not set dse.yaml properties. Set the remaining parameters in the following ways:

- Manually after installation.
- To specify pre-configured cassandra.yaml and dse.yaml files, use the unattended install (page 168) with either command line (page 169) or property file (page 169).

Note: The latest version of DataStax Enterprise 5.1 is 5.1.15.

Important: End User License Agreement (EULA). By downloading this DataStax product, you agree to the terms of the EULA.

In a terminal window:

1. Download the .dmg file for DataStax Enterprise from the DataStax download page or use the following command:

   ```
   $ curl -O https://downloads.datastax.com/enterprise/DataStaxEnterprise-5.1.15-osx-installer.dmg
   ```
Note: To install earlier versions, replace the version number in the above command. To view the available versions, see the Release notes (page 26).

2. From the directory where you downloaded the install file, click the DataStaxEnterprise-5.1.15-osx-installer.dmg file.

3. Double-click the DataStax Enterprise installer.

The installer launches.

4. After accepting the License Agreement, select the type of installation:

Service Setup

- **No Services**: This installation sets up the server as a standalone process.
- **Services and Utilities**: This installation sets up the server as a service. It sets up a property (.plist) file to start the service on login.

 # **Simple**: Installs DataStax Enterprise using the default path names and options:
 # **Advanced**: Allows you to configure path names and options:

 # User Setup (page 152)
 # Ring Options (page 151)
 # Directory Locations (page 152)
5. Set the installation directory.

6. Set up the node:

<table>
<thead>
<tr>
<th>Table 28: Node Setup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default Interface</td>
</tr>
<tr>
<td>Cluster Name</td>
</tr>
<tr>
<td>Seeds</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Install developer related tools</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

7. If an installation of DataStax Enterprise already exists, the installer displays upgrade information and installs DSE in the previous installation location.

Important: Before upgrading an existing cluster, see the DataStax Upgrade Guide.

The important files to review for upgrade are dse.yaml, cassandra.yaml, and for service installs/etc/default/dse.

If dse.in.sh or cassandra.in.sh have been modified, make modifications to the cassandra-env.sh or the dse-env.sh instead. Changing these files is not recommended.
8. Set the ring options:

Table 29: Ring Options

<table>
<thead>
<tr>
<th>Enable Virtual Nodes (vnodes)</th>
<th>Enable or disable Virtual nodes (page 290).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of tokens</td>
<td>Token recommendations (page 290) for vnodes:</td>
</tr>
<tr>
<td></td>
<td>• Transactional nodes: 128</td>
</tr>
<tr>
<td></td>
<td>• Analytical nodes (Spark): 128</td>
</tr>
<tr>
<td></td>
<td>• Search nodes: 8</td>
</tr>
<tr>
<td></td>
<td>• DSE Graph: 128. When used with DSE Search: 8</td>
</tr>
<tr>
<td>Listen Address</td>
<td>cassandra.yaml: listen_address (page 200)</td>
</tr>
<tr>
<td>RPC Address</td>
<td>cassandra.yaml: rpc_address (page 205)</td>
</tr>
</tbody>
</table>

9. Set up the node type:

Table 30: DSE Setup

<table>
<thead>
<tr>
<th>DSE Analytics</th>
<th>DSE Analytics (page 293) includes integration with Apache Spark™.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSE Search</td>
<td>DSE Search (page 431) includes integration with Apache Solr™.</td>
</tr>
<tr>
<td>DSE Graph</td>
<td>DSE Graph (page 562) is a graph database for managing, analyzing, and searching highly-connected data.</td>
</tr>
<tr>
<td>DSE Advanced Replication</td>
<td>DSE Advanced Replication (page 872) supports configurable distributed data replication from source clusters to destination clusters bi-directionally that can experience sporadic connectivity.</td>
</tr>
</tbody>
</table>

10. Set up the miscellaneous options:

Table 31: Misc Options

Start services	• **Yes** starts all services when the installation is complete.
	• **No**, select when additional configuration is needed after installation.
OpsCenter Address	Optional. The server name or IP address for OpsCenter.

If performing a Simple installation, go to 16 (page 153).
The following steps are displayed when Advanced is selected in 4 (page 163).

11. Change the default directory locations (Advanced Installations only):

<table>
<thead>
<tr>
<th>Directory Location</th>
<th>Location</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Directory</td>
<td>cassandra.yaml: data_file_directories</td>
<td>201</td>
</tr>
<tr>
<td>Commitlog Directory</td>
<td>cassandra.yaml: commitlog_directory</td>
<td>201</td>
</tr>
<tr>
<td>Saved Caches Directory</td>
<td>cassandra.yaml: saved_caches_directory</td>
<td>201</td>
</tr>
<tr>
<td>Hints Directory</td>
<td>cassandra.yaml: hints_directory</td>
<td>223</td>
</tr>
<tr>
<td>Logs Directory</td>
<td>Log data for the database, Spark, and Tomcat. See the default file locations for Installer-Services and package installations (page 181) or Installer-No Services and tarball installations (page 186).</td>
<td></td>
</tr>
</tbody>
</table>

12. Change the default ports (Advanced Installations only):

<table>
<thead>
<tr>
<th>Port</th>
<th>Location</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage Port</td>
<td>cassandra.yaml: storage_port</td>
<td>215</td>
</tr>
<tr>
<td>SSL Storage Port</td>
<td>cassandra.yaml: ssl_storage_port</td>
<td>231</td>
</tr>
<tr>
<td>RPC Port</td>
<td>cassandra.yaml: rpc_port</td>
<td>220</td>
</tr>
</tbody>
</table>

13. In System Configuration, review any warnings about potential issues.

14. After the installation completes, review the installation logs to verify the installation.

Note: If you have closed the logs, see Services (page 182) or No-Services (page 187) installer locations.

DataStax Enterprise is ready for additional configuration (page 154).

15. Single-node cluster installations only:

a. If DataStax Enterprise is not running, start it from the installation directory:

```
$ bin/dse cassandra
```

where the installation directory is either:

- /usr/share/dse
- the directory where you installed DataStax Enterprise.
Note: For other start options, see Starting DataStax Enterprise as a stand-alone process (page 1278).

b. Verify that DataStax Enterprise is running from the *installation directory*:

```
$ bin/nodetool status
```

Results using vnodes:

```
Datacenter: Cassandra
==============
Status=Up/Down
|/ State=Normal/Leaving/Joining/Moving
-- Address  Load  Tokens  Owns  Host ID
    Rack
UN 127.0.0.1  82.43 KB  128  ?
    40725dc8-7843-43ae-9c98-7c532b1f517e  rack1
```

Results not using vnodes:

```
Datacenter: Analytics
==============
Status=Up/Down
|/ State=Normal/Leaving/Joining/Moving
-- Address  Load  Owns  Host ID
    Token  Rack
UN 172.16.222.136  103.24 KB  ?
    3c1d0657-0990-4f78-a3c0-3e0c37fc3a06  1647352612226902707  rack1
```

What’s next:

- Configuration and log file locations *(page 181)* - Services and package installations.
- Configuration and log file locations *(page 186)* - No Services and tarball installations.
- Starting and stopping DataStax Enterprise *(page 1275)*.
- Planning and testing DSE cluster deployments.
- DataStax Studio *(page 1361)* documentation

cassandra.yaml
The location of the *cassandra.yaml* file on Mac OS X is:

```
installation_location/resources/cassandra/conf/cassandra.yaml
```

dse.yaml
The location of the *dse.yaml* file depends on the type of installation:

<table>
<thead>
<tr>
<th>Package installations</th>
<th>/etc/dse/dse.yaml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer-Services installations</td>
<td></td>
</tr>
</tbody>
</table>
Installing DataStax Enterprise 5.1

Using the DataStax Installer to install using command line or properties file commands

Instructions for installing DataStax Enterprise 5.1 using the DataStax Installer using command line or properties file commands.

Warning: When DSE is installed, it creates a cassandra user in the database and runs as this user. It also creates a cassandra user in the operating system. Do not use the cassandra user in production. Using the cassandra user is a security risk. See Adding a superuser login.

Prerequisites:
- A supported platform.
- Root or sudo access.
- Latest build of a Technology Compatibility Kit (TCK) Certified OpenJDK version 8 or Oracle Java SE Runtime Environment 8 (JRE or JDK). Earlier or later versions are not supported.
 Attention: Although Oracle JRE/JDK 8 is supported, DataStax does more extensive testing on OpenJDK 8. This change is due to the end of public updates for Oracle JRE/JDK 8. Java 9 is not supported.
- Python 2.7.x

Hardware requirements

See Recommended production settings (page 190) and the DataStax Enterprise Reference Architecture white paper.

About the installer

The DataStax installer installs DataStax Enterprise and the DataStax Agent. If developer_install is specified, it installs DataStax Studio (page 1361). It does not install OpsCenter.

You can use this installer to set cassandra.yaml and dse.yaml properties with the following template files:
- cassandra_yaml_template
- dse_yaml_template

The DataStax Enterprise download page provides a sample_install_5.1.prop file.

Note: The latest version of DataStax Enterprise 5.1 is 5.1.15.
Important: End User License Agreement (EULA). By downloading this DataStax product, you agree to the terms of the EULA.

In a terminal window:

1. Download the installer for your computer from the DataStax download page or use the following command:

   ```
   $ curl -O https://downloads.datastax.com/enterprise/DataStaxEnterprise-5.1.15-linux-x64-installer.run
   ```

 Note: To install earlier versions, replace the version number in the above command. To view the available versions, see the Release notes (page 26).

2. From the directory where you downloaded the install file, change the permission to executable:

   ```
   $ chmod +x DataStaxEnterprise-5.1.15-linux-x64-installer.run
   ```

3. You can either use the command line or a properties file:

 - Command line:

     ```
     sudo ./DataStaxEnterprise-5.1.15-linux-x64-installer.run --
     option argument --option argument ... --option argument --mode
     unattended
     ```

 For available options, see the table below (page 170). Be sure to add "--" to the option. For example:

     ```
     sudo ./DataStaxEnterprise-5.1.15-linux-x64-installer.run --
     enable_vnodes 0 --mode unattended
     ```

 The installer uses the default value for any unspecified option.

 - Properties file:

     ```
     sudo ./DataStaxEnterprise-5.1.15-linux-x64-installer.run --
     optionfile option_file_name --mode unattended
     ```

 where `option_file_name` is the name of the file containing the installation options. For example:

     ```
     sudo ./DataStaxEnterprise-5.1.15-linux-x64-installer.run --
     optionfile ../datastax/DC4-analytics.prop --mode unattended
     ```

 Properties file format: `option=argument`. For example:
install_type=simple
update_system=1

The properties file options are the same as the command line options without the --.

Custom installation location example:

```bash
$ sudo ./DataStaxEnterprise-5.1.15-linux-x64-installer.run --
optionfile ../datastax/custom_location.prop --mode unattended
```

```
system_install=no_services
prefix=/home/dse
```

Table 34: Unattended install options

<table>
<thead>
<tr>
<th>Option</th>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Install options</td>
<td></td>
<td></td>
</tr>
<tr>
<td>prefix</td>
<td>installation location</td>
<td>Set installation location available only for No Services installations. For upgrade installations, No Services installations use the previous installation location.</td>
</tr>
<tr>
<td>cassandra_yaml_template</td>
<td>file_name</td>
<td>Template for cassandra.yaml file.</td>
</tr>
<tr>
<td>dse_yaml_template</td>
<td>file_name</td>
<td>Template for dse.yaml file.</td>
</tr>
<tr>
<td>logs_dir</td>
<td>log_location</td>
<td>Set the log directory for the database and Spark data.</td>
</tr>
<tr>
<td>developer_install</td>
<td>developer_install</td>
<td>Install demos and Javadoc.</td>
</tr>
<tr>
<td>do_drain</td>
<td>0 (no) or 1 (yes)</td>
<td>Drain (page 973) existing node before installing. Default: 1</td>
</tr>
<tr>
<td>start_services</td>
<td>0 (no) or 1 (yes)</td>
<td>Start services after installation. Default: 1</td>
</tr>
<tr>
<td>update_system</td>
<td>0 (no) or 1 (yes)</td>
<td>Update some system packages and dependencies. Does not upgrade or install major components such as Java. Default: 1 for root user, 0 for others.</td>
</tr>
</tbody>
</table>

Set up node type options
<table>
<thead>
<tr>
<th>Option</th>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>install_type</td>
<td>simple or advanced</td>
<td>Set install type:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• simple - installs DataStax Enterprise using the default path names and options.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• advanced - configure path names and options. See Install Type (page 149).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Default: simple</td>
</tr>
<tr>
<td>system_install</td>
<td>Use one of the following:</td>
<td>Set up DataStax Enterprise as a service or standalone process. If installed as a service, installs DataStax Enterprise in system locations. Default: services_and_utilities for root user, no_services for others.</td>
</tr>
<tr>
<td></td>
<td>no_services</td>
<td></td>
</tr>
<tr>
<td></td>
<td>services_and_utilities</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>For Services installations, the installer puts DataStax Enterprise in system locations and /usr/share/dse.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For upgrade installations, No Services installations use the previous installation location. For Services installations, the installer puts DataStax Enterprise in system locations and /usr/share/dse.</td>
</tr>
<tr>
<td>enable_analytics</td>
<td>0 (no) or 1 (yes)</td>
<td>Enable or disable DSE Analytics. Default: 0</td>
</tr>
<tr>
<td>enable_search</td>
<td>0 (no) or 1 (yes)</td>
<td>DSE Search (page 431) includes integration with Apache Solr™. Default: 0</td>
</tr>
<tr>
<td>enable_graph</td>
<td>0 (no) or 1 (yes)</td>
<td>DSE Graph (page 562) is a graph database for managing, analyzing, and searching highly-connected data. Default: 0</td>
</tr>
<tr>
<td>enable_advrepl</td>
<td>0 (no) or 1 (yes)</td>
<td>DSE Advanced Replication (page 872) supports configurable distributed data replication from source clusters to destination clusters bi-directionally that can experience sporadic connectivity. Default: 0</td>
</tr>
<tr>
<td>opscenter_address</td>
<td>opscenter_address</td>
<td>Optional. The server name or IP address for OpsCenter.</td>
</tr>
</tbody>
</table>

Preflight check options
<table>
<thead>
<tr>
<th>Option</th>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>run_pfc</td>
<td>0 (no) or 1 (yes)</td>
<td>Preflight tool (page 1272) is a collection of tests that can be run on a node to detect and fix a configuration. The tool can detect and fix many invalid or suboptimal configuration settings. Not available for No Services installations.</td>
</tr>
<tr>
<td>pfc_fix_issues</td>
<td>0 (no) or 1 (yes)</td>
<td>Attempt to fix invalid or suboptimal configuration settings. Not available for No Services installations.</td>
</tr>
<tr>
<td>pfc_devices</td>
<td>paths_to_hard_drives</td>
<td>Paths to your hard drives. Separate the drives by a comma. Not available for No Services installations.</td>
</tr>
<tr>
<td>pfc_disk_duration</td>
<td></td>
<td>Set to simulate a normal load. Not available for No Services installations.</td>
</tr>
<tr>
<td>pfc_disk_threads</td>
<td></td>
<td>Set to simulate a normal load. Not available for No Services installations.</td>
</tr>
</tbody>
</table>

User and user group options

<table>
<thead>
<tr>
<th>Option</th>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cassandra_user</td>
<td>user_name</td>
<td>User name for running service. Because the DataStax Agent relies on user cassandra, DataStax does not recommend changing the default. If changed, you must manually install, update, and configure the DataStax Agent.</td>
</tr>
<tr>
<td>cassandra_group</td>
<td>group_name</td>
<td>Group name for running service. See above.</td>
</tr>
</tbody>
</table>

cassandra.yaml options

These values override options set in the cassandra_yaml_template (page 170).

- **cassandra_commitlog_dir**
 - directory
 - commitlog_dir (page 201)
- **cassandra_data_dir**
 - directory
 - data_file_directories (page 201)
Option Table

<table>
<thead>
<tr>
<th>Option</th>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cassandra_hints_dir</td>
<td>directory</td>
<td>hints_directory (page 223)</td>
</tr>
<tr>
<td>cassandra_saved_caches_dir</td>
<td>directory</td>
<td>saved_caches_directory (page 201)</td>
</tr>
<tr>
<td>enable_vnodes</td>
<td>0 (no) or 1 (yes)</td>
<td>Enable or disable virtual nodes (vnodes). Default: 1 for transactional nodes, 0 for others.</td>
</tr>
<tr>
<td>interface</td>
<td>IP_address</td>
<td>Default interface to use for listening on all services.</td>
</tr>
<tr>
<td>listen_address</td>
<td>IP_address</td>
<td>listen_address (page 200)</td>
</tr>
<tr>
<td>num_tokens</td>
<td>number_of_tokens</td>
<td>num_token (page 214)</td>
</tr>
<tr>
<td>ring_name</td>
<td>name</td>
<td>Name of ring.</td>
</tr>
<tr>
<td>rpc_address</td>
<td>IP_address</td>
<td>rpc_address (page 205)</td>
</tr>
<tr>
<td>rpc_port</td>
<td>port_number</td>
<td>rpc_port (page 220)</td>
</tr>
<tr>
<td>seeds</td>
<td>Comma separated list of seed IP_addresses</td>
<td>Seed list for this node. Do not make all nodes seed nodes. See Internode communications (gossip).</td>
</tr>
<tr>
<td>ssl_storage_port</td>
<td>port_number</td>
<td>ssl_storage_port (page 231)</td>
</tr>
<tr>
<td>storage_port</td>
<td>port_number</td>
<td>storage_port (page 215)</td>
</tr>
</tbody>
</table>

dse.yaml

The location of the dse.yaml file depends on the type of installation:

<table>
<thead>
<tr>
<th>Package installations</th>
<th>Installer-Services installations</th>
<th>/etc/dse/dse.yaml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tarball installations</td>
<td>Installer-No Services installations</td>
<td>installation_location/resources/dse/conf/dse.yaml</td>
</tr>
</tbody>
</table>

DataStax Enterprise is ready for additional configuration *(page 154).*

What’s next:

- Configuration and log file locations *(page 181)* - Services and package installations.
- Configuration and log file locations *(page 186)* - No Services and tarball installations.
- Starting and stopping DataStax Enterprise *(page 1275).*
- Planning and testing DSE cluster deployments.
Installing DataStax Enterprise 5.1.x patch releases

The latest version of DataStax Enterprise (DSE) 5.1.x is 5.1.15.

To view the available patch releases for DSE 5.1, see the 5.1 Release Notes (page 26).

Installing patch releases

Important: End User License Agreement (EULA). By downloading this DataStax product, you agree to the terms of the EULA.

Instructions for installing patch releases are included in the installation instructions:

- Using the DataStax Installer to install (root permissions required) (page 146)
- Using the DataStax Installer to install (root permissions not required) (page 154)
- Using the DataStax Installer to install using command line or properties file commands (page 168)
- Installing DataStax Enterprise 5.1 on RHEL-based systems using Yum
- Installing DataStax Enterprise 5.1 on Debian-based systems using APT
- Installing DataStax Enterprise 5.1 using the binary tarball

To install patches for earlier versions of DataStax Enterprise, see 5.0, or 4.8 patch releases.

Installing on Docker

Use DataStax Docker images to create DataStax Enterprise (DSE) server, DSE OpsCenter, and DataStax Studio containers in non-production environments.

See the DataStax Docker docs for information on downloading and using the DataStax images for Docker.

Installing supporting software

Installing Oracle JDK on Debian or Ubuntu Systems

Configure your operating system to use the latest version of Oracle Java Platform, Standard Edition 8.

Note: DataStax recommends the latest build of a Technology Compatibility Kit (TCK) Certified OpenJDK version 8.

The Oracle Java Platform, Standard Edition (JDK) has been removed from the official software repositories of Ubuntu and only provides a binary (.bin) version. You can get the JDK from the Java SE Downloads.
1. Check which version of the JDK your system is using:

 $ java -version

 Note: DataStax recommends the latest build of a Technology Compatibility Kit (TCK) Certified OpenJDK version 8.

 If Oracle Java, the results should look like:


   ```
   java version "1.8.0_65"
   Java(TM) SE Runtime Environment (build 1.8.0_65-b17)
   Java HotSpot(TM) 64-Bit Server VM (build 25.65-b01, mixed mode)
   ```

2. If necessary, go to Oracle Java SE Downloads, accept the license agreement, and download the installer for your distribution.

 Note: If installing the Oracle JDK in a cloud environment, accept the license agreement, download the installer to your local client, and then use `scp` (secure copy) to transfer the file to your cloud machines.

3. Make a directory for the JDK:

 $ sudo mkdir -p /usr/lib/jvm

4. Unpack the tarball and install the JDK:

 $ sudo tar zxvf jdk-8u65-linux-x64.tar.gz -C /usr/lib/jvm

 The JDK files are installed into a directory called `/usr/lib/jvm/jdk-8u_version`.

5. Tell the system that there's a new Java version available:

 $ sudo update-alternatives --install "/usr/bin/java" "java" "/usr/lib/jvm/jdk1.8.0_version/bin/java" 1

 If updating from a previous version that was removed manually, you many need to execute the above command twice, because you'll get an error message the first time.

6. Set the new JDK as the default using the following command:

 $ sudo update-alternatives --config java

7. Make sure your system is using the correct JDK:
Installing DataStax Enterprise 5.1

$ java -version

java version "1.8.0_65"
Java(TM) SE Runtime Environment (build 1.8.0_65-b17)
Java HotSpot(TM) 64-Bit Server VM (build 25.65-b01, mixed mode)

Installing Oracle JDK on RHEL-based Systems

Configure your operating system to use the latest version of Oracle Java Platform, Standard Edition 8.

Note: DataStax recommends the latest build of a Technology Compatibility Kit (TCK) Certified OpenJDK version 8.

1. Check which version of the JDK your system is using:

 $ java -version

 Note: DataStax recommends the latest build of a Technology Compatibility Kit (TCK) Certified OpenJDK version 8.

 If Oracle Java, the results should look like:

   ```
   java version "1.8.0_65"
   Java(TM) SE Runtime Environment (build 1.8.0_65-b17)
   Java HotSpot(TM) 64-Bit Server VM (build 25.65-b01, mixed mode)
   ```

2. If necessary, go to Oracle Java SE Downloads, accept the license agreement, and download the installer for your distribution.

 Note: If installing the Oracle JDK in a cloud environment, accept the license agreement, download the installer to your local client, and then use `scp` (secure copy) to transfer the file to your cloud machines.

3. From the directory where you downloaded the package, run the install:

   ```
   $ sudo rpm -ivh jdk-8uversion-linux-x64.rpm
   ```

 The RPM installs the JDK into the `/usr/java/` directory.

4. Set your system to use the Oracle JDK:

   ```
   $ sudo alternatives --install /usr/bin/java java /usr/java/jdk1.8.0_version/bin/java 200000
   ```
5. Use the `alternatives` command to switch to the Oracle JDK.

```
$ sudo alternatives --config java
```

Note: If you have trouble, you may need to set `JAVA_HOME` and `PATH` in your profile, such as `.bash_profile`.

The following examples assume that the JDK is in `/usr/java` and `which java` shows `/usr/bin/java`:

- **Shell or bash:**
  ```
  $ export JAVA_HOME=/usr/java/latest
  $ export PATH=$JAVA_HOME/bin:$PATH
  ```

- **C shell (csh):**
  ```
  $ setenv JAVA_HOME "/usr/java/latest"
  $ setenv PATH $JAVA_HOME/bin:$PATH
  ```

6. Make sure your system is using the correct JDK:

```
$ java -version
```

For example, Java SE Runtime Environment 1.0.8_65:

```
java version "1.8.0_65"
Java(TM) SE Runtime Environment (build 1.8.0_65-b17)
Java HotSpot(TM) 64-Bit Server VM (build 25.65-b01, mixed mode)
```

Installing OpenJDK on Debian-based Systems

Configure your operating system to use the latest build of a Technology Compatibility Kit (TCK) Certified OpenJDK version 8. For example, OpenJDK 8 (1.8.0_151 minimum).

Tip: Although Oracle JRE/JDK 8 is supported, DataStax does more extensive testing on OpenJDK 8. This change is due to the end of public updates for Oracle JRE/JDK 8.

Java 9 is not supported.

In a terminal:

1. Install the OpenJDK 8 from a PPA repository:
Installing DataStax Enterprise 5.1

$ sudo add-apt-repository ppa:openjdk-r/ppa

2. Update the system package cache and install:

$ sudo apt-get update
$ sudo apt-get install openjdk-8-jdk

3. If you have more than one Java version installed on your system use the following command to switch versions:

$ sudo update-alternatives --config java

4. Make sure your system is using the correct JDK:

$ java -version

```
openjdk version "1.8.0_72-internal"
OpenJDK Runtime Environment (build 1.8.0_72-internal-b05)
OpenJDK 64-Bit Server VM (build 25.72-b05, mixed mode)
```

Installing OpenJDK on RHEL-based Systems

Configure your operating system to use the latest build of a Technology Compatibility Kit (TCK) Certified OpenJDK version 8. For example, OpenJDK 8 (1.8.0_151 minimum).

Tip: Although Oracle JRE/JDK 8 is supported, DataStax does more extensive testing on OpenJDK 8. This change is due to the end of public updates for Oracle JRE/JDK 8.

Java 9 is not supported.

In a terminal:

1. Install the OpenJDK 8:

 $ su -c "yum install java-1.8.0-openjdk"

2. If you have more than one Java version installed on your system use the following command to switch versions:

 $ sudo alternatives --config java

3. Make sure your system is using the correct JDK:

 $ java -version
Uninstalling DataStax Enterprise 5.1

Select the uninstall method for your type of installation.

Uninstalling from the DataStax Installer

Use this method when you have installed DataStax Enterprise from the DataStax Installer (page 146).

1. Go to the server installation directory:
 - If installed on Linux with root permissions: $ /usr/share/dse
 - If installed on Linux without root permissions: $ installation_location/dse
 - If installed on Mac OS X $ installation_location/dse

2. Launch the uninstaller:
 - **Linux**: $./uninstall ## Run the uninstaller as root or sudo if needed
 - **Mac OS X**: Double-click uninstaller.

3. Select the type of uninstall and follow the instructions on the uninstaller.

 Note: If you are going to reinstall DataStax Enterprise with the existing data files, be sure to drain (page 973) the node and move the files somewhere else before uninstalling.

Using the Unattended Uninstaller

To use this method, you must have installed DataStax Enterprise from the DataStax Installer (page 146).

1. Create a configuration file called uninstall.property in the same directory as the uninstaller. For example:

   ```
   /usr/share/dse/uninstall.property
   ```

2. In the uninstall.property file, set the required properties:
 - `do_drain=1|0` - drains the node before uninstalling
 - `full_uninstall=1|0` - uninstalls all components
 where 1=yes and 0=no.

3. From the directory containing the uninstaller:
$ sudo ./uninstall --mode unattended

Uninstalling Debian- and RHEL-based packages

Use this method when you have installed DataStax Enterprise using APT or Yum.

1. Stop the DataStax Enterprise service:

 $ nodetool drain

 $ sudo service dse stop

2. Make sure all services are stopped:

 $ ps auwx | grep dse

3. If services are still running, use the PID to kill the service:

 $ bin/dse cassandra-stop -p dse_pid

4. Remove the installation directories:

 RHEL-based packages:

 $ sudo yum remove "dse-"* "datastax-"

 Debian-based packages:

 $ sudo apt-get purge "dse-"* "datastax-"

Uninstalling the binary tarball

Use this method when you have installed DataStax Enterprise using the binary tarball.

1. Stop the node:

 $ bin/dse cassandra-stop ## Use sudo if needed

2. Make sure all services are stopped:

 $ ps auwx | grep dse

3. If services are still running, use the PID to kill the service:

 $ bin/dse cassandra-stop -p dse_pid
4. Remove the installation directory.

$ rm -r installation_directory

Default file locations

Default file locations for package and Installer-Services installations

The default location of the files depend on how DataStax Enterprise is installed:

- The files are located in the same locations for Package installations and when the Services is selected using the DataStax Installer.
- The files are located in the same locations for Tarball and when No Services is selected using the DataStax Installer.

Default directories for cassandra.yaml and dse.yaml

<table>
<thead>
<tr>
<th>Directories</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/etc/dse/cassandra/cassandra.yaml</td>
<td>cassandra.yaml (page 198) is the main configuration file for the DataStax Enterprise database with default configuration for all nodes.</td>
</tr>
<tr>
<td>/etc/dse/dse.yaml</td>
<td>dse.yaml (page 233) is the main configuration file for DataStax Enterprise.</td>
</tr>
</tbody>
</table>

Default database directories

<table>
<thead>
<tr>
<th>Directories</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/var/lib/cassandra/data</td>
<td>commitlog, data, hints, saved_caches directories</td>
</tr>
<tr>
<td>/var/log/cassandra</td>
<td>Log files, including:</td>
</tr>
<tr>
<td></td>
<td>- audit directory</td>
</tr>
<tr>
<td></td>
<td>- debug.log</td>
</tr>
<tr>
<td></td>
<td>- gremlin.log</td>
</tr>
<tr>
<td></td>
<td>- solrvalidation.log</td>
</tr>
<tr>
<td></td>
<td>- system.log</td>
</tr>
<tr>
<td></td>
<td>You can change logging locations.</td>
</tr>
<tr>
<td>/var/run/cassandra</td>
<td>Database process ID (pid) directory</td>
</tr>
<tr>
<td>/usr/share/dse/cassandra/tools</td>
<td>Tools for testing, starting, using SSTables, plus YAML examples.</td>
</tr>
</tbody>
</table>
Installing DataStax Enterprise 5.1

Directories

<table>
<thead>
<tr>
<th>Directory</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/etc/dse/cassandra</td>
<td>Property files and cqlshrc samples including:</td>
</tr>
<tr>
<td></td>
<td>- cassandra-env.sh</td>
</tr>
<tr>
<td></td>
<td>- cassandra-rackdc.properties</td>
</tr>
<tr>
<td></td>
<td>- cassandra-topology.properties</td>
</tr>
<tr>
<td></td>
<td>- cassandra-topology.yaml</td>
</tr>
<tr>
<td></td>
<td>- commitlog_archiving.properties</td>
</tr>
<tr>
<td></td>
<td>- cqlshrc.sample</td>
</tr>
<tr>
<td></td>
<td>- logback.xml</td>
</tr>
<tr>
<td>/etc/init.d</td>
<td>Set node type and other server configuration</td>
</tr>
</tbody>
</table>

Default DSEFS data directory

The default location for the DSEFS data directory is `/var/lib/dsefs`.

Default DataStax Enterprise Installer directories, install logs, and uninstaller

<table>
<thead>
<tr>
<th>Directory</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/usr/share/dse/backups/log_file_dir</td>
<td>Backup and log files:</td>
</tr>
<tr>
<td></td>
<td>- bitrock_installer.log</td>
</tr>
<tr>
<td></td>
<td>- copied_config_files.log</td>
</tr>
<tr>
<td></td>
<td>- install_dependencies.log</td>
</tr>
<tr>
<td></td>
<td>- pfc_results.txt</td>
</tr>
<tr>
<td></td>
<td>Backup files from previous releases</td>
</tr>
<tr>
<td>/usr/share/dse/uninstall</td>
<td>Uninstall DataStax Enterprise (page 179)</td>
</tr>
</tbody>
</table>

Default DSE Graph directories

<table>
<thead>
<tr>
<th>Directory</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/etc/dse/graph/gremlin-console/conf/remote.yaml</td>
<td>Gremlin console configuration for connection to the Gremlin Server, including Kerberos authentication and SSL encryption.</td>
</tr>
<tr>
<td>/etc/dse/graph/logback-gremlin-server.xml</td>
<td>GremlinServerFileAppender</td>
</tr>
</tbody>
</table>

Default DSE Search directories

<table>
<thead>
<tr>
<th>Directory</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/usr/share/dse/resources/solr/conf</td>
<td>Solr configuration</td>
</tr>
<tr>
<td>/usr/share/dse/demos/wikipedia</td>
<td>Search - Wikipedia demo</td>
</tr>
<tr>
<td>/usr/share/dse/solr/web/demos/wikipedia</td>
<td>Search - Wikipedia demo with Tomcat</td>
</tr>
</tbody>
</table>
Directories | Description
--- | ---
/var/log/cassandra | Search log messages are in the system.log file

Default Spark directories

Directories	Description
/etc/dse/spark/ | spark-env.sh (page 333), spark-defaults.conf, spark-daemon-defaults.conf |
/usr/share/dse/spark/lib | Spark library |
/var/log/spark | Spark Master and Worker logs |
/usr/share/dse/spark/spark-jobserver | Spark Jobserver |
/usr/share/dse/demos/portfolio_manager | Spark Portfolio Manager demo |
/var/lib/dsefs | The default directory to store the DSE File System data. |

Default location for the logback configuration file

Directories	Description
/etc/dse/cassandra/logback.xml | logback.xml is the logback configuration file |

Default location audit logs

Directories	Description
/var/log/cassandra/dropped_audit_events.log | Default location for dropped events logs. |

Default OpsCenter directories

See the [OpsCenter documentation](#).

Default DSE Multi-Instance configuration files

With DSE Multi-Instance, multiple DataStax Enterprise nodes reside on a single host machine. To segregate the configuration for each DataStax Enterprise node, node-specific directory structures are used to store configuration and operational files. For example, in addition to /etc/dse/dse.yaml, the DSE Multi-Instance dse.yaml files are stored in /etc/dse-nodeId/dse.yaml locations. The server_id option is generated in DSE Multi-
Installing DataStax Enterprise 5.1

Instance /etc/dse-nodeId/dse.yaml files to uniquely identify the physical server on which multiple instances are running and is unique for each database instance. See DSE Multi-Instance server_id (page 268).

<table>
<thead>
<tr>
<th>Directories</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/etc/dse</td>
<td>/etc/dse/dse.yaml is the primary configuration file for DataStax Enterprise</td>
</tr>
<tr>
<td>/etc/dse-node1</td>
<td>/etc/dse-node1/dse.yaml is the configuration file for the DataStax Enterprise node in the dse-node1 directory</td>
</tr>
<tr>
<td>/etc/dse-node2</td>
<td>/etc/dse-node2/dse.yaml is the configuration file for the DataStax Enterprise node in the dse-node2 directory</td>
</tr>
</tbody>
</table>

For a comprehensive list of file locations in a DSE Multi-Instance cluster, see directories for DSE Multi-Instance (page 184).

Default DSE Multi-Instance generated directories

With DSE Multi-Instance, these directories are created on the host machine for each node.

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Directories</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSE Multi-Instance root directory</td>
<td>/etc/defaults</td>
<td>Each DSE Multi-Instance host machine has the /etc/defaults root directory. This default location is not configurable.</td>
</tr>
<tr>
<td>DataStax Enterprise node type</td>
<td>/etc/defaults/dse-nodeId</td>
<td>Defines the node type (transactional, search, analytics, graph, and so on).</td>
</tr>
<tr>
<td>DataStax Enterprise configuration file</td>
<td>/etc/dse-nodeId/dse.yaml</td>
<td>The dse.yaml (page 233) configuration file for each node.</td>
</tr>
<tr>
<td>DataStax Enterprise process ID (pid)</td>
<td>/var/run/dse-nodeId.dse-nodeId.pid</td>
<td>The default DataStax Enterprise process ID (pid) directory for each node.</td>
</tr>
<tr>
<td>Database configuration</td>
<td>/etc/dse-nodeId/cassandra/cassandra.yaml</td>
<td>The cassandra.yaml (page 198) configuration file for each node.</td>
</tr>
<tr>
<td>Database data directory</td>
<td>/var/lib/dse-nodeId/data</td>
<td>The root directory for storing data on each node.</td>
</tr>
</tbody>
</table>

Define with dse add-node --data-directory=directory ...
<table>
<thead>
<tr>
<th>Purpose</th>
<th>Directories</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Database log files</td>
<td>/var/log/dse-nodeId/cassandra</td>
<td>The default directory where the audit.log, output.log, solrvalidation.log, and system.log log files are stored for each node. Define with dse add-node --logs-directory ...</td>
</tr>
<tr>
<td>Database pid directory</td>
<td>/var/run/dse-nodeId</td>
<td>Database process ID (pid) directory for each node.</td>
</tr>
<tr>
<td>Caches directory</td>
<td>/var/lib/dse-nodeId/saved_caches</td>
<td>The table key and row caches directory for each node. Define with dse add-node --saved-caches-directory-directory ...</td>
</tr>
<tr>
<td>Commit log files</td>
<td>/var/lib/dse-nodeId/commitlog</td>
<td>The commit log directory for each node. Define with dse add-node --commit-directory-directory ...</td>
</tr>
<tr>
<td>Hints directory</td>
<td>/var/lib/dse-nodeId/hints</td>
<td>The hints directory for each node. Define with dse add-node --hints-directory-directory ...</td>
</tr>
<tr>
<td>Spark configuration file</td>
<td>/etc/dse-nodeId/spark/spark-env.sh</td>
<td>Spark configuration file spark-env.sh (page 333) for each node.</td>
</tr>
<tr>
<td>Spark Worker data directory</td>
<td>/var/lib/dse-nodeId/spark/worker</td>
<td>The data directory for Spark Worker for each node. Define with dse add-node --spark-worker-directory-directory ...</td>
</tr>
<tr>
<td>Spark Worker local node directory</td>
<td>/var/lib/dse-nodeId/spark/rdd</td>
<td>The local directory for Spark Worker for each node. Define with dse add-node --spark-local-directory-directory ...</td>
</tr>
<tr>
<td>Spark logs directory</td>
<td>/var/log/dse-nodeId/spark</td>
<td>The Spark logs directory for each node. Define with dse add-node --spark-log-directory-directory ...</td>
</tr>
<tr>
<td>Logback configuration</td>
<td>/etc/dse-nodeId/cassandra/logback.xml</td>
<td>Logback configuration file for each node.</td>
</tr>
</tbody>
</table>
Installing DataStax Enterprise 5.1

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Directories</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solr configuration</td>
<td>/etc/dse-nodeId/solr</td>
<td>Solr configuration files for each node.</td>
</tr>
<tr>
<td>Tomcat log files</td>
<td>/var/log/dse-nodeId/tomcat</td>
<td>The directory for Tomcat server logs. Define with dse add-node --tomcat-logs=directory...</td>
</tr>
</tbody>
</table>

Licenses and other documents

The default location is `installation_location`. Also see DataStax Enterprise third-party software.

Default file locations for tarball and Installer-No Services installations

The default location of the files depend on how DataStax Enterprise is installed:

- The files are located in the same locations for Package installations and when the Services is selected using the DataStax Installer.
- The files are located in the same locations for Tarball and when No Services is selected using the DataStax Installer.

Default installation location

The default `installation_location` depends on whether you installed DataStax Enterprise by using the DataStax Installer or from the binary tarball:

- Installer-No Services (page 146): `:/usr/share/dse`
- Tarball installation: The location where you extracted DataStax Enterprise.

Default directories for cassandra.yaml and dse.yaml

<table>
<thead>
<tr>
<th>Directories</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>installation_location/resources/cassandra/conf/cassandra.yaml</code></td>
<td><code>cassandra.yaml (page 198)</code> is the main configuration file for the database.</td>
</tr>
<tr>
<td><code>installation_location/resources/dse/conf/dse.yaml</code></td>
<td><code>dse.yaml (page 233)</code> is the main configuration file for DataStax Enterprise.</td>
</tr>
</tbody>
</table>

Default database directories

<table>
<thead>
<tr>
<th>Directories</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>installation_location/resources/cassandra/bin</code></td>
<td>Commands and utilities, such as nodetool, cqlsh, sstabledump, and sstableloader</td>
</tr>
</tbody>
</table>
Directories

| installation_location/resources/cassandra/conf | Property files and cqlshrc samples including:
• cassandra-env.sh
• cassandra-rackdc.properties
• cassandra-topology.properties
• cassandra-topology.yaml
• commitlog_archiving.properties
• cqlshrc.sample
• logback.xml |
| /var/lib/cassandra | commitlog, data, hints, saved_caches directories |
| /var/log/cassandra | Log files, including:
• audit directory
• debug.log
• gremlin.log
• solrvalidation.log
• system.log
You can change logging locations. |

Default DSEFS data directory

The default location for the DSEFS data directory is `/var/lib/dsefs`.

Default DataStax Enterprise Installer and install log directories

installation_location/dse/backups/log_file_dir/copied_config_files.log	Show Config File Overwrites
installation_location/dse/backups/log_file_dir/bitrock_installer.log	View Installation Log
installation_location/dse/backups/log_file_dir/install_dependencies.log	View Dependency Installation Log
installation_location/dse/README.md	View README
installation_location/dse/uninstall	Uninstall DataStax Enterprise
Default DSE Graph directories

<table>
<thead>
<tr>
<th>Directories</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>installation_location/resources/graph/gremlin-console/conf/remote.yaml</code></td>
<td>Gremlin console configuration for connection to the Gremlin Server, including Kerberos authentication and SSL encryption.</td>
</tr>
<tr>
<td><code>installation_location/resources/graph/conf/logback-gremlin-server.xml</code></td>
<td>GremlinServerFileAppender</td>
</tr>
</tbody>
</table>

Default DSE Search directories

<table>
<thead>
<tr>
<th>Directories</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>installation_location/resources/solr/conf</code></td>
<td>Solr configuration</td>
</tr>
<tr>
<td><code>installation_location/resources/solr/lib</code></td>
<td>Solr driver</td>
</tr>
<tr>
<td><code>installation_location/demos/wikipedia</code></td>
<td>Search - Wikipedia demo</td>
</tr>
<tr>
<td><code>/var/log/cassandra</code></td>
<td>Search log messages are in the system.log file.</td>
</tr>
</tbody>
</table>

Default Spark directories

<table>
<thead>
<tr>
<th>Directories</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>installation_location/resources/spark/conf</code></td>
<td><code>spark-env.sh (page 333)</code>, <code>spark-defaults.conf</code>, <code>spark-daemon-defaults.conf</code></td>
</tr>
<tr>
<td><code>/var/lib/spark</code></td>
<td>Spark library</td>
</tr>
<tr>
<td><code>/var/log/spark</code></td>
<td>Spark Master and Worker logs</td>
</tr>
<tr>
<td><code>installation_location/resources/spark/spark-jobserver</code></td>
<td>Spark Jobserver</td>
</tr>
<tr>
<td><code>installation_location/demos/portfolio_manager</code></td>
<td>Spark Portfolio Manager demo</td>
</tr>
<tr>
<td><code>/var/lib/dsefs</code></td>
<td>The default directory to store the DSE File System data.</td>
</tr>
</tbody>
</table>
Default Logback-appender directories

<table>
<thead>
<tr>
<th>Directories</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>installation_location/resources/cassandra/conf/logback.xml</code></td>
<td><code>logback.xml</code> is the logback configuration file</td>
</tr>
</tbody>
</table>

Default location audit logs

<table>
<thead>
<tr>
<th>Directories</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>/etc/dse/tomcat/conf/server.xml</code></td>
<td>Default location for Tomcat server logs for DSE Search.</td>
</tr>
<tr>
<td><code>/var/log/cassandra/dropped_audit_events.log</code></td>
<td>Default location for dropped events logs.</td>
</tr>
</tbody>
</table>

Default OpsCenter directories

See the [OpsCenter documentation](#).

Default directory for Token-generator tool

<table>
<thead>
<tr>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>installation_location/resources/cassandra/tools/bin/token-generator</code></td>
<td>For manually Generating tokens.</td>
</tr>
</tbody>
</table>

Licenses and other documents

The default location is `installation_location`. Also see [DataStax Enterprise third-party software](#).
Configuration

Recommended production settings

DataStax recommends the following settings for using DataStax Enterprise in production environments.

Caution: Depending on your environment, some of the following settings might not be persisted after reboot. Check with your system administrator to ensure they are viable for your environment.

Run the following command to view all current Linux kernel settings:

```bash
$ sudo sysctl -a
```

Use the Preflight check tool *(page 1272)* to run a collection of tests on a DataStax Enterprise node to detect and fix node configurations. The tool can detect and optionally fix many invalid or suboptimal configuration settings, such as user resource limits, swap, and disk settings.

Install the latest Java Virtual Machine

Configure your operating system to use the latest build of a Technology Compatibility Kit (TCK) Certified OpenJDK version 8. For example, OpenJDK 8 *(1.8.0_151 minimum)*. Java 9 is not supported.

Tip: Although Oracle JRE/JDK 8 is supported, DataStax does more extensive testing on OpenJDK 8. This change is due to the end of public updates for Oracle JRE/JDK 8.

See the installation instructions for your operating system:

- Installing OpenJDK on Debian-based Systems *(page 177)*
- Installing OpenJDK on RHEL-based Systems *(page 178)*

Synchronize clocks

Use Network Time Protocol (NTP) to synchronize the clocks on all nodes and application servers.

Synchronizing clocks is required because DataStax Enterprise (DSE) overwrites a column only if there is another version whose timestamp is more recent, which can happen when machines are in different locations.

DSE timestamps are encoded as microseconds because UNIX Epoch time does not include timezone information. The timestamp for all writes in DSE is Universal Time Coordinated...
(UTC). DataStax recommends converting to local time only when generating output to be read by humans.

1. Install NTP for your operating system:

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debian-based system</td>
<td><code>$ sudo apt-get install ntpdate</code></td>
</tr>
<tr>
<td>RHEL-based system¹</td>
<td><code>$ sudo yum install ntpdate</code></td>
</tr>
</tbody>
</table>

¹On RHEL 7 and later, `chrony` is the default network time protocol daemon. The configuration file for `chrony` is located in `/etc/chrony.conf` on these systems.

2. Start the NTP service on all nodes:

 $ sudo service ntp start -x

3. Run the `ntupdate` command to synchronize clocks:

 $ sudo ntpdate 1.ro.pool.ntp.org

4. Verify that your NTP configuration is working:

 $ ntpstat

Set kernel parameters

Configure the following kernel parameters for optimal traffic and user limits.

TCP settings

During low traffic intervals, a firewall configured with an idle connection timeout can close connections to local nodes and nodes in other data centers. To prevent connections between nodes from timing out, set the following network kernel settings:

1. Set the following TCP keepalive timeout values:

 $ sudo sysctl -w
 net.ipv4.tcp_keepalive_time=60
 net.ipv4.tcp_keepalive_probes=3
 net.ipv4.tcp_keepalive_intvl=10

 These values set the TCP keepalive timeout to 60 seconds with 3 probes, 10 seconds gap between each. The settings detect dead TCP connections after 90 seconds (60 + 10 + 10 + 10). The additional traffic is negligible, and permanently leaving these settings is
Configuration

not an issue. See Firewall idle connection timeout causing nodes to lose communication during low traffic times on Linux.

2. Change the following settings to handle thousands of concurrent connections used by the database:

$ sudo sysctl -w \
 net.core.rmem_max=16777216 \
 net.core.wmem_max=16777216 \
 net.core.rmem_default=16777216 \
 net.core.wmem_default=16777216 \
 net.core.optmem_max=40960 \
 net.ipv4.tcp_rmem=4096 87380 16777216 \
 net.ipv4.tcp_wmem=4096 65536 16777216

Set user resource limits

Use the `ulimit -a` command to view the current limits. Although limits can also be temporarily set using this command, DataStax recommends making the changes permanent.

For more information, see Insufficient user resource limits errors.

Debian-based systems

1. Edit the `/etc/pam.d/su` file and uncomment the following line to enable the `pam_limits.so` module:

   ```
   session    required   pam_limits.so
   ```

 This change to the PAM configuration file ensures that the system reads the files in the `/etc/security/limits.d` directory.

2. If you run DSE as root, some Linux distributions (such as Ubuntu), require setting the limits for the root user explicitly instead of using `cassandra_user`:

   ```
   root - memlock unlimited
   root - nofile 1048576
   root - nproc 32768
   root - as unlimited
   ```

RHEL-based systems

1. Set the `nproc` limits to `32768` in the `/etc/security/limits.d/90-nproc.conf` configuration file:

   ```
   cassandra_user - nproc 32768
   ```

All systems
1. Add the following line to /etc/sysctl.conf:

 vm.max_map_count = 1048575

2. Open the configuration file for your installation type:

<table>
<thead>
<tr>
<th>Installation type</th>
<th>Configuration file</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tarball installation</td>
<td>/etc/security/limits.conf</td>
</tr>
<tr>
<td>Package installation</td>
<td>/etc/security/limits.d/cassandra.conf</td>
</tr>
</tbody>
</table>

3. Configure the following settings for the <cassandra_user> in the configuration file:

 <cassandra_user> - memlock unlimited
 <cassandra_user> - nofile 1048576
 <cassandra_user> - nproc 32768
 <cassandra_user> - as unlimited

4. Reboot the server or run the following command to make all changes take effect:

 $ sudo sysctl -p

Persist updated settings

1. Add the following values to the /etc/sysctl.conf file:

 net.ipv4.tcp_keepalive_time=60
 net.ipv4.tcp_keepalive_probes=3
 net.ipv4.tcp_keepalive_intvl=10
 net.core.rmem_max=16777216
 net.core.wmem_max=16777216
 net.core.rmem_default=16777216
 net.core.wmem_default=16777216
 net.core.optmem_max=40960
 net.ipv4.tcp_rmem=4096 87380 16777216
 net.ipv4.tcp_wmem=4096 65536 16777216

2. Load the settings using one of the following commands:

 $ sudo sysctl -p /etc/sysctl.conf
 $ sudo sysctl -p /etc/sysctl.d/**.conf

3. To confirm the user limits are applied to the DSE process, run the following command where pid is the process ID of the currently running DSE process:
Disable settings that impact performance

Disable the following settings, which can cause issues with performance.

Disable CPU frequency scaling

Recent Linux systems include a feature called CPU frequency scaling or CPU speed scaling. This feature allows a server's clock speed to be dynamically adjusted so that the server can run at lower clock speeds when the demand or load is low. This change reduces the server's power consumption and heat output, which significantly impacts cooling costs. Unfortunately, this behavior has a detrimental effect on servers running DSE, because throughput can be capped at a lower rate.

On most Linux systems, a CPUfreq governor manages the scaling of frequencies based on defined rules. The default ondemand governor switches the clock frequency to maximum when demand is high, and switches to the lowest frequency when the system is idle.

Important: Do not use governors that lower the CPU frequency. To ensure optimal performance, reconfigure all CPUs to use the performance governor, which locks the frequency at maximum.

The performance governor will not switch frequencies, which means that power savings will be bypassed to always run at maximum throughput. On most systems, run the following command to set the governor:

```
for CPUFREQ in /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
do
    [ -f $CPUFREQ ] || continue
    echo -n performance > $CPUFREQ
done
```

Tip: If this directory does not exist on your system, refer to one of the following pages based on your operating system:

- Debian-based systems: cpufreq-set command on Debian systems
- RHEL-based systems: CPUfreq setup on RHEL systems

For more information, see High server load and latency when CPU frequency scaling is enabled in the DataStax Help Center.

Disable zone_reclaim_mode on NUMA systems

The Linux kernel can be inconsistent in enabling/disabling zone_reclaim_mode, which can result in odd performance problems.

To ensure that zone_reclaim_mode is disabled:
$ echo 0 > /proc/sys/vm/zone_reclaim_mode

For more information, see Peculiar Linux kernel performance problem on NUMA systems.

Disable swap

Failure to disable swap entirely can severely lower performance. Because the database has multiple replicas and transparent failover, it is preferable for a replica to be killed immediately when memory is low rather than go into swap. This allows traffic to be immediately redirected to a functioning replica instead of continuing to hit the replica that has high latency due to swapping. If your system has a lot of DRAM, swapping still lowers performance significantly because the OS swaps out executable code so that more DRAM is available for caching disks.

If you insist on using swap, you can set `vm.swappiness=1`. This allows the kernel swap out the absolute least used parts.

$ sudo swapoff --all

To make this change permanent, remove all swap file entries from `/etc/fstab`.

For more information, see Nodes seem to freeze after some period of time.

Optimize disk settings

The default disk configurations on most Linux distributions are not optimal. Follow these steps to optimize settings for your Solid State Drives (SSDs) or spinning disks.

Note: Complete the optimization settings for either SSDs or spinning disks. Do not complete both procedures for either storage type.

Optimize SSDs

Complete the following steps to ensure the best settings for SSDs.

1. Ensure that the `SysFS` rotational flag is set to `false` (zero).

 This overrides any detection by the operating system to ensure the drive is considered an SSD.

2. Apply the same rotational flag setting for any block devices created from SSD storage, such as mdarrays.

3. Determine your devices by running `lsblk`:

 $ lsblk

<table>
<thead>
<tr>
<th>NAME</th>
<th>MAJ:MIN</th>
<th>RM</th>
<th>SIZE</th>
<th>RO</th>
<th>TYPE</th>
<th>MOUNTPOINT</th>
</tr>
</thead>
<tbody>
<tr>
<td>vda</td>
<td>253:0</td>
<td>0</td>
<td>32G</td>
<td>0</td>
<td>disk</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
In this example, the current devices are `sda1` and `sda2`.

4. Set the IO scheduler to either `deadline` or `noop` for each of the listed devices:

For example:

```bash
$ echo deadline > /sys/block/device_name/queue/scheduler
```

where `device_name` is the name of the device you want to apply settings for.

- The `deadline` scheduler optimizes requests to minimize IO latency. If in doubt, use the `deadline` scheduler.

```bash
$ echo deadline > /sys/block/device_name/queue/scheduler
```

- The `noop` scheduler is the right choice when the target block device is an array of SSDs behind a high-end IO controller that performs IO optimization.

```bash
$ echo noop > /sys/block/device_name/queue/scheduler
```

5. Set the `nr_requests` value to indicate the maximum number of read and write requests that can be queued:

<table>
<thead>
<tr>
<th>Machine size</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large machines</td>
<td><code>$ echo 128 sys/block/device_name/queue/nr_requests</code></td>
</tr>
<tr>
<td>Small machines</td>
<td><code>$ echo 32 sys/block/device_name/queue/nr_requests</code></td>
</tr>
</tbody>
</table>

6. Set the `readahead` value for the block device to 8 KB.

This setting tells the operating system not to read extra bytes, which can increase IO time and pollute the cache with bytes that weren’t requested by the user.

Note: The recommended `readahead` setting for RAID on SSDs is the same as that for SSDs that are not being used in a RAID installation.

* **a.** Open `/etc/rc.local` for editing.

* **b.** Add the following lines to set the `readahead` on startup:

```bash
touch /var/lock/subsys/local
echo 0 > /sys/class/block/sda/queue/rotational
```
Configuration

c. Save and close `/etc/rc.local`.

Optimize spinning disks

1. Check to ensure read-ahead value is not set to 65536:

   ```
   $ sudo blockdev --report /dev/spinning_disk
   ```

2. Set the `readahead` to 128, which is the recommended value:

   ```
   $ sudo blockdev --setra 128 /dev/spinning_disk
   ```

Set the heap size for Java garbage collection

The default JVM garbage collection (GC) for DSE 5.1 is G1.

Note: DataStax does not recommend using G1 when using Java 7. This is due to a problem with class unloading in G1. In Java 7, PermGen fills up indefinitely until a full GC is performed.

Heap size is usually between ¼ and ½ of system memory. Do not devote all memory to heap because it is also used for offheap cache and file system cache.

See Tuning Java resources (page 1344) for more information on tuning the Java Virtual Machine (JVM).

Important: If you want to use Concurrent-Mark-Sweep (CMS) garbage collection, contact the DataStax Services team for configuration help. Tuning Java resources (page 1345) provides details on circumstances where CMS is recommended, though using CMS requires time, expertise, and repeated testing to achieve optimal results.

The easiest way to determine the optimum heap size for your environment is:

1. Set the `MAX_HEAP_SIZE` in the `jvm.options` file to a high arbitrary value on a single node.

2. View the heap used by that node:
 - Enable GC logging and check the logs to see trends.
 - Use List view in OpsCenter.

3. Use the value for setting the heap size in the cluster.

 Note: This method decreases performance for the test node, but generally does not significantly reduce cluster performance.
Configuration

If you don’t see improved performance, contact the DataStax Services team for additional help in tuning the JVM.

cassandra-env.sh
The location of the cassandra-env.sh file depends on the type of installation:

| Package installations | /etc/dse/cassandra/cassandra-env.sh |
| Tarball installations | installation_location/resources/cassandra/conf/cassandra-env.sh |

jvm.options
The location of the jvm.options file depends on the type of installation:

| Package installations | /etc/dse/cassandra/jvm.options |
| Tarball installations | installation_location/resources/cassandra/conf/jvm.options |

Check Java Hugepages settings

Many modern Linux distributions ship with the Transparent Hugepages feature enabled by default. When Linux uses Transparent Hugepages, the kernel tries to allocate memory in large chunks (usually 2MB), rather than 4K. This allocation can improve performance by reducing the number of pages the CPU must track. However, some applications still allocate memory based on 4K pages, which can cause noticeable performance problems when Linux tries to defragment 2MB pages.

For more information, see the Cassandra Java Huge Pages blog and this RedHat bug report.

To solve this problem, disable defrag for Transparent Hugepages:

```
$ echo never | sudo tee /sys/kernel/mm/transparent_hugepage/defrag
```

For more information, including a temporary fix, see No DSE processing but high CPU usage.

YAML and configuration properties

cassandra.yaml configuration file

The cassandra.yaml file is the main configuration file for DataStax Enterprise (DSE). The dse.yaml file is the primary configuration file for security, DSE Search, DSE Graph, and DSE Analytics.

Important: After changing properties in the cassandra.yaml file, you must restart the node for the changes to take effect. The file is located in the following directories:
• Package installations and Installer-Services: /etc/dse/cassandra
• Tarball installations and Installer-No Services: installation_location/resources/cassandra/conf

Syntax

For the properties in each section, the main setting has zero spaces, and at least two spaces are required before each entry in that section. Adhere to the YAML syntax.

Organization

The configuration properties are grouped into the following sections:

• Quick start (page 199)
 The minimal properties needed for configuring a cluster.

• Commonly used (page 201)
 Properties most frequently used when configuring DSE.

• Performance tuning (page 208)
 Tuning performance and system resource utilization, including commit log, compaction, memory, disk I/O, CPU, reads, and writes.

• Advanced (page 212)
 Properties for advanced users or properties that are less commonly used.

• Security (page 225)
 DSE Unified Authentication provides authentication, authorization, and role management. Enabling DSE Unified Authentication requires additional configuration in dse.yaml, see Configuring DSE Unified Authentication.

• Continuous paging (page 231) Properties configure memory, threads, and duration when pushing pages continuously to the client.

 Note: Values with note mark default values that are defined internally, missing, or commented out, or whose implementation depends on other properties in the cassandra.yaml file. Additionally, some commented-out values may not match the actual default values. These are recommended alternatives to the default values.

Quick start properties

The minimal properties needed for configuring a cluster.

Related information: Initializing a single datacenter per workload type and Initializing multiple datacenters per workload type.
cluster_name
Default: Test Cluster The name of the cluster. This setting prevents nodes in one logical cluster from joining another. All nodes in a cluster must have the same value.

listen_address
Default: localhost The IP address or hostname that the database binds to for connecting this node to other nodes.

Warning:
• Never set listen_address to 0.0.0.0.
• Set listen_address or listen_interface, do not set both.

Correct settings for various use cases:

• **Single-node installations** do one of the following:

 # Comment this property out. If the node is properly configured (host name, name resolution, and so on), the database uses InetAddress.getLocalHost() to get the local address from the system.

 # Leave set to the default, localhost.

• **Node in a multi-node installations**: set this property to the node's IP address or hostname, or set listen_interface (page 200).

• **Node in a multi-network or multi-Datacenter installation, within an EC2 environment that supports automatic switching between public and private interfaces**: set listen_address to the node’s IP address or hostname, or set listen_interface (page 200).

• **Node with two physical network interfaces in a multi-datacenter installation or cluster deployed across multiple Amazon EC2 regions using the Ec2MultiRegionSnitch**:

 1. Set listen_address to this node’s private IP or hostname, or set listen_interface (page 200) (for communication within the local datacenter).

 2. Set broadcast_address (page 213) to the second IP or hostname (for communication between datacenters).

 3. Set listen_on_broadcast_address (page 213) to true.

 4. If this node is a seed node, add the node’s public IP address or hostname to the seeds (page 205) list.

• Open the storage_port (page 215) or ssl_storage_port (page 231) on the public IP firewall.

listen_interface
Default: eth0. **note** (page 199) The interface that the database binds to for connecting to other nodes. Interfaces must correspond to a single address — IP aliasing is not supported.
Warning: Set listen_address or listen_interface, do not set both.

Default directories

If you have changed any of the default directories during installation, set these properties to the new locations. Make sure you have root access.

cdc_raw_directory

The directory where the CDC log is stored. Default locations:

- Package installations and Installer-Services: /var/lib/cassandra/cdc_raw
- Tarball installations and Installer-No Services: /var/lib/cassandra/cdc_raw

The directory where Change Data Capture logs are stored.

commitlog_directory

The directory where the commit log is stored. Default location: /var/lib/cassandra/commitlog

For optimal write performance, place the commit log be on a separate disk partition, or (ideally) a separate physical device from the data file directories. Because the commit log is append only, an HDD is acceptable for this purpose.

data_file_directories

The directory location where table data is stored (in SSTables). The database distributes data evenly across the location, subject to the granularity of the configured compaction strategy. Default locations: /var/lib/cassandra/data.

For production, DataStax recommends RAID 0 and SSDs.

saved_caches_directory

The directory location where table key and row caches are stored. For all installations, the default location of the saved_caches directory is /var/lib/cassandra/saved_caches.

Commonly used properties

Properties most frequently used when configuring DSE.

Before starting a node for the first time, you should carefully evaluate your requirements.

Common initialization properties

Note: Be sure to set the properties in the Quick start section (page 199) as well.

disk_access_mode

Default: auto. Disk access mode.

Warning: Enabling mmap on DSE 5.1 can cause excessive paging if all of the actively read SSTables do not fit into RAM.
• **auto**
 Enable mmap on both data and index files on a 64-bit JVM.

• **mmap**
 Map index and data files.

• **mmap_index_only**
 Map only index files. Use this setting if you observe high number of page faults or steals along with increased latencies.

• **standard**
 Disable mmap entirely.

commit_failure_policy
Default: stop. Policy for commit disk failures:

• **die**
 Shut down gossip and Thrift and kill the JVM, so the node can be replaced.

• **stop**
 Shut down gossip and Thrift, leaving the node effectively dead, available for inspection using JMX.

• **stop_commit**
 Shut down the commit log, letting writes collect but continuing to service reads.

• **ignore**
 Ignore fatal errors and let the batches fail.

prepared_statements_cache_size_mb
Default: auto, which is 1/256th of the heap or 10 MB, whichever is greater. Maximum size of the native protocol prepared statement cache.

 Note: Specifying a value that is too large results in long running GCs and possibly out-of-memory errors. Keep the value at a small fraction of the heap.

 Constantly re-preparing statements is a performance penalty.

thrift_prepared_statements_cache_size_mb
Default: auto, which is 1/256th of the heap or 10 MB, whichever is greater. Maximum size of the Thrift prepared statement cache. Leave empty if you do not use Thrift.
Note: Specifying a value that is too large results in long running GCs and possibly out-of-memory errors. Keep the value at a small fraction of the heap.

Constantly re-preparing statements is a performance penalty.

disk_optimization_strategy
Default: disabled. The strategy for optimizing disk reads. Possible values: ssd or spinning.

disk_failure_policy
Default: stop. Sets how the database responds to disk failure. Recommend settings: stop or best_effort. Valid values:

- **die**
 Shut down gossip and Thrift and kill the JVM for any file system errors or single SSTable errors, so the node can be replaced.

- **stop**
 Shut down gossip and Thrift, leaving the node effectively dead, but available for inspection using JMX.

- **best_effort**
 Stop using the failed disk and respond to requests based on the remaining available SSTables. This allows obsolete data at consistency level of ONE.

- **ignore**
 Ignore fatal errors and lets the requests fail; all file system errors are logged but otherwise ignored.

Related information: Handling Disk Failures In Cassandra 1.2 blog and Recovering from a single disk failure using JBOD (page 1323).

endpoint_snitch
Default: DseSimpleSnitch. Set to a class that implements the IEndpointSnitch interface. The database uses the snitch to locate nodes and route requests.

Important: Use only snitch implementations bundled with DSE.

- **DseSimpleSnitch**
 Only appropriate for Development deployments. Proximity is determined by DSE workload, which places transactional, analytics, and search nodes into their separate datacenters. Does not recognize datacenter or rack information.

- **GossipingPropertyFileSnitch**
Configuration

Recommended for production. Reads rack and datacenter for the local node in cassandra-rackdc.properties file and propagates these values to other nodes via gossip. For migration from the PropertyFileSnitch, uses the cassandra-topology.properties file if it is present.

cassandra-rackdc.properties
The location of the cassandra-rackdc.properties file depends on the type of installation:

<table>
<thead>
<tr>
<th>Package installations</th>
<th>/etc/dse/cassandra/cassandra-rackdc.properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer-Services installations</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tarball installations</th>
<th>installation_location/resources/cassandra/conf/cassandra-rackdc.properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer-No Services installations</td>
<td></td>
</tr>
</tbody>
</table>

cassandra-topology.properties
The location of the cassandra-topology.properties file depends on the type of installation:

<table>
<thead>
<tr>
<th>Package installations</th>
<th>/etc/dse/cassandra/cassandra-topology.properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer-Services installations</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tarball installations</th>
<th>installation_location/resources/cassandra/conf/cassandra-topology.properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer-No Services installations</td>
<td></td>
</tr>
</tbody>
</table>

- **PropertyFileSnitch**

 Determines proximity by rack and datacenter, which are explicitly configured in cassandra-topology.properties file.

- **Ec2Snitch**

 For EC2 deployments in a single region. Loads region and availability zone information from the Amazon EC2 API. The region is treated as the datacenter and the availability zone as the rack and uses only private IP addresses. For this reason, it does not work across multiple regions.

- **Ec2MultiRegionSnitch**

 Uses the public IP as the broadcast_address (page 213) to allow cross-region connectivity. This means you must also set seed (page 205) addresses to the public IP and open the storage_port (page 215) or ssl_storage_port (page 231) on the public IP firewall. For intra-region traffic, the database switches to the private IP after establishing a connection.

- **RackInferringSnitch**:

 Proximity is determined by rack and datacenter, which are assumed to correspond to the 3rd and 2nd octet of each node's IP address, respectively.
Best used as an example for writing a custom snitch class (unless this happens to match your deployment conventions).

- **GoogleCloudSnitch:**
 Use for deployments on Google Cloud Platform across one or more regions. The region is treated as a datacenter and the availability zones are treated as racks within the datacenter. All communication occurs over private IP addresses within the same logical network.

- **CloudstackSnitch**
 Use the CloudstackSnitch for Apache Cloudstack environments.

Related information: Snitches

rpc_address
Default: localhost. The listen address for client connections (Thrift RPC service and native transport). Valid values:

- **unset:**
 Resolves the address using the configured hostname configuration of the node. If left unset, the hostname resolves to the IP address of this node using /etc/hostname, /etc/hosts, or DNS.

- **0.0.0.0:**
 Listens on all configured interfaces. You must set the broadcast_rpc_address (page 220) to a value other than 0.0.0.0.

- **IP address**
- **hostname**

Related information: Network

rpc_interface
Default: eth1. *note (page 199)* The listen address for client connections. Interface must correspond to a single address, IP aliasing is not supported. See rpc_address (page 205).

rpc_interface_prefer_ipv6
Default: false. Use IPv4 or IPv6 when interface is specified by name.

- **false** - use first IPv4 address.
- **true** - use first IPv6 address.

When only a single address is used, that address is selected without regard to this setting.

seed_provider
The addresses of hosts designated as contact points in the cluster. A joining node contacts one of the nodes in the -seeds list to learn the topology of the ring.
Important: Use only seed provider implementations bundled with DSE.

- **class_name** *(Default: org.apache.cassandra.locator.SimpleSeedProvider)*

 The class that handles the seed logic. It can be customized, but this is typically not required.

- **seeds** *(Default: 127.0.0.1)*

 A comma-delimited list of IP addresses used by gossip for bootstrapping new nodes joining a cluster. If your cluster includes multiple nodes, you must change the list from the default value to the IP address of one of the nodes.

 Attention: Making every node a seed node is not recommended because of increased maintenance and reduced gossip performance. Gossip optimization is not critical, but it is recommended to use a small seed list (approximately three nodes per datacenter).

 Related information: Initializing a single datacenter per workload type and Initializing multiple datacenters per workload type.

enable_user_defined_functions

 Default: false. User defined functions (UDFs) present a security risk, since they are executed on the server side. UDFs are executed in a sandbox to contain the execution of malicious code. They are disabled by default.

enable_scripted_user_defined_functions

 Default: false. Java UDFs are always enabled, if `enable_user_defined_functions` is true. Enable this option to use UDFs with language javascript or any custom JSR-223 provider. This option has no effect if `enable_user_defined_functions` is false.

Common compaction settings

compaction_throughput_mb_per_sec

 Default: 16. Throttles compaction to the specified Mb/second across the instance. The faster the database inserts data, the faster the system must compact in order to keep the SSTable count down. The recommended value is 16 to 32 times the rate of write throughput (in Mb/second). Setting the value to 0 disables compaction throttling.

 Related information: Configuring compaction *(page 1353)*

compaction_large_partition_warning_threshold_mb

 Default: 100. The database logs a warning when compacting partitions larger than the set value.

Common memtable settings

memtable_heap_space_in_mb

 Default: 1/4 of heap size. *note* *(page 199)"
The amount of on-heap memory allocated for memtables. The database uses the total of this amount and the value of `memtable_offheap_space_in_mb` to set a threshold for automatic memtable flush. For details, see `memtable_cleanup_threshold (page 210)`.

Related information: Tuning the Java heap (page 1345)

memtable_offheap_space_in_mb

Default: 1/4 of heap size. note (page 199)

Sets the total amount of off-heap memory allocated for memtables. The database uses the total of this amount and the value of `memtable_heap_space_in_mb` to set a threshold for automatic memtable flush. For details, see `memtable_cleanup_threshold (page 210)`.

Related information: Tuning the Java heap (page 1345)

Common disk settings

concurrent_reads

Default: 32. note (page 199) Workloads with more data than can fit in memory encounter a bottleneck in fetching data from disk during reads. Setting concurrent_reads to (16 × number_of_drives) allows operations to queue low enough in the stack so that the OS and drives can reorder them. The default setting applies to both logical volume managed (LVM) and RAID drives.

concurrent_writes

Default: 32. note (page 199) Writes in DSE are rarely I/O bound, so the ideal number of concurrent writes depends on the number of CPU cores on the node. The recommended value is 8 × number_of_cpu_cores.

concurrent_counter_writes

Default: 32. note (page 199) Counter writes read the current values before incrementing and writing them back. The recommended value is (16 × number_of_drives).

concurrent_materialized_view_writes

Default: 32. Limit on the number of concurrent materialized view writes. Set this to the lesser of concurrent reads or concurrent writes, because there is a read involved in each materialized view write.

Common automatic backup settings

incremental_backups

Default: false. Backs up data updated since the last snapshot was taken. When enabled, the database creates a hard link to each SSTable flushed or streamed locally in a backups subdirectory of the keyspace data. Removing these links is the operator's responsibility.

Related information: Enabling incremental backups (page 1320)

snapshot_before_compaction
Configuration

Default: false. Enables or disables taking a snapshot before each compaction. A snapshot is useful to back up data when there is a data format change. Be careful using this option: the database does not clean up older snapshots automatically.

Related information: Configuring compaction (page 1353)

Common fault detection setting

phi_convict_threshold
Default: 8. note (page 199) Adjusts the sensitivity of the failure detector on an exponential scale. Generally this setting does not need adjusting.

Related information: About failure detection and recovery

Performance tuning properties

Tuning performance and system resource utilization, including commit log, compaction, memory, disk I/O, CPU, reads, and writes.

Commit log settings

commitlog_sync [periodic|batch]
Default: periodic. The method that the database uses to acknowledge writes in milliseconds.

commitlog_sync_period_in_ms
Default: 10000. Use with commitlog_sync: periodic. Controls how often the commit log is synchronized to disk. Periodic syncs are acknowledged immediately.

commitlog_sync_batch_window_in_ms
Default: disabled. Use with commitlog_sync:batch. note (page 199) The maximum length of time that queries may be batched together.

commitlog_segment_size_in_mb
Default: 32. The size of an individual commitlog file segment. A commitlog segment may be archived, deleted, or recycled after all its data has been flushed to SSTables. This data can potentially include commitlog segments from every table in the system. The default size is usually suitable for most commitlog archiving, but if you want a finer granularity, 8 or 16 MB is reasonable.

By default, the max_mutation_size_in_kb (page 208) is set to half of the commitlog_segment_size_in_kb.

Related information: Commit log archive configuration

max_mutation_size_in_kb
Default: ½ of commitlog_segment_size_in_mb (page 208).

If a mutation's size exceeds this value, the mutation is rejected. Before increasing the commitlog segment size of the commitlog segments, investigate why the mutations are larger than expected. Look for underlying issues with access patterns and data model, because increasing the commitlog segment size is a limited fix.
Restriction: If you set `max_mutation_size_in_kb` explicitly, then you must set `commitlog_segment_size_in_mb` to at least twice the size of `max_mutation_size_in_kb / 1024`.

See `commitlog_segment_size_in_mb (page 208)` above.

commitlog_compression

The compressor to use if commit log is compressed. To make changes, uncomment the `commitlog_compression` section and make changes to these options:

```
# commitlog_compression:
#   - class_name: LZ4Compressor
#     parameters:
#     - 
```

- class_name: LZ4Compressor, Snappy, or Deflate
- parameters: optional parameters for the compressor

When not set, the default compression for the commit log is uncompressed.
Default: commented out

cdc_total_space_in_mb

Default: 4096 and 1/8th of the total space of the drive where the `cdc_raw_directory` resides.)

If space gets above this value, the database throws `WriteTimeoutException` on Mutations including tables with CDC enabled. A CDCCompactor (a consumer) is responsible for parsing the raw CDC logs and deleting them when parsing is completed.

cdc_free_space_check_interval_ms

Default: 250.

When the `cdc_raw` limit is hit and the CDCCompactor is either running behind or experiencing backpressure, this interval is checked to see if any new space for cdc-tracked tables has been made available.

commitlog_total_space_in_mb

Default: 32 for 32-bit JVMs, 8192 for 64-bit JVMs.

Total space used for commit logs. If the total space used by all commit logs goes above this value, the database rounds up to the next nearest segment multiple and flushes memtables to disk for the oldest commitlog segments, removing those log segments from the commit log. This reduces the amount of data to replay on start-up, and prevents infrequently-updated tables from keeping commitlog segments indefinitely. If the `commitlog_total_space_in_mb` is small, the result is more flush activity on less-active tables.

Related information: Configuring memtable thresholds (page 1349)

gc_log_threshold_in_ms

Default: 200. The threshold for log messages at the INFO level. Adjust to minimize logging.
Related information: Configuring compaction (page 1353)

concurrent_compactors
Defaults to the smaller of number of disks or number of cores, with a minimum of 2 and a maximum of 8. note (page 199) The number of concurrent compaction processes allowed to run simultaneously on a node, not including validation compactions for anti-entropy repair. Simultaneous compactions help preserve read performance in a mixed read-write workload by limiting the number of small SSTables that accumulate during a single long-running compaction. If your data directories are backed by SSDs, increase this value to the number of cores. If compaction running too slowly or too fast, adjust compaction_throughput_mb_per_sec (page 206) first.

Note: Increasing concurrent compactors leads to more use of available disk space for compaction, because concurrent compactions happen in parallel, especially for STCS. Ensure that adequate disk space is available before increasing this configuration.

sstable_preemptive_open_interval_in_mb
Default: 50. The compaction process opens SSTables before they are completely written and uses them in place of the prior SSTables for any range previously written. This setting helps to smoothly transfer reads between the SSTables by reducing page cache churn and keeps hot rows hot.

Memtable settings

memtable_allocation_type
Default: heap_buffers. The method the database uses to allocate and manage memtable memory.

- **heap_buffers**
 On heap NIO (non-blocking I/O) buffers.

- **offheap_buffers**
 Off heap (direct) NIO buffers.

- **offheap_objects**
 Native memory, eliminating NIO buffer heap overhead.

memtable_cleanup_threshold
Default: 1/(memtable_flush_writers (page 211) + 1)). note (page 199) Ratio used for automatic memtable flush. The database adds memtable_heap_space_in_mb (page 206) to memtable_offheap_space_in_mb (page 207) and multiplies the total by memtable_cleanup_threshold to get a space amount in MB. When the total amount of memory used by all non-flushing memtables exceeds this amount, the database flushes the largest memtable to disk.
For example, consider a node where the total of `memtable_heap_space_in_mb` and `memtable_offheap_space_in_mb` is 1000, and `memtable_cleanup_threshold` is 0.50. The `memtable_cleanup` amount is 500MB. This node has two memtables: Memtable A (150MB) and Memtable B (350MB). When either memtable increases, the total space they use exceeds 500MB and the database flushes the Memtable B to disk.

A larger value for `memtable_cleanup_threshold` means larger flushes, less frequent flushes and potentially less compaction activity, but also less concurrent flush activity, which can make it difficult to keep your disks saturated under heavy write load.

This section documents the formula used to calculate the ratio based on the number of `memtable_flush_writers` (page 211). The default value in `cassandra.yaml` is 0.11, which works if the node has many disks or if you set the node’s `memtable_flush_writers` to 8. As another example, if the node uses a single SSD, the value for `memtable_cleanup_threshold` computes to 0.33, based on the minimum `memtable_flush_writers` value of 2.

file_cache_size_in_mb
Default: Smaller of 1/4 heap or 512. Total memory to use for SSTable-reading buffers.

buffer_pool_use_heap_if_exhausted
Default: disabled. Note (page 199) Indicates whether the database allocates on-heap or off-heap memory when the SSTable buffer pool is exhausted (when the buffer pool has exceeded the maximum memory `file_cache_size_in_mb` (page 211)), beyond this amount, the database stops caching buffers, but allocates on request.

memtable_flush_writers
Default: Smaller of number of disks or number of cores with a minimum of 2 and a maximum of 8. Note (page 199) The number of memtable flush writer threads. These threads are blocked by disk I/O, and each one holds a memtable in memory while blocked. If your data directories are backed by SSDs, increase this setting to the number of cores.

Cache and index settings

column_index_size_in_kb
Default: 64. Granularity of the index of rows within a partition. For huge rows, decrease this setting to improve seek time. If you use key cache, be careful not to make this setting too large because key cache will be overwhelmed. If you’re unsure of the size of the rows, it’s best to use the default setting.

index_summary_capacity_in_mb
Default: 5% of the heap size [empty]. Note (page 199) Fixed memory pool size in MB for SSTable index summaries. If the memory usage of all index summaries exceeds this limit, any SSTables with low read rates shrink their index summaries to meet this limit. This is a best-effort process. In extreme conditions, the database may use more than this amount of memory.
index_summary_resize_interval_in_minutes

Default: 60. How frequently index summaries should be re-sampled. Re-sampling is done periodically to redistribute memory from the fixed-size pool to SSTables proportional their recent read rates. To disable, set to -1. This setting leaves existing index summaries at their current sampling level.

Disks settings

stream_throughput_outbound_megabits_per_sec

Default: 200. \(^\text{note}\) (page 199) Throttle for the throughput of all outbound streaming file transfers on a node. The database does mostly sequential I/O when streaming data during bootstrap or repair. This can saturate the network connection and degrade client (RPC) performance.

inter_dc_stream_throughput_outbound_megabits_per_sec

Default: 200. \(^\text{note}\) (page 199) Throttle for all streaming file transfers between datacenters, and for network stream traffic as configured with \(\text{stream_throughput_outbound_megabits_per_sec}\) (page 212).

\(^\text{Note:}\) Should be set to a value less than or equal to \(\text{stream_throughput_outbound_megabits_per_sec}\) since it is a subset of total throughput.

streaming_keep_alive_period_in_secs

Default: disabled. \(^\text{note}\) (page 199) Specifies for node to send keep-alive message at this interval. The stream session fails when a keep-alive message is not received for 2 keep-alive cycles.

trickle_fsync

Default: true. When set to true, causes fsync to force the operating system to flush the dirty buffers at the set interval \(\text{trickle_fsync_interval_in_kb}\). Enable this parameter to prevent sudden dirty buffer flushing from impacting read latencies. Recommended for use with SSDs, but not with HDDs.

trickle_fsync_interval_in_kb

Default: 10240. The size of the fsync in kilobytes.

Advanced properties

Properties for advanced users or properties that are less commonly used.

Advanced initialization properties

auto_bootstrap

Default: true. This setting has been removed from default configuration. It causes new (non-seed) nodes migrate the right data to themselves automatically. When initializing a fresh cluster \(\text{without}\) data, add \(\text{auto_bootstrap: false}\).

Related information: Initializing a single datacenter per workload type and Initializing multiple datacenters per workload type.

batch_size_warn_threshold_in_kb

Default: 64. Log a warning message when any multiple-partition batch size exceeds this value.
Caution: Increasing this threshold can lead to node instability.

batch_size_fail_threshold_in_kb
Default: 640. Fails any batch whose size exceeds this setting. The default value is 10X the value of `batch_size_warn_threshold_in_kb`.

unlogged_batch_across_partitions_warn_threshold
Default: 10. Causes the database to log a WARN message on any batches not of type LOGGED that span across more partitions than this limit. The default value is 10 partitions.

cdc_enabled
Default: false. Enable or disable change data capture (CDC) functionality on a per-node basis. This modifies the logic used for write path allocation rejection (standard: never reject. cdc: reject Mutation containing a CDC-enabled table if at space limit in cdc_raw_directory).

Important: Do not enable CDC on a mixed-version cluster. Upgrade all nodes to DSE 5.1 before enabling and restarting the cluster.

broadcast_address
Default: listen_address. **note (page 199)** The public IP address this node uses to broadcast to other nodes outside the network or across regions in multiple-region EC2 deployments. If this property is commented out, the node uses the same IP address or hostname as listen_address. A node does not need a separate broadcast_address in a single-node or single-datacenter installation, or in an EC2-based network that supports automatic switching between private and public communication. It is necessary to set a separate listen_address and broadcast_address on a node with multiple physical network interfaces or other topologies where not all nodes have access to other nodes by their private IP addresses. For specific configurations, see the instructions for `listen_address (page 200)`.

listen_on_broadcast_address
Default: false. If this node uses multiple physical network interfaces, set a unique IP address for `broadcast_address (page 213)` and set `listen_on_broadcast_address` to true. This enables the node to communicate on both interfaces.

Set this property to false if the node is on a network that automatically routes between public and private networks, as Amazon EC2 does.

For configuration details, see the instructions for `listen_address (page 200)`.

initial_token
Default: 1 (disabled). Set this property for single-node-per-token architecture, in which a node owns exactly one contiguous range in the ring space. Setting this property overrides `num_tokens (page 214)`.

If your installation is not using vnodes or this node’s `num_tokens (page 214)` is set to 1 or is commented out, you should always set an initial_token value when setting up a production cluster for the first time, and when adding capacity. See Generating tokens.
Use this parameter only with `num_tokens` (vnodes) in special cases such as Restoring from a snapshot (page 1320).

num_tokens
Default: 1 (disabled)
Define virtual node (vnode) token architecture.

Note: All other nodes in the datacenter must have the same token architecture.

- 1 - disable vnodes and use 1 token for legacy compatibility.
- a number between 2 and 128 - the number of token ranges to assign to this virtual node (page 290) (vnode). A higher value increases the probability that the data and workload are evenly distributed.

Restriction: DataStax recommends not using vnodes with DSE Search. However, if you decide to use vnodes with DSE Search, do not use more than 8 vnodes and ensure that `allocate_tokens_for_local_replication_factor` (page 214) option in cassandra.yaml is correctly configured for your environment.

Caution: Using vnodes can impact performance for your cluster. DataStax recommends testing the configuration before enabling vnodes in production environments.

When the token number varies between nodes in a datacenter, the vnode logic assigns a proportional number of ranges relative to other nodes in the datacenter. In general, if all nodes have equal hardware capability, each node should have the same num_tokens value.

To migrate an existing cluster from single node per token range to vnodes, see Enabling virtual nodes on an existing production cluster.

allocate_tokens_for_local_replication_factor

- RF of keyspaces in datacenter - triggers the recommended algorithmic allocation for the RF and `num_tokens` (page 214) for this node.

The allocation algorithm optimizes the workload balance using the target keyspace replication factor. DataStax recommends setting the number of tokens to 8 to distribute the workload with ~10% variance between nodes. The allocation algorithm attempts to choose tokens in a way that optimizes replicated load over the nodes in the datacenter for the specified RF. The load assigned to each node is close to proportional to the number of vnodes.

Note: The allocation algorithm is supported only for the Murmur3Partitioner and RandomPartitioner partitioners. The Murmur3Partitioner is the default partitioning strategy for new DSE clusters and the right choice for new clusters in almost all cases.

- commented out - uses the random selection algorithm to assign token ranges randomly.
Note: Over time, loads in a datacenter using the random selection algorithm become unevenly distributed. DataStax recommends using only the allocation algorithm.

See [Virtual node (vnode) configuration](page 290), and for set up instructions see [Adding vnodes to an existing cluster](page 1281) or [Adding a datacenter to a cluster](page 1283).

partitioner

Default: org.apache.cassandra.dht.Murmur3Partitioner. Sets the class that distributes rows (by partition key) across all nodes in the cluster. Any IPartitioner may be used, including your own as long as it is in the class path. For new clusters use the default partitioner.

DSE provides the following partitioners for backwards compatibility:

- RandomPartitioner
- ByteOrderedPartitioner (deprecated)
- OrderPreservingPartitioner (deprecated)

Important: Use only partitioner implementations bundled with DSE.

Related information: [Partitioners](#)

storage_port

Default: 7000. The port for inter-node communication.

tracetype_query_ttl

Default: 86400. TTL for different trace types used during logging of the query process.

tracetype_repair_ttl

Default: 604800. TTL for different trace types used during logging of the repair process.

Advanced automatic backup setting

auto_snapshot

Default: true. Enables or disables whether the database takes a snapshot of the data before truncating a keyspace or dropping a table. To prevent data loss, DataStax strongly advises using the default setting. If you set auto_snapshot to false, you lose data on truncation or drop.

Key caches and global row properties

When creating or modifying tables, you can enable or disable the key cache (partition key cache) or row cache for that table by setting the caching parameter. Other row and key cache tuning and configuration options are set at the global (node) level. The database uses these settings to automatically distribute memory for each table on the node based on the overall workload and specific table usage. You can also configure the save periods for these caches globally.
Related information: Configuring caches *(page 1350)*

key_cache_keys_to_save

Default: disabled. All keys are saved. \(^{\text{note}}\) *(page 199)* Number of keys from the key cache to save.

key_cache_save_period

Default: 14400. (4 hours) Duration in seconds that keys are kept in cache. Caches are saved to saved_caches_directory *(page 201)*. Saved caches greatly improve cold-start speeds and have relatively little effect on I/O.

key_cache_size_in_mb

Default: empty. A global cache setting for the maximum size of the key cache in memory (for all tables). If no value is set, the cache is set to the smaller of 5% of the available heap, or 100MB. To disable set to 0.

Related information: nodetool setcachecapacity *(page 1034)*, Enabling and configuring caching *(page 1351)*.

column_index_cache_size_in_kb

Default: 2. A threshold for the total size of all index entries for a partition that the database stores in the partition key cache. If the total size of all index entries for a partition exceeds this amount, the database stops putting entries for this partition into the partition key cache. This limitation prevents index entries from large partitions from taking up all the space in the partition key cache (which is controlled by key_cache_size_in_mb).

row_cache_class_name

Default: disabled. \(^{\text{note}}\) *(page 199)* The class name of the row cache provider to use. Valid values: OHCProvider (fully off-heap) or SerializingCacheProvider (partially off-heap).

row_cache_keys_to_save

Default: disabled. All keys are saved. \(^{\text{note}}\) *(page 199)* Number of keys from the row cache to save.

row_cache_size_in_mb

Default: 0. To disable, set to 0. Maximum size of the row cache in memory. The row cache can save more time than key_cache_size_in_mb *(page 216)*, but it is space-intensive because it contains the entire row. Use the row cache only for hot rows or static rows. If you reduce the size, you may not get you hottest keys loaded on start up.

row_cache_save_period

Default: 0. To disable, set to 0. The number of seconds that rows are kept in cache. Caches are saved to saved_caches_directory *(page 201)*. This setting has limited use as described in row_cache_size_in_mb.

Counter caches properties

Counter cache helps to reduce counter locks’ contention for hot counter cells. In case of RF = 1 a counter cache hit causes the database to skip the read before write entirely. With RF
> A counter cache hit still helps to reduce the duration of the lock hold, helping with hot counter cell updates, but does not allow skipping the read entirely. Only the local (clock, count) tuple of a counter cell is kept in memory, not the whole counter, so it is relatively cheap.

Note: If you reduce the counter cache size, the database may load the hottest keys start-up.

counter_cache_size_in_mb
Default value: empty. *note (page 199)* When no value is set, the database uses the smaller of minimum of 2.5% of Heap or 50 megabytes (MB). If your system performs counter deletes and relies on low gc_grace_seconds, you should disable the counter cache. To disable, set to 0.

counter_cache_save_period
Default: 7200. (2 hours) the amount of time after which the database saves the counter cache (keys only). The database saves caches to saved_caches_directory (page 201).

counter_cache_keys_to_save
Default value: disabled. *note (page 199)* Number of keys from the counter cache to save. When this property is disabled, the database saves all keys.

Tombstone settings

When executing a scan, within or across a partition, the database must keep tombstones in memory to allow them to return to the coordinator. The coordinator uses tombstones to ensure that other replicas know about the deleted rows. Workloads that generate numerous tombstones may cause performance problems and exhaust the server heap. See Cassandra anti-patterns: Queues and queue-like datasets. Adjust these thresholds only if you understand the impact and want to scan more tombstones. You can adjust these thresholds at runtime using the StorageServiceMBean.

Related information: Cassandra anti-patterns: Queues and queue-like datasets

tombstone_warn_threshold
Default: 1000. The database issues a warning if a query scans more than this number of tombstones.

tombstone_failure_threshold
Default: 100000. The database aborts a query if it scans more than this number of tombstones.

Network timeout settings

aggregated_request_timeout_in_ms
Number of milliseconds that the coordinator waits for aggregated read operations to complete. For example, `SELECT COUNT(*)`, `MIN(x)`. Default: 120000.

cas_contention_timeout_in_ms
Default: 1000. The number of milliseconds during which the coordinator continues to retry a CAS (compare and set) operation that contends with other proposals for the same row. If the coordinator cannot complete the operation within this timespan, it aborts the operation.
counter_write_request_timeout_in_ms
Default: 5000. The number of milliseconds that the coordinator waits for counter writes to complete before timing it out.

range_request_timeout_in_ms
Default: 10000. The number of milliseconds that the coordinator waits for sequential or index scans to complete before timing it out.

read_request_timeout_in_ms
Default: 5000. The number of milliseconds that the coordinator waits for read operations to complete before timing it out.

request_timeout_in_ms
Default: 10000. The default timeout value for other miscellaneous operations.

Related information: Hinted handoff: repair during write path.

slow_query_log_timeout_in_ms
Default: 500. How long before a node logs slow queries. Select queries that exceed this value generate an aggregated log message to identify slow queries. To disable, set to 0.

truncate_request_timeout_in_ms
Default: 60000. The number of milliseconds that the coordinator waits for a truncate (the removal of all data from a table) to complete before timing it out. The long default value allows the database to take a snapshot before removing the data. If auto_snapshot (page 215) is disabled (not recommended), you can reduce this time.

write_request_timeout_in_ms
Default: 2000. The number of milliseconds that the coordinator waits for a write operations to complete before timing it out for requests with at least one node in the local datacenter.

Related information: Hinted handoff: repair during write path.

cross_dc_rtt_in_ms
Default: 0. Increases the cross-datacenter timeout (write_request_timeout_in_ms + cross_dc_rtt_in_ms) for requests that only involve nodes in a remote datacenter. This setting is intended to reduce hint pressure.

Tip: DataStax recommends using LOCAL* consistency levels (CL) for read and write requests in multi-datacenter deployments to avoid timeouts that may occur when remote nodes are chosen to satisfy the CL, such as QUORUM.

Inter-node settings

cross_node_timeout
Default: false. Enables or disables operation timeout information exchange between nodes (to accurately measure request timeouts). If this property is disabled, the replica assumes any requests are forwarded to it instantly by the coordinator. During overload conditions this means extra time is required for processing already-timed-out requests.
Caution: Before enabling this property make sure NTP (network time protocol) is installed and the times are synchronized among the nodes.

internode_send_buff_size_in_bytes

Default: empty. The sending socket buffer size in bytes for internode calls.

The buffer size set by this parameter and **internode_recv_buff_size_in_bytes** is limited by `net.core.wmem_max`. If this property is not set, `net.ipv4.tcp_wmem` determines the buffer size. For more details run `man tcp` and refer to:

- `/proc/sys/net/core/wmem_max`
- `/proc/sys/net/core/rmem_max`
- `/proc/sys/net/ipv4/tcp_wmem`
- `/proc/sys/net/ipv4/tcp_wmem`

Related information: TCP settings ([page 191](#))

internode_recv_buff_size_in_bytes

Default: empty. The receiving socket buffer size in bytes for internode calls.

internode_compression

Default: dc. Controls whether traffic between nodes is compressed. Valid values:

- **all**
 Compresses all traffic.

- **dc**
 Compresses traffic between datacenters only.

- **none**
 No compression.

inter_dc_tcp_nodelay

Default: false. Enable this property or disable tcp_nodelay for inter-datacenter communication. If this property is disabled, the network sends larger, but fewer, network packets. This reduces overhead from the TCP protocol itself. However, disabling `inter_dc_tcp_nodelay` may increase latency by blocking cross datacenter responses.

Native transport (CQL Binary Protocol)

start_native_transport

Default: true. Enables or disables the native transport server. This server uses the same address as the **rpc_address** ([page 205](#)), but the port it uses is different from **rpc_port** ([page 220](#)). See **native_transport_port** ([page 219](#)).

native_transport_port
Configuration

Default: 9042. The port where the CQL native transport listens for clients.

native_transport_max_threads

Default: 128. *note* ([page 199]) The maximum number of thread handling requests. Similar to `rpc_max_threads` ([page 220]), but this property differs as follows:

- The default for `native_transport_max_threads` is 128; the default for `rpc_max_threads` is unlimited.
- There is no corresponding `native_transport_min_threads`.
- The database stops idle native transport threads after 30 seconds.

native_transport_max_frame_size_in_mb

Default: 256. The maximum allowed size of a frame. Frame (requests) larger than this are rejected as invalid.

native_transport_max_concurrent_connections

Default: -1. The maximum number of concurrent client connections. The default value of -1 means unlimited.

native_transport_max_concurrent_connections_per_ip

Default: -1. The maximum number of concurrent client connections per source IP address. The default value of -1 means unlimited.

RPC (remote procedure call) settings

Settings for configuring and tuning client connections.

broadcast_rpc_address

Default: empty. *note* ([page 199]) The RPC address for broadcast to drivers and other nodes. This cannot be set to 0.0.0.0. If left blank, the database uses the `rpc_address` ([page 205]) or `rpc_interface` ([page 220]). If `rpc_address` or `rpc_interface` is set to 0.0.0.0, this property must be set.

rpc_port

Default: 9160. Thrift port for client connections.

start_rpc

Default: true. Enables or disables the Thrift RPC server.

rpc_keepalive

Default: true. Enables or disables keepalive on client connections (RPC or native).

rpc_max_threads

Default: unlimited. *note* ([page 199]) Regardless of your choice of RPC server (`rpc_server_type` ([page 221])), `rpc_max_threads` dictates the maximum number of concurrent requests in the RPC thread pool. If you are using the parameter sync (see `rpc_server_type` ([page 221])) it also dictates the number of clients that can be connected. A high number of client connections could cause excessive memory usage for the thread stack. Connection pooling on the client side is highly recommended. Setting a `rpc_max_threads` acts as a safeguard against misbehaving clients. If the number of threads reaches the maximum, the database blocks additional connections until a client disconnects.

rpc_min_threads

Default: unlimited. *note* ([page 199]) The minimum thread pool size for remote procedure calls.

rpc_recv_buff_size_in_bytes
Configuration

Default: empty. \[^{\text{note (page 199)}}\] The receiving socket buffer size for remote procedure calls.

rpc_send_buff_size_in_bytes

Default: empty. \[^{\text{note (page 199)}}\] The sending socket buffer size in bytes for remote procedure calls.

rpc_server_type

Default: sync. The database provides three options for the RPC server. \[^{\text{sync and hsha performance is about the same, but hsha uses less memory.}}\]

- **sync:** (Default: one thread per Thrift connection.)

 For a very large number of clients, memory is the limiting factor. On a 64-bit JVM, 180 KB is the minimum stack size per thread and corresponds to your use of virtual memory. Physical memory may be limited depending on use of stack space.

- **hsha:**

 Half synchronous, half asynchronous. All Thrift clients are handled asynchronously using a small number of threads that does not vary with the number of clients. This mechanism scales well to many clients. The RPC requests are synchronous (one thread per active request).

 \[^{\text{Note: If you select this option, you must change the default value (unlimited) of rpc_max_threads (page 220).}}\]

- Your own RPC server

 You must provide a fully-qualified class name of an `o.a.c.t.TServerFactory` that can create a server instance.

Advanced fault detection settings

Settings to handle poorly performing or failing components.

gc_warn_threshold_in_ms

Default: 1000. Any GC pause longer than this interval is logged at the WARN level. (By default, the database logs any GC pause greater than 200 ms at the INFO level.)

Additional information: Configuring logging.

otc_coalescing_strategy

Default: DISABLED. Supported strategies are: FIXED, MOVINGAVERAGE, TIMEHORIZON, and DISABLED. Suitable for VMs, but not noticeably performant in other environments. The OutboundTcpConnection (otc) strategy to:

- Increase message throughput (doubling or more).
- Process multiple messages with one trip to read from a socket.
- Perform all the task submission work at the same time.
• Reduce context switching.
• Increase cache friendliness of network message processing.

Important: Use only strategy implementations bundled with DSE.

otc_coalescing_window_us
Default: disabled. *(page 199)* How many microseconds to wait for coalescing. For fixed strategy, the amount of time after the first message is received before it is sent with any accompanying messages. For moving average, this is the maximum wait time and the interval that messages must arrive on average to enable coalescing.

otc_coalescing_enough_coalesced_messages
Default: disabled *(page 199)* The threshold for the number of messages. Do not coalesce messages when this value is exceeded. Should be more than 2 and less than 128.

seed_gossip_probability
The percentage of time that gossip messages are sent to a seed node during each round of gossip. Decreases the time to propagate gossip changes across the cluster. Default: 1.0 (100%)

back_pressure_enabled
Default: false. Enable for the coordinator to apply the specified back pressure strategy to each mutation that is sent to replicas.

back_pressure_strategy

```
back_pressure_strategy:
  - class_name: org.apache.cassandra.net.RateBasedBackPressure
    parameters:
    - high_ratio: 0.90
      factor: 5
      flow: FAST
```

Default: RateBasedBackPressure. To add new strategies, implement org.apache.cassandra.net.BackpressureStrategy and provide a public constructor that accepts a `Map<String, Object>`.

Important: Use only strategy implementations bundled with DSE.

• **RateBasedBackPressure**
 Ratio between incoming mutation responses and outgoing mutation requests.

• **high_ratio**
 When outgoing mutations are below this value, they are rate limited according to the incoming rate decreased by the factor (described below). When above this value, the rate limiting is increased by the factor.

• **factor**
A number between 1 and 10. Increases or decreases rate limiting.

- **flow**

 Default: FAST. The flow speed to apply rate limiting:

 # FAST - rate limited to the speed of the fastest replica.
 # SLOW - rate limit to the speed of the slowest replica.

max_value_size_in_mb

Default: 256. *note (page 199)* The maximum size of any value in SSTables. It detects SSTable corruption and marks the SSTables as corrupted when the threshold is exceeded.

dynamic_snitch_badness_threshold

Default: 0.1. The performance threshold for dynamically routing client requests away from a poorly performing node. Specifically, it controls how much worse a poorly performing node has to be before the dynamic snitch prefers other replicas. A value of 0.2 means the database continues to prefer the static snitch values until the node response time is 20% worse than the best performing node. Until the threshold is reached, incoming requests are statically routed to the closest replica as determined by the snitch. A value of zero to 1.0 for the read_repair_chance table property maximizes cache capacity across the nodes.

dynamic_snitch_reset_interval_in_ms

Default: 600000. Time interval after which the database resets all node scores. This allows a bad node to recover.

dynamic_snitch_update_interval_in_ms

Default: 100. The number of milliseconds between the database’s calculation of node scores. Because score calculation is CPU intensive, be careful when reducing this interval.

hints_flush_period_in_ms

Default: 10000. The number of milliseconds the database waits before flushing hints from internal buffers to disk.

hints_directory

Default: $CASSANDRA_HOME/data/hints. The directory in which hints are stored.

hinted_handoff_enabled

Enables or disables hinted handoff. A hint indicates that the write needs to be replayed to an unavailable node. The database writes the hint to a hints file on the coordinator node.

- false - do not enable hinted handoff
- true - globally enable hinted handoff, except for datacenters specified for hinted_handoff_disabled_datacenters

Default: true

hinted_handoff_disabled_datacenters

A blacklist of datacenters that will not perform hinted handoffs. To disable hinted handoff on a certain datacenter, add its name to this list.

Default: commented out

hinted_handoff_throttle_in_kb
Configuration

Default: 1024. Maximum amount of traffic per delivery thread in kilobytes per second. This rate reduces proportionally to the number of nodes in the cluster. For example, if there are two nodes in the cluster, each delivery thread uses the maximum rate. If there are three, each node throttles to half of the maximum, since the two nodes are expected to deliver hints simultaneously.

Note: When applying this limit, the database computes the hint transmission rate based on the uncompressed hint size, even if `internode_compression` (page 219) or `hints_compression` (page 224) is enabled.

max_hint_window_in_ms
Default: 10800000. (3 hours) Maximum amount of time during which the database generates hints for an unresponsive node. After this interval, the database does not generate any new hints for the node until it is back up and responsive. If the node goes down again, the database starts a new interval. This setting can prevent a sudden demand for resources when a node is brought back online and the rest of the cluster attempts to replay a large volume of hinted writes.

Related information: About failure detection and recovery

max_hints_delivery_threads
Default: 2. Number of threads the database uses to deliver hints. In multiple datacenter deployments, consider increasing this number because cross datacenter handoff is generally slower.

max_hints_file_size_in_mb
Default: 128. The maximum size for a single hints file, in megabytes.

hints_compression
Default: LZ4Compressor. The compressor for hint files. Supported compressors: LZ, Snappy, and Deflate. If you do not specify a compressor, the database does not compress hints files.

batchlog_replay_throttle_in_kb
(Default: 1024 kilobytes per second) Total maximum throttle for replaying failed logged batches. Throttling is reduced proportionally to the number of nodes in the cluster.

Request scheduler properties

Settings to handle incoming client requests according to a defined policy. If your nodes are overloaded and dropping requests, DataStax recommends that you add more nodes rather than use these properties to prioritize requests.

Note: The properties in this section apply only to the Thrift transport. They have no effect on the use of CQL over the native protocol.

request_scheduler
Default: org.apache.cassandra.scheduler.NoScheduler. The scheduler to handle incoming client requests according to a defined policy. This scheduler is useful for throttling client requests in single clusters containing multiple keyspaces. This parameter is specifically for requests from the client and does not affect inter-node communication. Valid values:
• org.apache.cassandra.scheduler.NoScheduler

The database does no scheduling.

• org.apache.cassandra.scheduler.RoundRobinScheduler

The database uses a round robin of client requests to a node with a separate queue for each request_scheduler_id (page 225) property.

• The database uses a Java class that implements the RequestScheduler interface.

request_scheduler_id

Default: keyspace. The scope of the scheduler's activity. Currently the only valid value is keyspace.

request_scheduler_options

Default: NoScheduler. A list of properties that define configuration options for request_scheduler (page 224).

RoundRobin:

A round robin of client requests to a node with a separate queue for each request_scheduler_id (page 225).

• throttle_limit - The number of in-flight requests per client. Requests that exceed this limit are queued up until running requests complete. Recommended value is ((concurrent_reads + concurrent_writes) × 2).

• default_weight - Default: 1. How many requests the scheduler handles during each turn of the round robin.

• weights - A list of keyspaces with assigned weights.

Thrift interface properties

Legacy API for older clients. CQL is a simpler and better API for the database.

thrift_framed_transport_size_in_mb

Default: 15. Frame size (maximum field length) for Thrift. The frame is the row or part of the row that the application is inserting.

Security properties

DSE Advanced Security fortifies DSE databases against potential harm due to deliberate attack or user error. Configuration properties include authentication and authorization, permissions, roles, encryption of data in-flight and at-rest, and data auditing. DSE Unified Authentication provides authentication, authorization, and role management. Enabling DSE Unified Authentication requires additional configuration in dse.yaml, see Configuring DSE Unified Authentication.

These properties protect Cassandra databases against potential harm due to deliberate attack or user error.

authenticator
Default: com.datastax.bdp.cassandra.auth.DseAuthenticator. The authentication backend. The only supported authenticator is DseAuthenticator for external authentication with multiple authentication schemes such as Kerberos, LDAP, and internal authentication. Authenticators other than DseAuthenticator are deprecated and not supported. Some security features might not work correctly if other authenticators are used. See authentication_options (page 234) in dse.yaml.

Important: Use only authentication implementations bundled with DSE.

Default: com.datastax.bdp.cassandra.auth.DseAuthenticator

internode_authenticator

Default: enabled. **note (page 199)** Internode authentication backend. It implements org.apache.cassandra.auth.AllowAllInternodeAuthenticator to allows or disallow connections from peer nodes.

Important: Use only authentication implementations bundled with DSE.

Default: com.datastax.bdp.cassandra.auth.DseAuthenticator

authorizer

Default: com.datastax.bdp.cassandra.auth.DseAuthorizer. The authorization backend. Authorizers other than DseAuthorizer are not supported. DseAuthorizer supports enhanced permission management of DSE-specific resources. Authorizers other than DseAuthorizer are deprecated and not supported. Some security features might not work correctly if other authorizers are used. See Authorization options (page 236) in dse.yaml.

Important: Use only authorization implementations bundled with DSE.

Default: com.datastax.bdp.cassandra.auth.DseAuthorizer

role_manager

Default: com.datastax.bdp.cassandra.auth.DseRoleManager. The DSE Role Manager supports LDAP roles and internal roles supported by the CassandraRoleManager. Role options are stored in the dse_security keyspace. When using the DSE Role Manager, increase the replication factor of the dse_security keyspace. Role managers other than DseRoleManager are deprecated and not supported. Some security features might not work correctly if other role managers are used.

Important: Use only role manager implementations bundled with DSE.

Default: com.datastax.bdp.cassandra.auth.DseRoleManager

roles_validity_in_ms

Default: 2000. Validity period for roles cache; set to 0 to disable. Determines how long to cache the list of roles assigned to the user; users may have several roles, either through direct assignment or inheritance (a role that has been granted to another role). Adjust this setting based on the complexity of your role hierarchy, tolerance for role changes, the number of nodes in your environment, and activity level of the cluster.

Fetching permissions can be an expensive operation, so this setting allows flexibility. Granted roles are cached for authenticated sessions in AuthenticatedUser. After the specified time elapses, role validity is rechecked. Disabled automatically when internal authentication is not enabled when using DseAuthenticator.

Default: 2000

roles_update_interval_in_ms

Default: The replication interval for the role options. This setting determines how frequently the role options are updated in the dse_security keyspace. The default value of 60000 (1 minute) is sufficient for most environments. Increase this value if you want to reduce the frequency of role updates, which may improve performance.

Default: 60000
Default: 2000. Enable to refresh interval for roles cache. Defaults to the same value as \texttt{roles_validity_in_ms}. After this interval, cache entries become eligible for refresh. On next access, the database schedules an async reload, and returns the old value until the reload completes. If \texttt{roles_validity_in_ms} is non-zero, then this must be also.

\textbf{credentials_validity_in_ms}

Default: 2000. How many milliseconds credentials in the cache remain valid. This cache is tightly coupled to the provided PasswordAuthenticator implementation of \texttt{IAuthenticator (page 225)}. If another \texttt{IAuthenticator} implementation is configured, the database does not use this cache, and these settings have no effect.

\textbf{Note:} Credentials are cached in encrypted form. This may cause a performance penalty that offsets the reduction in latency gained by caching.

\textbf{Caution:} Cache credentials and permissions are not automatically invalidated after issuing a \texttt{REVOKE} statement.

This setting is disabled when set to 0.

\textbf{credentials_update_interval_in_ms}

Default: same value as \texttt{credentials_validity_in_ms}. After this interval, cache entries become eligible for refresh. The next time the cache is accessed, the system schedules an asynchronous reload of the cache. Until this cache reload is complete, the cache returns the old values.

If \texttt{credentials_validity_in_ms} is nonzero, this property must also be nonzero.

\textbf{permissions_validity_in_ms}

Default: 2000. Fetching permissions can be resource intensive. Define how many milliseconds permissions in cache remain valid to manage performance impact of permissions queries. Set the cache validity period to your security tolerances. The cache is used for the standard authentication and the row-level access control (RLAC) cache. The cache is quite effective at small durations.

\textbf{Caution:} Cache credentials and permissions are not automatically invalidated after issuing a \texttt{REVOKE} statement.

This setting is disabled when set to 0.

\textbf{permissions_update_interval_in_ms}

Default: same value as \texttt{permissions_validity_in_ms (page 227)}. Sets refresh interval for the standard authentication cache and the row-level access control (RLAC) cache. After this interval, cache entries become eligible for refresh. On next access, the database schedules an async reload and returns the old value until the reload completes. If \texttt{permissions_validity_in_ms} is nonzero, \texttt{roles_update_interval_in_ms} must also be non-zero.

\textbf{permissions_cache_max_entries}

Default: 1000. The maximum number of entries that are held by the standard authentication cache and row-level access control (RLAC) cache. With the default value of 1000, the RLAC permissions cache can have up to 1000 entries in it, and the standard authentication cache can have up to 1000 entries. This single option
Configuration

applies to both caches. To size the permissions cache for use with Setting row-level permissions, use this formula:

\[\text{numRlacUsers} \times \text{numRlacTables} + 100\]

If this option is not present in cassandra.yaml, manually enter it. See Enabling DSE Unified Authentication.

server_encryption_options

Configure inter-node encryption. If enabled, you must also generate keys and provide the appropriate key and truststore locations and passwords. No custom encryption options are supported. Available options:

- **internode_encryption**: Default: none. Enables or disables encryption of inter-node communication using the TLS_RSA_WITH_AES_128_CBC_SHA cipher suite for authentication, key exchange, and encryption of data transfers. Use the DHE/ECDHE ciphers, such as TLS_DHE_RSA_WITH_AES_128_CBC_SHA if running in (Federal Information Processing Standard) FIPS 140 compliant mode. Available inter-node options:

 - `# all`
 Encrypt all inter-node communications.

 - `# none`
 No encryption.

 - `# dc`
 Encrypt the traffic between the datacenters (server only).

 - `# rack`
 Encrypt the traffic between the racks (server only).

- **keystore**: Default: conf/.keystore.

 The location of a Java keystore (JKS) suitable for use with Java Secure Socket Extension (JSSE), which is the Java version of the Secure Sockets Layer (SSL), and Transport Layer Security (TLS) protocols. The keystore contains the private key used to encrypt outgoing messages.

- **keystore_password**: Default: cassandra.

 Password for the keystore.

- **truststore**: Default: conf/.truststore.

 Location of the truststore containing the trusted certificate for authenticating remote servers.

- **truststore_password**: Default: cassandra.
Password for the truststore.

The passwords used in these options must match the passwords used when generating the keystore and truststore. For instructions on generating these files, see Creating a Keystore to Use with JSSE.

Advanced settings:

- **protocol**: Default: TLS.
- **algorithm**: Default: SunX509.
- **store_type**: Default: JKS.
- **cipher_suites**: Supported ciphers:
 # TLS_RSA_WITH_AES_128_CBC_SHA
 # TLS_RSA_WITH_AES_256_CBC_SHA
 # TLS_DHE_RSA_WITH_AES_128_CBC_SHA
 # TLS_DHE_RSA_WITH_AES_256_CBC_SHA
 # TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
 # TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
- **require_client_auth**: Default: false.
 Enables or disables certificate authentication.
- **require_endpoint_verification**: Default: false.
 Enables or disables host name verification.

Related information: Securing internal transactional node connections

client_encryption_options

Enables or disables client-to-node encryption. You must also generate keys and provide the appropriate key and truststore locations and passwords. There are no custom encryption options currently enabled for DSE. Available options:

- **enabled**: Default: false.
 To enable client encryption, set to true.

- **optional**: Default: false.
 Allow unsecured connections when client encryption is enabled.

- **keystore**: Default: conf/.keystore.
 The location of a Java keystore (JKS) suitable for use with Java Secure Socket Extension (JSSE), which is the Java version of the Secure Sockets Layer (SSL), and Transport Layer Security (TLS) protocols. The keystore contains the private key used to encrypt outgoing messages.
Configuration

- **keystore_password**: Default: cassandra.

 Password for the keystore. This must match the password used when generating the keystore and truststore.

- **require_client_auth**: Default: false.

 Enables or disables certificate authentication.

- **truststore**: Default: conf/.truststore.

 Set this property if require_client_auth is true.

- **truststore_password**: Default: cassandra

 Set if require_client_auth is true.

Advanced settings:

- **protocol**: Default: TLS.
- **algorithm**: Default: SunX509.
- **store_type**: Default: JKS.
- **cipher_suites**: Supported ciphers:

  ```
  # TLS_RSA_WITH_AES_128_CBC_SHA
  # TLS_RSA_WITH_AES_256_CBC_SHA
  # TLS_DHE_RSA_WITH_AES_128_CBC_SHA
  # TLS_DHE_RSA_WITH_AES_256_CBC_SHA
  # TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
  # TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
  ```

Related information: **Securing client to cluster connections**

transparent_data_encryption_options

DSE only supports this option for backwards compatibility. When using DSE, configure data encryption options (*page 242*) in the dse.yaml; see Transparent data encryption.

TDE properties:

- **enabled**: (Default: false)
- **chunk_length_kb**: (Default: 64)
- **cipher**: options:

  ```
  # AES
  # CBC
  # PKCS5Padding
  ```
- **key_alias**: testing:1
- **iv_length**: 16
Note: `iv_length` is commented out in the default `cassandra.yaml` file. Uncomment only if `cipher` is set to **AES**. The value must be **16** (bytes).

- **key_provider:**
  ```
  # class_name: org.apache.cassandra.security.JKSKeyProvider
  parameters:
  # keystore: conf/.keystore
  # keystore_password: cassandra
  # store_type: JCEKS
  # key_password: cassandra
  ```

ssl_storage_port
Default: 7001. The SSL port for encrypted communication. Unused unless enabled in `encryption_options`.

native_transport_port_ssl
Default: 9142. If client encryption is enabled and `native_transport_port_ssl` is disabled, the `native_transport_port` (default: 9042) will encrypt all traffic. To use both unencrypted and encrypted traffic, enable `native_transport_port_ssl`.

Continuous paging

continuous_paging
Pushes pages continuously to the client when requested by the client, parameters control:

- Maximum memory used. Default: 60 \# 4 \# 8 = 1920 MB
 \<(max_concurrent_sessions \# max_session_pages \# max_page_size_mb)\>.
- Maximum number of threads.
- Maximum duration for local queries.

Guidance:

- If the client is not reading from the socket, the producer thread is blocked after it has prepared `max_session_pages`, up to `max_client_wait_time_ms`.
- Because memtables and SSTables are used by the continuous paging query, you can define the maximum period of time during which memtables cannot be flushed and compacted SSTables cannot be deleted.

 Maximum period of time = `max_client_wait_time_ms` + `max_local_query_time_ms`.

- Consider adjusting `max_local_query_time_ms` and `max_client_wait_time_ms` when high write workloads exist on tables that have continuous paging requests.
- If fewer threads exist than sessions (max_threads < `max_concurrent_sessions`), a session cannot execute until another one is swapped out.
Configuration

- Distributed queries (CL > ONE or non-local data) are swapped out after every page, while local queries at CL = ONE are swapped out after max_local_query_time_ms.
- If the client is slow in reading pages, try increasing the delay by adjusting max_client_wait_time_ms.

Parameters:

- **max_concurrent_sessions**
 Default: 60. The maximum number of concurrent sessions. Additional sessions are rejected with an unavailable error.

- **max_session_pages**
 Default: 4. The maximum number of pages that can be buffered for each session.

- **max_page_size_mb**
 Default: 8. The maximum size of a page, in MB. If an individual CQL row is larger than this value, the page can be bigger than this value.

- **max_client_wait_time_ms**
 Default: 20000. The maximum time for the server to wait for the client to read from the socket. If exceeded, the session is aborted and the client receives an error. Setting max_client_wait_time_ms to a value too low may result in client side errors.

- **max_local_query_time_ms**
 Default: 5000. The maximum time for a local continuous query to run. When exceeded, the session is swapped out and rescheduled. Swapping and rescheduling ensures the release of resources that prevent the memtables from flushing and ensures fairness when max_threads < max_concurrent_sessions.

- **max_threads**
 Default: 24. The number of threads dedicated to continuous paging sessions.

cassandra-env.sh

The location of the cassandra-env.sh file depends on the type of installation:

<table>
<thead>
<tr>
<th>Installation Type</th>
<th>File Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package installations</td>
<td>/etc/dse/cassandra/cassandra-env.sh</td>
</tr>
<tr>
<td>Installer-Services installations</td>
<td>/etc/dse/cassandra/cassandra-env.sh</td>
</tr>
<tr>
<td>Tarball installations</td>
<td>installation_location/resources/cassandra/conf/cassandra-env.sh</td>
</tr>
<tr>
<td>Installer-No Services installations</td>
<td>installation_location/resources/cassandra/conf/cassandra-env.sh</td>
</tr>
</tbody>
</table>

dse.yaml
The location of the `dse.yaml` file depends on the type of installation:

<table>
<thead>
<tr>
<th>Package installations</th>
<th>/etc/dse/dse.yaml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer-Services installations</td>
<td></td>
</tr>
<tr>
<td>Tarball installations</td>
<td><code>installation_location/</code></td>
</tr>
<tr>
<td>Installer-No Services installations</td>
<td><code>resources/dse/conf/dse.yaml</code></td>
</tr>
</tbody>
</table>

dse.yaml configuration file

The `dse.yaml` file is the primary configuration file for security, DSE Search, DSE Graph, and DSE Analytics.

Important: After changing properties in the `dse.yaml` file, restart the node for the changes to take effect.

The `cassandra.yaml` (page 198) file is the primary configuration file for the DataStax Enterprise (DSE) database.

Syntax

For the options in each section, the main setting has zero spaces, and at least two spaces are required before each entry in that section. For example, in the `node_health_options` section, at least two spaces are required before `refresh_rate_ms`, `uptime_ramp_up_period_seconds`, and `dropped_mutation_window_minutes`:

```
node_health_options:
  refresh_rate_ms: 50000
  uptime_ramp_up_period_seconds: 10800
  dropped_mutation_window_minutes: 30
```

Adhere to the YAML syntax. The default values are shown for each section.

Organization

The DataStax Enterprise configuration properties are grouped into the following sections:

- Security and authentication options (page 234)
- DSE In-Memory (page 244)
- Node health (page 245)
- Health-based routing (page 245)
- Lease metrics (page 245)
- DSE Search options (page 246)
- DSE Analytics options (page 257)
- Performance Service options (page 250)
Configuration

- DSE Metrics Collector options (page 263)
- Audit logging (page 264)
- DSE Tiered Storage (page 266)
- DSE Advanced Replication (page 267)
- Inter-node messaging (page 268)
- DSE Multi-Instance (page 268)
- DSE Graph options (page 269)

Security and authentication options

- Authentication options (page 234)
- Role management options (page 235)
- Authorization options (page 236)
- Kerberos options (page 236)
- LDAP options (page 238)
- Encrypt sensitive system resources (page 240)
- Encrypted configuration properties settings (page 242)
- KMIP encryption options (page 243)
- DSE Search index encryption settings (page 244)

Authentication options

Authentication options for the DSE Authenticator, which allows you to use multiple schemes for authentication in a DSE cluster. Additional configuration is required in the cassandra.yaml configuration file (page 198) file.

Note: Internal and LDAP schemes can also be used for role management, see role_management_options (page 236).

Default values:

```yaml
authentication_options:
  enabled: false
  default_scheme: kerberos
  other_schemes:
    - internal
      scheme_permissions: true
      allow_digest_with_kerberos: true
      plain_text_without_ssl: warn
      transitional_mode: disabled
```

authentication_options

Options for the DSE Authenticator to authenticate connections. Authenticators other than DSE Authenticator are not supported.

enabled

Default: `false`. Enables user authentication. When false, the DSE Authenticator allows all connections.

default_scheme

Sets the first scheme to validate a user against when the driver does not request a specific scheme.
• **internal** - Plain text authentication using the internal password authentication.
• **ldap** - Plain text authentication using pass-through LDAP authentication.
• **kerberos** - GSSAPI authentication using the Kerberos authenticator. Default.

other_schemes
List of schemes that are also checked if validation against the first scheme fails and no scheme was specified by the driver. Same scheme names as **default_scheme**.

scheme_permissions
Only enable (true) when using multiple schemes for authentication. Prevents unintentional role assignment that might occur if user or group names overlap in the authentication service. When true every role requires permissions to a scheme in order to be assigned, see Binding a role to an authentication scheme.

allow_digest_with_kerberos
Controls whether DIGEST-MD5 authentication is also allowed with Kerberos. The DIGEST-MD5 mechanism is not directly associated with an authentication scheme, but is used by Kerberos to pass credentials between nodes and jobs. In analytics clusters, set to true when using with Spark jobs.

plain_text_without_ssl
Controls how the DseAuthenticator responds to plain text authentication requests over unencrypted client connections. Set to one of the following values:

- **block** - Block the request with an authentication error.
- **warn** - Log a warning about the request but allow it to continue. Default.
- **allow** - Allow the request without any warning.

transitional_mode
For temporary use during authentication setup in an already established environment. Allows access to the database using the anonymous role, which has all permissions except AUTHORIZE.

To enable, use one of the following options:

- **permissive** - Allow all connections that provide credentials. Maps authenticated superusers to their role AND maps all other users to anonymous.
- **normal** - Allow all connections that provide credentials. Maps all authenticated users to their role AND maps all other connections to anonymous.
- **strict** - Allow only authenticated connections that map to a login enabled role OR connections that provide a blank username and password as anonymous.

Important: Credentials are required for all connections after authentication is enabled; use a blank username and password to login with anonymous role in transitional mode.

When set to **disabled**, all connections must provide valid credentials and map to a login enabled role.

Role management options

Default values:
Configuration

role_management_options:
 mode: internal

role_management_options
 Options for the DSE Role Manager. To enable role manager, set authorization_options (page 234) enabled to true and role_manager (page 226) in cassandra.yaml to com.datastax.bdp.cassandra.auth.DseRoleManager, see Managing roles. When scheme_permissions (page 235) is enabled, all roles must have permission to execute on the authentication scheme. See Binding a role to an authentication scheme.

mode
 Set to one of the following values:
 - internal - Scheme that manages roles per individual user in the internal database. Default.
 - ldap - Scheme that assigns roles by looking up the user name in LDAP and mapping the group attribute (ldap_options (page 238)) to an internal role name. To configure an LDAP scheme, complete the steps in Defining an LDAP scheme.

 Note: Nested roles are not supported for LDAP.

Authorization options

Default values:

authorization_options:
 enabled: false
 transitional_mode: disabled
 allow_row_level_security: false

authorization_options
 Options for the DSE Authorizer.

enabled
 Enables the use of DSE Authorizer for role-based access control (RBAC).

transitional_mode
 Allows the DSE Authorizer to operate in a temporary transitional mode during setup of authorization in a cluster. Set to one of the following values:
 - disabled - Transitional mode is disabled.
 - normal - Permissions can be passed to resources, but are not enforced.
 - strict - Permissions can be passed to resources, and are enforced on authenticated users. Permissions are not enforced against anonymous users.

allow_row_level_security
 Default: false. True enables row-level access control (RLAC) permissions; use the same setting on all nodes.

Kerberos options

Default values:
kerberos_options:
 keytab: path_to_keytab/dse.keytab
 service_principal: dse_user/_HOST@REALM
 http_principal: HTTP/_HOST@REALM
 qop: auth

kerberos_options

Configure security for a DataStax Enterprise cluster using Kerberos. See Kerberos guidelines.

keytab

The keytab file must contain the credentials for both of the fully resolved principal names, which replace _HOST with the Fully Qualified Domain Name (FQDN) of the host in the service_principal and http_principal settings. The UNIX user running DSE must also have read permissions on the keytab.

service_principal

The service_principal that the DataStax Enterprise process runs under must use the form dse_user/_HOST@REALM.

where dse_user is:

- Package and Installer-Services installations: cassandra
- Package installations: the name of the UNIX user that starts the service

where:

- _HOST is converted to a reverse DNS lookup of the broadcast address.
- REALM is the name of your Kerberos realm. In the Kerberos principal, REALM must be uppercase.

The service_principal must be consistent everywhere: in the dse.yaml file, present in the keytab, and in the cqlshrc file (where service_principal is separated into service/hostname).

http_principal

The http_principal is used by the Tomcat application container to run DSE Search. The Tomcat web server uses GSS-API mechanism (SPNEGO) to negotiate the GSSAPI security mechanism (Kerberos). Set REALM to the name of your Kerberos realm. In the Kerberos principal, REALM must be uppercase.

qop

A comma-delimited list of Quality of Protection (QOP) values that clients and servers can use for each connection. The client can have multiple QOP values, while the server can have only a single QOP value. The valid values are:

- **auth** - Authentication only. Default.
- **auth-int** - Authentication plus integrity protection for all transmitted data.
- **auth-conf** - Authentication plus integrity protection and encryption of all transmitted data.

Encryption using auth-conf is separate and independent of whether encryption is done using SSL. If both auth-conf and SSL are enabled, the transmitted...
Configuration

Data is encrypted twice. DataStax recommends choosing only one method and using it for both encryption and authentication.

LDAP options

Define LDAP options to authenticate users against an external LDAP service and/or for Role Management using LDAP group look up. See Enabling DSE Unified Authentication.

Default values:

```yaml
ldap_options:
  server_host: localhost ## Appropriate only for development and testing on a single node.
  server_port: 389
  search_dn: uid=Admin
  search_password: secret
  use_ssl: false
  use_tls: false
  truststore_path: path/to/truststore
  truststore_password: passwordToTruststore
  truststore_type: jks
  user_search_base: ou=users,dc=example,dc=com
  user_search_filter: (uid={0})
  usermemberof_attribute: memberof
  group_search_type: directory_search
  group_search_base:
  group_search_filter: (uniquemember={0})
  group_name_attribute: cn
  credentials_validity_in_ms: 0
  search_validity_in_seconds: 0
  connection_pool:
    max_active: 8
    max_idle: 8
```

Microsoft Active Directory (AD) example, for both authentication and role management:

```yaml
ldap_options:
  server_host: win2012ad_server.mycompany.lan
  server_port: 389
  search_dn: cn=lookup_user,cn=users,dc=win2012domain,dc=mycompany,dc=lan
  search_password: lookup_user_password
  use_ssl: false
  use_tls: false
  truststore_path: path/to/truststore
  truststore_password: passwordToTruststore
  truststore_type: jks
  user_search_base: cn=users,dc=win2012domain,dc=mycompany,dc=lan
  user_search_filter: (sAMAccountName={0})
  usermemberof_attribute: memberOf
  group_search_type: directory_search
  group_search_type: memberof_search
  group_search_base:
```
group_search_filter: (uniquemember={0})
group_name_attribute: cn
credentials_validity_in_ms: 0
search_validity_in_seconds: 0
connection_pool:
 max_active: 8
 max_idle: 8

ldap_options
Options to configure LDAP security. See Defining an LDAP scheme.

server_host
The host name of the LDAP server.

Note: Only install LDAP on the same host (localhost) in single node test or development environments.

server_port
The port on which the LDAP server listens. Default: 389

search_dn
Distinguished name (DN) of an account with read access to the user_search_base and group_search_base. Comment out to use an anonymous bind. For example:

- OpenLDAP: uid=lookup, ou=users, dc=springsource, dc=com
- Microsoft Active Directory (AD): cn=lookup, cn=users, dc=springsource, dc=com

Warning: Do not create/use an LDAP account or group called cassandra. The DSE database comes with a default login role cassandra, which has access to all database objects using the consistency level QUOROM.

search_password
The password of the search_dn account.

use_ssl
Set to true to enable SSL connections to the LDAP server. If set to true, change server_port to the SSL port of the LDAP server. Default: false

use_tls
Set to true to enable TLS connections to the LDAP server. If set to true, change the server_port to the TLS port of the LDAP server. Default: false

truststore_path
The path to the truststore for SSL certificates.

truststore_password
The password to access the trust store.

truststore_type
The type of truststore. Default: jks

user_search_base
The search base for your domain, used to look up users. Set the ou and dc elements for your LDAP domain. Typically this is set to ou=users, dc=domain, dc=top_level_domain. For example, ou=users, dc=example, dc=com.
Active Directory uses a different search base, typically
CN=search,CN=Users,DC=ActDir_domname,DC=internal. For example,
CN=search,CN=Users,DC=example-sales,DC=internal.

user_search_filter
The search filter for looking up user names. Set the LDAP attribute name of the
user identifier equal to \{0\}. For example AD (Microsoft Active Directory), is typically
samAccountName={0}. Default: uid={0}

user_memberof_attribute
The attribute on the user entry that contains group membership information.
Required when managing roles using `group_search_type: memberof_search` with LDAP
(`role_manager.mode:ldap (page 236)`).

group_search_type
Required when managing roles with LDAP (`role_manager.mode: ldap (page
236)`). Defines how group membership is looked up for a user. Choose from one
of the following values:

- **directory_search** - Filters the results by doing a subtree search of
 `group_search_base (page 240)` to find groups that contain the user name in
 the attribute defined in the `group_search_filter (page 240)`. (Default)

- **memberof_search** - Get groups from the user attribute defined in
 `user_memberof_attribute`. The directory server must have `memberof`
support, which is a default user attribute in Microsoft Active Directory (AD).

group_search_base
The unique distinguished name (DN) of the group record from which to start the
group membership search on.

group_search_filter
Set to any valid LDAP filter.
Default: \{uniquemember={0}\}

group_name_attribute
The attribute in the group record that contains the LDAP group name. Role names
are case sensitive and must match exactly on DSE for assignment. Default: cn

credentials_validity_in_ms
The duration period in milliseconds for the credential cache. Default: 0

search_validity_in_seconds
The duration period in seconds for the search cache. Default: 0

connection_pool
The configuration settings for the connection pool for making LDAP requests.

- **max_active** - The maximum number of active connections to the LDAP server.
 Default: 8

- **max_idle** - The maximum number of idle connections in the pool awaiting
 requests. Default: 8

Encrypt sensitive system resources

The `system_info_encryption` section that controls encryption of sensitive system
resources using either a local encryption key or remote KMIP key.
Note: DataStax recommends using a remote encryption key from a KMIP provider when using Transparent Data Encryption (TDE) features. Only use a local encryption key if a KMIP server is not available.

Default values:

```yaml
system_info_encryption:
  enabled: false
  cipher_algorithm: AES
  secret_key_strength: 128
  chunk_length_kb: 64
  key_provider: KmipKeyProviderFactory
  kmip_host: kmip_host_name
```

system_info_encryption

Controls encryption of sensitive system resources using either a local encryption key or remote KMIP key.

enabled

Set to `true` to enable encryption of system resources that might contain sensitive information, including the `system.batchlog` and `system.paxos` tables, hint files, and the database commit log. After enabling system resource encryption in an environment that already has data, encrypt the existing SSTables by running `nodetool upgradesstables (page 1078) -a system.batchlog paxos`

Note: The `system_trace` keyspace is NOT encrypted by enabling the `system_information_encryption` section. In environments that also have tracing enabled, manually configure encryption with compression on the `system_trace` keyspace. See Transparent data encryption.

Default: false.

cipher_algorithm

Default: AES. The name of the JCE cipher algorithm used to encrypt system resources.

Table 35: Supported cipher algorithms names

<table>
<thead>
<tr>
<th>cipher_algorithm</th>
<th>secret_key_strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>AES</td>
<td>128, 192, or 256</td>
</tr>
<tr>
<td>DES</td>
<td>56</td>
</tr>
<tr>
<td>DESede</td>
<td>112 or 168</td>
</tr>
<tr>
<td>Blowfish</td>
<td>32-448</td>
</tr>
<tr>
<td>RC2</td>
<td>40-128</td>
</tr>
</tbody>
</table>

secret_key_strength

Default: 128. Length of key to use for the system resources. See Table 1 (page 241).
Configuration

Note: DSE uses a matching local key or request the key type from the KMIP server. For KMIP, if an existing key does not match the KMIP server automatically generates a new key.

chunk_length_kb
Default: 64. Optional. Size of SSTable chunks when data from the system.batchlog or system.paxos are written to disk.

Note: To encrypt existing data, run `nodetool upgradesstables` (page 1078) on all nodes in the cluster.

key_provider
Set to `KmipKeyProviderFactory` to encrypt sensitive system data with a KMIP key. Comment out this property if using a local encryption key.

Default: none

kmip_host
Set to the `kmip_group_name` that defines the KMIP host in `kmip_hosts` (page 243) section. DSE requests a key from the KMIP host and uses the key generated by the KMIP provider. Default: none

Encrypted configuration properties settings
Settings for using encrypted passwords in sensitive configuration file properties.

```plaintext
system_key_directory: /etc/dse/conf
config_encryption_active: false
config_encryption_key_name: (key_filename | KMIP_key_URL )
```

system_key_directory
Path to the directory where local encryption key files are stored, also called system keys. Distribute the system keys to all nodes in the cluster. Ensure that the DSE account is the folder owner and has read/write (600) permissions. Default: /etc/dse/conf

See Setting up local encryption keys.

Note: This directory is not used for KMIP keys.

config_encryption_active
Default: false. Set to `true` to enable decryption of configuration property values using the specified `config_encryption_key_name` (page 243). When enabled, encrypt values for following properties:

- dse.yaml LDAP values:

```plaintext
ldap_options.search_password
ldap_options.truststore_password
```

Restriction: Use plain text for the KMIP keystore or truststore passwords.
• cassandra.yaml SSL values:

```
server_encryption_options.keystore_password
server_encryption_options.truststore_password
client_encryption_options.keystore_password
client_encryption_options.truststore_password
```

Tip: `dsetool encryptconfigvalue (page 1184)` returns encrypts values using the `config_encryption_key_name (page 243)` key.

config_encryption_key_name
Default: system_key. The default name is not configurable.

Set to the local encryption key filename or KMIP key URL to use for configuration file property value decryption.

Note: Use `dsetool encryptconfigvalue (page 1184)` to generate encrypted values for the configuration file properties.

KMIP encryption options
Options for KMIP encryption keys and communication between the DataStax Enterprise node and the KMIP key server or key servers. Enables DataStax Enterprise encryption features to use encryption keys that stored on a server that is not running DataStax Enterprise.

Default values:

```
kmp_hosts:
  your_kmip_groupname:
    hosts: kmip1.yourdomain.com, kmip2.yourdomain.com
    keystore_path: pathto/kmip/keystore.jks
    keystore_type: jks
    keystore_password: password
    truststore_path: pathto/kmip/truststore.jks
    truststore_type: jks
    truststore_password: password
    key_cache_millis: 300000
    timeout: 1000
```

kmip_hosts
Connection settings for key servers that support the KMIP protocol.

kmip_groupname
A user-defined name for a group of options to configure a KMIP server or servers, key settings, and certificates. Configure options for a `kmip_groupname` section for each KMIP key server or group of KMIP key servers. Using separate key server configuration settings allows use of different key servers to encrypt table data, and eliminates the need to enter key server configuration information in DDL statements and other configurations. Multiple KMIP hosts are supported.

hosts
A comma-separated list of KMIP hosts using the Fully Qualified Domain Name (FQDN). DSE queries the host in the listed order.

For example, if the host list contains kmip1.yourdomain.com, kmip2.yourdomain.com, DSE tries kmip1.yourdomain.com and then kmip2.yourdomain.com.

keystore_path
The path to a Java keystore created from the KMIP agent PEM files. For example:
/etc/dse/conf/KMIP_keystore.jks

keystore_type
The type of key store. The default value is jks.

keystore_password
The password to access the key store.

truststore_path
The path to a Java truststore created using the KMIP root certificate. For example:
/etc/dse/conf/KMIP_truststore.jks

truststore_type
The type of truststore. The default value is jks.

truststore_password
The password to access the truststore.

key_cache_millis
Milliseconds to locally cache the encryption keys that are read from the KMIP hosts. The longer the encryption keys are cached, the fewer requests are made to the KMIP key server, but the longer it takes for changes, like revocation, to propagate to the DataStax Enterprise node. DataStax Enterprise uses concurrent encryption, so multiple threads fetch the secret key from the KMIP key server at the same time. Default: 300000. DataStax recommends using the default value.

timeout
Socket timeout in milliseconds. Default: 1000.

DSE Search index encryption settings
Default values:

```
solr_encryption_options:
    decryption_cache_offheap_allocation: true
    decryption_cache_size_in_mb: 256
```

solr_encryption_options
Specify settings to tune encryption of search indexes.

decryption_cache_offheap_allocation
Specify whether to allocate shared DSE Search decryption cache off JVM heap. Default: true

decryption_cache_size_in_mb
Sets the maximum size of shared DSE Search decryption cache, in megabytes (MB). Default: 256

DSE In-Memory options

```
max_memory_to_lock_mb:
    max_memory_to_lock_fraction: 0.20
```
max_memory_to_lock_mb

To use DSE In-Memory, choose one of these options to specify how much system memory to use for all in-memory tables.

- max_memory_to_lock_fraction

 Specify a fraction of the system memory. The default value of 0.20 specifies to use up to 20% of system memory.

- max_memory_to_lock_mb

 Specify a maximum amount of memory in megabytes (MB).

Node health options

node_health_options:

 refresh_rate_ms: 50000
 uptime_ramp_up_period_seconds: 10800
 dropped_mutation_window_minutes: 30

node_health_options

Node health options are always enabled for all nodes. Node health is a score-based representation of how fit a node is to handle search queries.

refresh_rate_ms

Default: 60000

uptime_ramp_up_period_seconds

Default: 10800 (3 hours). The amount of continuous uptime required for the node’s uptime score to advance the node health score (page 1357) from 0 to 1 (full health), assuming there are no recent dropped mutations. The health score is a composite score based on dropped mutations and uptime. Tip: If a node is repairing after a period of downtime, you might want to increase the uptime period to the expected repair time.

dropped_mutation_window_minutes

Default: 30. The historic time window over which the rate of dropped mutations affect the node health score.

Health-based routing

enable_health_based_routing: true

enable_health_based_routing

Default: true. Enable replication selection for distributed DSE Search queries to consider node health when multiple candidates exist for a particular token range. Health-based routing enables a trade-off between index consistency and query throughput. When the primary concern is performance, do not enable health-based routing.

Lease metrics

Default values:
lease_metrics_options

Lease holder statistics help monitor the lease subsystem for automatic management (page 341) of Job Tracker and Spark Master nodes.

enabled

Enables (true) or disables (false) log entries related to lease holders. Most of the time you do not want to enable logging. Default: false

ttl_seconds

Defines the time, in milliseconds, to persist the log of lease holder changes. Logging of lease holder changes is always on, and has a very low overhead. Default: 604800

DSE Search options

- Scheduler settings for DSE Search indexes (page 246)
- Reindexing of bootstrapped data (page 247)
- CQL Solr paging (page 247)
- Solr CQL query options (page 247)
- DSE Search resource upload limit (page 248)
- Shard transport options (page 248)
- DSE Search indexing settings (page 248)

Scheduler settings for DSE Search indexes

Default values:

<table>
<thead>
<tr>
<th>ttl_index_rebuild_options</th>
</tr>
</thead>
<tbody>
<tr>
<td>fixed_rate_period: 300</td>
</tr>
<tr>
<td>initial_delay: 20</td>
</tr>
<tr>
<td>max_docs_per_batch: 4096</td>
</tr>
<tr>
<td>thread_pool_size: 1</td>
</tr>
</tbody>
</table>

ttl_index_rebuild_options

To ensure that records with TTLs are purged from search indexes when they expire, the search indexes are periodically checked for expired documents. The ttl_index_rebuild_options settings control the schedulers in charge of querying for and removing expired records, and the execution of the checks.

fixed_rate_period

Schedules how often to check for expired data in seconds. Default: 300

initial_delay

Speeds startup time by delaying the first TTL checks in seconds. Default: 20

max_docs_per_batch

Sets the maximum number of documents to check and delete per batch by the TTL rebuild thread. Default: 4096

thread_pool_size
Configuration

To manage system resource consumption and prevent many search cores from executing simultaneous TTL deletes, defines the maximum number of cores that can execute TTL cleanup concurrently. Default: 1

Reindexing of bootstrapped data

```yaml
async_bootstrap_reindex: false
```

async_bootstrap_reindex

For DSE Search, configure whether to asynchronously reindex bootstrapped data. Default: false

- If enabled, the node joins the ring immediately after bootstrap and reindexing occurs asynchronously. Do not wait for post-bootstrap reindexing so that the node is not marked down.
- If disabled, the node joins the ring after reindexing the bootstrapped data.

CQL Solr paging

Options to specify the paging behavior.

```yaml
cql_solr_query_paging: off
```

cql_solr_query_paging

Options to specify the paging behavior.

- **off** - Default. Paging is off. Ignore driver paging settings for CQL Solr queries and use normal Solr paging unless:
 - The current workload is an analytics workload, including SearchAnalytics. SearchAnalytics nodes always use driver paging settings.
 - Even when `cql_solr_query_paging: off`, paging is dynamically enabled with the "paging":"driver" parameter in JSON queries (page 503).

- **driver** - Respects driver paging settings. Specifies to use Solr pagination (page 507) (cursors) only when the driver uses pagination. Enabled automatically for DSE SearchAnalytics workloads.

Solr CQL query options

Default value:

```yaml
cql_solr_query_row_timeout: 10000
```

cql_solr_query_row_timeout

The maximum time in milliseconds to wait for each row to be read from the database during CQL Solr queries. Default: 10000 (10 seconds).
DSE Search resource upload limit

Default value:

```
solr_resource_upload_limit_mb: 10
```

solr_resource_upload_limit_mb

Default: 10. You can configure the maximum resource file size or disable resource upload. Sets the maximum DSE Search resource upload size limit in megabytes (MB). Set to 0 to disable resource uploading.

Shard transport options

This shard transport option for inter-node communication between DSE Search nodes controls timeout behavior during distributed queries.

Default values:

```
shard_transport_options:
  netty_client_request_timeout: 60000
```

shard_transport_options

For inter-node communication between DSE Search nodes.

netty_client_request_timeout

Default: 60000. The client request timeout is the maximum cumulative time (in milliseconds) that a distributed search request will wait idly for shard responses. Defines timeout behavior during distributed queries.

DSE Search indexing settings

DSE Search implements multi-threaded indexing to improve performance on multi-core machines. All index updates are internally dispatched to a per-core indexing thread pool and executed asynchronously, which allows for greater concurrency and parallelism. However, index requests can return a response before the indexing operation is executed.

Default values:

```
# max_solr_concurrency_per_core: 2
# enable_back_pressure_adaptive_nrt_commit: true
# back_pressure_threshold_per_core: 2000
# flush_max_time_per_core: 5
# load_max_time_per_core: 5
# enable_index_disk_failure_policy: false
# solr_data_dir: /MyDir
# solr_field_cache_enabled: false
```

max_solr_concurrency_per_core

Configures the maximum number of concurrent asynchronous indexing threads per DSE Search index. Default: `number_of_available_CPU_cores`.
If set to 1, DSE Search reverts to using synchronous indexing behavior, where data is synchronously written to the database in a single thread and indexed for DSE Search.

To achieve optimal performance, assign this value to number of available CPU cores divided by the number of search cores. For example, with 16 CPU cores and 4 search cores, the suggested value is 4. Also see Configuring and tuning indexing performance.

To prevent writes from overwhelming reads, reduce this value and adjust parallelDeleteTasks (page 442) in the search index config.

Note: Dynamic switching to search concurrency level at 1 is disallowed.

enable_back_pressure_adaptive_nrt_commit
Allows back pressure system to adapt max auto soft commit time (defined per search index config) to the actual load. Setting is respected only for NRT (near real time) cores. When DSE search cores have real-time (RT) live indexing, adaptive commits are disabled regardless of this property value. See live indexing with RT. Default: true

back_pressure_threshold_per_core
The total number of queued asynchronous indexing requests per search core. When this number is exceeded, back pressure prevents excessive resource consumption by throttling new incoming requests. DataStax recommends using a back_pressure_threshold_per_core value of 1000 * max_solr_concurrency_per_core (page 248).
Default: 2000

flush_max_time_per_core
The maximum time, in minutes, to wait for the flushing of asynchronous index updates, which occurs at DSE Search commit time or at flush time. Expert level knowledge is required to change this value. Always set the value reasonably high to ensure flushing completes successfully to fully sync DSE Search indexes with the database data. If the configured value is exceeded, index updates are only partially committed, and the commit log is not truncated to ensure data durability.

Note: When a timeout occurs, it usually means this node is being overloaded and cannot flush in a timely manner. Live indexing increases the time to flush asynchronous index updates.

Default: 5

load_max_time_per_core
The maximum time, in minutes, to wait for each DSE Search index to load on startup or create/reload operations, expressed. This advanced option should be changed only if exceptions happen during core loading.
Default: 5 (if not specified)

enable_index_disk_failure_policy
DSE Search activates the configured disk failure policy if IOExceptions occur during index update operations.
Default: false

solr_data_dir
The directory to store index data. By default, each DSE Search index is saved in `solrconfig_data_dir/keyspace_name.table_name`, or as specified by the `dse.solr.data.dir` system property. See Managing the location of DSE Search data.

solr_field_cache_enabled

The Apache Lucene® field cache is deprecated. Instead, for fields that are sorted, faceted, or grouped by, set `docValues="true"` on the field in the `schema.xml` file. Then reload the core and reindex. The default value is false. To override false, set `useFieldCache=true` in the request.

Performance Service options

- Global Performance Service options (page 250)
- CQL Performance Service options (page 250)
- Spark Performance Service options (page 256)
- Spark Performance Service options (page 256)

Global Performance Service options

Available options to configure the thread pool that is used by most plug-ins. A dropped task warning is issued when the performance service requests more tasks than `performance_max_threads + performance_queue_capacity`. When a task is dropped, collected statistics might not be current.

Default values:

```yaml
performance_core_threads: 4
performance_max_threads: (cassandra.concurrent_writes)
performance_queue_capacity: 32000
```

performance_core_threads

Number of background threads used by the performance service under normal conditions. Default: 4

performance_max_threads

Maximum number of background threads used by the performance service. Limited to the value of `concurrent_writes (page 207)` in the `cassandra.yaml` file. Default: The number of cassandra.concurrent_writes.

performance_queue_capacity

The number of queued tasks in the backlog when the number of `performance_max_threads` are busy. Default: 32000

CQL Performance Service options

These settings are used by the Performance Service to configure collection of performance metrics on transactional nodes. Performance metrics are stored in the `dse_perf` keyspace and can be queried with CQL using any CQL-based utility, such as `cqlsh` or any application using a CQL driver. To temporarily make changes for diagnostics and testing, use the `dsetool perf (page 1213)` subcommands.

Default values:
graph_events:
 ttl_seconds: 600

cql_slow_log_options:
 enabled: true
 threshold: 200.0
 minimum_samples: 100
 ttl_seconds: 259200
 skip_writing_to_db: true
 num_slowest_queries: 5

cql_system_info_options:
 enabled: false
 refresh_rate_ms: 10000

resource_level_latency_tracking_options:
 enabled: false
 refresh_rate_ms: 10000

db_summary_stats_options:
 enabled: false
 refresh_rate_ms: 10000

cluster_summary_stats_options:
 enabled: false
 refresh_rate_ms: 10000

spark_cluster_info_options:
 enabled: false
 refresh_rate_ms: 10000

histogram_data_options:
 enabled: false
 refresh_rate_ms: 10000
 retention_count: 3

user_level_latency_tracking_options:
 enabled: false
 refresh_rate_ms: 10000
 top_stats_limit: 100
 quantiles: false

graph_events
 Graph event information.

ttl_seconds
 Defines the TTL in milliseconds. Default: 600

cql_slow_log_options

DSE 5.1 Developer Guide Earlier version, latest patch 5.1.15
Report distributed sub-queries for search (query executions on individual shards) that take longer than a specified period of time. See Collecting slow queries.

enabled
Enables (true) or disables (false) log entries for slow queries. Default: true

threshold
Defines the threshold (in milliseconds or as a percentile). Default: 200.0

- A value greater than 1 is expressed in time and will log queries that take longer than the specified number of milliseconds.
- A value of 0 to 1 is expressed as a percentile and will log queries that exceed this percentile.

minimum_samples
Defines the initial number of queries before activating the percentile filter. Default: 100

ttl_seconds
Defines the time, in milliseconds, to keep the slow query log entries. Default: 259200

skip_writing_to_db
Keeps (true) slow queries in-memory only and does not write data to database. Default: true

Note: When false, the threshold must be >= 2000 ms to prevent a high load on database.

num_slowest_queries
The number of slow queries to keep in-memory. Default: 5

cql_system_info_options
CQL system information tables settings See Collecting system level diagnostics.

```yaml
(cql_system_info_options:
  enabled: false
  refresh_rate_ms: 10000)
```

enabled
Default: false

refresh_rate_ms
Default: 10000

resource_level_latency_tracking_options
Data resource latency tracking settings. See Collecting system level diagnostics.

```yaml
(resource_level_latency_tracking_options:
  enabled: false
  refresh_rate_ms: 10000)
```

enabled
Default: false
refresh_rate_ms
Default: 10000

db_summary_stats_options
Database summary statistics settings. See Collecting database summary diagnostics.

```
db_summary_stats_options:
  enabled: false
  refresh_rate_ms: 10000
```

enabled
Default: false

refresh_rate_ms
Default: 10000

cluster_summary_stats_options
Cluster summary statistics settings. See Collecting cluster summary diagnostics.

```
cluster_summary_stats_options:
  enabled: false
  refresh_rate_ms: 10000
```

enabled
Default: false

refresh_rate_ms
Default: 10000

spark_cluster_info_options
See Monitoring Spark with Spark Performance Objects.

```
spark_cluster_info_options:
  enabled: false
  refresh_rate_ms: 10000
```

histogram_data_options
Histogram data tables settings. See Collecting histogram diagnostics.

enabled
When true, the dropped mutation metrics are stored in the dropped_messages table in the dse_perf keyspace. Default: false

refresh_rate_ms
Default: 10000

retention_count
Default: 3

user_level_latency_tracking_options
User-resource latency tracking settings. See Collecting user activity diagnostics.

enabled
Default: false

refresh_rate_ms
Configuration

- **top_stats_limit**
 - Default: 100

- **quantiles**
 - Default: false

DSE Search Performance Service options

These settings are used by the Performance Service. See DSE Performance Service.

Default values:

```
solr_indexing_error_log_options:
  enabled: false
  ttl_seconds: 604800
  async_writers: 1

solr_slow_sub_query_log_options:
  enabled: false
  ttl_seconds: 604800
  threshold_ms: 3000
  async_writers: 1

solr_update_handler_metrics_options:
  enabled: false
  ttl_seconds: 604800
  refresh_rate_ms: 60000

solr_request_handler_metrics_options:
  enabled: false
  ttl_seconds: 604800
  refresh_rate_ms: 60000

solr_index_stats_options:
  enabled: false
  ttl_seconds: 604800
  refresh_rate_ms: 60000

solr_cache_stats_options:
  enabled: false
  ttl_seconds: 604800
  refresh_rate_ms: 60000

solr_latency_snapshot_options:
  enabled: false
  ttl_seconds: 604800
  refresh_rate_ms: 60000
```

solr_indexing_error_log_options

Enable to collect record errors that occur during document indexing.
enabled
 Default: false

ttl_seconds
 Default: 604800
async_writers
 Defines the number of server threads dedicated to writing in the log. More than one server thread might degrade performance. Default: 1

solr_slow_sub_query_log_options
 See Collecting slow search queries.
 enabled
 Default: false
ttl_seconds
 Default: 604800
async_writers
 Defines the number of server threads dedicated to writing in the log. More than one server thread might degrade performance. Default: 1
threshold_ms
 Default: 100

solr_update_handler_metrics_options
 See Collecting handler statistics.
 enabled
 Determines whether the object is enabled at startup.
ttl_seconds
 How many seconds a record survives before it is expired from the performance object.
refresh_rate_ms
 Period (in milliseconds) between sample recordings for periodically updating statistics like the solr_result_cache_stats.
solr_request_handler_metrics_options
 Records core-specific direct and request update handler statistics over time.

enabled
 Default: false
ttl_seconds
 Default: 604800
refresh_rate_ms
 Default: 60000

solr_index_stats_options
 See Collecting index statistics.
 enabled
 Default: false
ttl_seconds
 Default: 604800
refresh_rate_ms
 Default: 60000

solr_cache_stats_options
See Collecting cache statistics.

enabled
Default: false

ttl_seconds
Default: 604800

refresh_rate_ms
Default: 60000

See Collecting Apache Solr performance statistics.

enabled
Default: false

ttl_seconds
Default: 604800

refresh_rate_ms
Default: 60000

Spark Performance Service options

Default values:

```json
spark_application_info_options:
  enabled: false
  refresh_rate_ms: 10000
  driver:
    sink: false
    connectorSource: false
    jvmSource: false
    stateSource: false
  executor:
    sink: false
    connectorSource: false
    jvmSource: false
```

spark_application_info_options
Statistics options.

enabled
Default: false

refresh_rate_ms
Default: 10000 milliseconds

driver
Enables collection of the metrics by the Spark Driver.

sink
Enables writing of the metrics collected from the Spark Driver. Default: false

connectorSource
Enables writing of the Spark Cassandra Connector metrics at the Spark Driver. Default: false

jvmSource
Enables JVM heap and GC metrics at the Spark Driver. Default: false

stateSource
Enables application state metrics. Default: false
executor
Enables collection of the metrics collected at Spark executors. Default: false

sink
Enables writing of the metrics collected at Spark executors. Default: false

connectorSource
Enables writing of the Spark Cassandra Connector metrics at Spark executors. Default: false

jvmSource
Enables JVM heap and GC metrics at Spark executors. Default: false

DSE Analytics options

- Spark (page 257)
- Starting Spark drivers and executors (page 259)
- DSE File System (DSEFS) options (page 260)
- Spark Performance Service (page 256)

Spark memory and Spark encryption options

Default values:

```yaml
initial_spark_worker_resources: 0.7
spark_shared_secret_bit_length: 256
spark_security_enabled: false
spark_security_encryption_enabled: false

spark_daemon_readiness_assertion_interval: 1000

spark_ui_options:
  encryption: inherit
  encryption_options:
    enabled: false
    keystore: .keystore
    keypassword: cassandra
    require_client_auth: false
    truststore: .truststore
    truststore_password: cassandra
  # Advanced settings
  # protocol: TLS
  # algorithm: SunX509
  # store_type: JKS
  # cipher_suites:
[TLS_RSA_WITH_AES_128_CBC_SHA, TLS_RSA_WITH_AES_256_CBC_SHA, TLS_DHE_RSA_WITH_AES_128_CBC_SHA,
 TLS_DHE_RSA_WITH_AES_256_CBC_SHA, TLS_DHE_RSA_WITH_AES_128_CBC_SHA]
```

initial_spark_worker_resources
DataStax Enterprise can control the memory and cores offered by particular Spark Workers in semi-automatic fashion. Specify the fraction of system resources that are made available to the Spark Worker.

The available resources are calculated in the following way:

- Spark Worker memory = initial_spark_worker_resources * (total system memory - memory assigned to DataStax Enterprise)
• Spark Worker cores = initial_spark_worker_resources * total system cores

The lowest values that you can assign to Spark Worker memory is 64 MB. The lowest value that you can assign to Spark Worker cores is 1 core. If the results are lower, no exception is thrown and the values are automatically limited. The range of the initial_spark_worker_resources value is 0.01 to 1. If the range is not specified, the default value 0.7 is used.

This mechanism is used by default to set the Spark Worker memory and cores. To override the default, uncomment and edit one or both SPARK_WORKER_MEMORY and SPARK_WORKER_CORES options in the spark-env.sh file.

spark-env.sh
The default location of the spark-env.sh file depends on the type of installation:

Package installations	/etc/dse/spark/spark-env.sh
Installer-Services installations	
Tarball installations	installation_location/resources/spark/conf/spark-env.sh
Installer-No Services installations	

spark_shared_secret_bit_length
The length of a shared secret used to authenticate Spark components and encrypt the connections between them. This value is not the strength of the cipher for encrypting connections. Default: 256

spark_security_enabled
In DSE 5.1.15 and later, when DSE authentication is enabled with authentication_options (page 234), Spark security is enabled regardless of this setting.

Enables Spark security based on shared secret infrastructure. Enables mutual authentication and optional encryption between DSE Spark Master and Workers, and of communication channels, except the web UI.

Default: false

spark_security_encryption_enabled
In DSE 5.1.15 and later, when DSE authentication is enabled with authentication_options (page 234), Spark security is enabled regardless of this setting. Uses DIGEST-MD5 SASL-based encryption mechanism.

Enables encryption of between DSE Spark Master and Workers, and of communication channels, except the web UI. Uses DIGEST-MD5 SASL-based encryption mechanism. Requires spark_security_enabled: true.

Configure encryption between the Spark processes and DSE with client-to-node encryption (page 229) in cassandra.yaml.

spark_daemon_readiness_assertion_interval
Time interval, in milliseconds, between subsequent retries by the Spark plugin for Spark Master and Worker readiness to start. Default: 1000

spark_ui_options
Specify the source for SSL settings for Spark Master and Spark Worker UIs. The spark_ui_options apply only to Spark daemon UIs, and do not apply to user applications even when the user applications are run in cluster mode.

encryption
- inherit - inherit the SSL settings from the client encryption options. Default.
- custom - use the following encryption_options *(page 259).*

encryption_options
Set encryption options for HTTPS of Spark Master and Worker UI. The spark_encryption_options are not valid for DSE 5.1 and later.

enabled
Enable (true) or disable (false) Spark encryption for Spark client-to-Spark cluster and Spark internode communication. Default: false

keystore
The keystore for Spark encryption keys. The relative file path is the base Spark configuration directory that is defined by the SPARK_CONF_DIR environment variable. The default Spark configuration directory is `resources/spark/conf`. Default: .keystore

keystore_password
The password to access the key store. Default: cassandra

truststore
The truststore for Spark encryption keys. The relative file path is the base Spark configuration directory that is defined by the SPARK_CONF_DIR environment variable. The default Spark configuration directory is `resources/spark/conf`.

truststore_password
The password to access the truststore. Default: cassandra

protocol
Defines the encryption protocol. Default: TLS

algorithm
Defines the key manager algorithm. Default: SunX509

store_type
Defines the keystore type. Default: JKS

cipher_suites
Defines the cipher suites for Spark encryption. Default:
- TLS_RSA_WITH_AES_128_CBC_SHA
- TLS_RSA_WITH_AES_256_CBC_SHA
- TLS_DHE_RSA_WITH_AES_128_CBC_SHA
- TLS_DHE_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA

Starting Spark drivers and executors
Options to configure how Spark driver and executor processes are created and managed.
Configuration

Default values:

```yaml
spark_process_runner:
  runner_type: default
  run_as_runner_options:
    user_slots:
    - slot1
    - slot2
```

runner_type

- default -
- run_as - Use the `run_as_runner_options` options. See Running Spark processes as separate users (page 348).

run_as_runner_options

Define the slot users for separating Spark processes users from the DSE service user. See Running Spark processes as separate users (page 348).

DSE File System (DSEFS) options

Properties to enable and configure the DSE file system (DSEFS (page 398)).

Note: DSEFS replaces the Cassandra File System (CFS).

Default values:

```yaml
dsefs_options:
  enabled: false
  keyspace_name: dsefs
  work_dir: /var/lib/dsefs
  public_port: 5598
  private_port: 5599
  data_directories:
    - dir: /var/lib/dsefs/data
      storage_weight: 1.0
      min_free_space: 5368709120
```

```
# Advanced properties for DSEFS
# service_startup_timeout_ms: 30000
# service_close_timeout_ms: 600000
# server_close_timeout_ms: 600000
# compression_frame_max_size: 1048576
# query_cache_size: 2048
# query_cache_expire_after_ms: 2000
# gossip_options:
#   round_delay_ms: 5000
#   startup_delay_ms: 5000
#   shutdown_delay_ms: 30000
# rest_options:
#   request_timeout_ms: 330000
#   connection_open_timeout_ms: 55000
#   client_close_timeout_ms: 60000
#   server_request_timeout_ms: 300000
```
Configuration

```yaml
# idle_connection_timeout_ms: 0
# internode_idle_connection_timeout_ms: 120000
# core_max_concurrent_connections_per_host: 8
# transaction_options:
#   transaction_timeout_ms: 3000
#   conflict_retry_delay_ms: 200
#   conflict_retry_count: 40
#   execution_retry_delay_ms: 1000
#   execution_retry_count: 3
```

dsefs_options

DSE File System (DSEFS) *(page 398)* options determine whether DSEFS should be enabled on this node.

enabled

Enable or disable DSEFS. This parameter takes one of the following values:

- **true** - enables DSEFS on this node, regardless of the workload.
- **false** - disables DSEFS on this node, regardless of the workload. Default.
- **blank or commented out (#)** - DSEFS will start only if the node is configured to run analytics workloads.

keyspace_name

The keyspace where the DSEFS metadata is stored. You can optionally configure multiple DSEFS file systems within a single datacenter by specifying different keyspace names for each cluster. Default: dsefs

work_dir

The local directory for storing the local node metadata, including the node identifier. The volume of data stored in this directory is nominal and does not require configuration for throughput, latency, or capacity. This directory must not be shared by DSEFS nodes.

public_port

The public port on which DSEFS listens for clients. DataStax recommends that all nodes in the cluster have the same value. Firewalls must *open this port* to trusted clients. The service on this port is bound to the *RPC (page 205)* address. Default: 5598

private_port

The private port for DSEFS inter-node communication. Do not open this port to firewalls; this private port must be not visible from outside of the cluster. Default: 5599

data_directories

One or more data locations where the DSEFS data is stored.

- **dir**
 Mandatory attribute to identify the set of directories. DataStax recommends segregating these data directories on physical devices different than the devices that are used for DataStax Enterprise. Using multiple directories on JBOD improves performance and capacity. Default: /var/lib/dsefs/data

storage_weight

The weighting factor for this location specifies how much data to place in this directory, relative to other directories in the cluster. This soft constraint determines how DSEFS distributes the data. For example, a directory with a value of 3.0
receives about three times more data than a directory with a value of 1.0. Default: 1.0

min_free_space
The reserved space, in bytes, to not use for storing file data blocks. You can use a unit of measure suffix to specify other size units. For example: terabyte (1 TB), gigabyte (10 GB), and megabyte (5000 MB). Default: 5368709120

Advanced properties for DSEFS

service_startup_timeout_ms
Wait time, in milliseconds, before the DSEFS server times out while waiting for services to bootstrap. Default: 30000

service_close_timeout_ms
Wait time, in milliseconds, before the DSEFS server times out while waiting for services to close. Default: 600000

server_close_timeout_ms
Wait time, in milliseconds, that the DSEFS server waits during shutdown before closing all pending connections.

compression_frame_max_size
The maximum accepted size of a compression frame defined during file upload. Default: 1048576

query_cache_size
Maximum number of elements in a single DSEFS Server query cache. Default: 2048

query_cache_expire_after_ms
The time to retain the DSEFS Server query cache element in cache. The cache element expires when this time is exceeded. Default: 2000

gossip options
Options to configure DSEFS gossip rounds.

round_delay_ms
The delay, in milliseconds, between gossip rounds. Default: 5000

startup_delay_ms
The delay time, in milliseconds, between registering the location and reading back all other locations from the database. Default: 5000

shutdown_delay_ms
The delay time, in milliseconds, between announcing shutdown and shutting down the node. Default: 30000

rest_options
Options to configure DSEFS rest times.

request_timeout_ms
The time, in milliseconds, that the client waits for a response that corresponds to a given request. Default: 330000

connection_open_timeout_ms
The time, in milliseconds, that the client waits to establish a new connection. Default: 55000

client_close_timeout_ms
The time, in milliseconds, that the client waits for pending transfer to complete before closing a connection. Default: 60000

server_request_timeout_ms
The time, in milliseconds, to wait for the server rest call to complete. Default: 300000

idle_connection_timeout_ms
The time, in milliseconds, to wait before closing an idle connection. Closing idle connections is disabled by default. Default: 0 (disabled)

internode_idle_connection_timeout_ms
Wait time, in milliseconds, before closing idle internode connection. The internode connections are primarily used to exchange data during replication. Do not set lower than the default value for heavily utilized DSEFS clusters. Default: commented out (0) (disabled)

core_max_concurrent_connections_per_host
Maximum number of connections to a given host per single CPU core. DSEFS keeps a connection pool for each CPU core. Default: 120000

conflict_retry_delay_ms
Wait time, in milliseconds, before retrying a transaction that was ended due to a conflict. Default: 200

conflict_retry_count
The number of times to retry a transaction before giving up. Default: 40

execution_retry_delay_ms
Wait time, in milliseconds, before retrying a failed transaction payload execution. Default: 1000

execution_retry_count
The number of payload execution retries before signaling the error to the application. Default: 3

DSE Metrics Collector options

Note: When `data_dir` is not uncommented, the default location of the DSE Metrics Collector data directory is the same directory as the commitlog (page 201) directory as defined in cassandra.yaml.

Uncomment these options only to change the default directories:

```yaml
# insights_options:
  # data_dir: /var/lib/cassandra/insights_data
  # log_dir: /var/log/cassandra/
```

insights_options
Options for DSE Metrics Collector.

data_dir
User-defined directory to store collected metrics. When not set and when the default location of the commitlog directory is not changed, the default directory is `/var/lib/cassandra/insights_data`.

log_dir
User-defined directory to store logs for collected metrics. When not set, the default directory is `/var/log/cassandra/`.
Configuration

Audit logging options
Default values:

```
audit_logging_options:
  enabled: false
  logger: SLF4JAuditWriter
  retention_time: 0
```

audit_logging_options
To get the maximum information from data auditing, turn on data auditing on every node. See [Enabling data auditing in DataStax Enterprise](#) and [Configuring audit logging](#).

enabled
Default: false

logger
Default: SLF4JAuditWriter

- SLF4JAuditWriter - Logs audit information to the SLF4JAuditWriter logger. Audit logging configuration settings are in the logback.xml file.

```
logback.xml
The location of the logback.xml file depends on the type of installation:
```

<table>
<thead>
<tr>
<th>Package installations</th>
<th>/etc/dse/cassandra/logback.xml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer-Services installations</td>
<td>etc/dse/cassandra/logback.xml</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tarball installations</th>
<th>installation_location/resources/cassandra/conf/logback.xml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer-No Services installations</td>
<td>installation_location/resources/cassandra/conf/logback.xml</td>
</tr>
</tbody>
</table>

- CassandraAuditWriter - Logs audit information to the dse_audit.audit_log database table. This logger can be run synchronously or asynchronously. See related [cassandra_audit_writer_options](#) configuration entries and [Configuring audit logging to a database table](#).

included_categories or **excluded_categories**
The default is to include all categories. Specify either included or excluded categories.

Comma separated list of audit event categories to include or exclude from the audit log. Categories are: QUERY, DML, DDL, DCL, AUTH, ERROR.

- **included_categories**: comma_separated_list

 or

- **excluded_categories**: comma_separated_list

included_keyspaces or **excluded_keyspaces**
The default is to include all keyspaces. Specify either included or excluded keyspaces. Specifying both is an error.
Use a regular expression to filter keyspaces, or use a comma separated list of keyspaces to be included or excluded from the audit log.

- **included_categories**: comma_separated_list

 or

- **excluded_categories**: comma_separated_list

retention_time

The amount of time, in hours, that audit events are retained by supporting loggers. Only CassandraAuditWriter supports retention time. Values of 0 or less retain events forever. Default: 0

cassandra_audit_writer_options

Configuration options for CassandraAuditWriter.

```yaml
cassandra_audit_writer_options:
  mode: sync
  batch_size: 50
  flush_time: 500
  num_writers: 10
  queue_size: 10000
  write_consistency: QUORUM
  dropped_event_log: /var/log/cassandra/dropped_audit_events.log
```

mode

Sets the mode the writer runs in. Default: sync

- **sync** - A query is not executed until the audit event is successfully written.
- **async** - Audit events are queued for writing to the audit table, but are not necessarily logged before the query executes. A pool of writer threads consumes the audit events from the queue, and writes them to the audit table in batch queries. While this substantially improves performance under load, if there is a failure between when a query is executed, and its audit event is written to the table, the audit table might be missing entries for queries that were executed.

batch_size

Available only when mode: async.

Must be greater than 0. The maximum number of events the writer dequeues before writing them out to the table. If warnings in the logs reveal that batches are too large, decrease this value or increase the value of `batch_size_warn_threshold_in_kb` (page 212) in cassandra.yaml. Default: 50

flush_time

Available only when mode: async.

The maximum amount of time in milliseconds before an event is removed from the queue by a writer before being written out. This flush time prevents events from
Configuration

waiting too long before being written to the table when there are not a lot of queries happening. Default: 500

num_writers
Available only when mode: async.

The number of worker threads asynchronously logging events to the CassandraAuditWriter. Default: 10

queue_size
The size of the queue feeding the asynchronous audit log writer threads. When there are more events being produced than the writers can write out, the queue fills up, and newer queries are blocked until there is space on the queue. If a value of 0 is used, the queue size is unbounded, which can lead to resource exhaustion under heavy query load. Default: 10000

write_consistency
The consistency level that is used to write audit events. Default: QUORUM

dropped_event_log
The directory to store the log file that reports dropped events. Default: /var/log/cassandra/dropped_audit_events.log

day_partition_millis
To spread audit log information across multiple nodes, specify the interval, in milliseconds, between changing nodes. For example, specify 4320000 milliseconds to change the target node every 12 hours. Default: 3600000 (1 hour)

DSE Tiered Storage options

Options to define one or more disk configurations for DSE Tiered Storage. Specify multiple disk configurations as unnamed tiers by a collection of paths that are defined in priority order, with the fastest storage media in the top tier. With heterogeneous storage configurations across the cluster, specify each disk configuration with config_name:config_settings, and in CREATE or ALTER table statements.

Default values:

```yaml
tiered_storage_options:
  strategy1:
    tiers:
      - paths:
        - /mnt1
        - /mnt2
      - paths:
        - /mnt3
        - /mnt4
      - paths:
        - /mnt5
        - /mnt6
```

Note: To manage compaction options, use the compaction option in CREATE TABLE or ALTER TABLE.
tiered_storage_options
Options to configure the smart movement of data across different types of storage media so that data is matched to the most suitable drive type, according to the performance and cost characteristics it requires

strategy1
The first disk configuration strategy. Create a strategy2, strategy3, and so on. In this example, strategy1 is the configurable name of the tiered storage configuration strategy.

tiers
The unnamed tiers in this section define a storage tier with the paths and file paths that define the priority order.

local_options
Local configuration options overwrite the tiered storage settings for the table schema in the local dse.yaml file. See Testing DSE Tiered Storage configurations.

- paths
The section of file paths that define the data directories for this tier of the disk configuration. Typically list the fastest storage media first. These paths are used only to store data that is configured to use tiered storage. These paths are independent of any settings in the cassandra.yaml file.

- /filepath
Specific file paths to define the data directories for this tier of the disk configuration.

DSE Advanced Replication configuration settings

DSE Advanced Replication configuration options to replicate data from remote clusters to central data hubs.

Default values:

```yaml
#advanced_replication_options:
  enabled: false
  conf_driver_password_encryption_enabled: false
  advanced_replication_directory: /var/lib/cassandra/advrep
  security_base_path: /base/path/to/advrep/security/files/
```

advanced_replication_options
Options to enable DSE Advanced Replication.

enabled
Set `enabled: true` on an edge node to collect data in the replication log. Default: false.

conf_driver_password_encryption_enabled
Enable or disable encryption of driver passwords. When enabled, the stored driver password is expected to be encrypted with the system key. After you create the system key, you must copy the same system key to every node in the cluster.

advanced_replication_directory
Set the directory for storing advanced replication CDC logs. Default is `/var/lib/cassandra/advrep`. A directory `replication_logs` will be created within the specified directory.

security_base_path
Configuration

The base path to prepend to paths in the Advanced Replication configuration locations, including locations to SSL keystore, SSL truststore, and so on. Default: /base/path/to/advrep/security/files/

Inter-node messaging options

Configuration for the internal messaging service used by several components of DataStax Enterprise. For 5.0 and later, all internode messaging requests use this service.

```yaml
internode_messaging_options:
  port: 8609
  # frame_length_in_mb: 256
  # server_acceptor_threads: 8
  # server_worker_threads: 16
  # client_max_connections: 100
  # client_worker_threads: 16
  # handshake_timeout_seconds: 10
  # client_request_timeout_seconds: 60
```

internode_messaging_options

Configuration options for inter-node messaging.

port

The mandatory port for the inter-node messaging service. Default: 8609

frame_length_in_mb

Maximum message frame length. Default: 256

server_acceptor_threads

The number of server acceptor threads. Default: the number of available processors.

server_worker_threads

The number of server worker threads. Default: the number of available processors * 8.

client_max_connections

The maximum number of client connections. Default: 100

client_worker_threads

The number of client worker threads. Default: the number of available processors * 8.

handshake_timeout_seconds

Timeout for communication handshake process. Default: 10

client_request_timeout_seconds

Timeout for non-query search requests like core creation and distributed deletes. Default: 60

DSE Multi-Instance server_id

server_id

In DSE Multi-Instance /etc/dse-nodeId/dse.yaml files, the server_id option is generated to uniquely identify the physical server on which multiple instances are running. The server_id default value is the media access control address...
(MAC address) of the physical server. You can change server_id when the MAC address is not unique, such as a virtualized server where the host's physical MAC is cloned.

DSE Graph options

- DSE Graph system-level options (page 269)
- DSE Graph id assignment and partitioning strategy options (page 271)
- DSE Graph listener options (page 272)
- DSE Graph messaging options (page 273)
- DSE Graph event observers options (page 273)
- DSE Graph shared data options (page 274)
- DSE Graph Gremlin Server options (page 275)

DSE Graph system-level options

These graph options are system-level configuration options and options that are shared between graph instances. Add an option if it is not present in the provided dse.yaml file.

Default values:

```yaml
graph:
  adjacency_cache_clean_rate: 1024
  adjacency_cache_max_entry_size_in_mb: 0
  adjacency_cache_size_in_mb: 128
  analytic_evaluation_timeout_in_minutes: 10080
  gremlin_server_enabled: true
  index_cache_clean_rate: 1024
  index_cache_max_entry_size_in_mb: 0
  index_cache_size_in_mb: 128
  max_query_queue: 10000
  #max_query_threads:
  realtime_evaluation_timeout_in_seconds: 30
  schema_agreement_timeout_in_ms: 10000
  schema_mode: Production
  system_evaluation_timeout_in_seconds: 180
  window_size: 100000
  max_query_params: 256
```

graph

These graph options are system-level configuration options and options that are shared between graph instances.

adjacency_cache_clean_rate

The number of stale rows per second to clean from each graph's adjacency cache. Default: 1024.

adjacency_cache_max_entry_size_in_mb

The maximum entry size in each graph's adjacency cache. When set to zero, the default is calculated based on the cache size and the number of CPUs. Entries that exceed this size are quietly dropped by the cache without producing an explicit error or log message. Default: 0.

adjacency_cache_size_in_mb
The amount of RAM to allocate to each graph’s adjacency (edge and property) cache. Default: 128.

analytic_evaluation_timeout_in_minutes
Maximum time to wait for an analytic (Spark) traversal to evaluate. Default: 10080 (7 days).

Option names and values expressed in ISO 8601 format used in earlier DSE 5.0 releases are still valid. The ISO 8601 format is deprecated.

gremlin_server_enabled
Enables or disables Gremlin Server. Default: true.

index_cache_clean_rate
The number of stale entries per second to clean from the adjacency cache. Default: 1024.

index_cache_max_entry_size_in_mb
The maximum entry size in the index adjacency cache. When set to zero, the default is based on the cache size and the number of CPUs. Value: integer. + #
default is calculated based on the cache size and the number of CPUs. Entries that exceed this size are quietly dropped by the cache without producing an explicit error or log message. Default: 0.

index_cache_size_in_mb
The amount of ram to allocate to the index cache. Default: 128.

max_query_queue
The maximum number of CQL queries that can be queued as a result of Gremlin requests. Incoming queries are rejected if the queue size exceeds this setting. Default: 10000.

max_query_threads
The maximum number of threads to use for queries to the database. When this option is not set, the default is:

- If gremlinPool is present and nonzero:

 10 * the gremlinPool setting

- If gremlinPool is not present in this file or set to zero:

 The number of available CPU cores

See gremlinPool.

realtime_evaluation_timeout_in_seconds
Maximum time to wait for a real-time traversal to evaluate. Default: 30 seconds.

Option names and values expressed in ISO 8601 format used in earlier DSE 5.0 releases are still valid. The ISO 8601 format is deprecated.

schema_agreement_timeout_in_ms
Maximum time to wait for cassandra to agree on schema versions before timing out. Default: 10000

Option names and values expressed in ISO 8601 format used in earlier DSE 5.0 releases are still valid. The ISO 8601 format is deprecated.
schema_mode
Controls the way that the schemas are handled. Valid values:

- **Production** = Schema must be created before data insertion. Schema cannot be changed after data is inserted. Full graph scans are disallowed unless the option graph.allow_scan is changed to TRUE.
- **Development** = No schema is required to write data to a graph. Schema can be changed after data is inserted. Full graph scans are allowed unless the option graph.allow_scan is changed to FALSE.

system_evaluation_timeout_in_seconds
Maximum time to wait for a system-based request to execute. Default: 180 (3 minutes).

Option names and values expressed in ISO 8601 format used in earlier DSE 5.0 releases are still valid. The ISO 8601 format is deprecated.

window_size
The number of samples to keep when aggregating log events. Only a small subset of graph's log events use this system. Modifying this setting is rarely necessary or helpful. Default: 100000.

max_query_params
The maximum number of parameters that can be passed on a graph query request for TinkerPop drivers and drivers using Cassandra native protocol. Passing very large numbers of parameters on requests is an anti-pattern, because the script evaluation time increases proportionally. DataStax recommends reducing the number of parameters to speed up script compilation times. Before you increase this value, consider alternate methods for parameterizing scripts, like passing a single map. If the graph query request requires many arguments, pass a list. Default: 256

DSE Graph id assignment and partitioning strategy options

Default values:

```yaml
ids:
  block_renew: 0.8
  community_reuse: 28
  consistency_mode: GLOBAL
  # datacenter_id: integer unique per DC when consistency_mode:
DC_LOCAL
  id_hash_modulus: 20
  member_block_size: 512
```

ids
DSE Graph configuration options for standard vertex ID assignment and partitioning strategies.

block_renew
The graph standard vertex ID allocator operates on blocks of contiguous IDs. Each block is allocated using a database lightweight transaction that requires coordination latency. To hide the cost of allocating a standard ID block, the allocator begins asynchronously buffering a replacement block whenever a current
block is nearly empty. This block_renew parameter defines "nearly empty" as a floating point number between 0 and 1. The value is how much of a standard ID block can be used before graph starts asynchronously allocating its replacement. This setting has no effect on custom IDs. Value must be between 0 and 1. Default: 0.8.

community_reuse
For graphs using standard vertex IDs, if a transaction creates multiple vertices, the allocator attempts to assign vertex IDs that collocate vertices on the same database replicas. If an especially large vertex cohort is created, the allocator chunks the vertex creation and assigns a random target location to avoid load hotpotting. This setting controls the vertex chunk size and has no effect on custom IDs. Default: 28.

consistency_mode
Must be set to DC_LOCAL or GLOBAL.

- **DC_LOCAL** - The node uses LOCAL QUORUM when allocating an ID for a graph vertex. The datacenter_id option must be correctly configured on every node in the cluster.
- **GLOBAL** - (Default) The node uses QUORUM when allocating an ID for a graph vertex. The datacenter_id option is ignored.

This option must have the same value on every node in the cluster. Its value can only be changed when the entire cluster is stopped. This setting has no effect on custom IDs.

datacenter_id
Applies only when consistency_mode is DC_LOCAL. Set to an arbitrary value between 1 and 127, inclusive. This setting has no effect on custom IDs.

Warning: Each datacenter in the cluster must have a unique datacenter_id. Violating this constraint will corrupt the graph database without warning.

This setting has no effect on custom IDs. Default: no explicit default value.

id_hash_modulus
An integer between 1 and 2^{24} (both inclusive) that affects maximum ID capacity and the maximum storage space used by ID allocations. Lower values reduce the storage space consumed and the lightweight transaction overhead imposed at startup. Lower values also reduce the total number of IDs that can be allocated over the life of a graph, because this parameter is proportional to the allocatable ID space. However, the proportion coefficient is Long.MAX_VALUE ($2^{63}-1$), so ID headroom should be sufficient, practically speaking, even if this is set to 1. This setting has no effect on custom IDs. Default: 20.

member_block_size
The graph standard vertex ID allocator claims uniformly-sized blocks of contiguous IDs using lightweight transactions on the database. This setting controls the size of each block. This setting has no effect on custom IDs. Default: 512.

DSE Graph listener options

Default values:

```yaml
listener:
  listener_name: string
  black_types:  # This list is empty by default
```
Configuration

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>interval_in_seconds</td>
<td>3600</td>
</tr>
<tr>
<td>type</td>
<td>slf4j</td>
</tr>
<tr>
<td>white_types</td>
<td># This list is empty by default</td>
</tr>
</tbody>
</table>

listener
Options that contain all registered state listeners identified by their name.

listener_name
Replace `listener_name` with a string that identifies the listener. The string must begin with a lower case letter and can be composed of lowercase letters, numbers, and underscores.

black_types
The names of state types that are ignored. All state types but those given are listened to. Default: (empty).

interval_in_seconds
The interval in which the state values are logged. Default: 3600

Option names and values expressed in ISO 8601 format used in earlier DSE 5.0 releases are still valid. The ISO 8601 format is deprecated.

type
The type of the state listener. Must be one of the following values: slf4j. Default: slf4j.

white_types
The names of state types that should be listened. Only those state types are listened to and all others ignored. Default: (empty).

DSE Graph messaging options
Default values:

```
msg:
  graph_msg_timeout_in_ms: 5000
```

msg
Options to configure DSE Graph internal query and lightweight messaging system.

graph_msg_timeout_in_ms
Graph messages must be acknowledged within this interval, or else the message is assumed dropped/failed. Graph retries the message or fails the responsible request if the retry limit is exceeded. Default: 5000

Option names and values expressed in ISO 8601 format used in earlier DSE 5.0 releases are still valid. The ISO 8601 format is deprecated.

DSE Graph event observers options
Default values:

```
observer:
  observer_name: string
    black_types: # This list is empty by default
  observed_graphs: # This list is empty by default
```
observer
Options to configure all registered event observers identified by their name.

observer_name
Replace observer_name with a string that identifies the event observers. This string is the names of event types that are ignored. All event types but those given are observed. The string must begin with a lower case letter and can be composed of lowercase letters, numbers, and underscores. Value: YAML-formatted list of strings.

black_types
The names of event types that are ignored. All event types but those given are observed. Value: YAML-formatted list of strings. Default: (empty).

observed_graphs
The names of the graphs for which events are observed. Value: YAML-formatted list of strings. Default: (empty).

slow_tx_graphs
The names of the graphs for which slow transactions are monitored. Default: (empty).

slow_threshold_in_ms
Threshold at which slow queries get reported. Default: 300000

Option names and values expressed in ISO 8601 format used in earlier DSE 5.0 releases are still valid. The ISO 8601 format is deprecated.

type
The type of the event observer. Must be one of the following values: slf4j, slow_request. Default: slf4j.

white_types
The names of event types that should be observed. Only those event types are observed and all others ignored. Value: YAML-formatted list of strings. Default: (empty).

DSE Graph shared data options

Default values:

```
shared_data:
  refresh_interval_in_ms: 60000
```

shared_data
Options for shared data in DSE Graph.

refresh_interval_in_ms
The interval between refreshes in which the graph schema is reread from the database tables. Note that schema is also immediately updated when schema changes occur, so this parameter is a fail safe to poll for schema changes periodically. Default: 60000
Option names and values expressed in ISO 8601 format used in earlier DSE 5.0 releases are still valid. The ISO 8601 format is deprecated.

DSE Graph Gremlin Server options

The Gremlin Server is configured using Apache TinkerPop specifications.

Default values:

```
gremlin_server:
  # port: 8182
  # threadPoolWorker: 2
  # gremlinPool: 0
  #  scriptEngines:
  #    gremlin-groovy:
  #      config:
  #        sandbox_enabled: false
  #        sandbox_rules:
  #          whitelist_packages:
  #            - package.name
  #          whitelist_types:
  #            - fully.qualified.type.name
  #          whitelist_supers:
  #            - fully.qualified.class.name
  #        blacklist_packages:
  #          - package.name
  #        blacklist_supers:
  #          - fully.qualified.class.name
```

`gremlin_server`

The top-level configurations in Gremlin Server.

`port`
The `port` value identifies the available communications port for Gremlin Server. Default: 8182

`threadPoolWorker`
The number of worker threads that handle requests and responses on the Gremlin Server channel, including routing requests to the right server operations, handling scheduled jobs on the server, and writing serialized responses back to the client. Default: 2

`gremlinPool`
The number of Gremlin threads available to execute actual scripts in a ScriptEngine. This pool represents the workers available to handle blocking operations in Gremlin Server. Default: 8

`scriptEngines`
Section to configure gremlin server scripts.

`gremlin-groovy`
Section for gremlin-groovy scripts.

`sandbox_enabled`
Sandbox is enabled by default. To disable the gremlin groovy sandbox entirely, set to false.

`sandbox_rules`
Configuration

Section for sandbox rules.

whitelist_packages
List of packages, one package per line, to whitelist.

 package.name
 Retain the hyphen before the fully qualified package name.

whitelist_types
List of types, one type per line, to whitelist.

 fully.qualified.type.name
 Retain the hyphen before the fully qualified type name.

whitelist_supers
List of super classes, one class per line, to whitelist. Retain the hyphen before the fully qualified class name.

 fully.qualified.class.name
 Retain the hyphen before the fully qualified class name.

blacklist_packages
List of packages, one package per line, to blacklist.

 package.name
 Retain the hyphen before the fully qualified package name.

blacklist_supers
List of super classes, one class per line, to blacklist. Retain the hyphen before the fully qualified class name.

 fully.qualified.class.name
 Retain the hyphen before the fully qualified class name.

See also Configuring the Gremlin console for Gremlin Server in the remote.yaml file.

cassandra-rackdc.properties file

The GossipingPropertyFileSnitch, Ec2Snitch, and Ec2MultiRegionSnitch use the cassandra-rackdc.properties configuration file to determine which datacenters and racks nodes belong to. They inform the database about the network topology to route requests efficiently and distribute replicas evenly. Settings for this file depend on the type of snitch:

- **GossipingPropertyFileSnitch** (page 276)
- **Ec2Snitch** (page 279)
- **Ec2MultiRegionSnitch** (page 280)

This topic also includes instructions for migrating (page 277) from the PropertyFileSnitch to the GossipingPropertyFileSnitch.

GossipingPropertyFileSnitch

This snitch is recommended for production. It uses rack and datacenter information for the local node defined in the cassandra-rackdc.properties file and propagates this information to other nodes via gossip.

To configure a node to use GossipingPropertyFileSnitch, edit the cassandra-rackdc.properties file as follows:

- Define the datacenter and rack that include this node. The default settings:
dc=DC1
rack=RAC1

Note: datacenter and rack names are case-sensitive. For examples, see Initializing a single datacenter per workload type and Initializing multiple datacenters per workload type.

- To save bandwidth, add the prefer_local=true option. This option tells DataStax Enterprise to use the local IP address when communication is not across different datacenters.

Migrating from the PropertyFileSnitch to the GossipingPropertyFileSnitch

To allow migration from the PropertyFileSnitch, the GossipingPropertyFileSnitch uses the cassandra-topology.properties file when present. Delete the file after the migration is complete. For more information about migration, see Switching snitches (page 1307).

Note: The GossipingPropertyFileSnitch always loads cassandra-topology.properties when that file is present. Remove the file from each node on any new cluster or any cluster migrated from the PropertyFileSnitch.

cassandra-rackdc.properties

The location of the cassandra-rackdc.properties file depends on the type of installation:

<table>
<thead>
<tr>
<th>Installation Type</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package installations</td>
<td>/etc/dse/cassandra/cassandra-rackdc.properties</td>
</tr>
<tr>
<td>Installer-Services installations</td>
<td>/etc/dse/cassandra/cassandra-rackdc.properties</td>
</tr>
<tr>
<td>Tarball installations</td>
<td>installation_location/resources/cassandra/conf/cassandra-rackdc.properties</td>
</tr>
<tr>
<td>Installer-No Services installations</td>
<td>installation_location/resources/cassandra/conf/cassandra-rackdc.properties</td>
</tr>
</tbody>
</table>

cassandra-topology.properties file

The PropertyFileSnitch uses the cassandra-topology.properties for datacenters and rack names and to determine network topology so that requests are routed efficiently and allows the database to distribute replicas evenly.

Note: The GossipingPropertyFileSnitch (page 276) snitch is recommended for production. See Migrating from the PropertyFileSnitch to the GossipingPropertyFileSnitch (page 277).

PropertyFileSnitch

This snitch determines proximity as determined by rack and datacenter. It uses the network details located in the cassandra-topology.properties file. When using this snitch, you can define your datacenter names to be whatever you want. Make sure that the datacenter names correlate to the name of your datacenters in the keyspace definition. Every node in
the cluster should be described in the `cassandra-topology.properties` file, and this file should be exactly the same on every node in the cluster.

Setting datacenters and rack names

If you had non-uniform IPs and two physical datacenters with two racks in each, and a third logical datacenter for replicating analytics data, the `cassandra-topology.properties` file might look like this:

Note: Datacenter and rack names are case-sensitive.

```
# datacenter One
175.56.12.105=DC1:RAC1
175.50.13.200=DC1:RAC1
175.54.35.197=DC1:RAC1
120.53.24.101=DC1:RAC2
120.55.16.200=DC1:RAC2
120.57.102.103=DC1:RAC2

# datacenter Two
110.56.12.120=DC2:RAC1
110.50.13.201=DC2:RAC1
110.54.35.184=DC2:RAC1
50.33.23.120=DC2:RAC2
50.45.14.220=DC2:RAC2
50.17.10.203=DC2:RAC2

# Analytics Replication Group
172.106.12.120=DC3:RAC1
172.106.12.121=DC3:RAC1
172.106.12.122=DC3:RAC1

# default for unknown nodes
default =DC3:RAC1
```

cassandra-topology.properties

The location of the `cassandra-topology.properties` file depends on the type of installation:

<table>
<thead>
<tr>
<th>Package installations</th>
<th>Installer-Services installations</th>
</tr>
</thead>
<tbody>
<tr>
<td>/etc/dse/cassandra/cassandra-topology.properties</td>
<td></td>
</tr>
</tbody>
</table>
Configuration

<table>
<thead>
<tr>
<th>Tarball installations</th>
<th>installation_location/resources/cassandra/conf/cassandra-topology.properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer-No Services installations</td>
<td></td>
</tr>
</tbody>
</table>

Configuring snitches for cloud providers

Ec2Snitch

Use the Ec2Snitch for simple cluster deployments on Amazon EC2 where all nodes in the cluster are within a single region.

In EC2 deployments, the region name is treated as the datacenter name and availability zones are treated as racks within a datacenter. For example, if a node is in the `us-east-1` region, `us-east` is the datacenter name and 1 is the rack location. (Racks are important for distributing replicas, but not for datacenter naming.) Because private IPs are used, this snitch does not work across multiple regions.

If you are using only a single datacenter, you do not need to specify any properties.

If you need multiple datacenters, set the `dc_suffix` options in the `cassandra-rackdc.properties` file. Any other lines are ignored.

For example, for each node within the `us-east` region, specify the datacenter in its `cassandra-rackdc.properties` file:

Note: datacenter names are case-sensitive.

- **node0**

 `dc_suffix=1_cassandra`

- **node1**

 `dc_suffix=1_cassandra`

- **node2**

 `dc_suffix=1_cassandra`

- **node3**

 `dc_suffix=1_cassandra`

- **node4**

 `dc_suffix=1_analytics`

- **node5**

 `dc_suffix=1_search`
This results in three datacenters for the region:

us-east_1_cassandra
us-east_1_analytics
us-east_1_search

Note: The datacenter naming convention in this example is based on the workload. You can use other conventions, such as DC1, DC2 or 100, 200.

Keyspace strategy options

When defining your keyspace strategy options, use the EC2 region name, such as ``us-east``, as your datacenter name.

cassandra-rackdc.properties

The location of the `cassandra-rackdc.properties` file depends on the type of installation:

<table>
<thead>
<tr>
<th>Package installations</th>
<th>/etc/dse/cassandra/cassandra-rackdc.properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer-Services installations</td>
<td>/etc/dse/cassandra/cassandra-rackdc.properties</td>
</tr>
<tr>
<td>Tarball installations</td>
<td>installation_location/resources/cassandra/conf/cassandra-rackdc.properties</td>
</tr>
<tr>
<td>Installer-No Services installations</td>
<td>installation_location/resources/cassandra/conf/cassandra-rackdc.properties</td>
</tr>
</tbody>
</table>

Ec2MultiRegionSnitch

Use the Ec2MultiRegionSnitch for deployments on Amazon EC2 where the cluster spans multiple regions.

You must configure settings in both the `cassandra.yaml` file and the property file (`cassandra-rackdc.properties`) used by the Ec2MultiRegionSnitch.

Configuring cassandra.yaml for cross-region communication

The Ec2MultiRegionSnitch uses public IP designated in the `broadcast_address` to allow cross-region connectivity. Configure each node as follows:

1. In the `cassandra.yaml`, set the `listen_address` (*page 200*) to the private IP address of the node, and the `broadcast_address` (*page 213*) to the public IP address of the node.

 This allows DataStax Enterprise (DSE) nodes in one EC2 region to bind to nodes in another region, thus enabling multiple datacenter support. For intra-region traffic, DSE switches to the private IP after establishing a connection.

2. Set the addresses of the seed nodes in the `cassandra.yaml` file to that of the public IP. Private IP are not routable between networks. For example:

   ```plaintext
   seeds: 50.34.16.33, 60.247.70.52
   ```
To find the public IP address, from each of the seed nodes in EC2:

```
$ curl http://instance-data/latest/meta-data/public-ipv4
```

Note: Do not make all nodes seeds, see Internode communications (gossip).

3. Be sure that the storage_port (page 215) or ssl_storage_port (page 231) is open on the public IP firewall.

Configuring the snitch for cross-region communication

In EC2 deployments, the region name is treated as the datacenter name and availability zones are treated as racks within a datacenter. For example, if a node is in the **us-east-1** region, **us-east** is the datacenter name and **1** is the rack location. (Racks are important for distributing replicas, but not for datacenter naming.)

For each node, specify its datacenter in the cassandra-rackdc.properties. The **dc_suffix** option defines the datacenters used by the snitch. Any other lines are ignored.

In the example below, there are two DSE datacenters and each datacenter is named for its workload. The datacenter naming convention in this example is based on the workload. You can use other conventions, such as DC1, DC2 or 100, 200. (datacenter names are case-sensitive.)
Configuration

<table>
<thead>
<tr>
<th>Region: us-east</th>
<th>Region: us-west</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node and datacenter:</td>
<td>Node and datacenter:</td>
</tr>
<tr>
<td>• node0</td>
<td>• node0</td>
</tr>
<tr>
<td>dc_suffix=_1_transactional</td>
<td>dc_suffix=_1_transactional</td>
</tr>
<tr>
<td>• node1</td>
<td>• node1</td>
</tr>
<tr>
<td>dc_suffix=_1_transactional</td>
<td>dc_suffix=_1_transactional</td>
</tr>
<tr>
<td>• node2</td>
<td>• node2</td>
</tr>
<tr>
<td>dc_suffix=_2_transactional</td>
<td>dc_suffix=_2_transactional</td>
</tr>
<tr>
<td>• node3</td>
<td>• node3</td>
</tr>
<tr>
<td>dc_suffix=_2_transactional</td>
<td>dc_suffix=_2_transactional</td>
</tr>
<tr>
<td>• node4</td>
<td>• node4</td>
</tr>
<tr>
<td>dc_suffix=_1_analytics dc_suffix=_1_transactional</td>
<td>dc_suffix=_1_analytics dc_suffix=_1_transactional</td>
</tr>
<tr>
<td>• node5</td>
<td>• node5</td>
</tr>
<tr>
<td>dc_suffix=_1_search</td>
<td>dc_suffix=_1_search</td>
</tr>
</tbody>
</table>

This results in four **us-east** datacenters:

us-east_1_transactional
us-east_2_transactional
us-east_1_analytics
us-east_1_search

This results in four **us-west** datacenters:

us-west_1_transactional
us-west_2_transactional
us-west_1_analytics
us-west_1_search

Keyspace strategy options

When defining your **keyspace strategy options**, use the EC2 region name, such as `us-east`, as your datacenter name.

cassandra-rackdc.properties

The location of the `cassandra-rackdc.properties` file depends on the type of installation:

<table>
<thead>
<tr>
<th>Package installations</th>
<th>Installer-Services installations</th>
</tr>
</thead>
<tbody>
<tr>
<td>/etc/dse/cassandra/cassandra-rackdc.properties</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tarball installations</th>
<th>Installer-No Services installations</th>
</tr>
</thead>
<tbody>
<tr>
<td>installation_location/resources/cassandra/conf/cassandra-rackdc.properties</td>
<td></td>
</tr>
</tbody>
</table>
GoogleCloudSnitch

Use the GoogleCloudSnitch for DataStax Enterprise deployments on Google Cloud Platform across one or more regions. The region is treated as a datacenter and the availability zones are treated as racks within the datacenter. All communication occurs over private IP addresses within the same logical network.

The region name is treated as the datacenter name and zones are treated as racks within a datacenter. For example, if a node is in the us-central1-a region, us-central1 is the datacenter name and a is the rack location. (Racks are important for distributing replicas, but not for datacenter naming.) This snitch can work across multiple regions without additional configuration.

If you are using only a single datacenter, you do not need to specify any properties.

If you need multiple datacenters, set the dc_suffix options in the cassandra-rackdc.properties file. Any other lines are ignored.

For example, for each node within the us-central1 region, specify the datacenter in its cassandra-rackdc.properties file:

 Note: Datacenter names are case-sensitive.

<table>
<thead>
<tr>
<th>Node</th>
<th>dc_suffix</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>dc_suffix=_a_transactional</td>
</tr>
<tr>
<td>node1</td>
<td>dc_suffix=_a_transactional</td>
</tr>
<tr>
<td>node2</td>
<td>dc_suffix=_a_transactional</td>
</tr>
<tr>
<td>node3</td>
<td>dc_suffix=_a_transactional</td>
</tr>
<tr>
<td>node4</td>
<td>dc_suffix=_a_analytics</td>
</tr>
<tr>
<td>node5</td>
<td>dc_suffix=_a_search</td>
</tr>
</tbody>
</table>

cassandra-rackdc.properties

The location of the cassandra-rackdc.properties file depends on the type of installation:

<table>
<thead>
<tr>
<th>Installation Type</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package installations</td>
<td>/etc/dse/cassandra/cassandra-rackdc.properties</td>
</tr>
<tr>
<td>Installer-Services installations</td>
<td></td>
</tr>
</tbody>
</table>
Configuration

<table>
<thead>
<tr>
<th>Tarball installations</th>
<th>installation_location/resources/cassandra/conf/cassandra-rackdc.properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer-No Services installations</td>
<td>/resources/cassandra/conf/cassandra-rackdc.properties</td>
</tr>
</tbody>
</table>

CloudstackSnitch

Use the CloudstackSnitch for Apache CloudStack environments. Because zone naming is free-form in Apache CloudStack, this snitch uses the widely-used `<country> <az>` notation.

DataStax Enterprise start-up parameters

You can run DataStax Enterprise (DSE) with start-up parameters by adding them to the `jvm.options` file or at the command line when starting up an installation.

Tip: You can also add options such as maximum and minimum heap size to the `jvm.options` file to pass them to the Java virtual machine at start up, rather than setting them in the environment.

Usage

Add a start-up parameter to the `jvm.options` file as follows:

```
-Dparameter_name
```

`jvm.options`
The location of the `jvm.options` file depends on the type of installation:

<table>
<thead>
<tr>
<th>Package installations</th>
<th>/etc/dse/cassandra/jvm.options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer-Services installations</td>
<td>/etc/dse/cassandra/jvm.options</td>
</tr>
<tr>
<td>Tarball installations</td>
<td>installation_location/resources/cassandra/conf/jvm.options</td>
</tr>
<tr>
<td>Installer-No Services installations</td>
<td>installation_location/resources/cassandra/conf/jvm.options</td>
</tr>
</tbody>
</table>

When starting up Tarball or Installer-No Services installations, you can set parameters from the command line:

```
installation_location/bin/dse cassandra [-Dparameter_name -Dparameter_name ...]
```

See the Example section (page 288).

Start-up parameters

Use the `-D` option before the start-up parameter name on the command line or in the `jvm.options` file.

-`-Dcassandra.auto_bootstrap=false`

 `false` on initial set-up of the cluster. The next time you start the cluster, you do not need to change the `cassandra.yaml` file on each node to revert to `true`. Default setting in the `cassandra.yaml` file.

 Default: true.

-`-Dcassandra.available_processors=number_of_processors`
In a multi-instance deployment, each instance independently assumes that all CPU processors are available to it. Use this setting to specify a smaller set of processors.

-Dcassandra.config=directory
Sets the directory location of the cassandra.yaml file. The default location depends on the type of installation.

-Dcassandra.consistent.rangemovement=true
Set to true, makes bootstrapping behavior effective.

-Ddse.consistent_replace
Specify the level of consistency required during a node replacement (one, quorum, or local_quorum). The default value, one, may result in possibly stale data but uses less system resources. If set to quorum or local_quorum, the replacement node coordinates repair among a (local) quorum of replicas concurrently with replacement streaming. Repair transfers the differences to the replacement node, ensuring it is consistent with other replicas when the replacement process is finished, assuming data is inserted using either quorum or local_quorum consistency levels.

Note: The value for consistent replace should match the value for application read consistency.

Default: one

-Ddse.consistent_replace.parallelism
Specify how many ranges will be repaired simultaneously during a consistent replace. The higher the parallelism, the more resources are consumed cluster-wide, which may affect overall cluster performance. Used only in conjunction with Ddse.consistent_replace.

Default: 2

-Ddse.consistent_replace.retries
Specify how many times a failed repair will be retried during a replace. If all retries fail, the replace fails. Used only in conjunction with Ddse.consistent_replace.

Default: 3

-Ddse.consistent_replace.whitelist
Specify keyspaces and tables on which to perform a consistent replace. The keyspaces and tables can be specified as: "ks1, ks2.cf1". The default is blank, in which case all keyspaces and tables are replaced. Used only in conjunction with Ddse.consistent_replace.

Default: blank (not set)

-Dcassandra.disable_auth_caches_remote_configuration=true
Disables authentication caches, for example the caches used for credentials, permissions, and roles. This will mean those config options can only be set (persistently) in cassandra.yaml and will require a restart for new values to take effect.

-Dcassandra.expiration_date_overflow_policy=POLICY
Set the policy for TTL (time to live) timestamps that exceed the maximum value supported by the storage engine, 2038-01-19T03:14:06+00:00. The database
storage engine can only encode TTL timestamps through January 19 2038
03:14:07 UTC due to the Year 2038 problem.

- REJECT: Reject requests that contain an expiration timestamp later than
2038-01-19T03:14:06+00:00.
- CAP: Allow requests and insert expiration timestamps later than
2038-01-19T03:14:06+00:00 as 2038-01-19T03:14:06+00:00.

Default: REJECT.

-Dcassandra.force_default_indexing_page_size=true

Disable dynamic calculation of the page size used when indexing an entire partition
(during initial index build/rebuild). If set to true, the page size will be fixed to the
default of 10000 rows per page.

-Dcassandra.ignore_dc=true | false

When set to true, ignores the datacenter name change on startup. Applies only
when using DseSimpleSnitch. (Default: false)

-Dcassandra.initial_token=token

Use when DSE is not using virtual nodes (vnodes). Sets the initial partitioner token
for a node the first time the node is started. (Default: disabled)

 Note: Vnodes automatically select tokens.

-Dcassandra.join_ring=true | false

When set to false, prevents the node from joining a ring on startup. (Default: true)
You can add the node to the ring afterwards using nodetool join (page 1000) and a
JMX call.

-Dcassandra.load_ring_state=true | false

When set to false, clears all gossip state for the node on restart. (Default: true)

-Dcassandra.metricsReporterConfigFile=file

Enables pluggable metrics reporter.

-Dcassandra.native_transport_port=port

Sets the port on which the CQL native transport listens for clients. (Default: 9042)

-Dcassandra.native_transport_startup_delay_seconds=seconds

Delays the startup of native transport server for the number of seconds. (Default: 0)

-Dcassandra.partitioner=partitioner

Sets the partitioner. (Default: org.apache.cassandra.dht.Murmur3Partitioner)

-Dcassandra.partition_sstables_by_token_range=true | false

Whether to disable JBOD SSTable partitioning by token range to multiple
data_file_directories. (Default: true). Set to false only as directed by DataStax
Support.

-Dcassandra.range_tombstone_bound_check_chance

Check for bad range tombstones on a percentage of queries. Valid values are 0.0 to
1.0. Default: 0.01

-Dcassandra.replace_address=listen_address_of_dead_node|broadcast_address_of_dead_node

To replace a node, restart a new node in its place specifying the listen_address
(page 200) or broadcast_address (page 213) that the new node is assuming.
The new node must be in the same state as before bootstrapping, without any data
in its data directory.
Note: The broadcast_address defaults to the listen_address except when the ring is using the Ec2MultiRegionSnitch (page 280).

-Dcassandra.replayList=table
 Allows restoring specific tables from an archived commit log.

-Dcassandra.ring_delay_ms=ms
 Defines the amount of time a node waits to hear from other nodes before formally joining the ring. (Default: 30000ms)

-Dcassandra.rpc_port=port
 Sets the port for the Thrift RPC service, which is used for client connections. (Default: 9160).

-Dcassandra.ssl_storage_port=port
 Sets the SSL port for encrypted communication. (Default: 7001)

-Dcassandra.start_native_transport=true | false
 Enables or disables the native transport server. See start_native_transport (page 219) in cassandra.yaml. (Default: true)

-Dcassandra.start_rpc=true | false
 Enables or disables the Thrift RPC server. (Default: true)

-Dcassandra.storage_port=port
 Sets the port for inter-node communication. (Default: 7000)

-Dcassandra.triggers_dir=directory - Deprecated
 Sets the default location for the triggers JARs.

-Dcassandra.write_survey=true
 Enables a tool for testing new compaction and compression strategies. write_survey allows you to experiment with different strategies and benchmark write performance differences without affecting the production workload. See Testing compaction and compression (page 1356).

LDAP tuning switches

-Ddse.search.client.timeout.secs=seconds
 Native driver search core management calls using the dsetool search-specific commands use the default request timeout of 600 seconds (10 minutes).

-Ddse.ldap.connection.timeout.ms
 The number of milliseconds before the connection times out.

-Ddse.ldap.min.idle
 Finer control over the connection pool for DataStax Enterprise LDAP authentication connector. The min idle settings determines the minimum number of connections allowed in the pool before the evictor thread will create new connections. This setting has no effect if the evictor thread isn't configured to run.

-Ddse.ldap.exhausted.action
 Determines what the pool does when it is full. It can be one of:
 • fail - the pool will throw an exception
 • block - the pool will block for max wait ms (default)
 • grow - the pool will just keep growing (not recommended)

-Ddse.ldap.pool.max.wait
 When the dse.ldap.pool.exhausted.action is block, sets the number of milliseconds to block the pool before throwing an exception.
Configuration

-Ddse.ldap.pool.test.borrow
Tests a connection when it is borrowed from the pool.

-Ddse.ldap.pool.test.return
Tests a connection returned to the pool.

-Ddse.ldap.pool.test.idle
Tests any connections in the eviction loop that are not being evicted. Only works if
the time between eviction runs is greater than 0ms.

-Ddse.ldap.pool.time.between.evictions
Determines the time in ms (milliseconds) between eviction runs. When run with the
dse.ldap.pool.test.idle this becomes a basic keep alive for connections.

-Ddse.ldap.pool.num.tests.per.eviction
Number of connections in the pool that are tested each connection run. If this is
set the same as max active (the pool size) then all connections will be tested each
eviction run.

-Ddse.ldap.pool.min.evictable.idle.time.ms
Determines the minimum time in ms (milliseconds) that a connection can sit in the
pool before it becomes available for eviction.

-Ddse.ldap.pool.soft.min.evictable.idle.time.ms
Determines the minimum time in ms (milliseconds) that a connection can sit the
pool before it becomes available for eviction with the proviso that the number of
connections doesn't fall below dse.ldap.pool.min.evictable.idle.time.ms.

triggers
The location of the triggers directory depends on the type of installation:

<table>
<thead>
<tr>
<th>Package installations</th>
<th>/etc/dse/cassandra/triggers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer-Services installations</td>
<td>/etc/dse/cassandra/triggers</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tarball installations</th>
<th>installation_location/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer-No Services installations</td>
<td>resources/cassandra/conf/</td>
</tr>
<tr>
<td></td>
<td>triggers</td>
</tr>
</tbody>
</table>

Starting a node without joining the ring:

- Command line:
 dse cassandra -Dcassandra.join_ring=false

- jvm.options:
 -Dcassandra.join_ring=false

Replacing a dead node:

- Command line:
 dse cassandra -Dcassandra.replace_address=10.91.176.160

- jvm.options:
Choosing a compaction strategy

To implement the chosen compaction strategy:

1. To understand how compaction and compaction strategies work, read How is data maintained?

2. Review your application’s requirements use this information to answer the questions below.

3. Configure the table (page 290) to use the most appropriate strategy.

4. Test the compaction strategies (page 290) against your data.

Which compaction strategy is best?

The following questions are based on the experiences of developers and users with the strategies.

Does your table process time series data?
If so, your best choice is Compaction strategies TWCS. If not, the following questions introduce other considerations to guide your choice.

Does your table handle more reads than writes, or more writes than reads?
LCS is a good choice if your table processes twice as many reads as writes or more — especially randomized reads. If the proportion of reads to writes is closer, the performance hit exacted by LCS may not be worth the benefit. Be aware that LCS can be quickly overwhelmed by a high volume of writes.

Does the data in your table change often?
One advantage of LCS is that it keeps related data in a small set of SSTables. If your data is immutable or not subject to frequent upssets, STCS accomplishes the same type of grouping without the LCS performance hit.

Do you require predictable levels of read and write activity?
LCS keeps the SSTables within predictable sizes and numbers. For example, if your table’s read/write ratio is small, and it is expected to conform to a Service Level Agreements (SLAs) for reads, it may be worth taking the write performance penalty of LCS in order to keep read rates and latency at predictable levels. And you may be able to overcome this write penalty through horizontal scaling (adding more nodes).

Will your table be populated by a batch process?
On both batch reads and batch writes, STCS performs better than LCS. The batch process causes little or no fragmentation, so the benefits of LCS are not realized; batch processes can overwhelm LCS-configured tables.

Does your system have limited disk space?
LCS handles disk space more efficiently than STCS: it requires about 10% headroom in addition to the space occupied by the data is handles. STCS and DTCS generally require, in some cases, as much as 50% more than the data space. (DateTieredStorageStrategy (DTCS) is deprecated.)

Is your system reaching its limits for I/O?
LCS is significantly more I/O intensive than DTCS or STCS. Switching to LCS may introduce extra I/O load that offsets the advantages.

Configuring and running compaction
Set the compaction strategy for a table in the parameters for the `CREATE TABLE` or `ALTER TABLE` command. For details, see Table properties.

You can start compaction manually using the `nodetool compact (page 956)` command.

Testing compaction strategies
Suggestions for determining which compaction strategy is best for your system:

- Create a three-node cluster using one of the compaction strategies, stress test the cluster using `cassandra-stress (page 1240)` and measure the results.
- Set up a node on your existing cluster and use the `write survey mode (page 1356)` to sample live data.

Configuring Virtual Nodes

Virtual node (vnode) configuration
Virtual nodes simplify many tasks in DataStax Enterprise (DSE), such as eliminating the need to determine the partition range (calculate and assign tokens), rebalancing the cluster when adding or removing nodes, and replacing dead nodes. For a complete description of virtual nodes and how they work, see Virtual nodes.

DSE requires the same token architecture on all nodes in a datacenter. The nodes must all be vnode-enabled or single-token architecture. Across the entire cluster, datacenter architecture can vary. For example, a single cluster with:

- A transaction-only datacenter running OLTP.
- A single-token architecture search datacenter (no vnodes).
- An analytics datacenter with vnodes.

Guidelines for using virtual nodes

- DSE requires the same token architecture on all nodes in a datacenter.
 The nodes must all be vnode-enabled or single-token architecture. Across the entire cluster, datacenter architecture can vary.

 For example, a single cluster with:

 # A transaction-only datacenter running OLTP.
A single-token architecture search datacenter (no vnodes).
An analytics datacenter with vnodes.

- DataStax recommends using 8 vnodes (tokens).

 Restriction: DataStax recommends not using vnodes with DSE Search. However, if you decide to use vnodes with DSE Search, do not use more than 8 vnodes and ensure that `allocate_tokens_for_local_replication_factor` *(page 214)* option in cassandra.yaml is correctly configured for your environment.

Using 8 vnodes distributes the workload between systems with a ~10% variance and has minimal impact on performance.

- Ensure correct vnode configuration with cassandra.yaml settings:

 - When adding a vnode to an existing cluster or setting up nodes in a new datacenter, set the target replication factor (RF) of keyspaces in the datacenter with the `allocate_tokens_for_local_replication_factor` *(page 214)* option.
 - The allocation algorithm distributes the token ranges proportionately using the `num_tokens` *(page 214)* settings.

 All systems in the datacenter should have the same `num_token` settings unless the systems performance varies between systems. To distribute more of the workload to the higher performance hardware, increase the number of tokens for those systems.

 The allocation algorithm efficiently balances the workload using fewer tokens; when systems are added to a datacenter, the algorithm maintains the balance. Using a higher number of tokens more evenly distributes the workload, but also significantly increases token management overhead.

 Set the number of vnode tokens based on the workload distribution requirements of the datacenter:

 Table 36: Allocation algorithm workload distribution variance

<table>
<thead>
<tr>
<th>Replication factor</th>
<th>4 vnode (tokens)</th>
<th>8 vnode (tokens)</th>
<th>64 vnode (tokens)</th>
<th>128 vnode (tokens)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>~17.5%</td>
<td>~12.5%</td>
<td>~3%</td>
<td>~1%</td>
</tr>
<tr>
<td>3</td>
<td>~14%</td>
<td>~10%</td>
<td>~2%</td>
<td>~1%</td>
</tr>
<tr>
<td>5</td>
<td>~11%</td>
<td>~7%</td>
<td>~1%</td>
<td>~1%</td>
</tr>
</tbody>
</table>

- Add nodes to the cluster one at a time.

 Caution: When adding multiple nodes to the cluster using the allocation algorithm, ensure that nodes are added one at a time. If nodes are added concurrently, the algorithm assigns the same tokens to different nodes.
Enabling vnodes

In the cassandra.yaml file:

1. Uncomment `num_tokens (page 214)` and set the required number of tokens.

2. (Recommended) To use the allocation algorithm uncomment `allocate_tokens_for_local_replication_factor (page 214)` and set it to the target replication factor for the keyspaces in the datacenter. If the replication varies, alternate between the replication factor (RF) settings.

3. Comment out the `initial_token (page 213)` or leave unset.

To upgrade existing clusters to vnodes, see Enabling virtual nodes on an existing production cluster.

Disabling vnodes

Important: If you do not use vnodes, you must make sure that each node is responsible for roughly an equal amount of data. To ensure that each node is responsible for an equal amount of data, assign each node an `initial-token (page 198)` value and calculate the tokens for each datacenter as described in Generating tokens.

1. In the cassandra.yaml file:

 a. Comment out the `num_tokens (page 214)` and `allocate_tokens_for_local_replication_factor (page 214)`.

 b. Uncomment the `initial_token (page 213)` and set it to 1 or to the value of a generated token for a multi-node cluster.
Using DataStax Enterprise advanced functionality

Information on using DSE Analytics, DSE Search, DSE Graph, DSEFS (DataStax Enterprise file system), and DSE Advance Replication.

DSE Analytics

DataStax Enterprise (DSE) integrates real-time and batch operational analytics capabilities with an enhanced version of Apache Spark™. With DSE Analytics you can easily generate ad-hoc reports, target customers with personalization, and process real-time streams of data. The analytics toolset lets you write code once and then use it for both real-time and batch workloads.

About DSE Analytics

DataStax Enterprise (DSE) integrates real-time and batch operational analytics capabilities with an enhanced version of Apache Spark™. With DSE Analytics you can easily generate ad-hoc reports, target customers with personalization, and process real-time streams of data. The analytics toolset lets you write code once and then use it for both real-time and batch workloads.

DSE Analytics jobs can use the DataStax Enterprise File System (DSEFS) to handle the large data sets typical of analytic processing. DSEFS replaces CFS (Cassandra File System).

DSE Analytics features

SparkR

DataStax Enterprise supports SparkR for R analytic processing.

No single point of failure

DSE Analytics supports a peer-to-peer, distributed cluster for running Spark jobs. Being peers, any node in the cluster can load data files, and any analytics node can assume the responsibilities of Spark Master.

Spark Master management

DSE Analytics provides automatic Spark Master management.

Analytics without ETL

Using DSE Analytics, you run Spark jobs directly against data in the database. You can perform real-time and analytics workloads at the same time without one workload affecting the performance of the other. Starting some cluster nodes as Analytics nodes and others as pure transactional real-time nodes automatically replicates data between nodes.

DataStax Enterprise file system (DSEFS (page 398))

DSEFS (DataStax Enterprise file system) is a fault-tolerant, general-purpose, distributed file system within DataStax Enterprise. It is designed for use cases that need to leverage a distributed file system for data ingestion, data staging, and state
Using DataStax Enterprise advanced functionality

management for Spark Streaming applications (such as checkpointing or write-ahead logging). DSEFS is similar to HDFS, but avoids the deployment complexity and single point of failure typical of HDFS. DSEFS is HDFS-compatible and is designed to work in place of HDFS in Spark and other systems.

All analytics keyspaces are initially created with the SimpleStrategy replication strategy and a replication factor (RF) of 1. Each of these must be updated in production environments to avoid data loss.

Enabling DSE Analytics

To enable Analytics, follow the architecture guidelines for choosing a workload type for the datacenters in the cluster.

Setting the replication factor for analytics keyspaces

Keyspaces and tables are automatically created when DSE Analytics nodes are started for the first time. The replication factor must be adjusted for these keyspaces in order for the analytics features to work properly and to avoid data loss.

The keyspaces used by DSE Analytics are the following:

- cfs
- cfs_archive
- dse_leases
- dsefs
- "HiveMetaStore"
- spark_system

All analytics keyspaces are initially created with the SimpleStrategy replication strategy and a replication factor (RF) of 1. Each of these must be updated in production environments to avoid data loss. After starting the cluster, alter the keyspace to use the NetworkTopologyStrategy replication strategy with an appropriate settings for the replication factor and datacenters. For most environments using DSE Analytics, a suitable replication factor will be either 3 or the cluster size, whichever is smaller.

For example, use a CQL statement to configure the dse_leases keyspace for a replication factor of 3 in both DC1 and DC2 datacenters using NetworkTopologyStrategy:

```
ALTER KEYSPACE dse_leases
WITH REPLICAATION = {
    'class': 'NetworkTopologyStrategy',
    'DC1': '3',
    'DC2': '3'
};
```

The datacenter name used is case-sensitive. If needed, use the dsetool status command to confirm the exact datacenter spelling.
After adjusting the replication factor, `nodetool repair` must be run on each node in the affected datacenters. For example to repair the altered keyspace `dse_leases`:

```
$ nodetool repair -full dse_leases
```

Repeat the above steps for each of the analytics keyspaces listed above. For more information see Changing keyspace replication strategy (page 1309).

DSE Analytics and Search integration

An integrated DSE SearchAnalytics cluster allows analytics jobs to be performed using search queries (page 496). This integration allows finer-grained control over the types of queries that are used in analytics workloads, and improves performance by reducing the amount of data that is processed. However, a DSE SearchAnalytics cluster does not provide workload isolation and there are no detailed guidelines for provisioning and performance in production environments.

Nodes that are started in SearchAnalytics mode allow you to create analytics queries that use DSE Search indexes. These queries return RDDs that are used by Spark jobs to analyze the returned data.

The following code shows how to use a DSE Search query from the DSE Spark console.

```
val table = sc.cassandraTable("music","solr")
val result = table.select("id","artist_name")
       .where("solr_query='artist_name:Miles*'")
       .take(10)
```

You can use Spark Spark Datasets/DataFrames instead of RDDs.

```
val table = spark.read.format("org.apache.spark.sql.cassandra")
       .options(Map("keyspace"->"music", "table" -> "solr"))
       .load()
val result =
       table.select("id","artist_name").where("solr_query='artist_name:Miles*'")
       .show(10)
```

You may alternately use a Spark SQL query.

```
val result = spark.sql("SELECT id, artist_name FROM music.solr WHERE solr_query = 'artist_name:Miles*' LIMIT 10")
```

For a detailed example, see Running the Wikipedia demo with SearchAnalytics (page 392).

Configuring a DSE SearchAnalytics cluster

1. Create DSE SearchAnalytics nodes in a mixed-workload cluster, as described in Initializing a single datacenter per workload type.
Using DataStax Enterprise advanced functionality

The name of the datacenter is set to SearchAnalytics when using the DseSimpleSnitch. Do not modify existing search or analytics nodes that use DseSimpleSnitch to be SearchAnalytics nodes. If you use another snitch like GossipingPropertyFileSnitch you can have a mixed workload within a datacenter.

2. Perform load testing to ensure your hardware has enough CPU and memory for the additional resource overhead that is required by Spark and Solr.

 Note: SearchAnalytics nodes always use driver paging settings. See [Using pagination (cursors) with CQL Solr queries](page 507).

SearchAnalytics nodes might consume more resources than search or analytics nodes. Resource requirements of the nodes greatly depend on the type of query patterns you are using.

Considerations for DSE SearchAnalytics clusters

Care should be taken when enabling both Search and Analytics on a DSE node. Since both workloads will be enabled, ensure proper resources are provisioned for these simultaneous workloads. This includes sufficient memory and compute resources to accommodate the specific indexing, query, and processing appropriate to the use case.

SearchAnalytics clusters are appropriate for production environments, provided these environments provide sufficient resources for the specific workload, as is the case for all DSE clusters.

All of the fields that are queried on DSE SearchAnalytics clusters must be defined in the search index schema definition (page 442). Fields that are not defined in the search index schema columns not defined are excluded in the results returned from Spark queries.

Using predicate push down in Spark SQL

Solr predicate push down allows queries in SearchAnalytics datacenters to use Solr-indexed columns in Spark SQL queries. To enable Solr predicate push down, set the `spark.sql.dse.solr.enable_optimization` property to true either on a global or per-table or per-dataset basis.

The performance of DSE Search is directly related to the number of records returned in a query. Requests which require a large portion of the dataset are likely better served by a full table scan without using predicate push downs.

To enable Solr predicate push down on a Scala dataset:

```java
val solrEnabledDataSet = spark.read
  .format("org.apache.spark.sql.cassandra")
  .options(Map( "keyspace" -> "ks",
                "table" -> "tab",
                "spark.sql.dse.solr.enable_optimization" -> "true")
```
To create a temporary table in Spark SQL with Solr predicate push down enabled:

```sql
CREATE TEMPORARY TABLE temp USING org.apache.spark.sql.cassandra OPTIONS (table "tab",
keyspace "ks",
spark.sql.dse.solr.enable_optimization "true");
```

Set the `spark.sql.dse.solr.enable_optimization` property globally by adding it to the server configuration file (page 341).

The optimizer works on the push down level so only predicates which are being pushed to the source can be optimized. Use the `explain` command to see exactly what predicates are being pushed to the `CassandraSourceRelation`.

```scala
val query = spark.sql("query")
query.explain
```

Logging optimization plans

The optimization plans for a query using predicate push downs are logged by setting the `org.apache.spark.sql.SolrPredicateRules` logger to `DEBUG` in the Spark logging configuration files (page 346).

```xml
<logger name="org.apache.spark.sql.SolrPredicateRules" level="DEBUG"/>
```

About DSE Analytics Solo

DSE Analytics Solo datacenters provide analytics processing with Spark and distributed storage using DSEFS without storing transactional database data.

DataStax Enterprise is flexible when deploying analytic processing in concert with transactional workloads. There are two main ways to deploy DSE Analytics: collocated with the database processing nodes, and on segregated machines in their own datacenter.
Using DataStax Enterprise advanced functionality

Figure 1: Traditional and DSE Analytics Solo deployments

Traditional DSE Analytics deployments have both the DataStax database process and the Spark process running on the same machine. This allows for simple deployment of analytic processing when the analysis is not as intensive, or the database is not as heavily used.

DSE Analytics Solo allows customers to deploy DSE Analytics processing on segregated hardware configurations in a different datacenter from the transactional DSE nodes. This ensures consistent behavior of both engines in a configuration that does not compete for computer resources. This configuration is good for processing-intensive analytic workloads.

DSE Analytics Solo allows the flexibility to have more nodes dedicated to data processing than are used for database transactions. This is particularly good for situations where the processing needs far exceed the transactional resource needs. For example, suppose you have a Spark Streaming job that will analyze and filter 99.9% of the incoming data, storing only a few records after analysis. The resources required by the transactional datacenter are much smaller than the resources required to analyze the data.

DSE Analytics Solo is more elastic in terms of scaling up, or down, the analytic processing in the cluster. This is particularly useful when you need extra analytics processing, such as end of the day or end of the quarter surges in analytics jobs. Since a DSE Analytics Solo node does not store database data, when new nodes are added to a cluster there is very little data moved across the network to the new nodes. In an analytics and transactional collocated environment, adding a node means moving transactional data between the existing nodes and the new nodes.
Analyzing data using Spark

Spark is the default mode when you start an analytics node in a packaged installation.

About Spark

Spark is the default mode when you start an analytics node in a packaged installation. Spark runs locally on each node and executes in memory when possible. Spark uses multiple threads instead of multiple processes to achieve parallelism on a single node, avoiding the memory overhead of several JVMs.

Apache Spark integration with DataStax Enterprise includes:

- **Spark Cassandra Connector** *(page 329)* for accessing data stores in DSE
- DSE Resource Manager for managing *(page 333)* Spark components in a DSE cluster
- **Spark Job Server** *(page 382)*
- **Spark SQL** *(page 362)* support
- **Spark SQL Thrift Server** *(page 370)*
- **Spark streaming** *(page 360)*
- **DataFrames** *(page 369)* API to manipulate data within Spark
- Using SparkR with DataStax Enterprise *(page 377)*

Spark architecture

The software components for a single DataStax Enterprise analytics node are:

- Spark Worker
- DataStax Enterprise File System (DSEFS)
- Cassandra File System (CFS), deprecated as of DSE 5.1
- The database

A Spark Master acts purely as a resource manager for Spark applications. Spark Workers launch executors that are responsible for executing part of the job that is submitted to the Spark Master. Each application has its own set of executors. Spark architecture is described in the Apache documentation.

DSE Spark nodes use a different resource manager than standalone Spark nodes. The DSE Resource Manager simplifies integration between Spark and DSE. In a DSE Spark cluster, client applications use the CQL protocol to connect to any DSE node, and that node redirects the request to the Spark Master.

The communication between the Spark client application (or driver) and the Spark Master is secured the same way as connections to DSE, which means that plain password authentication as well as Kerberos authentication is supported, with or without SSL encryption. Encryption and authentication can be configured per application, rather than per
Using DataStax Enterprise advanced functionality

Authentication and encryption between the Spark Master and Worker nodes can be enabled or disabled regardless of the application settings.

Spark supports multiple applications. A single application can spawn multiple jobs and the jobs run in parallel. An application reserves some resources on every node and these resources are not freed until the application finishes. For example, every session of Spark shell is an application that reserves resources. By default, the scheduler tries allocate the application to the highest number of different nodes. For example, if the application declares that it needs four cores and there are ten servers, each offering two cores, the application most likely gets four executors, each on a different node, each consuming a single core. However, the application can get also two executors on two different nodes, each consuming two cores. You can configure the application scheduler. Spark Workers and Spark Master are part of the main DSE process. Workers spawn executor JVM processes which do the actual work for a Spark application (or driver). Spark executors use native integration to access data in local transactional nodes through the Spark-Cassandra Connector. The memory settings for the executor JVMs are set by the user submitting the driver to DSE.

In deployment for each Analytics datacenter one node runs the Spark Master, and Spark Workers run on each of the nodes. The Spark Master comes with automatic high availability (page 302).
Figure 2: Spark integration with DataStax Enterprise
Using DataStax Enterprise advanced functionality

As you run Spark, you can access data in the Hadoop Distributed File System (HDFS), the Cassandra File System (CFS), or the DataStax Enterprise File System (DSEFS) by using the URL for the respective file system.

Highly available Spark Master

The Spark Master High Availability mechanism uses a special table in the spark_system keyspace to store information required to recover Spark workers and the application. Unlike the high availability mechanism mentioned in Spark documentation, DataStax Enterprise does not use ZooKeeper.

If the original Spark Master fails, the reserved one automatically takes over. To find the current Spark Master, run:

```
$ dse client-tool spark master-address
```

DataStax Enterprise provides Automatic Spark Master management (page 341).

Unsupported Spark features

The following Spark features and APIs are not supported:

- Writing to blob columns from Spark

 Reading columns of all types is supported; however, you must convert collections of blobs to byte arrays before serializing.

Using Spark with DataStax Enterprise

DataStax Enterprise integrates with Apache Spark to allow distributed analytic applications to run using database data.

Starting Spark

Before you start Spark, configure Authorizing remote procedure calls for CQL execution for the DseClientTool object.

Note: RPC permission for the DseClientTool object is required to run Spark because the DseClientTool object is called implicitly by the Spark launcher.

Note: By default DSEFS is required to execute Spark applications. DSEFS should not be disabled when Spark is enabled on a DSE node. If there is a strong reason not to use DSEFS as the default file system, reconfigure Spark to use a different file system. For example to use a local file system set the following properties in spark-daemon-defaults.conf:

```
spark.hadoop.fs.defaultFS=file:/// 
spark.hadoop.hive.metastore.warehouse.dir=file:///tmp/warehouse
```
How you start Spark depends on the installation and if you want to run in Spark mode or SearchAnalytics mode:

Package and Installer-Services installations:
To start the Spark trackers on a cluster of analytics nodes, edit the `/etc/default/dse` file to set `SPARK_ENABLED` to 1.

When you **start DataStax Enterprise as a service** *(page 1275)*, the node is launched as a Spark node. You can enable additional components.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Option in /etc/default/dse</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spark</td>
<td>SPARK_ENABLED=1</td>
<td>Start the node in Spark mode.</td>
</tr>
<tr>
<td>SearchAnalytics mode</td>
<td>SPARK_ENABLED=1 SEARCH_ENABLED=1</td>
<td>SearchAnalytics mode requires testing in your environment before it is used in production clusters. In <code>dse.yaml</code>, <code>cql_solr_query_paging: driver (page 247)</code> is required.</td>
</tr>
</tbody>
</table>

Tarball and Installer-No Services installations:
To start the Spark trackers on a cluster of analytics nodes, use the `-k` option:

```
$ installation_location/bin/dse cassandra -k
```

Note: Nodes started with `-k` are automatically assigned to the default Analytics datacenter if you do not configure a datacenter in the snitch property file.

You can enable additional components:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spark</td>
<td>-k</td>
<td>Start the node in Spark mode.</td>
</tr>
<tr>
<td>SearchAnalytics mode</td>
<td>-k -s</td>
<td>In <code>dse.yaml</code>, <code>cql_solr_query_paging: driver (page 247)</code> is required.</td>
</tr>
</tbody>
</table>

For example:

To start a node in SearchAnalytics mode, use the `-k` and `-s` options.

```
$ installation_location/bin/dse cassandra -k -s
```

Starting the node with the Spark option starts a node that is designated as the master, as shown by the Analytics(SM) workload in the output of the `dsetool ring` command:

```
$ dsetool ring
```

<table>
<thead>
<tr>
<th>Address</th>
<th>DC State</th>
<th>Load</th>
<th>Rack</th>
<th>Workload</th>
<th>Token</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graph</td>
<td>Status</td>
<td>Health [0,1]</td>
<td>Owns</td>
<td>Workload</td>
<td></td>
</tr>
</tbody>
</table>

DSE 5.1 Developer Guide Earlier version, latest patch 5.1.15
If you use `sudo` to start DataStax Enterprise, remove the `~/.spark` directory before you restart the cluster:

```bash
$ sudo rm -r ~/.spark
```

Launching Spark

After starting a Spark node, use `dse` commands to launch Spark.

Usage:

Package and Installer-Services installations:

```bash
$ dse spark
```

Tarball and Installer-No Services installations:

```bash
installation_location/bin/dse spark
```

You can use [Cassandra specific properties](page 353) to start Spark. Spark binds to the `listen_address` that is specified in `cassandra.yaml`.

DataStax Enterprise supports these commands for launching Spark on the DataStax Enterprise command line:

dse spark

Enters interactive Spark shell, offers basic auto-completion.

Package and Installer-Services installations:

```bash
$ dse spark
```

Tarball and Installer-No Services installations:

```bash
installation_location/bin/dse spark
```

dse spark-submit

Launches applications on a cluster like `spark-submit`. Using this interface you can use Spark cluster managers without the need for separate configurations for each application. The syntax for Package and Installer-Services installations is:

```bash
$ dse spark-submit --class class_name jar_file other_options
```

For example, if you write a class that defines an option named `d`, enter the command as follows:

```bash
$ dse spark-submit --class com.datastax.HttpSparkStream target/HttpSparkStream.jar -d $NUM_SPARK_NODES
```
Using DataStax Enterprise advanced functionality

Note: The JAR file can be located in a DSEFS directory. If the DSEFS cluster is secured, provide authentication credentials as described in DSEFS authentication (page 416).

The `dse spark-submit` command supports the same options as Apache Spark's `spark-submit`. For example, to submit an application using cluster mode using the `supervise` option to restart in case of failure:

```
$ dse spark-submit --deploy-mode cluster --supervise --class com.datastax.HttpSparkStream target/HttpSparkStream.jar -d $NUM_SPARK_NODES
```

Unlike the standard behavior for the Spark `status` and `kill` options, in DSE deployments these options do not require the Spark Master IP address:

- `dse spark-submit -kill driver_id[--master master_ip_address]`
- `dse spark-submit -status driver_id[--master master_ip_address]`

For example, to kill a driver of a Spark application running in the DSE cluster:

```
$ dse spark-submit --kill driver-20180726160353-0019
```

To get the status of a Spark application running in the DSE cluster:

```
$ dse spark-submit --status driver-20180726160353-0019
```

Note: The directory in which you run the `dse` Spark commands must be writable by the current user.

Internal authentication is supported.

Use the optional environment variables `DSE_USERNAME` and `DSE_PASSWORD` to increase security and prevent the user name and passwords from appearing in the Spark log files or in the process list on the Spark Web UI. To specify a user name and password using environment variables, add the following to your Bash `.profile` or `.bash_profile`:

```
export DSE_USERNAME=user
export DSE_PASSWORD=secret
```

These environment variables are supported for all Spark and `dse client-tool (page 1159)` commands.

Note: DataStax recommends using the environment variables instead of passing user credentials on the command line.

Authentication credentials can be provided in several ways, see Connecting to authentication enabled clusters.

dse.yaml

The location of the `dse.yaml` file depends on the type of installation:
Using DataStax Enterprise advanced functionality

<table>
<thead>
<tr>
<th>Package installations</th>
<th>/etc/dse/dse.yaml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer-Services installations</td>
<td></td>
</tr>
<tr>
<td>Tarball installations</td>
<td>installation_location/</td>
</tr>
<tr>
<td>Installer-No Services installations</td>
<td>resources/dse/conf/</td>
</tr>
<tr>
<td></td>
<td>dse.yaml</td>
</tr>
</tbody>
</table>

Specifying Spark URLs

You do not need to specify the Spark Master address when starting Spark jobs with DSE. If you connect to any Spark node in a datacenter, DSE will automatically discover the Master address and connect the client to the Master.

Specify the URL for any Spark node using the following format:

```
dse://[Spark node address[:port number]]?[parameter name=parameter value;]...
```

By default the URL is `dse://?`, which is equivalent to `dse://localhost:9042`. Any parameters you set in the URL will override the configuration read from DSE’s Spark configuration settings. Valid parameters are CassandraConnectorConf settings with the `spark.cassandra.` prefix stripped. For example, you can set the `spark.cassandra.connection.local_dc` option to `dc2` by specifying `dse://? connection.local_dc=dc2`.

Or to specify multiple `spark.cassandra.connection.host` addresses for high-availability if the specified connection point is down: `dse://1.1.1.1:123?connection.host=1.1.2.2,1.1.3.3`.

If the `connection.host` parameter is specified, the host provided in the standard URL is prepended to the list of hosts set in `connection.host`. If the port is specified in the standard URL, it overrides the port number set in the `connection.port` parameter.

Connection options when using `dse` `spark-submit` are retrieved in the following order: from the Master URL, then the Spark Cassandra Connector options, then the DSE configuration files.

Detecting Spark application failures

DSE has a failure detector for Spark applications, which detects whether a running Spark application is dead or alive. If the application has failed, the application will be removed from the DSE Spark Resource Manager.

The failure detector works by keeping an open TCP connection from a DSE Spark node to the Spark Driver in the application. No data is exchanged, but regular TCP connection keep-alive control messages are sent and received. When the connection is interrupted, the failure detector will attempt to reacquire the connection every 1 second for the duration of the `appReconnectionTimeoutSeconds` timeout value (5 seconds by default). If it fails to reacquire the connection during that time, the application is removed.
Using DataStax Enterprise advanced functionality

A custom timeout value is specified by adding `appReconnectionTimeoutSeconds=value` in the master URI when submitting the application. For example to set the timeout value to 10 seconds:

```
$ dse spark --master dse://?appReconnectionTimeoutSeconds=10
```

Running Spark commands against a remote cluster

To run Spark commands against a remote cluster, you must export the DSE configuration from one of the remote nodes to the local client machine.

To run a driver application remotely, there must be full public network communication between the remote nodes and the client machine.

1. Export the DataStax Enterprise client configuration from the remote node to the client node:

a. On the remote node:
   ```
   $ dse client-tool configuration export dse-config.jar
   ```

b. Copy the exported JAR to the client nodes.
   ```
   $ scp dse-config.jar user@clientnode1.example.com:
   ```

c. On the client node:
   ```
   $ dse client-tool configuration import dse-config.jar
   ```

2. Run the Spark command against the remote node.
   ```
   $ dse spark-submit submit options myApplication.jar
   ```

 To set the driver host to a publicly accessible IP address, pass in the `spark.driver.host` option.
   ```
   $ dse spark-submit --conf spark.driver.host=IP address myApplication.jar
   ```

Accessing database data from Spark

DataStax Enterprise integrates Spark with DataStax Enterprise database. Database tables are fully usable from Spark.
Using DataStax Enterprise advanced functionality

Accessing the database from a Spark application

To access the database from a Spark application, follow instructions in the Spark example Portfolio Manager demo using Spark (page 384).

Accessing database data from the Spark shell

DataStax Enterprise uses the Spark Cassandra Connector to provide database integration for Spark. By running the Spark shell in DataStax Enterprise, you have access to enriched Spark context objects for accessing transactional nodes directly. See the Spark Cassandra Connector Java Doc on GitHub.

To access database data from the Spark Shell, just run the dse spark command and follow instructions in subsequent sections.

$ dse spark
Spark session available as 'spark'.
Welcome to

```
/\  /      _    _   ____________   
/   /  __  / /   /|  /  _    _    |
/___/ / / / /   | /   / / ___|   |
/____/ /_/ /___/ /   /  \/___|   |

```

version 2.0.0.1

Using Scala version 2.11.8 (OpenJDK 64-Bit Server VM, Java 1.8.0_91)
Type in expressions to have them evaluated.
Type :help for more information.

scala>

The Spark Shell creates a default Spark session named spark, an instance of org.apache.spark.sql.SparkSession.

Note:

In previous versions of DSE, the default HiveContext instance was named hc. If your application uses hc instead of sqlContext, you can work around this change by adding a line:

```scala
val hc=sqlContext
```
Using DataStax Enterprise advanced functionality

Previous versions also created a CassandraSqlContext instance named csc. Starting in DSE 5.0, this is no longer the case. Use the sqlContext object instead.

Using the Spark session

A Spark session is encapsulated in an instance of org.apache.spark.sql.SparkSession. The session object has information about the Spark Master, the Spark application, and the configuration options.

The DSE Spark shell automatically configures and creates a Spark session object named spark. Use this object to begin querying database tables in DataStax Enterprise.

```
scala> spark.sql("SELECT * FROM keyspace.table_name")
```

Note:

In Spark 1.6 and earlier, there were separate HiveContext and SQLContext objects. Starting in Spark 2.0, the SparkSession encapsulates both.

Spark applications can use multiple sessions to use different underlying data catalogs. You can use an existing Spark session to create a new session by calling the newSession method.

```
val newSpark = spark.newSession()
```

Building a Spark session using the Builder API

The Builder API allows you to create a Spark session manually.

```
import org.apache.spark.sql.SparkSession
val sparkSession = SparkSession.builder
    .master("dse://localhost?")
    .appName("my-spark-app")
    .enableHiveSupport()
    .config("spark.executor.logs.rolling.maxRetainedFiles", "3")
    .config("spark.executor.logs.rolling.strategy", "size")
    .config("spark.executor.logs.rolling.maxSize", "50000")
    .getOrCreate
```

Stopping a Spark session

Use the stop method to end the Spark session.

```
spark.stop
```
Getting and setting configuration options

Use the `spark.conf.get` and `spark.conf.set` methods to retrieve or set Spark configuration options for the session.

```java
spark.conf.set("spark.executor.logs.rolling.maxRetainedFiles", "3")
spark.conf.get("spark.executor.logs.rolling.maxSize")
```

Using the Spark context

Note: Starting in DSE 5.1, the entry point for Spark applications is the `SparkSession` object *(page 309)*. Using the Spark context directly is deprecated and may be removed in future releases.

Access the deprecated context object, call `spark.sparkContext`.

```scala
val sc = spark.sparkContext
```

To get a Spark RDD that represents a database table, load data from a table into Spark using the `sc-dot` (sc.) syntax to call the `cassandraTable` method on the Spark context, where `sc` represents the Spark API `SparkContext` class.

```scala
sc.cassandraTable ( "keyspace", "table name" )
```

By default, the DSE Spark shell creates an `sc` object. The Spark context can be manually retrieved from the Spark session object in the Spark shell by calling `spark.sparkContext`.

```scala
val sc = spark.sparkContext()
```

Data is mapped into Scala objects and DataStax Enterprise returns a `CassandraRDD[CassandraRow]`. To use the Spark API for creating an application that runs outside DataStax Enterprise, import `com.datastax.spark.connector.SparkContextCassandraFunctions`.

The following example shows how to load a table into Spark and read the table from Spark.

1. Create this keyspace and table in using `cqlsh`. Use the Analytics datacenter to create the keyspace.

   ```sql
   CREATE KEYSPACE test WITH REPLICATION = {'class' : 'NetworkTopologyStrategy', 'Analytics' : 1};
   CREATE TABLE test.words (word text PRIMARY KEY, count int);
   ```

 This example assumes you start a single-node cluster in Spark mode *(page 302)*.

2. Load data into the `words` table.
3. Assuming you started the node in Spark mode, start the Spark shell. Do not use `sudo` to start the shell.

 $ bin/dse spark

 The Welcome to Spark output and prompt appears.

4. Use the `showSchema` command to view the user keyspaces and tables.

 `:showSchema`

 Information about all user keyspaces appears.

   ```
   =================================================================================
   Keyspace: HiveMetaStore
   Table: MetaStore
   =================================================================================
   - key : String              (partition key column)
   - entity : String            (clustering column)
   - value : java.nio.ByteBuffer
   
   =================================================================================
   Keyspace: test
   Table: words
   =================================================================================
   - word  : String       (partition key column)
   - count : Int
   ```

 scala> :showSchema test

   ```
   =================================================================================
   Keyspace: test
   Table: words
   =================================================================================
   - word  : String       (partition key column)
   - count : Int
   ```

 scala> :showSchema test words

   ```
   =================================================================================
   Keyspace: test
   Table: words
   =================================================================================
   - word  : String       (partition key column)
   ```
Using DataStax Enterprise advanced functionality

- count : Int

5. Get information about only the test keyspace.

```
:showSchema test
```

```
========================================
Keyspace: test
Table: words
----------------------------------------
  - word  : String (partition key column)
  - count : Int
```

6. Get information about the words table.

```
:showSchema test words
```

```
========================================
Keyspace: test
Table: words
----------------------------------------
  - word  : String (partition key column)
  - count : Int
```

7. Define a base RDD to point to the data in the test.words table.

```
val rdd = sc.cassandraTable("test", "words")
```

```
```

The RDD is returned in the rdd value. To read the table, use this command.

```
rdd.toArray.foreach(println)
```

```
CassandraRow{word: bar, count: 20}
CassandraRow{word: foo, count: 10}
```

Now, you can use methods on the returned RDD to query the test.words table.

Python support for loading cassandraTables

Python supports loading cassandraTables from a Spark streaming context and saving a DStream to the database.
Reading column values

You can read columns in a table using the get methods of the CassandraRow object. The get methods access individual column values by column name or column index. Type conversions are applied on the fly. Use getOption variants when you expect to receive null values.

Continuing with the previous example, follow these steps to access individual column values.

1. Store the first item of the RDD in the firstRow value.

   ```scala
   val firstRow = rdd.first
   firstRow: com.datastax.spark.connector.CassandraRow = CassandraRow{word: foo, count: 10}
   ```

2. Get the column names.

   ```scala
   rdd.columnNames
   res3: com.datastax.spark.connector.ColumnSelector = AllColumns
   ```

3. Use a generic get to query the table by passing the return type directly.

   ```scala
   firstRow.get[Int]("count")
   res4: Int = 10
   
   firstRow.get[Long]("count")
   res5: Long = 10
   
   firstRow.get[BigInt]("count")
   res6: BigInt = 10
   
   firstRow.get[java.math.BigInteger]("count")
   res7: java.math.BigInteger = 10
   
   firstRow.get[Option[Int]]("count")
   res8: Option[Int] = Some(10)
   ```
Using DataStax Enterprise advanced functionality

Reading collections

You can read collection columns in a table using the get methods of the `CassandraRow` object. The get methods access the collection column and returns a corresponding Scala collection.

Assuming you set up the `test` keyspace earlier, follow these steps to access a collection.

1. In the `test` keyspace, set up a collection set using `cqlsh`.

   ```cql
   CREATE TABLE test.users (
     username text PRIMARY KEY, emails SET text
   );
   INSERT INTO test.users (username, emails)
     VALUES ('someone', {'someone@email.com', 's@email.com'});
   ```

2. If Spark is not running, start the Spark shell. Do not use `sudo` to start the shell.

   ```bash
   $ bin/dse spark
   ```

 The Welcome to Spark output and prompt appears.

3. Define a `CassandraRDD[CassandraRow]` to access the collection set.

   ```scala
   val row = sc.cassandraTable("test", "users").toArray.apply(0)
   ```

   ```scala
   row: com.datastax.spark.connector.CassandraRow =
     CassandraRow{username: someone,
                  emails: {s@email.com, someone@email.com}}
   ```

4. Query the collection set from Spark.

   ```scala
   row.getList[String]("emails")
   res2: Vector[String] = Vector(s@email.com, someone@email.com)
   ```

   ```scala
   row.getList[List[String]]("emails")
   res3: List[String] = List(s@email.com, someone@email.com)
   ```

   ```scala
   row.getList[Seq[String]]("emails")
   res4: Seq[String] = List(s@email.com, someone@email.com)
   ```

   ```scala
   row.getList[IndexedSeq[String]]("emails")
   ```
res5: IndexedSeq[String] = Vector(s@email.com, someone@email.com)
row.get[Set[String]]("emails")
res6: Set[String] = Set(s@email.com, someone@email.com)
row.get[String]("emails")
res7: String = {s@email.com,someone@email.com}

Restricting the number of fetched columns

For performance reasons, you should not fetch columns you don't need. You can achieve this with the `select` method:

To restrict the number of fetched columns:

```scala
val row = sc.cassandraTable("test", "users").select("username").toArray
row: Array[com.datastax.spark.connector.CassandraRow] =
  Array(CassandraRow{username: someone})
```

Mapping rows to tuples and case classes

Instead of mapping your rows to objects of the `CassandraRow` class, you can directly unwrap column values into tuples of the desired type.

To map rows to tuples:

```scala
sc.cassandraTable[(String, Int)]("test", "words").select("word", "count").toArray
res9: Array[(String, Int)] = Array((bar,20), (foo,10))
sc.cassandraTable[(Int, String)]("test", "words").select("count", "word").toArray
res10: Array[(Int, String)] = Array((20,bar), (10,foo))
```

Define a `case` class with properties of the same name as the columns. For multi-word column identifiers, separate each word using an underscore when creating the columns, and use camel case abbreviation on the Scala side.

To map rows to `case` classes:

```scala
case class WordCount(word: String, count: Int)
```
defined class WordCount

scala> sc.cassandraTable[WordCount]("test", "words").toArray

You can name columns using these conventions:

- Use the underscore convention and lowercase letters. (Recommended)
- Use the camel case convention, exactly the same as properties in Scala.

The following examples show valid column names.

Table 37: Recommended naming convention

<table>
<thead>
<tr>
<th>Database column name</th>
<th>Scala property name</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>count</td>
</tr>
<tr>
<td>column_1</td>
<td>column1</td>
</tr>
<tr>
<td>user_name</td>
<td>userName</td>
</tr>
<tr>
<td>user_address</td>
<td>UserAddress</td>
</tr>
</tbody>
</table>

Table 38: Alternative naming convention

<table>
<thead>
<tr>
<th>Database column name</th>
<th>Scala property name</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>count</td>
</tr>
<tr>
<td>column1</td>
<td>column1</td>
</tr>
<tr>
<td>userName</td>
<td>userName</td>
</tr>
<tr>
<td>UserAddress</td>
<td>UserAddress</td>
</tr>
</tbody>
</table>

Mapping rows to objects with a user-defined function

Invoke as on the CassandraRDD to map every row to an object of a different type. Contrary to map, as expects a function having the same number of arguments as the number of columns to be fetched. Invoking as in this way performs type conversions. Using as to directly create objects of a particular type eliminates the need to create CassandraRow objects and also decreases garbage collection pressure.

To map columns using a user-defined function:

```scala
val table = sc.cassandraTable("test", "words")

val table = sc.cassandraTable("test", "words").toArray
```

```scala
```
Using DataStax Enterprise advanced functionality

val total = table.select("count").as((c: Int) => c).sum

```scala
total: Double = 30.0
```

val frequencies = table.select("word", "count").as((w: String, c: Int) => (w, c / total)).toArray

```scala
frequencies: Array[(String, Double)] = Array((bar,0.6666666666666666), (foo,0.3333333333333333))
```

Filtering rows on the server

To filter rows, you can use the filter transformation provided by Spark. Filter transformation fetches all rows from the database first and then filters them in Spark. Some CPU cycles are wasted serializing and de-serializing objects excluded from the result. To avoid this overhead, CassandraRDD has a method that passes an arbitrary CQL condition to filter the row set on the server.

This example shows how to use Spark to filter rows on the server.

1. **Download** and unzip the CQL commands for this example. The commands in this file perform the following tasks:
 - Create a `cars` table in the `test` keyspace.
 - Index the color column.
 - Insert some data into the table

2. Run the `test_cars.cql` file using `cqlsh` or DataStax Studio. For example using `cqlsh`:

   ```bash
   $ cqlsh -f test_cars.cql
   ```

3. Filter the rows using Spark:

   ```scala
   sc.cassandraTable("test", "cars").select("id", "model").where("color = ?", "black").toArray.foreach(println)
   ```

   ```scala
   CassandraRow(id: AS-8888, model: Aston Martin DB9 Volante)
   CassandraRow(id: KF-334L, model: Ford Mondeo)
   CassandraRow(id: MT-8787, model: Hyundai x35)
   CassandraRow(id: MZ-1038, model: Mazda CX-9)
   CassandraRow(id: DG-2222, model: Dodge Avenger)
   CassandraRow(id: DG-8897, model: Dodge Charger)
   CassandraRow(id: BT-3920, model: Bentley Continental GT)
   CassandraRow(id: IN-9964, model: Infinity FX)
   ```

   ```scala
   sc.cassandraTable("test", "cars").select("id", "model").where("color = ?", "silver").toArray.foreach(println)
   ```
Using DataStax Enterprise advanced functionality

Accessing the Spark session and context for applications running outside of DSE Analytics

You can optionally create session and context objects for applications that are run outside of the DSE Analytics environment. This is for advanced use cases where applications do not use `dse spark-submit` for handling the classpath and configuration settings.

All classpath and JAR distribution must be handled by the application. The application classpath must include the output of the `dse spark-classpath` command.

$ dse spark-classpath

Using the Builder API to create a DSE Spark session

To create a DSE Spark session outside of the DSE Analytics application environment, use the `DseConfiguration` class and the `enableDseSupport` method when creating a Spark session.

```scala
import org.apache.spark.sql.SparkSession
import com.datastax.spark.connector.DseConfiguration._
val spark = SparkSession.builder
  .appName("Datastax Scala example")
  .master("dse://127.0.0.1?")
  .config("spark.jars", "target/scala-2.11/writeread_2.11-0.1.jar")
  .enableHiveSupport()
  .enableDseSupport()
  .getOrCreate()
```

Creating a Spark Context

When creating a Spark Context object, use the `DseConfiguration` class and call the `enableDseSupport` method when creating the `SparkConfiguration` instance. In Scala:

```scala
import com.datastax.spark.connector.DseConfiguration._
new SparkConf().enableDseSupport()
```

In Java:

```java
SparkConf rawConf = new SparkConf();
```
Using DataStax Enterprise advanced functionality

SparkConf conf = DseConfiguration.enableDseSupport(rawConf);

Saving RDD data to DSE
With DataStax Enterprise, you can save almost any RDD to the database. Unless
you do not provide a custom mapping, the object class of the RDD must be a tuple or
have property names corresponding to table column names. To save the RDD, call
the saveToCassandra method with a keyspace name, table name, and optionally, a
list of columns. Before attempting to use the RDD in a standalone application, import
com.datastax.spark.connector.
You can also use the DataFrames API (page 369) to manipulate data within Spark.

Saving a collection of tuples
The following example shows how to save a collection of tuples to the database.
scala> val collection = sc.parallelize(Seq(("cat", 30), ("fox", 40)))
collection: org.apache.spark.rdd.RDD[(String, Int)] =
ParallelCollectionRDD[6] at parallelize at console:22
scala> collection.saveToCassandra("test", "words", SomeColumns("word",
"count"))
scala>

At the last Scala prompt in this example, no output means that the data was saved to the
database.
In cqlsh, query the words table to select all the contents.
SELECT * FROM test.words;
word | count
------+------bar |
20
foo |
10
cat |
30
fox |
40
(4 rows)

Saving a collection of case class objects to the database
The following example shows how to save a collection of case class objects.
scala> case class WordCount(word: String, count: Long)
defined class WordCount
scala> val collection = sc.parallelize(Seq(WordCount("dog", 50),
WordCount("cow", 60)))

DSE 5.1 Developer Guide Earlier version, latest patch 5.1.15

Page 319


Using DataStax Enterprise advanced functionality

collection: org.apache.spark.rdd.RDD[WordCount] = ParallelCollectionRDD[0] at parallelize at console:24

scala> collection.saveToCassandra("test", "words", SomeColumns("word", "count"))

In cqlsh, query the words table to select all the contents.

```sql
SELECT * FROM test.words;
```

<table>
<thead>
<tr>
<th>word</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>bar</td>
<td>20</td>
</tr>
<tr>
<td>foo</td>
<td>10</td>
</tr>
<tr>
<td>cat</td>
<td>30</td>
</tr>
<tr>
<td>fox</td>
<td>40</td>
</tr>
<tr>
<td>dog</td>
<td>50</td>
</tr>
<tr>
<td>cow</td>
<td>60</td>
</tr>
</tbody>
</table>

Using non-default property-name to column-name mappings

Mapping rows to tuples and case classes work out-of-the-box, but in some cases, you might need more control over database-Scala mapping. For example, Java classes are likely to use the JavaBeans naming convention, where accessors are named with `get`, `is` or `set` prefixes. To customize column-property mappings, put an appropriate `ColumnMapper[YourClass]` implicit object in scope. Define such an object in a companion object of the class being mapped. The `ColumnMapper` affects both loading and saving data. DataStax Enterprise includes a few `ColumnMapper` implementations.

Working with JavaBeans

To work with Java classes, use `JavaBeanColumnMapper`. Make sure objects are serializable; otherwise Spark cannot send them over the network. The following example shows how to use the `JavaBeanColumnMapper`.

To use JavaBeans style accessors:

```
scala> :paste
// Entering paste mode (ctrl-D to finish)
```

Paste this import command and class definition:

```scala
import com.datastax.spark.connector.mapper.JavaBeanColumnMapper
class WordCount extends Serializable {
    private var _word: String = ""
    private var _count: Int = 0
    def setWord(word: String) { _word = word }
```
Using DataStax Enterprise advanced functionality

def setCount(count: Int) { _count = count }
override def toString = _word + ":" + _count
}
object WordCount {
 implicit object Mapper extends JavaBeanColumnMapper[WordCount]
}

Enter CTRL D to exit paste mode. The output is:

// Exiting paste mode, now interpreting.

import com.datastax.spark.connector.mapper.JavaBeanColumnMapper
defined class WordCount
defined module WordCount

scala>

Query the WordCount object.

sc.cassandraTable[WordCount]("test", "words").toArray

To save the data, you need to define getters.

Manually specifying a property-name to column-name relationship

If for some reason you want to associate a property with a column of a different name, pass a column translation map to the DefaultColumnMapper or JavaBeanColumnMapper.

To change column names:

scala> :paste
// Entering paste mode (ctrl-D to finish)

import com.datastax.spark.connector.mapper.DefaultColumnMapper
case class WordCount(w: String, c: Int)
object WordCount { implicit object Mapper extends DefaultColumnMapper[WordCount](Map("w" -> "word", "c" -> "count")) }

Enter CTRL D.

// Exiting paste mode, now interpreting.

import com.datastax.spark.connector.mapper.DefaultColumnMapper
defined class WordCount
defined module WordCount

Continue entering these commands:

scala> sc.cassandraTable[WordCount]("test", "words").toArray
Using DataStax Enterprise advanced functionality

```scala
res21: Array[WordCount] = Array(WordCount(cow, 60), WordCount(bar, 20),
   WordCount(foo, 10), WordCount(cat, 30), WordCount(fox, 40),
   WordCount(dog, 50))

scala>
   sc.parallelize(Seq(WordCount("bar", 20), WordCount("foo", 40))).saveToCassandra("test",
   "words", SomeColumns("word", "count"))
```

Writing custom ColumnMappers

To define column mappings for your classes, create an appropriate implicit object implementing `ColumnMapper[YourClass]` trait.

Spark supported types

This table maps CQL types to Scala types. All CQL types are supported by the DataStax Enterprise Spark integration. Other type conversions might work, but cause loss of precision or not work for all values. Most types are convertible to strings. You can convert strings that conform to the CQL standard to numbers, dates, addresses or UUIDs. You can convert maps to or from sequences of key-value tuples.

Table 39: Supported types

<table>
<thead>
<tr>
<th>CQL Type</th>
<th>Scala Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ascii</td>
<td>String</td>
</tr>
<tr>
<td>bigint</td>
<td>Long</td>
</tr>
<tr>
<td>blob</td>
<td>ByteBuffer, Array</td>
</tr>
<tr>
<td>boolean</td>
<td>Boolean</td>
</tr>
<tr>
<td>counter</td>
<td>Long</td>
</tr>
<tr>
<td>decimal</td>
<td>BigDecimal, java.math.BigDecimal</td>
</tr>
<tr>
<td>double</td>
<td>Double</td>
</tr>
<tr>
<td>float</td>
<td>Float</td>
</tr>
<tr>
<td>inet</td>
<td>java.net.InetAddress</td>
</tr>
<tr>
<td>int</td>
<td>Int</td>
</tr>
<tr>
<td>list</td>
<td>Vector, List, Iterable, Seq, IndexedSeq, java.util.List</td>
</tr>
<tr>
<td>map</td>
<td>Map, TreeMap, java.util.HashMap</td>
</tr>
<tr>
<td>set</td>
<td>Set, TreeSet, java.util.HashSet</td>
</tr>
<tr>
<td>text, varchar</td>
<td>String</td>
</tr>
<tr>
<td>timestamp</td>
<td>Long, java.util.Date, java.sql.Date, org.joda.time.DateTime</td>
</tr>
</tbody>
</table>
Loading external HDFS data into the database using Spark

This task demonstrates how to access Hadoop data and save it to the database using Spark on DSE Analytics nodes.

To simplify accessing the Hadoop data, it uses WebHDFS, a REST-based server for interacting with a Hadoop cluster. WebHDFS handles redirect requests to the data nodes, so every DSE Analytics node needs to be able to route to every HDFS node using the Hadoop node’s hostname.

These instructions use example weather data, but the principles can be applied to any kind of Hadoop data that can be stored in the database.

Prerequisites:

You will need:

- A working Hadoop installation with HDFS and WebHDFS enabled and running. You will need the hostname of the machine on which Hadoop is running, and the cluster must be accessible from the DSE Analytics nodes in your DataStax Enterprise cluster.
- A running DataStax Enterprise cluster with DSE Analytics nodes enabled.
- Git installed on a DSE Analytics node.

1. Clone the GitHub repository containing the test data.

   ```
   $ git clone https://github.com/brianmhess/DSE-Spark-HDFS.git
   ```

2. Load the maximum temperature test data into the Hadoop cluster using WebHDFS.

 In this example, the Hadoop node has a hostname of `hadoopNode.example.com`. Replace it with the hostname of a node in your Hadoop cluster.

   ```
   $ dse hadoop fs -mkdir webhdfs://hadoopNode.example.com:50070/user/guest/data
   $ dse hadoop fs -copyFromLocal data/sftmax.csv webhdfs://hadoopNode:50070/user/guest/data/sftmax.csv
   ```

3. Create the keyspace and table and load the minimum temperature test data using `cqlsh`.
Using DataStax Enterprise advanced functionality

4. Ensure that we can access the HDFS data by interacting with the data using `dse hadoop fs`.

The following command counts the number of lines of HDFS data.

```
$ dse hadoop fs -cat webhdfs://hadoopNode.example.com:50070/user/guest/data/sftmax.csv | wc -l
```

You should see output similar to the following:

```
16/05/10 11:21:51 INFO snitch.Workload: Setting my workload to Cassandra 3606
```

5. Start the Spark console and connect to the DataStax Enterprise cluster.

```
$ dse spark
```

Import the Spark Cassandra connector and create the session.

```
import com.datastax.spark.connector.cql.CassandraConnector
val connector = CassandraConnector(csc.conf)
val session = connector.openSession()
```

6. Create the table to store the maximum temperature data.

```
session.execute(s"DROP TABLE IF EXISTS spark_ex2.sftmax")
session.execute(s"CREATE TABLE IF NOT EXISTS spark_ex2.sftmax(location TEXT, year INT, month INT, day INT, tmax DOUBLE, datestring TEXT, PRIMARY KEY ((location), year, month, day)) WITH CLUSTERING ORDER BY (year DESC, month DESC, day DESC)")
```

7. Create a Spark RDD from the HDFS maximum temperature data and save it to the table.

First create a case class representing the maximum temperature sensor data:
using DataStax Enterprise advanced functionality

case class Tmax(location: String, year: Int, month: Int, day: Int, tmax: Double, datestring: String)

Read the data into an RDD.

val tmax_raw = sc.textFile("webhdfs://sandbox.hortonworks.com:50070/user/guest/data/sftmax.csv")

Transform the data so each record in the RDD is an instance of the Tmax case class.

val tmax_c10 = tmax_raw.map(x => x.split(\"\")).map(x => Tmax(x(0), x(1).toInt, x(2).toInt, x(3).toInt, x(4).toDouble, x(5)))

Count the case class instances to make sure it matches the number of records.

tmax_c10.count
res11: Long = 3606

Save the case class instances to the database.

tmax_c10.saveToCassandra("spark_ex2", "sftmax")

8. Verify the records match by counting the rows using CQL.

session.execute("SELECT COUNT(*) FROM spark_ex2.sftmax").all.get(0).getLong(0)
res23: Long = 3606

9. Join the maximum and minimum data into a new table.

Create a Tmin case class to store the minimum temperature sensor data.

case class Tmin(location: String, year: Int, month: Int, day: Int, tmin: Double, datestring: String)
val tmin_raw = sc.cassandraTable("spark_ex2", "sftmin")
val tmin_c10 = tmin_raw.map(x => Tmin(x.getString("location"), x.getInt("year"), x.getInt("month"), x.getInt("day"), x.getDouble("tmin"), x.getString("datestring")))

In order to join RDDs, they need to be PairRDDs, with the first element in the pair being the join key.

val tmin_pair = tmin_c10.map(x => (x.datestring, x))
val tmax_pair = tmax_c10.map(x => (x.datestring, x))

Create a THiLoDelta case class to store the difference between the maximum and minimum temperatures.
Join the data using the `join` operation on the PairRDDS. Convert the joined data to the `THiLoDelta` case class.

```scala
case class THiLoDelta(location: String, year: Int, month: Int, day: Int, hi: Double, low: Double, delta: Double, datestring: String)

val tdelta_join1 = tmax_pair1.join(tmin_pair1)
val tdelta_c10 = tdelta_join1.map(x => THiLoDelta(x._2._1._1, x._2._1._2, x._2._1._3, x._2._1._4, x._2._1._5, x._2._2._5, x._2._1._5 - x._2._2._5, x._1))
```

Create a new table within Spark using CQL to store the temperature difference data.

```sql
session.execute(s"DROP TABLE IF EXISTS spark_ex2.sftdelta")
session.execute(s"CREATE TABLE IF NOT EXISTS
spark_ex2.sftdelta(location TEXT, year INT, month INT, day INT, hi DOUBLE, low DOUBLE, delta DOUBLE, datestring TEXT, PRIMARY KEY ((location), year, month, day)) WITH CLUSTERING ORDER BY (year DESC, month DESC, day DESC)")
```

Save the temperature difference data to the table.

```scala
tdelta_c10.saveToCassandra("spark_ex2", "sftdelta")
```

Monitoring Spark with the web interface

A web interface, bundled with DataStax Enterprise, facilitates monitoring, debugging, and managing Spark.

Using the Spark web interface

To use the Spark web interface:

- Enter the **listen IP address** *(page 205)* of any Spark node in a browser followed by port number 7080. Starting in DSE 5.1, all Spark nodes within an Analytics datacenter will redirect to the current Spark Master.
- To change the port, modify the **spark-env.sh** configuration file *(page 333)*. If you change the port number, set it to the same port number on every node in the datacenter.

If the Spark Master is not available, the UI will keep polling for the Spark Master every 10 seconds until the Master is available.

The Spark web interface can be **secured using SSL**. SSL encryption of the web interface is enabled by default when client encryption is enabled.
If authentication is enabled, and plain authentication is available, you will be prompted for authentication credentials when accessing the web UI. We recommend using SSL with authentication.

Note: Kerberos authentication is not supported in the Spark web UI. If authentication is enabled and either LDAP or Internal authentication is not available, the Spark web UI will not be accessible. If this occurs, disable authentication for the Spark web UI only by removing the `spark.ui.filters` setting in `spark-daemon-defaults.conf` located in the Spark configuration directory.

spark-daemon-defaults.conf
The default location of the `spark-daemon-defaults.conf` file depends on the type of installation:

<table>
<thead>
<tr>
<th>Package installations</th>
<th>/etc/dse/spark/spark-daemon-defaults.conf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer-Services installations</td>
<td>/etc/dse/spark/spark-daemon-defaults.conf</td>
</tr>
</tbody>
</table>

DSE SSL encryption and authentication only apply to the Spark Master and Worker UIs, not the Spark Driver UI. To use encryption and authentication with the Driver UI, refer to the [Spark security documentation](#).

Authorization is not supported in the Spark web UI. Any authenticated user can monitor and control any Spark applications within the UI.

See the Spark documentation for information on using the Spark web UI.

Displaying fully qualified domain names in the web UI

To display fully qualified domain names (FQDNs) in the Spark web UI, set the `SPARK_PUBLIC_DNS` variable in `spark-env.sh` on each Analytics node.

Set `SPARK_PUBLIC_DNS` to the FQDN of the node if you have SSL enabled for the web UI.
Using DataStax Enterprise advanced functionality

spark-env.sh
The default location of the `spark-env.sh` file depends on the type of installation:

<table>
<thead>
<tr>
<th>Installation Type</th>
<th>Default Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package installations</td>
<td><code>/etc/dse/spark/spark-env.sh</code></td>
</tr>
<tr>
<td>Installer-Services installations</td>
<td></td>
</tr>
<tr>
<td>Tarball installations</td>
<td><code>installation_location/</code></td>
</tr>
<tr>
<td>Installer-No Services installations</td>
<td><code>resources/spark/conf/spark-</code></td>
</tr>
<tr>
<td></td>
<td><code>env.sh</code></td>
</tr>
</tbody>
</table>

Redirecting to the fully qualified domain name of the master

Set the `SPARK_LOCAL_IP` or `SPARK_LOCAL_HOSTNAME` in the `spark-env.sh` file on each node to the fully qualified domain name (FQDN) of the node to force any redirects to the web UI using the FQDN of the Spark master. This is useful when enabling SSL in the web UI.

```bash
export SPARK_LOCAL_HOSTNAME=FQDN of the node
```

Filtering properties in the Spark Driver UI

The Spark Driver UI has an Environment tab that lists the Spark configuration and system properties used by Spark. This can include sensitive information like passwords and security tokens. DSE Spark filters these properties and masks their values with sequences of asterisks. The `spark.ui.confidentialKeys` filter is configured as a comma separated list of regular expressions that by default includes all properties that contain the string "token" or "password". To modify the filter, edit the `spark.ui.confidentialKeys` property in `spark-defaults.conf` in the Spark configuration directory.

spark-defaults.conf
The default location of the `spark-defaults.conf` file depends on the type of installation:

<table>
<thead>
<tr>
<th>Installation Type</th>
<th>Default Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package installations</td>
<td><code>/etc/dse/spark/spark-defaults.conf</code></td>
</tr>
<tr>
<td>Installer-Services installations</td>
<td></td>
</tr>
</tbody>
</table>
Tarball installations
 Installer-No Services installations

| installation_location/resources/spark/conf/spark-defaults.conf |

Getting started with the Spark Cassandra Connector Java API

The Spark Cassandra Connector Java API allows you to create Java applications that use Spark to analyze database data. See the Spark Cassandra Connector Java Doc on GitHub. See the component versions (page 26) for the latest version of the Spark Cassandra Connector used by DataStax Enterprise.

Using the Java API in SBT build files

Add the following library dependency to the build.sbt or other SBT build file.

```scala
libraryDependencies ++= Seq(
  "com.datastax.dse" % "dse-spark-dependencies" % dseVersion %
  "provided" excludeAll (ExclusionRule("com.datastax.dse", "dse-java-driver-core"), ExclusionRule("org.apache.solr", "solr-solrj")
),
  "com.datastax.dse" % "dse-java-driver-core" % "1.2.3",
  "org.apache.solr" % "solr-solrj" % "6.0.1"
)
```

For example project templates, see https://github.com/datastax/SparkBuildExamples

Using the Java API in Maven build files

Add the following dependencies to the pom.xml file:

```xml
<dependency>
  <groupId>com.datastax.dse</groupId>
  <artifactId>dse-spark-dependencies</artifactId>
  <version>${dse.version}</version>
  <scope>provided</scope>
  <exclusions>
    <exclusion>
      <groupId>com.datastax.dse</groupId>
      <artifactId>dse-java-driver-core</artifactId>
    </exclusion>
    <exclusion>
      <groupId>org.apache.solr</groupId>
      <artifactId>solr-solrj</artifactId>
    </exclusion>
  </exclusions>
</dependency>
```

Then add the DataStax repository:
Using DataStax Enterprise advanced functionality

For example project templates, see https://github.com/datastax/SparkBuildExamples

Accessing database data in Scala applications

To perform Spark actions on table data, you first obtain a RDD object. To create the RDD object, create a Spark configuration object, which is then used to create a Spark context object.

```scala
import com.datastax.spark.connector._
val conf = new SparkConf(true)
    .set("spark.cassandra.connection.host", "127.0.0.1")
val sc = new SparkContext("dse://127.0.0.1:7077", "test", conf)
val rdd = sc.cassandraTable("my_keyspace", "my_table")
```

To save data to the database in Scala applications, use the `saveToCassandra` method, passing in the keyspace, table, and mapping information.

```scala
val collection = sc.parallelize(Seq(("key3", 3), ("key4", 4)))
collection.saveToCassandra("my_keyspace", "my_table",
    SomeColumns("key", "value"))
```

To perform DSE Graph queries in a Scala application, you can cast a `CassandraConnector` session to a `com.datastax.driver.dse.DseSession` and then run graph statements using the `executeGraph` method.

```scala
val session = CassandraConnector(sc.getConf).withSessionDo(session =>
    session.asInstanceOf[DseSession])
session.executeGraph(graph statement)
```

Accessing database data in Java applications

To perform Spark actions on table data, you first obtain a CassandraJavaRDD object, a subclass of the `JavaRDD` class. The CassandraJavaRDD is the Java language equivalent of the CassandraRDD object used in Scala applications.

To create the CassandraJavaRDD object, create a Spark configuration object, which is then used to create a Spark context object.

```java
SparkConf conf = new SparkConf()
    .setAppName("My application");
SparkContext sc = new SparkContext(conf);
```

dse-spark-version.jar
Using DataStax Enterprise advanced functionality

The default location of the dse-spark-version.jar file depends on the type of installation:

<table>
<thead>
<tr>
<th>Package installations</th>
<th>/usr/share/dse/dse-spark-version.jar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer-Services installations</td>
<td></td>
</tr>
<tr>
<td>Tarball installations</td>
<td>installation_location/lib/dse-spark-version.jar</td>
</tr>
<tr>
<td>Installer-No Services installations</td>
<td></td>
</tr>
</tbody>
</table>

Use the static methods of the com.datastax.spark.connector.japi.CassandraJavaUtil class to get and manipulate CassandraJavaRDD instances. To get a new CassandraJavaRDD instance, call one of the javaFunctions methods in CassandraJavaUtil, pass in a context object, and then call the cassandraTable method and pass in the keyspace, table name, and mapping class.

```java
JavaRDD<String> cassandraRdd = CassandraJavaUtil.javaFunctions(sc)
  .cassandraTable("my_keyspace",
  "my_table", .mapColumnTo(String.class))
  .select("my_column");
```

Mapping column data to Java types

You can specify the Java type of a single column from a table row by specifying the type in when creating the CassandraJavaRDD<T> instance and calling the mapColumnTo method and passing in the type. Then call the select method to set the column name.

```java
JavaRDD<Integer> cassandraRdd = CassandraJavaUtil.javaFunctions(sc)
  .cassandraTable("my_keyspace",
  "my_table", .mapColumnTo(Integer.class))
  .select("column1");
```

JavaBeans classes can be mapped using the mapRowTo method. The JavaBeans property names should correspond to the column names following the default mapping rules. For example, the firstName property will map by default to the first_name column name.

```java
JavaRDD<Person> personRdd = CassandraJavaUtil.javaFunctions(sc)
  .cassandraTable("my_keyspace", "my_table",
  mapRowTo(Person.class));
```

CassandraJavaPairRDD<T, T> instances are extensions of the JavaPairRDD class, and have mapping readers for rows and columns similar to the previous examples. These pair RDDs typically are used for key/value pairs, where the first type is the key and the second type is the value.

When mapping a single column for both the key and the value, call mapColumnTo and specify the key and value types, then the select method and pass in the key and value column names.

```java
CassandraJavaPairRDD<Integer, String> pairRdd = CassandraJavaUtil.javaFunctions(sc)
Using DataStax Enterprise advanced functionality

```java
.cassandraTable("my_keyspace", "my_table",
 mapColumnTo(Integer.class), mapColumnTo(String.class))
 select("id", "first_name");
```

Use the `mapRowTo` method to map row data to a Java type. For example, to create a pair RDD instance with the primary key and then a JavaBeans object:

```java
CassandraJavaPairRDD<Integer, Person> idPersonRdd =
 CassandraJavaUtil.javaFunctions(sc)
 .cassandraTable("my_keyspace", "my_table",
 mapColumnTo(Integer.class), mapRowTo(Person.class))
 .select("id", "first_name", "last_name", "birthdate", "email");
```

Saving data to the database in Java applications

To save data from an RDD to the database call the `writerBuilder` method on the `CassandraJavaRDD` instance, passing in the keyspace, table name, and optionally type mapping information for the column or row.

```java
CassandraJavaUtil.javaFunctions(personRdd)
 .writerBuilder("my_keyspace", "my_table",
 mapToRow(Person.class)).saveToCassandra();
```

Using DSE Spark with third party tools and integrations

The `dse exec` command (page 1082) sets the required environment variables required to run third-party tools that integrate with Spark.

```bash
$ dse exec command
```

**Note:** The `dse exec` command was introduced in DSE 5.1.6.

Jupyter integration

Download and install Jupyter notebook on a DSE node.

To launch Jupyter notebook:

```bash
$ dse exec jupyter notebook
```

A Jupyter notebook starts with the correct Python path. You must create a context to work with DSE. In contrast to Livy and Zeppelin integrations, the Jupyter integration does not start an interpreter that creates a context.

Livy integration

Download and install Livy on a DSE node. By default Livy runs Spark in local mode. Before starting Livy create a configuration file by copying the `conf/livy.conf.template` to `conf/livy.conf`, then uncomment or add the following two properties:
Using DataStax Enterprise advanced functionality

```
livy.spark.master = dse:///
livy.repl.enable-hive-context = true
```

To launch Livy:

```
$ dse exec livy-server
```

Zeppelin integration

Download and install Zeppelin on a DSE node. To launch Zeppelin server:

```
$ dse exec zeppelin.sh
```

By default Zeppelin runs Spark in local mode. Update the master property to `dse:///` in the Spark session in the Interpreters configuration page. No configuration file changes are required to run Zeppelin.

RStudio integration

Download and install R (page 377) on all DSE Analytics nodes, install RStudio desktop on one of the nodes, then run RStudio:

```
$ dse exec rstudio
```

In the RStudio session start a Spark session:

```
library(SparkR, lib.loc = c(file.path(Sys.getenv("SPARK_HOME"), "R", "lib")))
sparkR.session()
```

**Note:** These instructions are for RStudio desktop, not RStudio Server. In multiuser environments, we recommend using the Spark SQL Thriftserver (page 370) and JDBC (page 373) connections rather than SparkR.

Configuring Spark

Configuring Spark for DataStax Enterprise includes:

### Configuring Spark nodes

Modify the settings for Spark nodes security, performance, and logging.

```
hive-site.xml
```

For use with Spark, the default location of the `hive-site.xml` file is:

```
Package installations: /etc/dse/spark/hive-site.xml
Installer-Services installations: /etc/dse/spark/hive-site.xml
```
To manage Spark performance and operations:

- Set environment variables (page 334)
- Protect Spark directories (page 335)
- Grant access to default Spark directories (page 335)
- Secure Spark nodes (page 335)
- Configure Spark memory and cores (page 338)
- Configure Spark logging options (page 346)

Set environment variables

DataStax recommends using the default values of Spark environment variables unless you need to increase the memory settings due to an OutOfMemoryError condition or garbage collection taking too long. Use the Spark memory (page 257) configuration options in the dse.yaml and spark-env.sh files.

You can set a user-specific SPARK_HOME directory if you also set ALLOW_SPARK_HOME=true in your environment before starting DSE.

For example, on Debian or Ubuntu using a package installation:

```
$ export SPARK_HOME=$HOME/spark &&
export ALLOW_SPARK_HOME=true &&
sudo service dse start
```

To configure worker cleanup, modify the SPARK_WORKER_OPTS environment variable and add the cleanup properties. The SPARK_WORKER_OPTS environment variable can be set in the user environment or in spark-env.sh. For example, the following enables worker cleanup, sets the cleanup interval to 30 minutes (i.e. 1800 seconds), and sets the length of time application worker directories will be retained to 7 days (i.e. 604800 seconds).

```
$ export SPARK_WORKER_OPTS="$SPARK_WORKER_OPTS \\
-Dspark.worker.cleanup.enabled=true \\
-Dspark.worker.cleanup.interval=1800 \\
-Dspark.worker.cleanup.appDataTtl=604800"
```

dse.yaml
The location of the dse.yaml file depends on the type of installation:

<table>
<thead>
<tr>
<th>Type of Installation</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package installations, Installer-Services</td>
<td>/etc/dse/dse.yaml</td>
</tr>
<tr>
<td>Tarball installations, Installer-No Services</td>
<td>installation_location/ resources/dse/conf/dse.yaml</td>
</tr>
</tbody>
</table>
The default location of the spark-env.sh file depends on the type of installation:

<table>
<thead>
<tr>
<th>Package installations</th>
<th>/etc/dse/spark/spark-env.sh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer-Services installations</td>
<td>installation_location/resources/spark/conf/spark-env.sh</td>
</tr>
<tr>
<td>Tarball installations</td>
<td></td>
</tr>
<tr>
<td>Installer-No Services installations</td>
<td></td>
</tr>
</tbody>
</table>

Protect Spark directories

After you start up a Spark cluster, DataStax Enterprise creates a Spark work directory for each Spark Worker on worker nodes. A worker node can have more than one worker, configured by the SPARK_WORKER_INSTANCES option in spark-env.sh. If SPARK_WORKER_INSTANCES is undefined, a single worker is started. The work directory contains the standard output and standard error of executors and other application specific data stored by Spark Worker and executors; the directory is writable only by the DSE user.

By default, the Spark parent work directory is located in /var/lib/spark/work, with each worker in a subdirectory named worker-number, where the number starts at 0. To change the parent worker directory, configure SPARK_WORKER_DIR in the spark-env.sh file.

The Spark RDD directory is the directory where RDDs are placed when executors decide to spill them to disk. This directory might contain the data from the database or the results of running Spark applications. If the data in the directory is confidential, prevent access by unauthorized users. The RDD directory might contain a significant amount of data, so configure its location on a fast disk. The directory is writable only by the cassandra user. The default location of the Spark RDD directory is /var/lib/spark/rdd. The directory should be located on a fast disk. To change the RDD directory, configure SPARK_LOCAL_DIRS in the spark-env.sh file.

Grant access to default Spark directories

Before starting up nodes on a tarball installation, you need permission to access the default Spark directory locations: /var/lib/spark and /var/log/spark. Change ownership of these directories as follows:

```
$ sudo mkdir -p /var/lib/spark/rdd; sudo chmod a+w /var/lib/spark/rdd; sudo chown -R $USER:$GROUP /var/lib/spark/rdd &
$ sudo mkdir -p /var/log/spark; sudo chown -R $USER:$GROUP /var/log/spark
```

In multiple datacenter clusters, use a virtual datacenter to isolate Spark jobs. Running Spark jobs consume resources that can affect latency and throughput.

DataStax Enterprise supports the use of virtual nodes (vnodes) with Spark.

Secure Spark nodes

**Client-to-node SSL**
Ensure that the truststore entries in cassandra.yaml are present as described in Client-to-node encryption, even when client authentication is not enabled.

Enabling security and authentication

Security is enabled using the spark_security_enabled option in dse.yaml. Setting it to enabled turns on authentication between the Spark Master and Worker nodes, and allows you to enable encryption. To encrypt Spark connections for all components except the web UI, enable spark_security_encryption_enabled. The length of the shared secret used to secure Spark components is set using the spark_shared_secret_bit_length option, with a default value of 256 bits. These options are described in DSE Analytics options (page 257). For production clusters, enable these authentication and encryption. Doing so does not significantly affect performance.

Authentication and Spark applications

If authentication is enabled, users need to be authenticated in order to submit an application.

Note: DSE 5.1.4 (page 92), DSE 5.1.5 (page 87), and 5.1.6 (page 82) users should refer to the release notes for information on using Spark SQL applications and DSE authentication.

Authorization and Spark applications

If DSE authorization is enabled, users needs permission to submit an application. Additionally, the user submitting the application automatically receives permission to manage the application, which can optionally be extended to other users.

Database credentials for the Spark SQL Thrift server

In the hive-site.xml file, configure authentication credentials for the Spark SQL Thrift server. Ensure that you use the hive-site.xml file in the Spark directory:

| Installer-Services and Package installations | /etc/dse/spark/hive-site.xml |
| Installer-No Services and Tarball installations | installation_location/resources/spark/conf/hive-site.xml |

Kerberos with Spark

With Kerberos authentication, the Spark launcher connects to DSE with Kerberos credentials and requests DSE to generate a delegation token. The Spark driver and executors use the delegation token to connect to the cluster. For valid authentication, the delegation token must be renewed periodically. For security reasons, the user who is authenticated with the token should not be able to renew it. Therefore, delegation tokens have two associated users: token owner and token renewer.

The token renewer is none so that only a DSE internal process can renew it. When the application is submitted, DSE automatically renewes delegation tokens that are associated with Spark application. When the application is unregistered (finished), the delegation token renewal is stopped and the token is cancelled.
Set Kerberos options, see Defining a Kerberos scheme.

Using authorization with Spark

There are two kinds of authorization permissions which apply to Spark. Work pool permissions control the ability to submit a Spark application to DSE. Submission permissions control the ability to manage a particular application. All the following instructions assume you are issuing the CQL commands as a database superuser.

Use `GRANT CREATE ON ANY WORKPOOL TO role` to grant permission to submit a Spark application to any Analytics datacenter.

Use `GRANT CREATE ON WORKPOOL datacenter_name TO role` to grant permission to submit a Spark application to a particular Analytics datacenter.

There are similar revoke commands:

```
REVOKE CREATE ON ANY WORKPOOL FROM role
REVOKE CREATE ON WORKPOOL datacenter_name FROM role
```

When an application is submitted, the user who submits that application is automatically granted permission to manage and remove the application. You may also grant the ability to manage the application to another user or role.

Use `GRANT MODIFY ON ANY SUBMISSION TO role` to grant permission to manage any submission in any work pool to the specified role.

Use `GRANT MODIFY ON ANY SUBMISSION IN WORKPOOL datacenter_name TO role` to grant permission to manage any submission in a specified datacenter.

Use `GRANT MODIFY ON SUBMISSION id IN WORKPOOL datacenter_name TO role` to grant permission to manage a submission identified by the provided id in a given datacenter.

There are similar revoke commands:

```
REVOKE MODIFY ON ANY SUBMISSION FROM role
REVOKE MODIFY ON ANY SUBMISSION IN WORKPOOL datacenter_name FROM role
REVOKE MODIFY ON SUBMISSION id IN WORKPOOL datacenter_name FROM role
```

In order to issue these commands as a regular database user, the user needs to have permission to use the DSE resource manager RPC:

```
GRANT ALL ON REMOTE OBJECT DseResourceManager TO role
```

Each DSE Analytics user needs to have permission to use the client tools RPC:
Configure Spark memory and cores

Spark memory options affect different components of the Spark ecosystem:

**Spark History server and the Spark Thrift server memory**

The `SPARK_DAEMON_MEMORY` option configures the memory that is used by the Spark SQL Thrift server and history-server. Add or change this setting in the `spark-env.sh` file on nodes that run these server applications.

**Spark Worker memory**

The `SPARK_WORKER_MEMORY` option configures the total amount of memory that you can assign to all executors that are run by a single Spark Worker on the particular node.

**Application executor memory**

You can configure the amount of memory that each executor can consume for the application. Spark uses a 512MB default. Use either the `spark.executor.memory` option, described in "Spark 1.6.2 Available Properties", or the `--executor-memory mem` argument to the dse spark command (page 353).

**Application memory**

You can configure additional Java options that are applied by the worker when spawning an executor for the application. Use the `spark.executor.extraJavaOptions` property, described in Spark 2.0.2 Available Properties. For example:

```
spark.executor.extraJavaOptions -XX:+PrintGCDetails -Dkey=value -Dnumbers="one two three"
```

**Core management**

You can manage the number of cores by configuring these options.

- **Spark Worker cores**

  The `SPARK_WORKER_CORES` option configures the number of cores offered by Spark Worker for executors. A single executor can borrow more than one core from the worker. The number of cores used by the executor relates to the number of parallel tasks the executor might perform. The number of cores offered by the cluster is the sum of cores offered by all the workers in the cluster.

- **Application cores**

  In the Spark configuration object of your application, you configure the number of application cores that the application requests from the cluster using either the `spark.cores.max` configuration property or the `--total-executor-cores cores` argument to the dse spark command (page 353).

See the Spark documentation for details about memory and core allocation.
DataStax Enterprise can control the memory and cores offered by particular Spark Workers in semi-automatic fashion. The `initial_spark_worker_resources` parameter in the dse.yaml file specifies the fraction of system resources that are made available to the Spark Worker. The available resources are calculated in the following way:

- Spark Worker memory = \( \text{initial_spark_worker_resources} \times (\text{total system memory} - \text{memory assigned to DSE}) \)
- Spark Worker cores = \( \text{initial_spark_worker_resources} \times \text{total system cores} \)

The lowest values you can assign to Spark Worker memory and cores are 64 MB and 1 core, respectively. If the results are lower, no exception is thrown and the values are automatically limited. The range of the `initial_spark_worker_resources` value is 0.01 to 1. If the range is not specified, the default value 0.7 is used.

This mechanism is used by default to set the Spark Worker memory and cores. To override the default, uncomment and edit one or both `SPARK_WORKER_MEMORY` and `SPARK_WORKER_CORES` options in the spark-env.sh file.

Running Spark clusters in cloud environments

If you are using a cloud infrastructure provider like Amazon EC2, you must explicitly open the ports for publicly routable IP addresses in your cluster. If you do not, the Spark workers will not be able to find the Spark Master.

One work-around is to set the `prefer_local` setting in your cassandra-rackdc.properties snitch setup file to true:

```bash
Uncomment the following line to make this snitch prefer the internal ip when possible, as the Ec2MultiRegionSnitch does.
prefer_local=true
```

This tells the cluster to communicate only on private IP addresses within the datacenter rather than the public routable IP addresses.

cassandra-rackdc.properties
The location of the `cassandra-rackdc.properties` file depends on the type of installation:

<table>
<thead>
<tr>
<th>Installation Type</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package installations</td>
<td><code>/etc/dse/cassandra/cassandra-rackdc.properties</code></td>
</tr>
<tr>
<td>Installer-Services installations</td>
<td><code>installation_location/resources/</code></td>
</tr>
<tr>
<td>Tarball installations</td>
<td><code>installation_location/resources/</code></td>
</tr>
<tr>
<td>Installer-No Services installations</td>
<td><code>cassandra/conf/cassandra-rackdc.properties</code></td>
</tr>
</tbody>
</table>

Configuring the number of retries to retrieve Spark configuration

When Spark fetches configuration settings from DSE, it will not fail immediately if it cannot retrieve the configuration data, but will retry 5 times by default, with increasing delay between retries. The number of retries can be set in the Spark configuration, by modifying
Using DataStax Enterprise advanced functionality

the `spark.dse.configuration.fetch.retries` configuration property when calling the 
`dse spark command` (page 353), or in `spark-defaults.conf`.

**spark-defaults.conf**
The default location of the `spark-defaults.conf` file depends on the type of 
installation:

<table>
<thead>
<tr>
<th>Package installations</th>
<th>/etc/dse/spark/spark-defaults.conf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer-Services installations</td>
<td>/etc/dse/spark/spark-defaults.conf</td>
</tr>
<tr>
<td>Tarball installations</td>
<td>installation_location/resources/spark/conf/spark-defaults.conf</td>
</tr>
<tr>
<td>Installer-No Services installations</td>
<td>installation_location/resources/spark/conf/spark-defaults.conf</td>
</tr>
</tbody>
</table>

### Enabling continuous paging

Continuous paging streams bulk amounts of records from DSE to the DataStax Java 
Driver used by DSE Spark. By default, continuous paging in queries is disabled. To enable 
it, set the `spark.dse.continuous_paging_enabled` setting to true when starting the 
Spark SQL shell or in `spark-defaults.conf`. For example:

```
$ dse spark-sql --conf spark.dse.continuous_paging_enabled=true
```

**Note:** Using continuous paging can potentially improve performance up to 3 times, 
though the improvement will depend on the data and the queries. Some factors that 
impact the performance improvement are the number of executor JVMs per node 
and the number of columns included in the query. Greater performance gains were 
oberved with fewer executor JVMs per node and more columns selected.

### Configuring the Spark web interface ports

By default the Spark web UI runs on port 7080. To change the port number, do the 
following:

1. Open the `spark-env.sh` file in a text editor.

2. Set the `SPARK_MASTER_WEBUI_PORT` variable to the new port number. For example, to 
set it to port 7082:

   ```
 export SPARK_MASTER_WEBUI_PORT=7082
   ```

3. Repeat these steps for each Analytics node in your cluster.

4. Restart the nodes in the cluster.

### Enabling Graphite Metrics in DSE Spark

Users can add third party JARs to Spark nodes by adding them to the Spark lib directory 
on each node and restart the cluster. Add the Graphite Metrics JARs to this directory to 
enable metrics in DSE Spark.

The default location of the Spark lib directory depends on the type of installation:
Using DataStax Enterprise advanced functionality

- Package installations and Installer-Services: /usr/share/dse/spark/lib
- Tarball installations and Installer-No Services: /var/lib/spark

To add the Graphite JARs to Spark in a package installation, copy them to the Spark lib directory:

```bash
$ cp metrics-graphite-3.1.2.jar /usr/share/dse/spark/lib/ &&
 cp metrics-json-3.1.2.jar /usr/share/dse/spark/lib/
```

**Spark server configuration**

The spark-daemon-defaults.conf file configures DSE Spark Masters and Workers.

**Table 40: Spark server configuration properties**

<table>
<thead>
<tr>
<th>Option</th>
<th>Default value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dse.spark.application.timeout</td>
<td>30</td>
<td>The duration in seconds after which the application will be considered dead if no heartbeat is received.</td>
</tr>
<tr>
<td>spark.dseShuffle.sasl.port</td>
<td>7447</td>
<td>The port number on which a shuffle service for SASL secured applications is started. Bound to the listen_address in cassandra.yaml.</td>
</tr>
<tr>
<td>spark.dseShuffle.noSasl.port</td>
<td>7437</td>
<td>The port number on which a shuffle service for unsecured applications is started. Bound to the listen_address in cassandra.yaml.</td>
</tr>
</tbody>
</table>

By default Spark executor logs, which log the majority of your Spark Application output, are redirected to standard output. The output is managed by Spark Workers. Configure logging by adding spark.executor.logs.rolling.* properties to spark-daemon-defaults.conf file.

```bash
spark.executor.logs.rolling.maxRetainedFiles 3
spark.executor.logs.rolling.strategy size
spark.executor.logs.rolling.maxSize 50000
```

**Automatic Spark Master election**

Spark Master elections are automatically managed, and do not require any manual configuration.

DSE Analytics datacenters communicate with each other to elect one of the nodes as the Spark Master and another as the reserve Master. The Master keeps track of each Spark Worker and application, storing the information in a system table. If the Spark Master node fails, the reserve Master takes over and a new reserve Master is elected from the remaining Analytics nodes.
Each Analytics datacenter elects its own master.

For `dsetool` commands and options, see `dsetool (page 1172)`.

**Determining the Spark Master address**

You do not need to specify the Master address when configuring or using Spark with DSE Analytics. Configuring applications with a valid URL (page 306) is sufficient for DSE to connect to the Master node and run the application. The following commands give information about the Spark configuration of DSE:

- To view the URL used to configure Spark applications:

```
$ dse client-tool spark master-address

dse://10.200.181.62:9042?
 connection.local_dc=Analytics;connection.host=10.200.181.63;
```

- To view the current address of the Spark Master in this datacenter:

```
$ dse client-tool spark leader-address

10.200.181.62
```

- Workloads for **Spark Master (page 299)** are flagged as Workload: Analytics(SM).

```
$ dsetool ring

<table>
<thead>
<tr>
<th>Address</th>
<th>DC</th>
<th>Rack</th>
<th>Workload</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.200.181.62</td>
<td>Analytics</td>
<td>rack1</td>
<td>Analytics(SM)</td>
</tr>
<tr>
<td></td>
<td>no</td>
<td>Up</td>
<td>Normal</td>
</tr>
<tr>
<td></td>
<td>-9223372036854775808</td>
<td>111.91 KiB</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

- Query the `dse_leases.leases` table to list all the masters from each data center with Analytics nodes:

```
select * from dse_leases.leases ;

<table>
<thead>
<tr>
<th>name</th>
<th>dc</th>
<th>duration_ms</th>
<th>epoch</th>
<th>holder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leader/master/5.1</td>
<td>Analytics</td>
<td>30000</td>
<td>805254</td>
<td></td>
</tr>
<tr>
<td>10.200.176.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leader/master/5.1</td>
<td>SearchGraphAnalytics</td>
<td>30000</td>
<td>1300800</td>
<td></td>
</tr>
<tr>
<td>10.200.176.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ensure that the replication factor is configured correctly for the dse_leases keyspace

If the dse_leases keyspace is not properly replicated, the Spark Master might not be elected.

Important: Every time you add a new datacenter, you must manually increase the replication factor of the dse_leases keyspace for the new DSE Analytics datacenter. If DataStax Enterprise or Spark security options are enabled on the cluster, you must also increase the replication factor for the dse_security keyspace across all logical datacenters.

The initial node in a multi datacenter has a replication factor of 1 for the dse_leases keyspace. For new datacenters, the first node is created with the dse_leases keyspace with an replication factor of 1 for that datacenter. However, any datacenters that you add have a replication factor of 0 and require configuration before you start DSE Analytics nodes. You must change the replication factor of the dse_leases keyspace for multiple analytics datacenters. See Setting the replication factor for analytics keyspaces (*page 294*).

Monitoring the lease subsystem

All changes to lease holders are recorded in the dse_leases.logs table. Most of the time, you do not want to enable logging.

1. To turn on logging, ensure that the lease_metrics_options ([page 245](#)) is enabled in the dse.yaml file:

   ```yaml
   lease_metrics_options:
     enabled: true
     ttl_seconds: 604800
   ```

2. Look at the dse_leases.logs table:

   ```sql
   select * from dse_leases.logs;
   ```

 | name | dc | monitor | at |
 |-------------------+-----+---------------+---------------------------|
 | Leader/master/5.1 | dc1 | 10.200.180.44 | 2018-05-17 00:45:02.971000+0000 | 10.200.180.44 |
3. When the lease_metrics_option is enabled, you can examine the acquire, renew, resolve, and disable operations. Most of the time, these operations should complete in 100 ms or less:

```sql
select * from dse_perf.leases ;
```

<table>
<thead>
<tr>
<th>name</th>
<th>dc</th>
<th>monitor</th>
<th>acquire_average_latency_ms</th>
<th>acquire_latency99ms</th>
<th>acquire_max_latency_ms</th>
<th>acquire_rate15</th>
</tr>
</thead>
<tbody>
<tr>
<td>leader/master/5.1</td>
<td>dc1</td>
<td>10.200.180.44</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>100</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>26</td>
<td>100</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>26</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>32</td>
<td>0</td>
<td>32</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>32</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

4. If the log warnings and errors do not contain relevant information, edit the logback.xml file and add:

```xml
<logger name="com.datastax.bdp.leasemanager" level="DEBUG"/>
```

5. Restart the node for the debugging settings to take effect.

Troubleshooting

Perform these various lease holder troubleshooting activities before you contact DataStax Support.
Verify the workload status

Run the `dsetool ring` command:

```
$ dsetool ring
```

If the replication factor is inadequate or if the replicas are down, the output of the `dsetool ring` command contains a warning:

<table>
<thead>
<tr>
<th>Address</th>
<th>DC</th>
<th>Rack</th>
<th>Workload</th>
<th>Owns</th>
</tr>
</thead>
<tbody>
<tr>
<td>SearchAnalytics</td>
<td>SearchGraphAnalytics</td>
<td>yes</td>
<td>Up</td>
<td>Normal</td>
</tr>
<tr>
<td>10.200.178.232</td>
<td>SearchAnalytics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-9223372036854775808</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If the automatic Job Tracker or Spark Master election fails, verify that an appropriate replication factor is set for the `dse_leases` keyspace (page 294).

Use `cqlsh` commands to verify the replication factor of the analytics keyspaces

1. Describe the `dse_leases` keyspace:

```
DESCRIBE KEYSPACE dse_leases;
```

```
CREATE KEYSPACE dse_leases WITH replication =
    {'class': 'NetworkTopologyStrategy', 'Analytics1': '1'}
    AND durable_writes = true;
```

2. Increase the replication factor of the `dse_leases` keyspace:

```
ALTER KEYSPACE dse_leases WITH replication =
    {'class': 'NetworkTopologyStrategy', 'Analytics1': '3',
     'Analytics2': '3'}
;
```

3. Run `nodetool repair` (page 1020).

dse.yaml

The location of the `dse.yaml` file depends on the type of installation:

<table>
<thead>
<tr>
<th>Package installations</th>
<th>/etc/dse/dse.yaml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer-Services installations</td>
<td>/etc/dse/dse.yaml</td>
</tr>
</tbody>
</table>
logback.xml
The location of the logback.xml file depends on the type of installation:

<table>
<thead>
<tr>
<th>Package installations</th>
<th>/etc/dse/cassandra/logback.xml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tarball installations</td>
<td>installation_location/</td>
</tr>
<tr>
<td>Installer-No Services</td>
<td>resources/cassandra/conf/</td>
</tr>
<tr>
<td></td>
<td>logback.xml</td>
</tr>
</tbody>
</table>

Configuring Spark logging options

You can configure Spark logging options for the Spark logs.

Log directories

logback.xml
The location of the logback.xml file depends on the type of installation:

<table>
<thead>
<tr>
<th>Package installations</th>
<th>/etc/dse/cassandra/logback.xml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tarball installations</td>
<td>installation_location/</td>
</tr>
<tr>
<td>Installer-No Services</td>
<td>resources/cassandra/conf/</td>
</tr>
<tr>
<td></td>
<td>logback.xml</td>
</tr>
</tbody>
</table>

The Spark logging directory is the directory where the Spark components store individual log files. DataStax Enterprise places logs in the following locations:

Executor logs

- `SPARK_WORKER_DIR/worker-n/application_id/executor_id/` stderr
- `SPARK_WORKER_DIR/worker-n/application_id/executor_id/` stdout

Spark Master/Worker logs

Spark Master: the global `system.log`
Spark Worker: `SPARK_WORKER_LOG_DIR/worker-n/worker.log`

The default `SPARK_WORKER_LOG_DIR` location is `/var/log/spark/worker`.

Default log directory for Spark SQL Thrift server

The default log directory for starting the Spark SQL Thrift server is `$HOME/spark-thrift-server`.

Spark Shell and application logs

Spark Shell and application logs are output to the console.

SparkR shell log

The default location for the SparkR shell is `$HOME/.sparkR.log`

Log configuration file
Log configuration files are located in the same directory (page 334) as spark-env.sh.

To configure Spark logging options:

1. Configure logging options, such as log levels, in the following files:

<table>
<thead>
<tr>
<th>Executors</th>
<th>logback-spark-executor.xml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spark Master</td>
<td>logback.xml</td>
</tr>
<tr>
<td>Spark Worker</td>
<td>logback-spark-server.xml</td>
</tr>
<tr>
<td>Spark Driver (Spark Shell, Spark applications)</td>
<td>logback-spark.xml</td>
</tr>
<tr>
<td>SparkR</td>
<td>logback-sparkR.xml</td>
</tr>
</tbody>
</table>

2. If you want to enable rolling logging for Spark executors, add the following options to spark-daemon-defaults.conf.

Enable rolling logging with 3 log files retained before deletion. The log files are broken up by size with a maximum size of 50,000 bytes.

```
spark.executor.logs.rolling.maxRetainedFiles 3
spark.executor.logs.rolling.strategy size
spark.executor.logs.rolling.maxSize 50000
```

The default location of the Spark configuration files depends on the type of installation:

- Package installations and Installer-Services: /etc/dse/spark/
- Tarball installations and Installer-No Services: installation_location/resources/spark/conf

3. Configure a safe communication channel to access the Spark user interface.

Note: When user credentials are specified in plain text on the dse command line, like `dse -u username -p password`, the credentials are present in the logs of Spark workers when the driver is run in cluster mode.

The Spark Master, Spark Worker, executor, and driver logs might include sensitive information. Sensitive information includes passwords and digest authentication tokens for Kerberos guidelines mode that are passed in the command line or Spark configuration. DataStax recommends using only safe communication channels like VPN and SSH to access the Spark user interface.
Using DataStax Enterprise advanced functionality

Tip: Authentication credentials can be provided in several ways, see Connecting to authentication enabled clusters.

Running Spark processes as separate users

Spark processes can be configured to run as separate operating system users.

By default, processes started by DSE are run as the same OS user who started the DSE server process. This is called the DSE service user. One consequence of this is that all applications that are run on the cluster can access DSE data and configuration files, and access files of other applications.

You can delegate running Spark applications to runner processes and users by changing options in dse.yaml.

dse.yaml

The location of the dse.yaml file depends on the type of installation:

<table>
<thead>
<tr>
<th>Installation Type</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package installations</td>
<td>/etc/dse/dse.yaml</td>
</tr>
<tr>
<td>Installer-Services installations</td>
<td></td>
</tr>
<tr>
<td>Tarball installations</td>
<td>installation_location/</td>
</tr>
<tr>
<td>Installer-No Services installations</td>
<td>resources/dse/conf/</td>
</tr>
<tr>
<td></td>
<td>dse.yaml</td>
</tr>
</tbody>
</table>

Overview of the run_as process runner

The run_as process runner allows you to run Spark applications as a different OS user than the DSE service user. When this feature is enabled and configured:

- All simultaneously running applications deployed by a single DSE service user will be run as a single OS user.
- Applications deployed by different DSE service users will be run by different OS users.
- All applications will be run as a different OS user than the DSE service user.

This allows you to prevent an application from accessing DSE server private files, and prevent one application from accessing the private files of another application.

How the run_as process runner works

DSE uses `sudo` to run Spark applications components (drivers and executors) as specific OS users. DSE doesn't link a DSE service user with a particular OS user. Instead, a configurable number of spare user accounts or slots are used. When a request to run an executor or a driver is received, DSE finds an unused slot, and locks it for that application. Until the application is finished, all of that application’s processes run as that slot user. When the application completes, the slot user will be released and will be available to other applications.

Since the number of slots is limited, a single slot is shared among all the simultaneously running applications run by the same DSE service user. Such a slot is released once
all the applications of that user are removed. When there is not enough slots to run an application, an error is logged and DSE will try to run the executor or driver on a different node. DSE does not limit the number of slots you can configure. If you need to run more applications simultaneously, create more slot users.

Slots assignment is done on a per node basis. Executors of a single application may run as different slot users on different DSE nodes. When DSE is run on a fat node, different DSE instances running within the same OS should be configured with different sets of slot users. If they use the same slot users, a single OS user may run the applications of two different DSE service users.

When a slot is released, all directories which are normally managed by Spark for the application are removed. If the application doesn't finish, but all executors are done on a node, and a slot user is about to be released, all the application files are modified so that their ownership is changed to the DSE service user with owner-only permission. When a new executor for this application is run on this node, the application files are reassigned back to the slot user assigned to that application.

Configuring the run_as process runner

The administrator needs to prepare slot users in the OS before configuring DSE. The run_as process runner requires:

- Each slot user has its own primary group, which name is the same as the name of slot user. This is typically the default behaviour of the OS. For example, the slot1 user's primary group is slot1.
- The DSE service user is a member of each slot's primary group. For example, if the DSE service user is cassandra, the cassandra user is a member of the slot1 group.
- The DSE service user is a member of a group with the same name as the service user. For example, if the DSE service user is cassandra, the cassandra user is a member of the cassandra group.
- sudo is configured so that the DSE service user can execute any command as any slot user without providing a password.

Override the umask setting to 007 for slot users so that files created by sub-processes will not be accessible by anyone else by default, and DSE configuration files are not visible to slot users.

You may further secure the DSE server environment by modifying the OS's limits.conf file to set exact disk space quotas for each slot user.

After adding the slot users and groups and configuring the OS, modify the dse.yaml file. In the spark_process_runner section enable the run_as process runner and set the list of slot users on each node.

```yaml
spark_process_runner:
  # Allowed options are: default, run_as
  runner_type: run_as
  run_as_runner_options:
    user_slots:
```

DSE 5.1 Developer Guide Earlier version, latest patch 5.1.15 Page 349
Using DataStax Enterprise advanced functionality

Example configuration for run_as process runner

In this example, two slot users, slot1 and slot2 will be created and configured with DSE. The default DSE service user of cassandra is used.

1. Create the slot users.

```
$ sudo useradd -r -s /bin/false slot1 &&
sudo useradd -r -s /bin/false slot2
```

2. Add the slot users to the DSE service user’s group.

```
$ sudo usermod -a -G slot1,slot2 cassandra
```

3. Make sure the DSE service user is a member of a group with the same name as the service user. For example, if the DSE service user is cassandra:

```
$ groups cassandra
```

```
cassandra : cassandra
```

4. Log out and back in again to make the group changes take effect.

5. Modify the sudoers file with the slot users.

```
Runas_Alias SLOTS = slot1, slot2
Defaults>SLOTS umask=007
Defaults>SLOTS umask_override
cassandra ALL=(SLOTS) NOPASSWD: ALL
```

6. Modify dse.yaml to enable the run_as process runner and add the new runners.

```
# Configure the way how the driver and executor processes are created and managed.
spark_process_runner:
    # Allowed options are: default, run_as
    runner_type: run_as

    # RunAs runner uses sudo to start Spark drivers and executors. A set of predefined fake users, called slots, is used
    # for this purpose. All drivers and executors owned by some DSE user are run as some slot user x. At the same time
    # drivers and executors of any other DSE user use different slots.
    run_as_runner_options:
        user_slots:
            - slot1
```
Configuring the Spark history server

The Spark history server provides a way to load the event logs from Spark jobs that were run with event logging enabled. The Spark history server works only when files were not flushed before the Spark Master attempted to build a history user interface.

To enable the Spark history server:

1. Create a directory for event logs in the DSEFS file system:

   ```
   $ dse hadoop fs -mkdir /spark
   $ dse hadoop fs -mkdir /spark/events
   ```

2. On each node in the cluster, edit the `spark-defaults.conf` file to enable event logging and specify the directory for event logs:

   ```
   # Turns on logging for applications submitted from this machine
   spark.eventLog.dir dsefs:///spark/events
   spark.eventLog.enabled true
   # Sets the logging directory for the history server
   spark.history.fs.logDirectory dsefs:///spark/events
   # Optional property that changes permissions set to event log files
   # spark.eventLog.permissions=777
   ```

3. Start the Spark history server on one of the nodes in the cluster:

 The Spark history server is a front-end application that displays logging data from all nodes in the Spark cluster. It can be started from any node in the cluster.

 If you've enabled authentication set the authentication method and credentials in a properties file and pass it to the `dse` command. For example, for basic authentication:

   ```
   spark.hadoop.com.datastax.bdp.fs.client.authentication=basic
   spark.hadoop.com.datastax.bdp.fs.client.authentication.basic.username=role
   name
   spark.hadoop.com.datastax.bdp.fs.client.authentication.basic.password=password
   ```

 If you set the event log location in `spark-defaults.xml`, set the `spark.history.fs.logDirectory` property in your properties file.

   ```
   spark.history.fs.logDirectory=dsefs:///spark/events
   ```

   ```
   $ dse spark-history-server start
   ```
Using DataStax Enterprise advanced functionality

With a properties file:

```
dse spark-history-server start --properties-file properties file
```

The history server is started and can be viewed by opening a browser to http://node hostname:18080.

Note: The Spark Master web UI does not show the historical logs. To work around this known issue, access the history from port 18080.

4. When event logging is enabled, the default behavior is for all logs to be saved, which causes the storage to grow over time. To enable automated cleanup edit spark-defaults.conf and edit the following options:

```
spark.history.fs.cleaner.enabled true
spark.history.fs.cleaner.interval 1d
spark.history.fs.cleaner.maxAge 7d
```

For these settings, automated cleanup is enabled, the cleanup is performed daily, and logs older than seven days are deleted.

Enabling Spark apps in cluster mode when authentication is enabled

You must enable Spark applications in cluster mode when JAR files are on the Cassandra File System (CFS) and authentication is enabled. When the application is submitted in cluster mode and the JAR files are on CFS, the Spark Worker process is responsible for obtaining the required JAR file. When authentication is required, the Spark Worker process requires the authentication credentials to CFS. The Spark Worker will start executors for unrelated Spark jobs, so giving the Spark Worker process credentials enables all future Spark jobs to pull JAR files from CFS for their dependencies. Credentials that are granted to the Spark Worker must be considered "shared" among all submitted applications, regardless of the submitting user. Shared credentials do not apply to accessing CFS from the application code.

spark-env.sh

The default location of the spark-env.sh file depends on the type of installation:

<table>
<thead>
<tr>
<th>Package installations</th>
<th>/etc/dse/spark/spark-env.sh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer-Services installations</td>
<td>/etc/dse/spark/spark-env.sh</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tarball installations</th>
<th>installation_location/ resources/spark/conf/spark-env.sh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer-No Services installations</td>
<td>installation_location/ resources/spark/conf/spark-env.sh</td>
</tr>
</tbody>
</table>

1. To enable Spark applications in cluster mode when JAR files are on CFS and authentication is enabled, do one of the following:

- Add this statement to the spark-env.sh on every DataStax Enterprise node:
Before you start the DataStax Enterprise server process, set the `SPARK_WORKER_OPTS` environment variable in a way that guarantees visibility to DataStax Enterprise server processes.

This environment variable does not need to be passed to applications that are submitted with the `dse spark` or `dse spark-submit` commands.

2. Follow these best practices:
 - Create a unique user with privileges only on CFS (access to related CFS keyspace), and then use the unique user credentials for the Spark Worker authentication. This best practice limits the amount of protected information in the database that is accessible through user Spark Jobs without explicit permission.
 - Create a distinct CFS directory and limit the directory access privileges to read only.

Setting Spark Cassandra Connector-specific properties

Spark integration uses the Spark Cassandra Connector under the hood. You can use the configuration options defined in that project to configure DataStax Enterprise Spark. Spark recognizes system properties that have the `spark.` prefix and adds the properties to the configuration object implicitly upon creation. You can avoid adding system properties to the configuration object by passing `false` for the `loadDefaults` parameter in the `SparkConf` constructor.

The full list of parameters is included in the Spark Cassandra Connector documentation.

You pass settings for Spark, Spark Shell, and other DataStax Enterprise Spark built-in applications using the intermediate application `spark-submit`, described in Spark documentation.

Configuring the Spark shell

Pass Spark configuration arguments using the following syntax:

```
$ dse spark [submission_arguments] [application_arguments]
```

where `submission_arguments` are:

- `--properties-file path_to_properties_file`

 The location of the properties file that has the configuration settings. By default, Spark loads the settings from `spark-defaults.conf`.

 `spark-defaults.conf`
Using DataStax Enterprise advanced functionality

The default location of the `spark-defaults.conf` file depends on the type of installation:

<table>
<thead>
<tr>
<th>Installation Type</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package installations</td>
<td><code>/etc/dse/spark/spark-defaults.conf</code></td>
</tr>
<tr>
<td>Installer-Services installations</td>
<td></td>
</tr>
<tr>
<td>Tarball installations</td>
<td><code>installation_location/resources/spark/conf/spark-defaults.conf</code></td>
</tr>
<tr>
<td>Installer-No Services installations</td>
<td></td>
</tr>
</tbody>
</table>

- `--executor-memory memory`
 How much memory to allocate on each machine for the application. You can provide the memory argument in JVM format using either the k, m, or g suffix.

- `--total-executor-cores cores`
 The total number of cores the application uses

- `--conf name=value`
 An arbitrary Spark option to the Spark configuration prefixed by `spark`.

- `--help`
 Shows a help message that displays all options except DataStax Enterprise Spark shell options.

- `--jars <additional-jars>`
 A comma-separated list of paths to additional JAR files.

- `--verbose`
 Displays which arguments are recognized as Spark configuration options and which arguments are forwarded to the Spark shell.

Spark shell application arguments:

- `--i file`
 Runs a script from the specified file.

Configuring Spark applications

You pass the Spark submission arguments using the following syntax:

```
$ dse spark-submit [submission_arguments] application_file
[application_arguments]
```

All submission arguments (page 353) and these additional spark-submit submission_arguments:

- `--class class_name`
The full name of the application main class.

- **--name name**
 The application name as displayed in the Spark web application.

- **--py-files files**
 A comma-separated list of the .zip, .egg, or .py files that are set on PYTHONPATH for Python applications.

- **--files files**
 A comma-separated list of files that are distributed among the executors and available for the application.

In general, Spark submission arguments are translated into system properties – `Dname=value` and other VM parameters like classpath. The application arguments are passed directly to the application.

Property list

When you run `dse spark-submit` on a node in your Analytics cluster, all the following properties are set automatically, and the Spark Master is automatically detected. Only set the following properties if you need to override the automatically managed properties.

- **spark.cassandra.connection.native.port**
 Default = 9042. Port for native client protocol connections.

- **spark.cassandra.connection.rpc.port**
 Default = 9160. Port for thrift connections.

- **spark.cassandra.connection.host**
 The host name or IP address to which the Thrift RPC service and native transport is bound. The `rpc_address` property in the `cassandra.yaml`, which is localhost by default, determines the default value of this property.

You can explicitly set the Spark Master `address (page 306)` using the `--master master address` parameter to `dse spark-submit`.

```
$ dse spark-submit --master master_address application JAR file
```

For example, if the Spark node is at 10.0.0.2:

```
$ dse spark-submit --master dse://10.0.0.2? myApplication.jar
```

The following properties can be overridden for performance or availability:

Read properties

- **spark.cassandra.input.split.size**
Using DataStax Enterprise advanced functionality

Default = 100000. Approximate number of rows in a single Spark partition. The higher the value, the fewer Spark tasks are created. Increasing the value too much may limit the parallelism level.

spark.cassandra.input.fetch.size_in_rows

Default = 1000. Number of rows being fetched per round-trip to the database. Increasing this value increases memory consumption. Decreasing the value increases the number of round-trips. In earlier releases, this property was `spark.cassandra.input.page.row.size`.

spark.cassandra.input.consistency.level

Default = LOCAL_QUORUM. Consistency level to use when reading.

Write properties

You can set the following properties in `SparkConf` to fine tune the saving process.

spark.cassandra.output.batch.size.bytes

Default = auto. Number of bytes per single batch. The default, auto, means the connector adjusts the number of bytes based on the amount of data.

spark.cassandra.output.consistency.level

Default = LOCAL_ONE. Consistency level to use when writing.

spark.cassandra.output.concurrent.writes

Default = 5. Maximum number of batches executed in parallel by a single Spark task.

spark.cassandra.output.batch.size.rows

Default = 64K. The maximum total size of the batch in bytes.

See the [Spark Cassandra Connector documentation](#) for details on additional, low-level properties.

Creating a DSE Analytics Solo datacenter

DSE Analytics Solo datacenters do not store any database or search data, but are strictly used for analytics processing. They are used in conjunction with one or more datacenters that contain database data.

Creating a DSE Analytics Solo datacenter within an existing DSE cluster

In this example scenario, there is an existing datacenter, DC1 which has existing database data. Create a new DSE Analytics Solo datacenter, DC2, which does not store any data but will perform analytics jobs using the database data from DC1.

- Make sure all keyspaces in the DC1 datacenter use `NetworkTopologyStrategy`. If necessary, alter the keyspace.

```
ALTER KEYSPACE mykeyspace
WITH REPLICAion = { 'class' = 'NetworkTopologyStrategy', 'DC1': 3 };
```
• Add nodes to a new datacenter named DC2, then enable Analytics on those nodes (page 1275).
• Configure the dse_leases and spark_system keyspaces to replicate to both DC1 and DC2. For example:

```sql
ALTER KEYSPACE dse_leases
WITH REPLICAATION = { 'class' = 'NetworkTopologyStrategy', 'DC1' : 3, 'DC2' : 3 };
```

• When submitting Spark applications specify the --master URL with the name or IP address of a node in the DC2 datacenter, and set the spark.cassandra.connection.local_dc configuration option to DC1.

```bash
dse spark-submit --master "dse://?connection.local_dc=DC2"
--class com.datastax.dse.demo.loss.Spark10DayLoss --conf
"spark.cassandra.connection.local_dc=DC1" portfolio.jar
```

The Spark workers read the data from the DC1.

Accessing an external DSE transactional cluster from a DSE Analytics Solo cluster

To access an external DSE transactional cluster, explicitly set the connection to the transactional cluster when creating RDDs or Datasets within the application.

In the following examples, the external DSE transactional cluster has a node running on 10.10.0.2.

To create an RDD from the transactional cluster's data:

```scala
import com.datastax.spark.connector._
import com.datastax.spark.connector.cql._
import org.apache.spark.SparkContext
def analyticsSoloExternalDataExample ( sc: SparkContext) = {
  val connectorToTransactionalCluster =
    CassandraConnector(sc.getConf.set("spark.cassandra.connection.host", "10.10.0.2"))

  val rddFromTransactionalCluster = {
    // Sets connectorToTransactionalCluster as default connection for everything in this code block
    implicit val c = connectorToTransactionalCluster
    // get the data from the test.words table
    sc.cassandraTable("test","words")
  }
}
```

Creating a Dataset from the transactional:

```scala
import org.apache.spark.sql.cassandra._
import com.datastax.spark.connector.cql.CassandraConnectorConf
```
Using DataStax Enterprise advanced functionality

```scala
// set params for the particular cluster
spark.setCassandraConf("TransactionalCluster",
  CassandraConnectorConf.ConnectionHostParam.option("10.10.0.2"))

val df = spark
  .read
  .format("org.apache.spark.sql.cassandra")
  .options(Map( "table" -> "words", "keyspace" -> "test"))
  .load()
```

When you submit the application to the DSE Analytics Solo cluster, it will retrieve the data from the external DSE transactional cluster.

Spark JVMs and memory management

Spark jobs running on DataStax Enterprise are divided among several different JVM processes, each with different memory requirements.

DataStax Enterprise and Spark Master JVMs

The Spark Master runs in the same process as DataStax Enterprise, but its memory usage is negligible. The only way Spark could cause an `OutOfMemoryError` in DataStax Enterprise is indirectly by executing queries that fill the client request queue. For example, if it ran a query with a high limit and paging was disabled or it used a very large batch to update or insert data in a table. This is controlled by `MAX_HEAP_SIZE` in `cassandra-env.sh`. If you see an `OutOfMemoryError` in `system.log`, you should treat it as a standard `OutOfMemoryError` and follow the usual troubleshooting steps.

Spark executor JVMs

The Spark executor is where Spark performs transformations and actions on the RDDs and is usually where a Spark-related `OutOfMemoryError` would occur. An `OutOfMemoryError` in an executor will show up in the `stderr` log for the currently executing application (usually in `/var/lib/spark`). There are several configuration settings that control executor memory and they interact in complicated ways.

- `SPARK_WORKER_MEMORY` in `spark-env.sh` is the maximum amount of memory to give all executors for all applications running on a particular node.
- `initial_spark_worker_resources` in `dse.yaml` is used to automatically calculate `SPARK_WORKER_MEMORY` if it is commented out (as it is by default). It uses the following formula:

  ```text
  initial_spark_worker_resources * (total system memory - memory assigned to DataStax Enterprise)
  ```

- `spark.executor.memory` is a system property that controls how much executor memory a specific application gets. It must be less than or equal to `SPARK_WORKER_MEMORY`. It can be specified in the constructor for the `SparkContext` in the driver application, or via `--conf spark.executor.memory` or `--executor-memory` command line options when submitting the job using `spark-submit`.

spark-env.sh
The default location of the `spark-env.sh` file depends on the type of installation:

<table>
<thead>
<tr>
<th>Type of Installation</th>
<th>Location of <code>spark-env.sh</code></th>
</tr>
</thead>
<tbody>
<tr>
<td>Package installations</td>
<td><code>/etc/dse/spark/spark-env.sh</code></td>
</tr>
<tr>
<td>Installer-Services installations</td>
<td><code>/etc/dse/spark/spark-env.sh</code></td>
</tr>
<tr>
<td>Tarball installations</td>
<td><code>installation_location/</code></td>
</tr>
<tr>
<td>Installer-No Services installations</td>
<td><code>resources/spark/conf/spark-env.sh</code></td>
</tr>
</tbody>
</table>

`dse.yaml`

The location of the `dse.yaml` file depends on the type of installation:

<table>
<thead>
<tr>
<th>Type of Installation</th>
<th>Location of <code>dse.yaml</code></th>
</tr>
</thead>
<tbody>
<tr>
<td>Package installations</td>
<td><code>/etc/dse/dse.yaml</code></td>
</tr>
<tr>
<td>Installer-Services installations</td>
<td><code>/etc/dse/dse.yaml</code></td>
</tr>
<tr>
<td>Tarball installations</td>
<td><code>installation_location/</code></td>
</tr>
<tr>
<td>Installer-No Services installations</td>
<td><code>resources/dse/conf/</code></td>
</tr>
<tr>
<td></td>
<td><code>dse.yaml</code></td>
</tr>
</tbody>
</table>

`cassandra-env.sh`

The location of the `cassandra-env.sh` file depends on the type of installation:

<table>
<thead>
<tr>
<th>Type of Installation</th>
<th>Location of <code>cassandra-env.sh</code></th>
</tr>
</thead>
<tbody>
<tr>
<td>Package installations</td>
<td><code>/etc/dse/cassandra/cassandra-env.sh</code></td>
</tr>
<tr>
<td>Installer-Services installations</td>
<td><code>/etc/dse/cassandra/cassandra-env.sh</code></td>
</tr>
<tr>
<td>Tarball installations</td>
<td><code>installation_location/resources/</code></td>
</tr>
<tr>
<td>Installer-No Services installations</td>
<td><code>cassandra/conf/cassandra-env.sh</code></td>
</tr>
</tbody>
</table>

The client driver JVM

The driver is the client program for the Spark job. Normally it shouldn't need very large amounts of memory because most of the data should be processed within the executor. If it does need more than a few gigabytes, your application may be using an anti-pattern like pulling all of the data in an RDD into a local data structure by using `collect` or `take`. Generally you should never use `collect` in production code and if you use `take`, you should be only taking a few records. If the driver runs out of memory, you will see the `OutOfMemoryError` in the driver `stderr` or wherever it's been configured to log. This is controlled one of two places:

- `SPARK_DRIVER_MEMORY` in `spark-env.sh`
- `spark.driver.memory` system property which can be specified via `--conf spark.driver.memory` or `--driver-memory` command line options when submitting the job using `spark-submit`. This **cannot** be specified in the `SparkContext` constructor because by that point, the driver has already started.

Spark worker JVMs

The worker is a watchdog process that spawns the executor, and should never need its heap size increased. The worker's heap size is controlled by `SPARK_DAEMON_MEMORY` in
Using DataStax Enterprise advanced functionality

spark-env.sh. `SPARK_DAEMON_MEMORY` also affects the heap size of the Spark SQL thrift server.

Using Spark modules with DataStax Enterprise

Getting started with Spark Streaming

Spark Streaming allows you to consume live data streams from sources, including Akka, Kafka, and Twitter. This data can then be analyzed by Spark applications, and the data can be stored in the database.

You use Spark Streaming by creating an `org.apache.spark.streaming.StreamingContext` instance based on your Spark configuration. You then create a `DStream` instance, or a *discretionized stream*, an object that represents an input stream. `DStream` objects are created by calling one of the methods of `StreamingContext`, or using a utility class from external libraries to connect to other sources like Twitter.

The data you consume and analyze is saved to the database by calling one of the `saveToCassandra` methods on the stream object, passing in the keyspace name, the table name, and optionally the column names and batch size.

Note: Spark Streaming applications require synchronized clocks to operate correctly. See *Synchronize clocks* (page 190).

The following Scala example demonstrates how to connect to a text input stream at a particular IP address and port, count the words in the stream, and save the results to the database.

1. Import the streaming context objects.
   ```scala
   import org.apache.spark.streaming._
   ```

2. Create a new `StreamingContext` object based on an existing SparkConf configuration object, specifying the interval in which streaming data will be divided into batches by passing in a batch duration.
   ```scala
   val sparkConf = ....
   val ssc = new StreamingContext(sc, Seconds(1)) // Uses the context automatically created by the spark shell
   ```
 Spark allows you to specify the batch duration in milliseconds, seconds, and minutes.

3. Import the database-specific functions for `StreamingContext`, `DStream`, and `RDD` objects.
import com.datastax.spark.connector.streaming._

4. Create the DStream object that will connect to the IP and port of the service providing the data stream.

   ```scala
   val lines = ssc.socketTextStream(server IP address, server port number)
   ```

5. Count the words in each batch and save the data to the table.

   ```scala
   val words = lines.flatMap(_.split(" "))
   val pairs = words.map(word => (word, 1))
   val wordCounts = pairs.reduceByKey(_ + _)
   .saveToCassandra("streaming_test", "words_table", SomeColumns("word", "count"))
   ```

6. Start the computation.

   ```scala
   ssc.start()
   ssc.awaitTermination()
   ```

In the following example, you start a service using the `nc` utility that repeats strings, then consume the output of that service using Spark Streaming.

Using `cqlsh`, start by creating a target keyspace and table for streaming to write into.

```sql
CREATE KEYSPACE IF NOT EXISTS streaming_test
WITH REPLICATION = {'class': 'SimpleStrategy',
                   'replication_factor': 1};

CREATE TABLE IF NOT EXISTS streaming_test.words_table
(word TEXT PRIMARY KEY, count COUNTER);
```

In a terminal window, enter the following command to start the service:

```bash
$ nc -lk 9999
one two two three three three three three four four four four someword
```

In a different terminal start a Spark shell.

```bash
$ dse spark
```

In the Spark shell enter the following:

```scala
import org.apache.spark.streaming._
import com.datastax.spark.connector.streaming._
```
Using DataStax Enterprise advanced functionality

```scala
val ssc = new StreamingContext(sc, Seconds(1))
val lines = ssc.socketTextStream( "localhost", 9999)
val words = lines.flatMap(_.split( " ")
val pairs = words.map(word => (word, 1))
val wordCounts = pairs.reduceByKey(_ + _)
wordCounts.saveToCassandra( "streaming_test", "words_table",
   SomeColumns( "word", "count")
wordCounts.print()
ssc.start()
ssc.awaitTermination()
exit()
```

Using `cqlsh` connect to the `streaming_test` keyspace and run a query to show the results.

```
$ cqlsh -k streaming_test
```

```
select * from words_table;
```

<table>
<thead>
<tr>
<th>word</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>three</td>
<td>3</td>
</tr>
<tr>
<td>one</td>
<td>1</td>
</tr>
<tr>
<td>two</td>
<td>2</td>
</tr>
<tr>
<td>four</td>
<td>4</td>
</tr>
<tr>
<td>someword</td>
<td>1</td>
</tr>
</tbody>
</table>

What's next:

Run the `http_receiver demo` (page 395). See the Spark Streaming Programming Guide for more information, API documentation, and examples on Spark Streaming.

Using Spark SQL to query data

Spark SQL allows you to execute Spark queries using a variation of the SQL language. Spark SQL includes APIs for returning Spark `Dataset` s in Scala and Java, and interactively using a SQL shell.

Spark SQL basics

In DSE, Spark SQL allows you to perform relational queries over data stored in DSE clusters, and executed using Spark. Spark SQL is a unified relational query language for traversing over distributed collections of data, and supports a variation of the SQL language used in relational databases. Spark SQL is intended as a replacement for Shark and Hive, including the ability to run SQL queries over Spark data sets. You can use traditional Spark applications in conjunction with Spark SQL queries to analyze large data sets.
The SparkSession class and its subclasses are the entry point for running relational queries in Spark.

DataFrames are Spark Datasets organized into named columns, and are similar to tables in a traditional relational database. You can create DataFrame instances from any Spark data source, like CSV files, Spark RDDs, or, for DSE, tables in the database. In DSE, when you access a Spark SQL table from the data in DSE transactional cluster, it registers that table to the Hive metastore so SQL queries can be run against it.

Note: Any tables you create or destroy, and any table data you delete, in a Spark SQL session will not be reflected in the underlying DSE database, but only in that session's metastore.

Starting the Spark SQL shell

The Spark SQL shell allows you to interactively perform Spark SQL queries. To start the shell, run `dse spark-sql`:

```
$ dse spark-sql
```

The Spark SQL shell in DSE automatically creates a Spark session and connects to the Spark SQL Thrift server (page 370) to handle the underlying JDBC connections.

Spark SQL limitations

- You cannot load data from one file system to a table in a different file system.

```
CREATE TABLE IF NOT EXISTS test (id INT, color STRING) PARTITIONED BY (ds STRING);
LOAD DATA INPATH 'hdfs2://localhost/colors.txt' OVERWRITE INTO TABLE test PARTITION (ds = '2008-08-15');
```

The first line creates a table on the default file system. The second line attempts to load data into that table from a path on a different file system, and will fail.

Querying database data using Spark SQL in Scala

When you start Spark, DataStax Enterprise creates a Spark session instance to allow you to run Spark SQL queries against database tables. The session object is named `spark` and is an instance of `org.apache.spark.sql.SparkSession`. Use the `sql` method to execute the query.

1. Start the Spark shell.

```
$ dse spark
```

2. Use the `sql` method to pass in the query, storing the result in a variable.
Using DataStax Enterprise advanced functionality

```scala
val results = spark.sql("SELECT * from my_keyspace_name.my_table")
```

3. Use the returned data.

```scala
results.show()
```

+---------------------+-----------+
| id | description|
|---------------------+-----------|
de2d0de1-4d70-11e...	thing
db7e4191-4d70-11e...	another
d576ad50-4d70-11e...	yet another
+---------------------+-----------+

Querying database data using Spark SQL in Java

Java applications that query table data using Spark SQL first need an instance of org.apache.spark.sql.SparkSession.

dse-spark-version.jar
The default location of the `dse-spark-version.jar` file depends on the type of installation:

<table>
<thead>
<tr>
<th>Package installations</th>
<th>/usr/share/dse/dse-spark-version.jar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer-Services installations</td>
<td>/usr/share/dse/dse-spark-version.jar</td>
</tr>
<tr>
<td>Tarball installations</td>
<td>installation_location/lib/dse-spark-version.jar</td>
</tr>
<tr>
<td>Installer-No Services installations</td>
<td>installation_location/lib/dse-spark-version.jar</td>
</tr>
</tbody>
</table>

The Spark session object is used to connect to DataStax Enterprise.

Create the Spark session instance using the **builder interface**:

```java
SparkSession spark = SparkSession.
    .builder()
    .appName("My application name")
    .config("option name", "option value")
    .master("dse://1.1.1.1?connection.host=1.1.2.2,1.1.3.3")
    .getOrCreate();
```

After the Spark session instance is created, you can use it to create a `DataFrame` instance from the query. Queries are executed by calling the `SparkSession.sql` method.

```java
DataFrame employees = spark.sql("SELECT * FROM company.employees");
employees.registerTempTable("employees");
DataFrame managers = spark.sql("SELECT name FROM employees WHERE role = 'Manager'");
```
The returned DataFrame object supports the standard Spark operations.

`employees.collect();`

Querying DSE Graph vertices and edges with Spark SQL

Spark SQL can query DSE Graph vertex and edge tables. The `com.datastax.bdp.graph.spark.sql.vertex` and `com.datastax.bdp.graph.spark.sql.edge` data sources are used to specify vertex and edge tables in Spark SQL.

```
spark-sql> CREATE DATABASE graph_example;
spark-sql> USE graph_example;
spark-sql> CREATE TABLE vertices USING com.datastax.bdp.graph.spark.sql.vertex OPTIONS (graph 'example');
spark-sql> CREATE TABLE edges USING com.datastax.bdp.graph.spark.sql.edge OPTIONS (graph 'example');
```

If you have properties that are spelled the same but with different capitalizations (for example, `id` and `Id`), start Spark SQL with the `--conf spark.sql.caseSensitive=true` option.

Prerequisites:

Start your cluster with both Graph and Spark enabled (page 1275).

1. Start the Spark SQL shell.

   ```bash
   $ dse spark-sql
   ```

2. Register the vertex and edge tables for your graph using `CREATE TABLE`.

   ```
   CREATE DATABASE graph_gods;
   USE graph_gods;
   CREATE TABLE vertices USING com.datastax.bdp.graph.spark.sql.vertex OPTIONS (graph 'gods');
   CREATE TABLE edges USING com.datastax.bdp.graph.spark.sql.edge OPTIONS (graph 'gods');
   ```

3. Query the vertices and edges using `SELECT` statements.

   ```sql
   SELECT * FROM vertices where name = 'Zeus';
   ```

4. Join the vertices and edges in a query.

 Vertices are identified by `id` columns. Edges tables have `src` and `dst` columns that identify the from and to vertices, respectively. A join can be used to traverse the graph. For example to find all vertex ids that are reached by the out edges:
Using DataStax Enterprise advanced functionality

```sql
SELECT edges.dst FROM vertices JOIN edges ON vertices.id = edges.src;
```

What's next: The same steps work from the Spark shell using `spark.sql()` to run the query statements, or using the JDBC (page 373)/ODBC (page 374) driver and the Spark SQL Thrift Server (page 370).

Supported syntax of Spark SQL

Syntax:

The following syntax defines a `SELECT` query.

```sql
SELECT [DISTINCT] [column names]| [wildcard] FROM [keyspace name.] table name [JOIN clause table name ON join condition] [WHERE condition] [GROUP BY column name] [HAVING conditions] [ORDER BY column names [ASC | DSC]]
```

A `SELECT` query using joins has the following syntax.

```sql
SELECT statement FROM statement [JOIN | INNER JOIN | LEFT JOIN | LEFT SEMI JOIN | LEFT OUTER JOIN | RIGHT JOIN | RIGHT OUTER JOIN | FULL JOIN | FULL OUTER JOIN] ON join condition
```

Several select clauses can be combined in a `UNION`, `INTERSECT`, or `EXCEPT` query.

```sql
SELECT statement 1 [UNION | UNION ALL | UNION DISTINCT | INTERSECT | EXCEPT] SELECT statement 2
```

Note: Select queries run on new columns return `''`, or empty results, instead of `None`.

Syntax:

The following syntax defines an `INSERT` query.

```sql
INSERT [OVERWRITE] INTO [keyspace name.] table name VALUES values
```

Syntax:

The following syntax defines a `CACHE TABLE` query.
CACHE TABLE table name [AS table alias]

You can remove a table from the cache using a UNCACHE TABLE query.

UNCACHE TABLE table name

Keywords in Spark SQL

The following keywords are reserved in Spark SQL.

ALL
AND
AS
ASC
APPROXIMATE
AVG
BETWEEN
BY
CACHE
CAST
COUNT
DESC
DISTINCT
FALSE
FIRST
LAST
FROM
FULL
GROUP
HAVING
IF
IN
INNER
INSERT
INTO
IS
JOIN
LEFT
LIMIT
MAX
MIN
NOT
NULL
ON
OR
OVERWRITE
LIKE
Inserting data into tables with static columns using Spark SQL

Static columns are mapped to different columns in Spark SQL and require special handling. Spark SQL Thrift servers use Hive. When you when run an insert query, you must pass data to those columns.

To work around the different columns, set `cql3.output.query` in the insertion Hive table properties to limit the columns that are being inserted. In Spark SQL, alter the external table to configure the prepared statement as the value of the Hive CQL output query. For example, this prepared statement takes values that are inserted into columns a and b in `mytable` and maps these values to columns b and a, respectively, for insertion into the new row.

```sql
spark-sql> ALTER TABLE mytable SET TBLPROPERTIES ('cql3.output.query' = 'update mykeyspace.mytable set b = ? where a = ?');
spark-sql> ALTER TABLE mytable SET SERDEPROPERTIES ('cql3.update.columns' = 'b,a');
```

Running HiveQL queries using Spark SQL

Spark SQL supports queries written using HiveQL, a SQL-like language that produces queries that are converted to Spark jobs. HiveQL is more mature and supports more complex queries than Spark SQL. To construct a HiveQL query, first create a new
Using DataStax Enterprise advanced functionality

HiveContext instance, and then submit the queries by calling the sql method on the HiveContext instance.

See the Hive Language Manual for the full syntax of HiveQL.

Note: Creating indexes with DEFERRED REBUILD is not supported in Spark SQL.

1. Start the Spark shell.

 $ bin/dse spark

2. Use the provided HiveContext instance sqlContext to create a new query in HiveQL by calling the sql method on the sqlContext object.

 scala> val results = sqlContext.sql("SELECT * FROM my_keyspace.my_table")

Using the DataFrames API

The Spark DataFrames API encapsulates data sources, including DataStax Enterprise data, organized into named columns.

The Spark Cassandra Connector provides an integrated DataSource to simplify creating DataFrames. For more technical details, see the Spark Cassandra Connector documentation that is maintained by DataStax and the Cassandra and PySpark DataFrames post.

Examples of using the DataFrames API

This Python example shows using the DataFrames API to read from the table ks.kv and insert into a different table ks.othertable.

```
$ dse pyspark

table1 = spark.read.format("org.apache.spark.sql.cassandra")
   .options(table="kv", keyspace="ks")
   .load()
table1.write.format("org.apache.spark.sql.cassandra")
   .options(table="othertable", keyspace = "ks")
   .save(mode ="append")
```

Using the DSE Spark console, the following Scala example shows how to create a DataFrame object from one table and save it to another.

```
$ dse spark

val table1 = spark.read.format("org.apache.spark.sql.cassandra")
   .options(Map( "table" -> "words", "keyspace" -> "test"))
   .load()
```
Using DataStax Enterprise advanced functionality

```scala
table1.createCassandraTable("test", "otherwords", partitionKeyColumns = Some(Seq("word")), clusteringKeyColumns = Some(Seq("count")))
table1.write.cassandraFormat("otherwords", "test").save()
```

The write operation uses one of the helper methods, `cassandraFormat`, included in the Spark Cassandra Connector. This is a simplified way of setting the format and options for a standard `DataFrame` operation. The following command is equivalent to write operation using `cassandraFormat`:

```scala
table1.write.format("org.apache.spark.sql.cassandra")
  .options(Map("table" -> "othertable", "keyspace" -> "test"))
  .save()
```

Using the Spark SQL Thrift server

The Spark SQL Thrift server uses JDBC and ODBC interfaces for client connections to the database.

When reading or writing large amounts of data, DataStax recommends using DataFrames to enable the use of the Spark Cassandra Connector and the benefits of the tuning parameters that come with it.

`hive-site.xml`
For use with Spark, the default location of the `hive-site.xml` file is:

<table>
<thead>
<tr>
<th>Package installations</th>
<th>/etc/dse/spark/hive-site.xml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer-Services installations</td>
<td></td>
</tr>
<tr>
<td>Tarball installations</td>
<td>installation_location/ resources/spark/conf/hive-site.xml</td>
</tr>
<tr>
<td>Installer-No Services installations</td>
<td></td>
</tr>
</tbody>
</table>

1. If you are using Kerberos authentication, in the `hive-site.xml` file, configure your authentication credentials for the Spark SQL Thrift server.

```xml
<property>
  <name>hive.server2.authentication.kerberos.principal</name>
  <value>thriftserver/_HOST@EXAMPLE.COM</value>
</property>

<property>
  <name>hive.server2.authentication.kerberos.keytab</name>
  <value>/etc/dse/dse.keytab</value>
</property>
```

Ensure that you use the `hive-site.xml` file in the Spark directory:

<table>
<thead>
<tr>
<th>Installer-Services and Package installations</th>
<th>/etc/dse/spark/hive-site.xml</th>
</tr>
</thead>
</table>
2. Start DataStax Enterprise with Spark enabled as a service (page 1275) or in a standalone (page 1278) installation.

3. Start the server by entering the `dse spark-sql-thriftserver start` command as a user with permissions to write to the Spark directories.

 To override the default settings for the server, pass in the configuration property using the `--hiveconf` option. See the HiveServer2 documentation for a complete list of configuration properties.

   ```
   $ dse spark-sql-thriftserver start
   
   By default, the server listens on port 10000 on the localhost interface on the node from which it was started. You can specify the server to start on a specific port. For example, to start the server on port 10001, use the `--hiveconf hive.server2.thrift.port=10001` option. You can configure the port and bind address in `resources/spark/conf/spark-env.sh`: HIVE_SERVER2_THRIFT_PORT, HIVE_SERVER2_THRIFT_BIND_HOST.

   ```

   ```
   $ dse spark-sql-thriftserver start --hiveconf hive.server2.thrift.port=10001
   
   You can specify general Spark configuration settings by using the `--conf` option.

   ```

   ```
   $ dse spark-sql-thrift-server start --conf spark.cores.max=4
   
   4. Use DataFrames to read and write large volumes of data. For example, to create the `table_a_cass_df` table that uses a DataFrame while referencing `table_a`:

   ```
 CREATE TABLE table_a_cass_df using org.apache.spark.sql.cassandra OPTIONS (table "table_a", keyspace "ks")

 Note: With DataFrames, compatibility issues exist with UUID and Inet types when inserting data with the JDBC driver.

 5. Use the Spark Cassandra Connector tuning parameters to optimize reads and writes.

 6. To stop the server, enter the `dse spark-sql-thriftserver stop` command.
Using DataStax Enterprise advanced functionality

What's next:

You can now connect your application by using JDBC to the server at the URI: `jdbc:hive2://hostname:port number`, using ODBC, or use dse spark-beeline (page 376).

Enabling SSL for the Spark SQL Thrift Server

Communication between the JDBC driver and Spark SQL Thrift Server can be encrypted using SSL.

The following instructions give an example of how to set up SSL with a self-signed keystore and truststore.

hive-site.xml

For use with Spark, the default location of the `hive-site.xml` file is:

<table>
<thead>
<tr>
<th>Package installations</th>
<th>/etc/dse/spark/hive-site.xml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer-Services installations</td>
<td><code>installation_location/resources/spark/conf/hive-site.xml</code></td>
</tr>
</tbody>
</table>

1. Create the **keystore and truststore** using the **keytool** command.

2. Add the required settings to enable SSL to the `hive-site.xml` configuration file.

```xml
<property>
  <name>hive.server2.thrift.bind.host</name>
  <value>hostname</value>
</property>

<property>
  <name>hive.server2.use.SSL</name>
  <value>true</value>
</property>

<property>
  <name>hive.server2.keystore.path</name>
  <value>path to keystore/keystore.jks</value>
</property>

<property>
  <name>hive.server2.keystore.password</name>
  <value>keystore password</value>
</property>
```

3. Start or restart the Spark SQL Thrift server.

 Note: Changes in the `hive-site.xml` configuration file only require a restart of Spark SQL Thriftserver service, not DSE.
$ dse spark-sql-thriftserver start

4. Test the connection with Beeline.

$ dse beeline

beeline> !connect jdbc:hive2://hostname:10000/default;ssl=true;sslTrustStore=path to truststore/truststore.jks;trustStorePassword=truststore password

Note: The JDBC URL for the Simba JDBC Driver is:

jdbc:spark://hostname:10000/default;SSL=1;SSLTrustStore=path to truststore/truststore.jks;SSLTrustStorePdw=truststore password

Accessing the Spark SQL Thrift Server with the Simba JDBC driver

The Simba JDBC Driver for Spark provides a standard JDBC interface to the information stored in DataStax Enterprise with the Spark SQL Thrift Server running.

Your DSE license includes a license to use the Simba drivers.

Prerequisites:

You must have a running DSE Analytics cluster with Spark enabled (page 1275), and one node in the cluster running the Spark SQL Thrift Server (page 371).

1. Download the Simba JDBC Driver for Apache Spark from the DataStax Drivers Download page.

2. Expand the ZIP file containing the driver.

3. In your JDBC application, configure the following details:

a. Add SparkJDBC41.jar and the rest of the JAR files included in the ZIP file in your classpath.

b. The JDBC driver class is com.simba.spark.jdbc41.Driver and the JDBC data source is com.simba.spark.jdbc41.DataSource.

 c. Set the connection URL to jdbc:spark://<hostname>:<port> where
 <hostname> is the hostname of the node on which the Spark SQL Thrift Server is running, and <port> is the port number on which the Spark SQL Thrift Server is listening.
Using DataStax Enterprise advanced functionality

```
jdbc:spark://node1.example.com:10000
```

4. For more details, refer to the included documentation in the Simba driver download ZIP.

Simba ODBC Driver for Apache Spark (Windows)

The Simba ODBC Driver for Spark provides Windows users access to the information stored in DataStax Enterprise clusters with a running Spark SQL Thrift Server. This driver allows you to access the data stored on your DataStax Enterprise Spark nodes using business intelligence (BI) tools, such as Tableau and Microsoft Excel. The driver is compliant with the latest ODBC 3.52 specification and automatically translates any SQL-92 query into Spark SQL.

Your DSE license includes a license to use the Simba drivers.

Prerequisites:

To use the Simba ODBC Driver for Spark you must have:

- One of the following operating systems:
 - Windows 7 SP1
 - Windows 8 or 8.1
 - Windows Server 2008 R2 SP1
 - Windows Server 2012 and Windows Server 2012 R2
- A running DSE Analytics cluster with Spark enabled (page 1275), and one node in the cluster running the Spark SQL Thrift Server (page 371)

1. Download the appropriate Simba ODBC Driver for Apache Spark (Windows 32- or 64-bit) from the DataStax Drivers Download page.

2. Double-click the downloaded installer and follow the installation wizard.

3. Refer to the Simba ODBC Driver for Spark Installation Guide which is installed at Start > Program Files > Simba Spark ODBC Driver.

Configuring the Spark ODBC Driver (Windows)

Configure an ODBC data source for ODBC applications, including business intelligence (BI) tools like Tableau or Microsoft Excel.

1. Choose either the 32 bit or 64 bit ODBC driver.

 a. For the 32-bit driver, click Start > Program Files > Simba Spark ODBC Driver > 32 bit ODBC Data Source Administrator.
2. Click the Drivers tab to verify that the Simba Spark ODBC Driver is present.

3. Create either a User or System DSN (data source name) for your ODBC tool connection.

 a. Click the User DSN or System DSN tab.

 b. Click Add > Simba Spark ODBC Driver > Finish.

 c. In Simba Spark ODBC Driver DSN Setup, enter the following:

Data Source Name	The name for your DSN.
Description	Optional longer description of your DSN.
Spark Server Type	SparkThriftServer (Spark 1.1 and later)
Host(s)	IP or hostname of your Spark SQL Thrift Server.
Port	Listening port for the Spark SQL Thrift Server (default 10000)
Database	Specify default to load all tables into the default database. Or pick a specific keyspace.
Auth Mechanism	User Name
User Name	leave blank

 d. Click Test.

 The test results should indicate a successful connection.

4. For advanced configuration options, refer to the Simba ODBC Driver for Spark Installation Guide which is installed at Start > Program Files > Simba Spark ODBC Driver.

What’s next: Use the newly created data source in ODBC applications like Tableau and Microsoft Excel.

After the ODBC query is transmitted to the Spark SQL Thrift server, the appropriate Spark jobs are executed, then the data is returned via ODBC to the application.

To troubleshoot or understand the queries being executed at the Spark SQL Thrift server, open a web browser to the Spark Master web interface (http://node
Using DataStax Enterprise advanced functionality

(name:4040) on the DSE cluster, click on the Thrift server application, then view the SQL tab.

Simba ODBC Driver for Apache Spark (Linux)

The Simba ODBC Driver for Spark provides Linux users access to the information stored in DataStax Enterprise clusters with a running Spark SQL Thrift Server. The driver is compliant with the latest ODBC 3.52 specification and automatically translates any SQL-92 query into Spark SQL.

Your DSE license includes a license to use the Simba drivers.

Prerequisites:

To use the Simba ODBC Driver for Spark you must have:

- A running DSE Analytics cluster with Spark enabled (page 1275), and one node in the cluster running the Spark SQL Thrift Server (page 371)

1. Download the appropriate Simba ODBC Driver for Apache Spark (Linux 32- or 64-bit) from the DataStax Drivers Download page.

2. Expand the downloaded file into a suitable location.


   ```
   $ mkdir simba-odbc
   $ cd simba-odbc
   $ tar xvf version.tar.gz
   ```

3. Refer to the included Spark ODBC Install and Configuration Guide (PDF format) for detailed usage and configuration information.

Connecting to the Spark SQL Thrift server using Beeline

You can use Shark Beeline to test the Spark SQL Thrift server (page 370).

1. Start DataStax Enterprise with Spark enabled as a service (page 1275) or in a standalone (page 1278) installation.

2. Start the server by entering the `dse spark-sql-thriftserver start` command as a user with permissions to write to the Spark directories.

 To override the default settings for the server, pass in the configuration property using the `--hiveconf` option. See the HiveServer2 documentation for a complete list of configuration properties.

   ```
   $ dse spark-sql-thriftserver start
   ```

 By default, the server listens on port 10000 on the localhost interface on the node from which it was started. You can specify the server to start on a specific port. For example, to start the server on port 10001, use the `--hiveconf`
Using DataStax Enterprise advanced functionality

\texttt{hive.server2.thrift.port=10001} option. You can configure the port and bind address in \texttt{resources/spark/conf/spark-env.sh}: \texttt{HIVE_SERVER2_THRIFT_PORT}, \texttt{HIVE_SERVER2_THRIFT_BIND_HOST}.

\begin{verbatim}
$ dse spark-sql-thriftserver start --hiveconf
 hive.server2.thrift.port=10001
\end{verbatim}

You can specify general Spark configuration settings by using the \texttt{--conf} option.

\begin{verbatim}
$ dse spark-sql-thrift-server start --conf spark.cores.max=4
\end{verbatim}

3. Start the Beeline shell.

\begin{verbatim}
$ dse spark-beeline
\end{verbatim}

4. Connect to the server using the JDBC URI for your server.

\begin{verbatim}
beeline> !connect jdbc:hive2://localhost:10000
\end{verbatim}

5. Connect to a keyspace and run a query from the Beehive shell.

\begin{verbatim}
0: jdbc:hive2://localhost:10000> use test;
0: jdbc:hive2://localhost:10000> select * from test;
\end{verbatim}

Using SparkR with DataStax Enterprise

Apache SparkR is a front-end for the R programming language for creating analytics applications. DataStax Enterprise integrates SparkR to support creating data frames from DSE data.

SparkR support in DSE requires you to first install R on the client machines on which you will be using SparkR. To use R user defined functions and distributed functions the same version of R should be installed on all the nodes in the Analytics cluster. DSE SparkR is built against R version 3.1.1. Many Linux distributions by default install older versions of R.

For example, on Debian and Ubuntu clients:

\begin{verbatim}
$ sudo sh -c 'echo "deb http://cran.rstudio.com/bin/linux/ubuntu trusty/" >> /etc/apt/sources.list'
$ gpg --keyserver keyserver.ubuntu.com --recv-key E084DAB9
$ gpg -a --export E084DAB9 | sudo apt-key add -
$ sudo apt-get update
$ sudo apt-get install r-base
\end{verbatim}

On RedHat and CentOS clients:

\begin{verbatim}
$ sudo yum install R
\end{verbatim}
Using DataStax Enterprise advanced functionality

Starting SparkR

Start the SparkR shell using dse SparkR (page 1157) to automatically set the Spark session within R.

1. Start the R shell using the dse command.

 $ dse sparkR

Accessing DataStax Enterprise data from external Spark clusters

DataStax Enterprise works with external Spark clusters in a bring-your-own-Spark (BYOS) model.

Overview of BYOS support in DataStax Enterprise

BYOS support in DataStax Enterprise consists of a JAR file and a generated configuration file that provides all the necessary classes and configuration settings for connecting to a particular DataStax Enterprise cluster from an external Spark cluster. To specify a different classpath to accommodate applications originally written for open source Apache Spark, specify the -framework (page 1147) option with dse spark commands.

All DSE resources, including DSEFS file locations, can be accessed from the external Spark cluster.

BYOS is tested against the version of Spark integrated into DSE (described in the DataStax Enterprise 5.1 release notes (page 26)) and the following Spark distributions:

- Hortonworks Data Platform (HDP) 2.5
- Cloudera CDH 5.10

Generating the BYOS configuration file

The byos.properties file is used to connect to a DataStax Enterprise cluster from a Spark cluster. The configuration file contains connection information about the DataStax Enterprise cluster. This file must be generated on a node in the DataStax Enterprise cluster. You can specify an arbitrary name for the generated configuration file. The byos.properties name is used throughout the documentation to refer to this configuration file.

1. Connect to a node in your DataStax Enterprise cluster.

2. Generate the byos.properties file using the dse client-tool command.

 $ dse client-tool configuration byos-export ~/byos.properties

 This will generate the byos.properties file in your home directory. See About dse client-tool (page 1159) for more information on the options for dse client-tool.
What's next:

The `byos.properties` file can be copied to a node in the external Spark cluster and used with the Spark shell, as described in Connecting to DataStax Enterprise using the Spark shell on an external Spark cluster (page 379).

Connecting to DataStax Enterprise using the Spark shell on an external Spark cluster

Use the generated `byos.properties` configuration file (page 378) and the `byos-version.jar` from a DataStax Enterprise node to connect to the DataStax Enterprise cluster from the Spark shell on an external Spark cluster.

Prerequisites:

You must generate the `byos.properties` on a node in your DataStax Enterprise cluster.

1. Copy the `byos.properties` file you previously generated from the DataStax Enterprise node to the local Spark node.

   ```
   $ scp user@dsenode1.example.com:~/byos.properties .
   ```

 If you are using Kerberos authentication, specify the `--generate-token` and `--token-renewer <username>` options when generating `byos.properties`, as described in `dse client-tool configuration byos-export` (page 1165).

2. Copy the `byos-version.jar` file from the clients directory from a node in your DataStax Enterprise cluster to the local Spark node.

 The `byos-version.jar` file location depends on the type of installation.

   ```
   $ scp user@dsenode1.example.com:/usr/share/dse/clients/dse-byos_2.10-5.0.1-5.0.0-all.jar byos-5.0.jar
   ```

 The default location of the `clients` directory depends on the type of installation:

 | Package installations | /usr/share/dse/clients |
 | Installer-Services installations | installation_location/clients |

3. Merge external Spark properties into `byos.properties`.

   ```
   $ cat ${SPARK_HOME}/conf/spark-defaults.conf >> byos.properties
   ```
4. If you are using Kerberos authentication, set up a CRON job or other task scheduler to periodically call `dse client-tool cassandra renew-token <token>` where `<token>` is the encoded token string in `byos.properties`.

5. Start the Spark shell using the `byos.properties` and `byos-version.jar` file.

```bash
$ spark-shell --jars byos-5.0.jar --properties-file byos.properties
```

Generating Spark SQL schema files

Spark SQL can import schema files generated by DataStax Enterprise.

1. Export the schema file using `dse client-tool`.

```bash
$ dse client-tool --use-server-config spark sql-schema --all > output.sql
```

2. Copy the schema to an external Spark node.

```bash
$ scp output.sql user@sparknode1.example.com:
```

3. On a Spark node, import the schema using Spark.

```bash
$ spark-sql --jars byos-5.1.jar --properties-file byos.properties -f output.sql
```

Starting Spark SQL Thrift Server with Kerberos

Spark SQL Thrift Server is a long running service and must be configured to start with a keytab file if Kerberos is enabled. The user principal must be added to DSE, and Spark SQL Thrift Server restarted with the generated BYOS configuration file and `byos-version.jar`.

Prerequisites:

These instructions are for the Spark SQL Thrift Server included in HortonWorks 2.4. The Hadoop Spark SQL Thrift Server principal is `hive/_HOST@REALM`.

1. Create the principal on the DSE node using `cqlsh`.

   ```bash
   cqlsh> create user hive/spark_sql_thrift_server_host@REALM;
   ```

2. Login as the `hive` user on the Spark SQL Thrift Server host.

3. Create a `~/.java.login.config` file with a JAAS Kerberos configuration.
4. Merge the existing Spark SQL Thrift Server configuration properties with the generated BYOS configuration file into a new file.

```
$ cat /usr/hdp/current/spark-thriftserver/conf/spark-thrift-server.conf byos.properties > custom-sparkconf.conf
```

5. Start Spark SQL Thrift Server with the custom configuration file and byos-version.jar.

```
$ /usr/hdp/2.4.2.0-258/spark/sbin/start-thriftserver.sh --jars byos-version.jar --properties-file custom-sparkconf.conf
```


```
$ beeline -u 'jdbc:hive2://hostname:port/default;principal=hive/_HOST@REALM'
```

What's next:

Generated SQL schema (page 380) files can be passed to beeline with the `-f` option to generate a mapping for DSE tables so both Hadoop and DataStax Enterprise tables will be available through the service for queries.

Accessing HDFS or CFS resources using Kerberos authentication

If you are using Kerberos authentication and need to access HDFS or CFS data from BYOS nodes, follow these steps to configure DSE and Spark.

1. Copy `hdfs-site.xml` from your Hadoop configuration directory to the DSE Hadoop configuration directory

```
$ scp hdfs-site.xml admin@dsenode:/etc/dse/hadoop2-client/conf/
```

2. Pass a comma separate list of HDFS or CFS root directories with the `spark.dse.access.namenodes` parameter when using DSE Spark commands.

 The `spark.dse.access.namenodes` parameters have the same effect as `spark.yarn.access.namenodes` from stand-alone Spark.

 The Spark application must have access to the nodes and Kerberos must be properly configured to be able to access them. They must either be in the same realm or in a trusted realm.

 DSE Spark acquires security tokens for each of the nodes so the Spark application can access those remote HDFS or CFS clusters.
3. Pass a comma separate list of HDFS or CFS root directories with the `spark.yarn.access.namenodes` parameter when using stand-alone Spark commands.

```
```

Using the Spark Jobserver

DataStax Enterprise includes a bundled copy of the open-source Spark Jobserver, an optional component for submitting and managing Spark jobs, Spark contexts, and JARs on DSE Analytics clusters. Refer to the Components (page 26) in the release notes to find the version of the Spark Jobserver included in this version of DSE.

Valid spark-submit options (page 353) are supported and can be applied to the Spark Jobserver. To use the Jobserver:

- Start the job server:
  ```
  $ dse spark-jobserver start [any_spark_submit_options]
  ```

- Stop the job server:
  ```
  $ dse spark-jobserver stop
  ```

The default location of the Spark Jobserver depends on the type of installation:

- Package installations and Installer-Services: /usr/share/dse/spark/spark-jobserver
- Tarball installations and Installer-No Services: installation_location/resources/spark/spark-jobserver

All the uploaded JARs, temporary files, and log files are created in the user's $HOME/.spark-jobserver directory, first created when starting Spark Jobserver.

Beneficial use cases for the Spark Jobserver include sharing cached data, repeated queries of cached data, and faster job starts.

Note:

Running multiple SparkContext instances in a single JVM is not recommended. Therefore it is not recommended to create a new SparkContext for each submitted job in a single Spark Jobserver instance. We recommend one of the two following Spark Jobserver usages.
Persistent Context Mode: a single pre-created SparkContext shared by all jobs.

Context per JVM: each job has it's own SparkContext in a separate JVM. See the Spark Jobserver docs for details.

Note: In Context per JVM mode, job results must not contain instances of classes that are not present in the Spark Jobserver classpath. Problems with returning unknown (to server) types can be recognized by following log line:

```
Association with remote system [akka.tcp://JobServer@127.0.0.1:45153] has failed, address is now gated for [5000] ms.
Reason: [unknown type name is placed here]
```

Please consult Spark Jobserver docs to see configuration details.

For an example of how to create and submit an application through the Spark Jobserver, see the spark-jobserver demo included with DSE.

The default location of the demos directory depends on the type of installation:

- **Package installations and Installer-Services**: /usr/share/dse/demos
- **Tarball installations and Installer-No Services**: installation_location/demos

Enabling SSL communication with Jobserver

To enable SSL encryption when connecting to Jobserver, you must have a server certificate, and a truststore containing the certificate. Add the following configuration section to the dse.conf file in the Spark Jobserver directory.

```scala
spray.can.server {
  ssl-encryption = on
  keystore = "path to keystore"
  keystorePW = "keystore password"
}
```

The default location of the Spark Jobserver depends on the type of installation:

- **Package installations and Installer-Services**: /usr/share/dse/spark/spark-jobserver
- **Tarball installations and Installer-No Services**: installation_location/resources/spark/spark-jobserver
Using DataStax Enterprise advanced functionality

Restart the Jobserver after saving the configuration changes.

Spark examples

DataStax Enterprise includes Spark example applications that demonstrate different Spark features.

Portfolio Manager demo using Spark

The Portfolio Manager demo runs an application that is based on a financial use case. You run scripts that create a portfolio of stocks. On the OLTP (online transaction processing) side, each portfolio contains a list of stocks, the number of shares purchased, and the purchase price. The demo's pricer utility simulates real-time stock data. Each portfolio gets updated based on its overall value and the percentage of gain or loss compared to the purchase price. The utility also generates 100 days of historical market data (the end-of-day price) for each stock. On the DSE OLAP (online analytical processing) side, a Spark job calculates the greatest historical 10 day loss period for each portfolio, which is an indicator of the risk associated with a portfolio. This information is then fed back into the real-time application to allow customers to better gauge their potential losses.

To run the demo:

Note: DataStax Demos do not work with either LDAP or internal authorization (username/password) enabled.

1. Install a single Demo node using the DataStax Installer in GUI or Text (page 146) mode with the following settings:
 - **Install Options page - Default Interface: 127.0.0.1** (You must use this IP for the demo.)
 - **Node Setup page - Node Type: Analytics**

2. Start DataStax Enterprise if you haven't already:
 - **Package and Installer-Services installations:**

 $ sudo service dse start

 - **Tarball and Installer-No Services installations:**

 $ installation_location/bin/dse cassandra -k # # Starts node in Spark mode

 The default *installation_location* is /usr/share/dse.

3. Go to the Portfolio Manager demo directory.

 The default location of the Portfolio Manager demo depends on the type of installation:
• **Package installations and Installer-Services:** /usr/share/dse/demos/portfolio_manager
• **Tarball installations and Installer-No Services:** installation_location/demos/portfolio_manager

4. Run the bin/pricer utility to generate stock data for the application:
 • To see all of the available options for this utility:

 $ bin/pricer --help

 • Start the pricer utility:

 $ bin/pricer -o INSERT_PRICES
 $ bin/pricer -o UPDATE_PORTFOLIOS
 $ bin/pricer -o INSERT_HISTORICAL_PRICES -n 100

 The pricer utility takes several minutes to run.

5. Start the web service:

 $ cd website
 $ sudo ./start

 The real-time Portfolio Manager demo application is displayed.
7. Open another terminal.

8. Run the Spark SQL job in the `10-day-loss.q` file.

   ```
   $ dse spark-sql -f 10-day-loss.q
   ```

9. Run the equivalent Spark Scala job in the `10-day-loss.sh` script.

 The Spark application takes several minutes to run.

   ```
   $ ./10-day-loss.sh
   ```

10. Run the equivalent Spark Java job in the `10-day-loss-java.sh` script.

    ```
    $ ./10-day-loss-java.sh
    ```

11. After the job completes, refresh the Portfolio Manager web page.

 The results of the Largest Historical 10 day Loss for each portfolio are displayed.

![Portfolio Manager web page](image)

What's next:

The Scala and Java source code for the demo are in the `src` directory.

Running the Weather Sensor demo

Using the Weather Sensor demo, you can compare how long it takes to run Spark SQL queries against aggregated data for a number of weather sensors in various cities. For example, you can view reports using different metrics, such as temperature or humidity, and get a daily roll up.
You run customize Spark SQL queries using different metrics and different dates. In addition to querying CQL tables, you time Spark SQL queries against data in DataStax Enterprise File System (DSEFS).

Note: DataStax Demos do not work with either LDAP or internal authorization (username/password) enabled.

Prerequisites

Before running the demo, install the following source code and tools if you do not already have them:

- **Python 2.7:**

 # Debian and Ubuntu

 $ sudo apt-get install python2.7-dev

 # RedHat or CentOS

 $ sudo yum install python27
Using DataStax Enterprise advanced functionality

Mac OS X already has Python 2.7 installed.

- **pip installer tool:**
 - Debian and Ubuntu

    ```
    $ sudo apt-get install python-pip
    ```
 - RedHat or CentOS

    ```
    $ sudo yum install python-pip
    ```
 - Mac OS X

    ```
    $ sudo easy_install pip
    ```

- **The **libsasl2-dev** package:**
 - Debian and Ubuntu

    ```
    $ sudo apt-get install libsasl2-dev
    ```
 - RedHat or CentOS

    ```
    $ sudo yum install cyrus-sasl-lib
    ```

- **The required Python packages:**
 - All platforms

    ```
    sudo pip install pyhs2 six flask cassandra-driver
    ```

If you installed DataStax Enterprise using a tarball or the GUI-no services option, set the `PATH` environment variable to the DataStax Enterprise installation `/bin` directory.

```bash
export PATH=$PATH:installation_location/bin
```

Start DataStax Enterprise and import data

You start DataStax Enterprise in Spark mode, and then run a script that creates the schema for weather sensor data model. The script also imports aggregated data from CSV files into DSE tables. The script uses the `hadoop fs` command to put the CSV files into the DSEFS.

1. **Start DataStax Enterprise in Spark mode (page 302).**

2. **Run the create-and-load CQL script in the `demos/weather_sensors/resources` directory. On Linux, for example:**

   ```
   $ cd installation_location/demos/weather_sensors
   $ bin/create-and-load
   ```

 The default location of the `demos` directory depends on the type of installation:
Using DataStax Enterprise advanced functionality

- Package installations and Installer-Services: /usr/share/dse/demos
- Tarball installations and Installer-No Services: installation_location/demos

The output confirms that the script imported the data into CQL and copied files to DSEFS.

```
. . .
10 rows imported in 0.019 seconds.
2590 rows imported in 2.211 seconds.
76790 rows imported in 33.522 seconds.
+ echo 'Copy csv files to Hadoop...'
Copy csv files to Hadoop...
+ dse hadoop fs -mkdir /datastax/demos/weather_sensors/
```

If an error occurs, set the PATH as described in Prerequisites (page 387), and retry.

Starting the Spark SQL Thrift server

You start the Spark SQL Thrift server on a specific port to avoid conflicts. Start using your local user account. Do not use sudo.

1. Start the Spark SQL Thrift server on port 5588. On Linux, for example:

```
$ cd installation_location
$ dse spark-sql-thriftserver start --hiveconf hive.server2.thrift.port=5588
```

Start the web app and query the data

1. Open another terminal and start the Python service that controls the web interface:

```
$ cd installation_location/demos/weather_sensors
$ python web/weather.py
```

2. Open a browser and go to the following URL: http://localhost:8983/

The weather sensors app appears. Select Near Real-Time Reports on the horizontal menu. A drop-down listing weather stations appears:
3. Select a weather station from the drop-down, view the graph, and select different metrics from the vertical menu on the left side of the page.

4. On the horizontal menu, click **Sample Live Queries**, then select a sample script. Click the **Spark SQL** button, then click Submit.

 The time spent loading results using Spark appears.

Note: If you are running the demo on a SearchAnalytics datacenter, port 8983 conflicts with the Search web UI. Change the port in the `demos/weather_sensors/web/weather.py` to a free port.

```python
app.run(host='0.0.0.0', port=8984, threaded=True, debug=True)
```
5. From the horizontal menu, click Custom Live Queries. Click a Week Day, and then a metric, such as Wind Direction. Click Recalculate Query. The query reflects the selections you made.

6. From the horizontal menu, click DSEFS Live Queries. Click Submit query. The time spent loading results from DSEFS using Spark SQL appears.
Clean up

To remove all generated data, run the following commands:

```bash
$ cd installation_location/demos/weather_sensors
$ bin/cleanup
```

To remove the keyspace from the cluster, run the following command:

```bash
$ echo "DROP KEYSPACE weathercql;" | cqlsh
```

Running the Wikipedia demo with SearchAnalytics

The following instructions describe how to use search queries in the Spark console on SearchAnalytics nodes using the Wikipedia demo.

Prerequisites:
You must have created a new SearchAnalytics datacenter as described in the single datacenter deployment scenario.

1. Start the node or nodes in SearchAnalytics mode.
 - Packages/Services: See Starting DataStax Enterprise as a service (page 1275).
 - Tarball/No Services: See Starting DataStax Enterprise as a stand-alone process (page 1278).

2. Ensure that the cluster is running correctly by running dsetool ring. The node type should be SearchAnalytics.
 - Package and Installer-Services installations: dsetool ring
 - Tarball and Installer-No Services installations: installation_location/bin/dsetool ring

3. In a terminal, go to the Wikipedia demo directory.
 - The default wikipedia demo location depends on the type of installation:
 - Package installations and Installer-Services: /usr/share/dse/demos/wikipedia
 - Tarball installations and Installer-No Services: installation_location/demos/wikipedia
   ```
   $ cd /usr/share/dse/demos/wikipedia
   ```

4. Add the schema by running the 1-add-schema.sh script.
   ```
   $ ./1-add-schema.sh
   ```

5. Create the search indexes.
   ```
   $ ./2-index.sh
   ```

6. Start the Spark console.
   ```
   $ dse spark
   ```

7. Create an RDD based on the wiki.solr table.
   ```scala
   scala> val table = sc.cassandraTable("wiki","solr")
   ```
8. Run a query using the title Solr index and collect the results.

```scala
scala> val result = table.select("id","title").where("solr_query='title:Boroph*'").collect
```

Equivalent JSON query:

```json
where("solr_query='{"q": "title:Boroph*"}'"
```

result:

```scala
Array[com.datastax.spark.connector.CassandraRow] = Array(
  CassandraRow{id: 23729958, title: Borophagus parvus},
  CassandraRow{id: 23730195, title: Borophagus dudleyi},
  CassandraRow{id: 23730528, title: Borophagus hilli},
  CassandraRow{id: 23730810, title: Borophagus diversidens},
  CassandraRow{id: 23730974, title: Borophagus littoralis},
  CassandraRow{id: 23731282, title: Borophagus orc},
  CassandraRow{id: 23731616, title: Borophagus pugnator},
  CassandraRow{id: 23732450, title: Borophagus secundus})
```

What's next:

For details on using search query syntax in CQL, see Search index filter syntax (page 496).

Running the Spark MLlib demo application

The Spark MLlib demo application demonstrates how to run machine-learning analytic jobs using Spark and DataStax Enterprise. The demo solves the classic iris flower classification problem, using the iris flower data set. The application will use the iris flower data set to build a Naive Bayes classifier that will recognize a flower based on four feature measurements.

Prerequisites:

We strongly recommend that you install the BLAS library on your machines before running Spark MLlib jobs. For instructions on installing the BLAS library on your platform, see https://github.com/fommil/netlib-java/blob/master/README.md#machine-optimised-system-libraries.

The BLAS library is not distributed with DSE due to licensing restrictions, but improves MLlib performance significantly.
You must have the Gradle build tool installed to build the demo. See https://gradle.org/ for details on installing Gradle on your OS.

1. Start the nodes in Analytics mode.
 - Package and Installer-Services installations: See Starting DataStax Enterprise as a service (page 1275).
 - Tarball and Installer-No Services installations: See Starting DataStax Enterprise as a stand-alone process (page 1278).

2. In a terminal, go to the spark-mlib directory located in the Spark demo directory.

 The default location of the Spark demo depends on the type of installation:
 - Package installations and Installer-Services: /usr/share/dse/demos/portfolio_manager
 - Tarball installations and Installer-No Services: installation_location/demos/portfolio_manager

3. Build the application using the gradle build tool.

 $ gradle

4. Use spark-submit to submit the application JAR.

 The Spark MLlib demo application reads the Spark demo directory/spark-mllib/iris.csv file on each node. This file must be accessible in the same location on each node. If some nodes do not have the same local file path, set up a shared network location accessible to all the nodes in the cluster.

 To run the application where each node has access to the same local location of iris.csv.

 $ dse spark-submit NaiveBayesDemo.jar

 To specify a shared location of iris.csv:

 $ dse spark-submit NaiveBayesDemo.jar /mnt/shared/iris.csv

Running the http_receiver demo

The http_receiver demo uses Spark Streaming to save data to DSE. It is located in the http-receivers directory in the demos directory.

The default location of the demos directory depends on the type of installation:
 - Package installations and Installer-Services: /usr/share/dse/demos
 - Tarball installations and Installer-No Services: installation_location/demos
Importing a text file into a table

This example shows how to use Spark to import a local or CFS (Cassandra File System)-based text file into an existing table. You use the `saveToCassandra` method present in the Spark RDDs to save an arbitrary RDD to the database.

1. Create a keyspace and a table in the database. For example, use `cqlsh`.

   ```
   CREATE KEYSPACE int_ks WITH replication =
     {'class': 'NetworkTopologyStrategy', 'Analytics':1};
   USE int_ks;
   CREATE TABLE int_compound ( pkey int, ckey1 int, data1 int ,
     PRIMARY KEY (pkey,ckey1));
   ```

2. Insert data into the table

   ```
   INSERT INTO int_compound ( pkey, ckey1, data1 ) VALUES ( 1, 2, 3 );
   INSERT INTO int_compound ( pkey, ckey1, data1 ) VALUES ( 2, 3, 4 );
   INSERT INTO int_compound ( pkey, ckey1, data1 ) VALUES ( 3, 4, 5 );
   INSERT INTO int_compound ( pkey, ckey1, data1 ) VALUES ( 4, 5, 1 );
   INSERT INTO int_compound ( pkey, ckey1, data1 ) VALUES ( 5, 1, 2 );
   ```

3. Create a text file named `normalfill.csv` that contains this data.

   ```
   6,7,8
   7,8,6
   8,6,7
   ```

4. Put the CSV file into CFS. For example, on Linux:

   ```
   $ bin/dse hadoop fs -put mypath/normalfill.csv /
   ```

5. Start the Spark shell.

6. Verify that Spark can access the `int_ks` keyspace:

   ```
   scala> :showSchema int_ks
   -----------------------------------------------
   Keyspace: int_ks
   -----------------------------------------------
   Table: int_compound
   -----------------------------------------------
   - pkey : Int (partition key column)
   - ckey1 : Int (clustering column)
   - data1 : Int
   ```
int_ks appears in the list of keyspaces.

7. Read in the file from CFS, splitting it on the comma delimiter. Transform each element into an Integer.

```scala
scala> val normalfill = sc.textFile("/normalfill.csv").map(line => line.split(",").map(_.toInt));
```

Alternatively, read in the file from the local file system.

```scala
scala> val file = sc.textFile("file:///local-path/normalfill.csv")
```

8. Check that Spark can find and read the CSV file.

```scala
scala> normalfill.take(1);
res2: Array[Array[Int]] = Array(Array(6, 7, 8))
```

9. Save the new data to the database.

```scala
scala> normalfill.map(line => (line(0), line(1), line(2))).saveToCassandra("int_ks", "int_compound", Seq("pkey", "ckey1", "data1"))
```

The step produces no output.

10. Check that the data was saved using cqlsh.

```
SELECT * FROM int_ks.int_compound;
pkey | ckey1 | data1
--------|------|--------
  5 |   1 |   2
  1 |   2 |   3
  8 |   6 |   7
  2 |   3 |   4
  4 |   5 |   1
  7 |   8 |   6
  6 |   7 |   8
  3 |   4 |   5
```

Running spark-submit job with internal authentication

This example shows how to run a spark-submit job with internal authentication.

When you use dse spark-submit to submit a Spark job, the Spark Master URL and the Spark database connection URL are set automatically. Use the Spark session builder API to set the application name. For example:

```java
SparkSession spark = SparkSession
    .builder()
    .appName("Datastax Java example")
    .getOrCreate();
```

1. Clone the example source files from github.

 `$ git clone https://github.com/datastax/SparkBuildExamples.git`

2. Select you preferred language and build system. For example for Java and Maven:

 `$ cd SparkBuildExamples/java/maven/dse`

3. Build the package with Maven:

 `$ mvn package`

4. Create your authentication credentials. Authentication credentials can be provided in several ways, see Connecting to authentication enabled clusters.

5. Use spark-submit to run the application. The following example assumes you've set your authentication credentials in an environment variable or config file.

 `$ dse spark-submit --class com.datastax.spark.example.WriteRead ./target/writeRead-0.1.jar`

DSEFS (DataStax Enterprise file system)

DSEFS is the default distributed file system on DSE Analytics nodes.

About DSEFS

DSEFS (DataStax Enterprise file system) is a fault-tolerant, general-purpose, distributed file system within DataStax Enterprise. It is designed for use cases that need to leverage a distributed file system for data ingestion, data staging, and state management for Spark Streaming applications (such as checkpointing or write-ahead logging). DSEFS is similar to HDFS, but avoids the deployment complexity and single point of failure typical of HDFS.
DSEFS is HDFS-compatible and is designed to work in place of HDFS in Spark and other systems.

DSEFS is the default distributed file system in DataStax Enterprise, and is automatically enabled on all analytics nodes.

DSEFS stores file metadata (such as file path, ownership, permissions) and file contents separately:

- Metadata is stored in the database.
- File data blocks are stored locally on each node and are replicated onto multiples nodes.

The redundancy factor is set at the DSEFS directory or file level, which is more granular than the replication factor that is set at the keyspace level in the database.

For performance on production clusters, store the DSEFS data on physical devices that are separate from the database. For development and testing you may store DSEFS data on the same physical device as the database.

Deployment overview

- The DSEFS server runs in the same JVM as DataStax Enterprise. Similar to the database, there is no master node. All nodes running DSEFS are equal.
- A single DSEFS cannot span multiple datacenters. To deploy DSEFS in multiple datacenters, you can create a separate instance of DSEFS for each datacenter.
- You can use different keyspaces to configure multiple DSEFS file systems (page 404) in a single datacenter.
- For optimal performance, locate the local DSEFS data on a different physical drive than the database.
- Encryption is not supported. Use operating system access controls to protect the local DSEFS data directories. Other limitations (page 403) apply.
- DSEFS uses the LOCAL_QUORUM consistency level to store file metadata. DSEFS will always try to write each data block to replicated node locations, and even if a write fails, it will retry to another node before acknowledging the write. DSEFS writes are very similar to the ALL consistency level, but with additional failover to provide high-availability. DSEFS reads are similar to the ONE consistency level.

Enabling DSEFS

DSEFS is automatically enabled on analytics nodes, and disabled on non-analytic nodes. You can enable the DSEFS service on any node in a DataStax Enterprise cluster. Nodes within the same datacenter with DSEFS enabled will join together to behave as a DSEFS cluster.

dse.yaml

The location of the dse.yaml file depends on the type of installation:

<table>
<thead>
<tr>
<th>Package installations</th>
<th>Installer-Services installations</th>
</tr>
</thead>
<tbody>
<tr>
<td>/etc/dse/dse.yaml</td>
<td></td>
</tr>
</tbody>
</table>
Prerequisites: DataStax Enterprise 5.0 or later is required.

On each node:

1. In the dse.yaml file, set the properties for the DSE File System options:

   ```yaml
   dsefs_options:
     enabled: false
     keyspace_name: dsefs
     work_dir: /var/lib/dsefs
     public_port: 5598
     private_port: 5599
   data_directories:
     - dir: /var/lib/dsefs/data
       storage_weight: 1.0
       min_free_space: 5368709120
   
   a. Enable DSEFS:

      ```yaml
 enabled: true

 If enabled is blank or commented out, DSEFS starts only if the node is configured to run analytics workloads.

 b. Define the keyspace for storing the DSEFS metadata:

      ```yaml
      keyspace_name: dsefs
      
      You can optionally configure multiple DSEFS file systems (page 404) in a single datacenter.

   c. Define the work directory for storing the DSEFS metadata for the local node. The work directory should not be shared with other DSEFS nodes:

      ```yaml
 work_dir: /var/lib/dsefs

 d. Define the public port on which DSEFS listens for clients:

      ```yaml
      public_port: 5598
      
      DataStax recommends that all nodes in the cluster have the same value. Firewalls must open this port to trusted clients. The service on this port is bound to the RPC (page 205) address.

   e. Define the private port for DSEFS inter-node communication:
Using DataStax Enterprise advanced functionality

```
private_port: 5599
```

Do not open this port to firewalls; this private port must be not visible from outside of the cluster.

f. Set the data directories where the file data blocks are stored locally on each node.

```
data_directories:
 - dir: /var/lib/dsefs/data
```

If you use the default `/var/lib/dsefs/data` data directory, verify that the directory exists and that you have root access. Otherwise, you can define your own directory location, change the ownership of the directory, or both:

```
$ sudo mkdir -p /var/lib/dsefs/data; sudo chown -R $USER: $GROUP /var/lib/dsefs/data
```

Ensure that the data directory is writeable by the DataStax Enterprise user. Put the data directories on different physical devices than the database. Using multiple data directories on JBOD improves performance and capacity.

g. For each data directory, set the weighting factor to specify how much data to place in this directory, relative to other directories in the cluster. This soft constraint determines how DSEFS distributes the data. For example, a directory with a value of 3.0 receives about three times more data than a directory with a value of 1.0.

```
data_directories:
 - dir: /var/lib/dsefs/data
 storage_weight: 1.0
```

h. For each data directory, define the reserved space, in bytes, to not use for storing file data blocks. You can use a unit of measure suffix to specify other size units. For example: terabyte (1 TB), gigabyte (10 GB), and megabyte (5000 MB).

```
data_directories:
 - dir: /var/lib/dsefs/data
 storage_weight: 1.0
 min_free_space: 5368709120
```

2. Restart the node.

3. Repeat steps for the remaining nodes.

4. With guidance from DataStax Support, you can tune advanced DSEFS properties:
5. Continue with using DSEFS (page 403).

**Disabling DSEFS**

To disable DSEFS and remove metadata and data:

1. Remove all directories and files from the DSEFS file system:

   ```
 $ dse fs rm -r filepath
   ```

2. Wait a while for all nodes to perform the delete operations.

3. Verify that all DSEFS data directories where the file data blocks are stored locally on each node are empty.

   These data directories are configured in dse.yaml. Your directories are probably different from this default `data_directories` value:

   ```yaml
 data_directories:
 - dir: /var/lib/dsefs/data
   ```

   dse.yaml

   The location of the `dse.yaml` file depends on the type of installation:

<table>
<thead>
<tr>
<th>Package installations</th>
<th>/etc/dse/dse.yaml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer-Services installations</td>
<td>/etc/dse/dse.yaml</td>
</tr>
</tbody>
</table>
4. Disable the DSEFS entries in all dse.yaml files on all nodes.

5. Restart DataStax Enterprise.

6. Truncate all of the tables in the dsefs keyspace.

   Do not remove the dsefs keyspace. If you inadvertently removed the dsefs keyspace, you must specify a different keyspace name in dse.yaml or create an empty dsefs keyspace (this empty dsefs keyspace will be populated with tables during DSEFS start up).

Using DSEFS

You must configure data replication. You can optionally configure (page 399) multiple DSEFS file systems in a datacenter, and perform other functions, including setting the Kafka log retention.

dse.yaml

The location of the dse.yaml file depends on the type of installation:

<table>
<thead>
<tr>
<th>Package installations</th>
<th>/etc/dse/dse.yaml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer-Services installations</td>
<td></td>
</tr>
</tbody>
</table>

| Tarball installations | installation_location/ resources/dse/conf/dse.yaml |
| Installer-No Services installations |                   |

DSEFS does not span datacenters. Create a separate DSEFS instance in each datacenter, as described in the steps below.

DSEFS limitations

Know these limitations when you configure and tune DSEFS. The following functionality and features are not supported:

- Encryption.

  Use operating system access controls to protect the local DSEFS data directories.

- File system consistency checks (fsck) and file repair have only limited support. Running fsck will re-replicate blocks that were under-replicated because a node was taken out of a cluster.

- File repair.

- Forced rebalancing, although the cluster will eventually reach balance.

- Checksum.

- Automatic backups.

- Multi-datacenter replication.
• Symbolic links (soft links, symlinks) and hardlinks.
• Snapshots.

1. Configure replication for the metadata and the data blocks.

   **Note:** DSEFS keyspace creation uses SimpleStrategy with replication factor of 1. After starting the cluster for the first time, you must alter the keyspace to use NetworkTopologyStrategy with proper RF.

   You must set the replication factor appropriately to prevent data loss in the case of node failure. Replication factors must be set for both the metadata and the data blocks. The replication factor of 3 for data blocks is suitable for most use-cases.

   **a.** Globally: set replication for the metadata in the dsefs keyspace that is stored in the database.

   For example, use a CQL statement to configure a replication factor of 3 on the Analytics datacenter using NetworkTopologyStrategy:

   ```
 ALTER KEYSPACE dsefs
 WITH REPLICATION = {
 'class': 'NetworkTopologyStrategy',
 'Analytics': '3'};
   ```

   **Note:** Datacenter names are case sensitive. Verify the case of the using utility, using a command like dsetool status.

   **b.** Run `nodetool repair` on the DSEFS keyspace.

   ```
 nodetool repair dsefs
   ```

   **c.** Locally: set the replication factor on a specific DSEFS file or directory where the data blocks are stored.

   For example, use the command line:

   ```
 dse fs mkdir -n 4 newdirectory
   ```

   When a replication factor (RF) is not specified, the RF is inherited from the parent directory.

2. If you have multiple Analytics datacenters, you must configure each DSEFS file system to replicate within its own datacenter:

   **a.** In the dse.yaml file, specify a separate DSEFS keyspace for each logical datacenter.

   For example, on a cluster with logical datacenters DC1 and DC2.

   On each node in DC1:
Using DataStax Enterprise advanced functionality

```
dsefs_options:
 ...
 keyspace_name: dsefs1
```

On each node in DC2:

```
dsefs_options:
 ...
 keyspace_name: dsefs2
```

b. Restart the nodes.

c. Alter the keyspace replication to exist only on the specific datacenters.

On DC1:

```
ALTER KEYSPACE dsefs1
WITH REPLICATION = {
 'class': 'NetworkTopologyStrategy',
 'DC1': '3'};
```

On DC2:

```
ALTER KEYSPACE dsefs2
WITH REPLICATION = {
 'class': 'NetworkTopologyStrategy',
 'DC2': '3'};
```

d. Run `nodetool repair` on the DSEFS keyspace.

```
nodetool repair dsefs
```

For example, in a cluster with multiple datacenters, the keyspace names `dsefs1` and `dsefs2` define separate file systems in each datacenter.

3. When bouncing a streaming application, verify the Kafka log configuration (especially `log.retention.check.interval.ms` and `policies.log.retention.bytes`). Ensure the Kafka log retention policy is robust enough to handle the length of time expected to bring the application and consumers back up.

For example, if the log retention policy is too conservative and deletes or rolls are logged very frequently to save disk space, the users are likely to encounter issues
Using DataStax Enterprise advanced functionality

when attempting to recover from a checkpoint that references offsets that are no longer maintained by the Kafka logs.

**DSEFS command line tool**

The DSEFS functionality supports operations including uploading, downloading, moving, and deleting files, creating directories, and verifying the DSEFS status.

DSEFS commands are available only in the logical datacenter. DSEFS works with secured and unsecured clusters, see [DSEFS authentication (page 416)](#).

You can interact with the DSEFS file system in several modes: interactive command line shell, as part of dse commands, or with a REST API.

**Interactive DSEFS command line shell**

To use the interactive DSEFS command line shell:

<table>
<thead>
<tr>
<th>Action</th>
<th>Command line</th>
</tr>
</thead>
</table>
| Launch DSEFS shell | `$ dse fs
dsefs / >` |
| The DSEFS prompt shows the current working directory on DSEFS. The current local working directory that you launch DSEFS from is the default directory that is used for searching local files. |
| Launch DSEFS shell with precedence given to the specified hosts | `dse fs --prefer-contact-points -h 10.0.0.2,10.0.0.5` |
| The `--prefer-contact-points` is used in conjunction with the `-h` option to give precedence to the specified hosts, regardless of proximity, when issuing DSEFS commands. As long as the specified hosts are available, DSEFS will not switch to other DSEFS nodes in the cluster. Without the `--prefer-contact-points` option, DSEFS will switch to the closest available DSEFS node automatically, even if the `-h` option is used to specify contact points. |
| View entire DSEFS command list | `dsefs / > help` |
| View help for any DSEFS command | `dsefs / > help dsefs_command` |
| Add a comment to a DSEFS shell command | Use the `#` character. Everything after the `#` character will be ignored. `dsefs / > get archive.tgz local_archive.tgz #retrieve the archive` |
Using DataStax Enterprise advanced functionality

<table>
<thead>
<tr>
<th>Action</th>
<th>Command line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exit DSEFS shell</td>
<td>Press Ctrl+D or type <code>exit</code></td>
</tr>
</tbody>
</table>

Configuring DSEFS shell logging

The default location of the DSEFS shell log file `.dsefs-shell.log` is the user home directory. The default log level is INFO. To configure DSEFS shell logging, edit the `installation_location/resources/dse/conf/logback-dsefs-shell.xml` file.

Using with the dse command line

Precede the DSEFS command with `dse`:

```
$ dse [dse_auth_credentials] fs dsefs_command [options]
```

For example, to list the file system status and disk space usage in human-readable format:

```
$ dse -u user1 -p mypassword fs "df -h"
```

Optional command arguments are enclosed in square brackets. For example, `[dse_auth_credentials]` and `[-R]`

Variable values are italicized. For example, `directory` and `[subcommand]`.

Working with the local file system in the DSEFS shell

You can refer to files in the local file system by prefixing paths with `file:`. For example the following command will list files in the system root directory:

```
dsefs dsefs://127.0.0.1:5598/ > ls file: /
```

If you need to perform many subsequent operations on the local file system, first change the current working directory to `file:` or any local file system path:

```
dsefs dsefs://127.0.0.1:5598/ > cd file:
dsefs file:/home/user1/path/to/local/files > ls
conf src target build.sbt
dsefs file:/home/user1/path/to/local/files > cd ..
dsefs file:/home/user1/path/to/local/files > cd ..
```

DSEFS shell remembers the last working directory of each file system separately. To go back to the previous DSEFS directory, enter:

```
dsefs file:/home/user1/path/to/local/files > cd dsefs:
dsefs dsefs://127.0.0.1:5598/ >
```
Using DataStax Enterprise advanced functionality

To go back again to the previous local directory:

dsefs dsefs://127.0.0.1:5598/ > cd file:
dsefs file:/home/user1/path/to/local/files >

To refer to a path relative to the last working directory of the file system, prefix a relative path with either dsefs: or file:. The following session will create a directory new_directory in the directory /home/user1:

dsefs dsefs://127.0.0.1:5598/ > cd file:/home/user1
dsefs file:/home/user1 > cd dsefs:
dsefs dsefs://127.0.0.1:5598/ > mkdir file:new_directory
dsefs dsefs://127.0.0.1:5598/ > realpath file:new_directory
file:/home/user1/new_directory
dsefs dsefs://127.0.0.1:5598/ > stat file:new_directory
DIRECTORY file:/home/user1/new_directory:
Owner user1
Group user1
Permission rwxr-xr-x
Created 2017-01-15 13:10:06+0200
Modified 2017-01-15 13:10:06+0200
Accessed 2017-01-15 13:10:06+0200
Size 4096

To copy a file between two different file systems, you can also use the cp command with explicit file system prefixes in the paths:

dsefs file:/home/user1/test > cp dsefs:archive.tgz another-archive-copy.tgz
dsefs file:/home/user1/test > ls another-archive-copy.tgz archive-copy.tgz archive.tgz

Authentication

For $ dse dse_auth_credentials you can provide user credentials in several ways, see Connecting to authentication enabled clusters. For authentication with DSEFS, see DSEFS authentication (page 416).

Executing multiple commands

DSEFS can execute multiple commands on one line. Use quotes around the commands and arguments. Each command will be executed separately by DSEFS.

$ dse fs 'cat file1 file2 file3 file4' 'ls dir1'

DSEFS command options

The following DSEFS commands and arguments are supported:
<table>
<thead>
<tr>
<th>DSEFS command</th>
<th>Description and command arguments</th>
</tr>
</thead>
</table>
| append source
      destination | Append a local file to a remote file.  
      • source is the path to the local file to read data from.  
      • destination is the path to the remote file to append the file to. |
| cat file_or_files   | Concatenate files and print on the standard output.  
      • file_or_files is the file or files in DSEFS to print to standard output. Separate files with a space. |
| cd directory        | Change the remote working directory in DSEFS.  
      • directory is the remote directory to change to.  
      • .. is the parent directory.  
      The DSEFS prompt identifies the current working directory in DSEFS:  
      • dsefs / > is the default directory  
      • dsefs /dir2 > is the current working directory dir2 |
| chgrp [options]
      group path | Change file or directory group ownership.  
      • -r, -R recursively changes the file and directory group ownership.  
      • -v explains in more detail what is being done.  
      • group the new group name.  
      • path the file or directory whose group will be changed. |
| chmod [options]
      octal permission
      mode path   | Change the permissions of a file or directory.  
      • -r, -R recursively changes the file and directory permissions.  
      • -v explains in more detail what is being done.  
      • octal permission mode Octal representation of permission mode for owner, group, and others.  
      • path the file or directory whose permissions will be changed |
| chown [options]
      path        | Change files or directories ownership and/or group ownership.  
      • -r, -R recursively changes the file and directory ownership.  
      • -v explains in more detail what is being done.  
      • -u, --user username the new owner username.  
      • -g, --group group the new group owner name.  
      • path the file or directory whose ownership will be changed. |
<table>
<thead>
<tr>
<th>DSEFS command</th>
<th>Description and command arguments</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>cp [options] source</strong></td>
<td>Copies a file within a file system or between two file systems. If the destination path points to a different file system than DSEFS, the block size and redundancy options are ignored.</td>
</tr>
<tr>
<td></td>
<td><strong>-o, --overwrite</strong> overwrite the destination file if it exists.</td>
</tr>
<tr>
<td></td>
<td><strong>-b, --block-size</strong> value The preferred block size in bytes.</td>
</tr>
<tr>
<td></td>
<td><strong>-n, --redundancy-factor</strong> num_nodes is how many replicas of the file data to create in DSEFS. This redundancy factor is similar to the replication factor in the database keyspaces, but is more granular. Set this value to one number greater than the number of nodes that are allowed to fail before data loss occurs. For example, set this value to 3 to allow 2 nodes to fail. For simple replication, you can use a value that is equivalent to the replication factor.</td>
</tr>
<tr>
<td></td>
<td><strong>source</strong> the source file to be copied.</td>
</tr>
<tr>
<td></td>
<td><strong>destination</strong> the destination file to be created.</td>
</tr>
<tr>
<td><strong>df [options]</strong></td>
<td>List the DSEFS file system status and disk space usage.</td>
</tr>
<tr>
<td></td>
<td><strong>-h</strong> to list the sizes in human-readable format. Sizes are rounded to three significant places and presented using units:</td>
</tr>
<tr>
<td></td>
<td># K (for a kilobyte = 1024 bytes),</td>
</tr>
<tr>
<td></td>
<td># M (for a megabyte = 1024K),</td>
</tr>
<tr>
<td></td>
<td># G (for a gigabyte = 1024M),</td>
</tr>
<tr>
<td></td>
<td># T (for a terabyte = 1024G)</td>
</tr>
<tr>
<td></td>
<td>Without this option sizes are printed in bytes.</td>
</tr>
<tr>
<td><strong>exit</strong></td>
<td>Exit the DSEFS shell client. You can also type Ctrl+D to exit the shell.</td>
</tr>
<tr>
<td><strong>fsck</strong></td>
<td>Perform a file system consistency check and repair file system errors.</td>
</tr>
<tr>
<td><strong>get source</strong></td>
<td>Get a file from the DSEFS remote file system and copy the file to the local file system.</td>
</tr>
<tr>
<td></td>
<td><strong>source</strong> is the path to the DSEFS remote file to copy.</td>
</tr>
<tr>
<td></td>
<td><strong>destination</strong> is the path to the local file to create.</td>
</tr>
<tr>
<td>DSEFS command</td>
<td>Description and command arguments</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td><code>ls [options]</code> [file_system_entry_or_entries]</td>
<td>List the DSEFS file system entries (files or directories) in the current working directory.</td>
</tr>
<tr>
<td><code>-R</code></td>
<td>to list subdirectories recursively.</td>
</tr>
<tr>
<td><code>-l</code></td>
<td>to use a long listing format with metadata.</td>
</tr>
<tr>
<td><code>-h</code></td>
<td>to list the sizes in human-readable format. Sizes are rounded to three significant places and presented using units:</td>
</tr>
<tr>
<td># K (for a kilobyte = 1024 bytes),</td>
<td></td>
</tr>
<tr>
<td># M (for a megabyte = 1024K),</td>
<td></td>
</tr>
<tr>
<td># G (for a gigabyte = 1024M),</td>
<td></td>
</tr>
<tr>
<td># T (for a terabyte = 1024G)</td>
<td></td>
</tr>
<tr>
<td>Without this option sizes are printed in bytes.</td>
<td></td>
</tr>
<tr>
<td><code>-1</code></td>
<td>limits the number of printed columns to one, so one file is printed per line. This allows the output to more easily be parsed by external tools.</td>
</tr>
<tr>
<td><code>file_system_entry_or_entries</code> is the directory or directories to list the contents of.</td>
<td></td>
</tr>
<tr>
<td><code>mkdir [options]</code> dir_or_dirs</td>
<td>Make a new directory or directories.</td>
</tr>
<tr>
<td><code>-p</code></td>
<td>to make parent directories as needed.</td>
</tr>
<tr>
<td><code>-b bytes</code></td>
<td>is the preferred block size for files stored in this directory.</td>
</tr>
<tr>
<td><code>-c, --compression-encoder value</code></td>
<td>the encoder name to use for compression. DSE ships with the <code>lz4</code> compression encoder.</td>
</tr>
<tr>
<td><code>-n, --redundancy-factor num_nodes</code></td>
<td>is how many replicas of the file data to create in DSEFS. This redundancy factor is similar to the replication factor in the database keyspaces, but is more granular. Set this value to one number greater than the number of nodes that are allowed to fail before data loss occurs. For example, set this value to 3 to allow 2 nodes to fail. For simple replication, you can use a value that is equivalent to the replication factor.</td>
</tr>
<tr>
<td><code>-m, --permission-mode value</code></td>
<td>octal representation of permission mode for owner, group and others.</td>
</tr>
<tr>
<td><code>dir_or_dirs</code></td>
<td>is the directory or directories to create.</td>
</tr>
<tr>
<td><code>mv source destination</code></td>
<td>Move or rename a file or directory.</td>
</tr>
<tr>
<td><code>source</code></td>
<td>is the path to the DSEFS file system entry to be moved.</td>
</tr>
<tr>
<td>The destination path on DSEFS:</td>
<td></td>
</tr>
<tr>
<td># <code>destination</code> is the full destination path, including the name of the file or directory being moved.</td>
<td></td>
</tr>
<tr>
<td># <code>destination/</code> is the full destination path. If the destination ends with a slash (/) the original file or directory name will be retained.</td>
<td></td>
</tr>
</tbody>
</table>
## Using DataStax Enterprise advanced functionality

<table>
<thead>
<tr>
<th><strong>DSEFS command</strong></th>
<th><strong>Description and command arguments</strong></th>
</tr>
</thead>
</table>
| `put [options] source destination` | Copy a local file to the DSEFS.  
  - `-o, --overwrite` to overwrite the destination file if it exists.  
  - `-b, --block-size bytes` is the preferred block size in bytes.  
  - `-c, --compression-encoder value` the encoder name to use for compression. DSE ships with the `lz4` compression encoder.  
  - `-n, --redundancy-factor num_nodes` is how many replicas of the file data to create in DSEFS. This redundancy factor is similar to the replication factor in the database keyspaces, but is more granular. Set this value to one number greater than the number of nodes that are allowed to fail before data loss occurs. For example, set this value to 3 to allow 2 nodes to fail. For simple replication, you can use a value that is equivalent to the replication factor.  
  - `-f, --compression-frame-size value` the preferred frame size in bytes. Frame is a subject of compression. The bigger the frame the bigger the chance for high compression ratio. For most cases the default value of 131072 bytes is sufficient.  
  - `-m, --permission-mode value` octal representation of permission mode for owner, group and others.  
  - `source` is the path to the local source file.  
  - `destination` is the path to the destination file to be created on DSEFS. |
| `pwd [path]` | Print the working directory of the current file system or specified path.  
  - `path` the current working directory of the file system at the root of the path. |
| `realpath [options] path` | Print the resolved absolute path for a specified file or directory.  
  - `-e, --canonicalize-existing` all components of the path must exist.  
  - `-m, --canonicalize-missing` no path components need to exist or be a directory.  
  - `path` the path to resolve. |
| `rename path name` | Rename a file or directory in the current location.  
  - `path` is the path to the file system entry to be renamed.  
  - `name` is the new name of the file system entry. |
| `rm [-r, -R] path` | Remove files or directories.  
  - `-r, -R` specifies to recursively remove the files or directories.  
  - `-v` explain what is being done.  
  - `path` is the path to the file system entry to be removed. |
| `rmdir path` | Remove an empty directory or directories.  
  - `path` is the path to the directory to be removed. |
### Using DataStax Enterprise advanced functionality

#### DSEFS command

<table>
<thead>
<tr>
<th>Command</th>
<th>Description and command arguments</th>
</tr>
</thead>
</table>
| `stat file_or_dir [-v]` | Display the file system entry status.  
|                   |   • `file_or_dir` is the file system.  
|                   |   • `-v` to print verbose detailed information about the file status.                               |
| `truncate file`  | Truncate a file to 0 bytes. Useful for retaining the metadata for the file.  
|                   |   • `file` is the file to truncate.                                                                 |
| `umount [-f] locations` | Unmount file system storage locations.  
|                   |   • `-f` to force unmounting, even if the location is unavailable.  
|                   |   • `locations` is the UUID (Universal Unique Identifier) of UUIDs of the locations to umount. Get the UUID from the `df` command. |

### Removing a DSEFS node

When removing a node running DSEFS from a DSE cluster, additional steps are needed to ensure proper correctness within the DSEFS data set.

1. From a node in the same datacenter as the node to be removed, start the DSEFS shell.

   ```
 $ dse fs
   ```

2. Show the current DSEFS nodes with the `df` command.

   ```
 dsefs > df
   ```

<table>
<thead>
<tr>
<th>Location</th>
<th>Status</th>
<th>DC</th>
<th>Rack</th>
<th>Host</th>
</tr>
</thead>
<tbody>
<tr>
<td>144e587c-11b1-4d74-80f7-dc5e0c744aca</td>
<td>up</td>
<td>GraphAnalytics</td>
<td>rack1</td>
<td>node1.example.com 10.200.179.38 5598 /var/lib/dsefs/data 0 29289783296 5368709120</td>
</tr>
<tr>
<td>98ca0435-fb36-4344-b5b1-8d776d35c7d6</td>
<td>up</td>
<td>GraphAnalytics</td>
<td>rack1</td>
<td>node2.example.com 10.200.179.39 5598 /var/lib/dsefs/data 0 29302099968 5368709120</td>
</tr>
</tbody>
</table>

3. Find the node to be removed in the list and note the UUID value for it under the Location column.

4. If the node is up, unmount it from DSEFS with the command `umount UUID`.

5. If the node is not up (for example, after a hardware failure), force unmount it from DSEFS with the command `umount -f UUID`.

6. Continue with the normal steps for removing a node (page 1305).
Using DataStax Enterprise advanced functionality

Examples

Using the DSEFS shell, these commands put the local bluefile to the remote DSEFS greenfile:

```
dsefs / > ls -l

dsefs / > put file:/bluefile greenfile
```

To view the new file in the DSEFS directory:

```
dsefs / > ls -l
```

<table>
<thead>
<tr>
<th>Type</th>
<th>Permission</th>
<th>Owner</th>
<th>Group</th>
<th>Length</th>
<th>Modified</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>file</td>
<td>rwxrwxrwx</td>
<td>none</td>
<td>none</td>
<td>17</td>
<td>2016-05-11 09:34:26+0000</td>
<td>greenfile</td>
</tr>
</tbody>
</table>

Using the dse command, these commands create the test2 directory and upload the local README.md file to the new DSEFS directory.

```
$ dse fs "mkdir /test2" &&
 dse fs "put README.md /test2/README.md"
```

To view the new directory listing:

```
$ dse fs "ls -l /test2"
```

<table>
<thead>
<tr>
<th>Type</th>
<th>Permission</th>
<th>Owner</th>
<th>Group</th>
<th>Length</th>
<th>Modified</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>file</td>
<td>rwxrwxrwx</td>
<td>none</td>
<td>none</td>
<td>3382</td>
<td>2016-03-07 23:20:34+0000</td>
<td>README.md</td>
</tr>
</tbody>
</table>

You can use two or more dse commands in a single command line. This is faster because the JVM is launched and connected/disconnected with DSEFS only once. For example:

```
$ dse fs "mkdir / test2" "put README.md /test/README.md"
```

DSEFS compression

DSEFS is able to compress files to save storage space and bandwidth. Compression is performed by DSE during upload upon a user’s explicit request. Decompression is transparent. Data is always uncompressed by the server before it is returned to the client.

Compression is performed within block boundaries. The unit of compression—the chunk of data that gets compressed individually—is called a frame and its size can be specified during file upload.

Encoders

DSEFS is shipped with the lz4 encoder which works out of the box.
Compression

To compress files use the `-c` or `--compression-encoder` parameter for `put` or `cp` (page 406) command. The parameter specifies the compression encoder to use for the file that is about to be uploaded.

```
dsefs / > put -c lz4 file /path/to/file
```

The frame size can optionally be set with the `-f`, `--compression-frame-size` option.

The maximum frame size in bytes is set in the `compression_frame_max_size` option in `dse.yaml`. If a user sets the frame size to a value greater than `compression_frame_max_size` when using `put -f` an error will be thrown and the command will fail. Modify the `compression_frame_max_size` setting based on the available memory of the node.

Files that are compressed can be appended in the same way as uncompressed files. If the file is compressed the appended data gets transparently compressed with the file’s encoder specified for the initial `put` operation.

Directories can have a default compression encoder specified during directory creation with the `mkdir` (page 409) command. Newly added files with the `put` command inherit the default compression encoder from containing directory. You can override the default compression encoder with the `c` parameter during `put` operations.

```
dsefs / > mkdir -c lz4 /some/path
```

Decompression

Decompression is performed automatically for all commands that transport data to the client. There is no need for additional configuration to retrieve the original, decompressed file content.

Storage space

Enabling compression creates a distinction between the logical and physical file size.

The logical size is the size of a file before uploading it to DSEFS, where it is then compressed. The logical size is shown by the `stat` (page 406) command under Size.

```
dsefs dsefs://10.0.0.1:5598/ > stat /tmp/wikipedia-sample.bz2
FILE dsefs://10.0.0.1:5598/tmp/wikipedia-sample.bz2:
 Owner none
 Group none
 Permission rwxrwxrwx
 Created 2017-04-06 20:06:21+0000
 Modified 2017-04-06 20:06:21+0000
 Accessed 2017-04-06 20:06:21+0000
 Size 7723180
 Block size 67108864
 Redundancy 3
```
Using DataStax Enterprise advanced functionality

Compressed	true
Encrypted	false
Comment	

The physical size is the actual size of a data stored on the storage device. The physical size is shown by the `df (page 406)` command and by the `stat -v` command for each block separately, under the Compressed length column.

**Limitations**

Truncating compressed files is not possible.

**dse.yaml**

The location of the `dse.yaml` file depends on the type of installation:

<table>
<thead>
<tr>
<th>Package installations</th>
<th>/etc/dse/dse.yaml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer-Services installations</td>
<td></td>
</tr>
<tr>
<td>Tarball installations</td>
<td><code>installation_location/</code> resources/dse/conf/dse.yaml</td>
</tr>
<tr>
<td>Installer-No Services installations</td>
<td></td>
</tr>
</tbody>
</table>

**DSEFS authentication**

DSEFS works with secured DataStax Enterprise clusters.

**DSEFS authentication with secured clusters**

Authentication is required only when it is enabled in the cluster. DSEFS on secured clusters requires the `DseAuthenticator`, see Configuring DSE Unified Authentication. Authentication is off by default.

DSEFS authentication with the DSE Unified Authentication supports authentication using any combination of DSE Unified Authentication and LDAP pass-through authentication. DSEFS doesn't support Kerberos directly, but will allow users to authenticate with a delegation token using the Digest MD5 authentication protocol. A delegation token is always generated for Spark applications when they are used with Kerberos, and Spark applications are configured to use that token to authenticate the DSEFS client with DSE.

DSEFS authentication applies only to communication between the DSEFS client and the DSEFS server.

**Spark applications**

For Spark applications, provide authentication credentials in one of these ways:

- Set with the `dse spark-submit` command:

  ```
 dse -u username -p password spark-submit
  ```

  Or preferably use the equivalent environment variables for the username and password.
• Programmatically set the user credentials in the Spark configuration object before the SparkContext is created:

```java
conf.set("spark.hadoop.com.datastax.bdp.fs.client.authentication.basic.username", <user>)
conf.set("spark.hadoop.com.datastax.bdp.fs.client.authentication.basic.password", <pass>)
```

If a Kerberos authentication token is in use, you do not need to set any properties in the context object. If you need to explicitly set the token, set the `spark.hadoop.cassandra.auth.token` property.

• When running the Spark Shell, where the SparkContext is created at startup, set the properties in the Hadoop configuration object:

```java
sc.hadoopConfiguration.set("com.datastax.bdp.fs.client.authentication", "basic")
sc.hadoopConfiguration.set("com.datastax.bdp.fs.client.authentication.basic.username", <user>)
sc.hadoopConfiguration.set("com.datastax.bdp.fs.client.authentication.basic.password", <pass>)
```

Note the absence of the `spark.hadoop` prefix.

• When running a Spark application or the Spark Shell, provide properties in the Hadoop XML configuration file. For example, in `/usr/local/lib/dse/resources/hadoop2-client/conf/core-default.xml`:

```xml
<property>
 <name>com.datastax.bdp.fs.client.authentication</name>
 <value>basic</value>
</property>
<property>
 <name>com.datastax.bdp.fs.client.authentication.basic.username</name>
 <value>username</value>
</property>
<property>
 <name>com.datastax.bdp.fs.client.authentication.basic.password</name>
 <value>password</value>
</property>
```

Optional: If you want to use this method, but do not have privileges to write to dse-core-default.xml, copy this file to any location `path` and set the environment variable to point to the file with:
Using DataStax Enterprise advanced functionality

```bash
export HADOOP2_CONF_DIR=path
```

**DSEFS authorization**

DSEFS authorization verifies user and group permissions on files and directories stored in DSEFS.

DSEFS authorization is disabled by default. It requires no configuration, it is automatically enabled along with DSE authorization (page 236).

On this page:
- Owners, groups, and permissions (page 418)
- DSEFS superusers (page 419)
- DSEFS users (page 419)
- Authorization transitional mode (page 420)

**Owners, groups, and permissions**

In unsecured clusters with DSEFS authentication disabled all newly created files and directories are created with the owner set to `none`, group set to `none`. In unsecured clusters every DSEFS user has full access to every file and directory.

```bash
dsefs dsefs://127.0.0.1:5598/ > ls -l
```

<table>
<thead>
<tr>
<th>Type</th>
<th>Permission</th>
<th>Owner</th>
<th>Group</th>
<th>Length</th>
<th>Modified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>dir</td>
<td>rwxrwxrwx</td>
<td>none</td>
<td>none</td>
<td>2016-12-01</td>
</tr>
<tr>
<td></td>
<td>15:50:49+0100</td>
<td>some_dir</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In secured clusters with DSEFS authentication enabled all newly created files and directories are created with owner set the authenticated user’s username and group set to authenticated user primary role. See the CQL roles documentation for detailed information on user roles. File and directory permissions can be specified during creation as a parameter for the put and mkdir commands. Please use help put or help mkdir for details.

```bash
dsefs dsefs://127.0.0.1:5598/ > ls -l
```

<table>
<thead>
<tr>
<th>Type</th>
<th>Permission</th>
<th>Owner</th>
<th>Group</th>
<th>Length</th>
<th>Modified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>dir</td>
<td>rwxr-x---</td>
<td>john</td>
<td>admin</td>
<td>2016-12-02</td>
</tr>
<tr>
<td></td>
<td>15:52:54+0100</td>
<td>other_dir</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To change the owner or group of an existing file or directory use chown or chgrp commands. Please use help chown or help chgrp for details.

DSEFS by default creates directories with rwxr-xr-x (octal 755) permissions and files with rw-r-r- (octal 644). To change the permissions of an existing file or directory use the chmod command. Please use help chmod for details.
DSEFS superusers

A DSEFS user is a superuser if and only if the user is a database superuser. Superusers are allowed to read and write every file and directory stored in DSEFS. Only superusers are allowed to execute DSEFS maintenance operations like `fsck` and `umount`.

DSEFS users

User access is verified against:

- Owner permissions if the file or directory owner name is equal to the authenticated user’s username.
- Group permissions if the file or directory group belongs to the authenticated user’s groups. Groups are mapped from the database’s user role names.
- Other permissions if the above conditions are false.

Each DSEFS command (page 406) requires its own set of permissions. For a given path `a/b/c`, `c` is a leaf and `a/b` is a parent path. The following table shows what permissions must be present for the given operation to succeed. `R` indicates read, `W` indicates write, and `X` indicates execute privileges.

<table>
<thead>
<tr>
<th>Command</th>
<th>Path checked</th>
<th>Parent path permissions</th>
<th>Leaf permissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>append a/b/c</td>
<td>a/b/c</td>
<td>X</td>
<td>W</td>
</tr>
<tr>
<td>cat a/b/c</td>
<td>a/b/c</td>
<td>X</td>
<td>R</td>
</tr>
<tr>
<td>cd a/b/c</td>
<td>a/b/c</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>chgrp</td>
<td>same as in chown for group</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>chmod a/b/c</td>
<td>a/b/c</td>
<td>X</td>
<td>The user must be the owner.</td>
</tr>
<tr>
<td>chown a/b/c</td>
<td>a/b/c</td>
<td>X</td>
<td>Only superusers can change the owner. To change the group the user needs to be a member of the target group or be a superuser.</td>
</tr>
<tr>
<td>cp</td>
<td>same as in get and than put</td>
<td></td>
<td></td>
</tr>
<tr>
<td>expand a/?/c</td>
<td>a/?/c</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Using DataStax Enterprise advanced functionality

<table>
<thead>
<tr>
<th>Command</th>
<th>Path checked for permissions</th>
<th>Parent path permissions</th>
<th>Leaf permissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>get a/b/c</td>
<td>a/b/c</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>ls a/b/c</td>
<td>a/b/c</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>mkdir a/b/c</td>
<td>a/b</td>
<td></td>
<td>WX</td>
</tr>
<tr>
<td>mv a/b/c d/e/f</td>
<td>a/b and d/e</td>
<td>X</td>
<td>WX</td>
</tr>
<tr>
<td>put a/b/c</td>
<td>a/b</td>
<td></td>
<td>WX</td>
</tr>
<tr>
<td>realpath a/b/c</td>
<td>a/b/c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rename a/b/c d</td>
<td>a/b</td>
<td>X</td>
<td>WX</td>
</tr>
<tr>
<td>rm a/b/c</td>
<td>a/b</td>
<td></td>
<td>WX</td>
</tr>
<tr>
<td>rmdir a/b/c</td>
<td>a/b</td>
<td></td>
<td>WX</td>
</tr>
<tr>
<td>stat a/b/c</td>
<td>a/b/c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>truncate a/b/c</td>
<td>a/b/c</td>
<td></td>
<td>W</td>
</tr>
</tbody>
</table>

Authorization transitional mode

DSEFS authorization supports transitional mode (page 236) provided by DSEAuthorizer. Legacy authorizers, like TransitionalAuthorizer, are not supported. DSE will not start if unsupported authorizer is configured and error is reported in log messages.

Using the DSEFS REST interface

DSEFS provides a REST interface that implements the commands from WebHDFS.

The REST interface is enabled on all DSE nodes running DSEFS. It is available at the following base URI: http://node hostname or IP address:5598/webhdfs/v1

For example from a terminal using the curl command:

```bash
$ curl -L -X PUT 'localhost:5598/webhdfs/v1/fs/a/b/c/d/e?op=MKDIRS'
$ curl -L -X PUT -T logfile.txt '127.0.0.1:5598/webhdfs/v1/fs/log?op=CREATE&overwrite=true&blocksize=50000&rf=1'
$ curl -L -X POST logfile.txt 'localhost:5598/webhdfs/v1/fs/log?op=APPEND'
```

Or from the DSE Spark shell:
Using DataStax Enterprise advanced functionality

```scala
val rdd1 = sc.textFile("webhdfs://localhost:5598/webhdfs/v1/fs/log")
```

### Copying data from CFS to DSEFS

Use the `dse hadoop fs -cp` command to copy data from CFS to DSEFS. This command works recursively.

1. If necessary, create the new location for the data in DSEFS.
   ```bash
 $ dse hadoop fs -mkdir dsefs:///test
   ```

2. Copy the data from CFS to DSEFS.
   ```bash
 $ dse hadoop fs -cp cfs://hostname/test/* dsefs:///test
   ```

3. Verify that the data exists in the new DSEFS location using `dse hadoop fs -ls`.
   ```bash
 $ dse hadoop fs -ls dsefs:///test
 Found 2 items
 drwxrwxrwx - none none 0 2016-11-23 19:02 dsefs:///test/a
 drwxrwxrwx - none none 0 2016-11-23 19:02 dsefs:///test/b
   ```

### Programmatic access to DSEFS

DSEFS can be accessed programmatically from an application by obtaining DSEFS’s implementation of Hadoop’s `FileSystem` interface.

DSE includes a demo project with simple applications that demonstrate how to acquire, configure, and use this implementation. The demo project demonstrates reading, writing and connecting to a secured DSEFS using the API. The demo is located in the `dsefs` directory under the `demos` directory.

The default location of the `demos` directory depends on the type of installation:
- Package installations and Installer-Services: `/usr/share/dse/demos`
- Tarball installations and Installer-No Services: `installation_location/demos`

The [README.md](#) has instructions on building and running the demo applications.

### Hadoop FileSystem interface implemented by DseFileSystem

The `DseFileSystem` class has partial support of the Hadoop `FileSystem` interface. The following table outlines which methods have been implemented.
Table 42: Methods of Hadoop FileSystem interface implemented by DseFileSystem

<table>
<thead>
<tr>
<th>Method</th>
<th>Status</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>getScheme()</td>
<td>#</td>
<td>since 5.0.12, 5.1.6</td>
</tr>
<tr>
<td>getURI()</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>getName()</td>
<td>#</td>
<td>default, deprecated</td>
</tr>
<tr>
<td>getDefaultPort()</td>
<td>#</td>
<td>since 5.0.12, 5.1.6</td>
</tr>
<tr>
<td>makeQualified(Path)</td>
<td>#</td>
<td>default</td>
</tr>
<tr>
<td>getDelegationToken(String)</td>
<td>#</td>
<td>returns null</td>
</tr>
<tr>
<td>addDelegationTokens(String, Credentials)</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>collectDelegationTokens(...)</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>getChildFileSystems()</td>
<td>#</td>
<td>default, returns null</td>
</tr>
<tr>
<td>getFileBlockLocations(FileStatus, long, long)</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>getFileBlockLocations(Path, long, long)</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>getServerDefaults()</td>
<td>#</td>
<td>default, deprecated</td>
</tr>
<tr>
<td>getServerDefaults(Path)</td>
<td>#</td>
<td>default</td>
</tr>
<tr>
<td>resolvePath(Path)</td>
<td>#</td>
<td>default</td>
</tr>
<tr>
<td>open</td>
<td>#</td>
<td>all variants, buffer size not supported</td>
</tr>
<tr>
<td>create</td>
<td>#</td>
<td>all variants, checksum options, progress reporting and APPEND, NEW_BLOCK flags not supported</td>
</tr>
<tr>
<td>createNonRecursive</td>
<td>#</td>
<td>all variants</td>
</tr>
<tr>
<td>createNewFile</td>
<td>#</td>
<td>default</td>
</tr>
<tr>
<td>append</td>
<td>#</td>
<td>all variants, progress reporting not supported</td>
</tr>
<tr>
<td>concat</td>
<td>#</td>
<td>since 5.0.12, 5.1.6</td>
</tr>
<tr>
<td>getReplication(Path)</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td>Status</td>
<td>Comment</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>--------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>setReplication(Path, short)</td>
<td>#</td>
<td>does nothing</td>
</tr>
<tr>
<td>rename</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>truncate(Path, long)</td>
<td>#</td>
<td>since 5.0.12, 5.1.6</td>
</tr>
<tr>
<td>delete(Path)</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>delete(Path, boolean)</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>deleteOnExit(Path)</td>
<td>#</td>
<td>default</td>
</tr>
<tr>
<td>cancelDeleteOnExit(Path)</td>
<td>#</td>
<td>default</td>
</tr>
<tr>
<td>exists(Path)</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>isDirectory(Path)</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>isFile(Path)</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>getLength(Path)</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>getContentSummary(Path)</td>
<td>#</td>
<td>default</td>
</tr>
<tr>
<td>listStatus</td>
<td>#</td>
<td>all variants</td>
</tr>
<tr>
<td>listCorruptFileBlocks(Path)</td>
<td>#</td>
<td>throws</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UnsupportedOperationException</td>
</tr>
<tr>
<td>globStatus</td>
<td>#</td>
<td>default</td>
</tr>
<tr>
<td>listLocatedStatus</td>
<td>#</td>
<td>default</td>
</tr>
<tr>
<td>listStatusIterator</td>
<td>#</td>
<td>default</td>
</tr>
<tr>
<td>listFiles</td>
<td>#</td>
<td>default</td>
</tr>
<tr>
<td>getHomeDirectory()</td>
<td>#</td>
<td>default</td>
</tr>
<tr>
<td>getWorkingDirectory()</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>setWorkingDirectory()</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>getInitialWorkingDirectory()</td>
<td>#</td>
<td>default, returns null</td>
</tr>
<tr>
<td>mkdirs</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td>Status</td>
<td>Comment</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--------</td>
<td>----------------------------------------------</td>
</tr>
<tr>
<td>copyFromLocalFile</td>
<td>#</td>
<td>default</td>
</tr>
<tr>
<td>moveFromLocalFile</td>
<td>#</td>
<td>default</td>
</tr>
<tr>
<td>copyToLocalFile</td>
<td>#</td>
<td>default</td>
</tr>
<tr>
<td>moveToLocalFile</td>
<td>#</td>
<td>default</td>
</tr>
<tr>
<td>startLocalOutput</td>
<td>#</td>
<td>default</td>
</tr>
<tr>
<td>close</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>getUsed</td>
<td>#</td>
<td>default, slow</td>
</tr>
<tr>
<td>getBlockSize</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>getDefaultBlockSize()</td>
<td>#</td>
<td>since 5.0.12, 5.1.6</td>
</tr>
<tr>
<td>getDefaultBlockSize(Path)</td>
<td>#</td>
<td>since 5.0.12, 5.1.6</td>
</tr>
<tr>
<td>getDefaultReplication()</td>
<td>#</td>
<td>since 5.0.12, 5.1.6</td>
</tr>
<tr>
<td>getDefaultReplication(Path)</td>
<td>#</td>
<td>since 5.0.12, 5.1.6</td>
</tr>
<tr>
<td>getFileStatus(Path)</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>access(Path, FsAction)</td>
<td>#</td>
<td>default</td>
</tr>
<tr>
<td>createSymLink</td>
<td>#</td>
<td>throws IOException</td>
</tr>
<tr>
<td>getFileLinkStatus</td>
<td>#</td>
<td>default, same as getFileStatus</td>
</tr>
<tr>
<td>supportsSymLinks</td>
<td>#</td>
<td>returns false</td>
</tr>
<tr>
<td>getLinkTarget</td>
<td>#</td>
<td>throws IOException</td>
</tr>
<tr>
<td>resolveLink</td>
<td>#</td>
<td>throws IOException</td>
</tr>
<tr>
<td>getFileChecksum</td>
<td>#</td>
<td>returns null</td>
</tr>
<tr>
<td>setVerifyChecksum</td>
<td>#</td>
<td>does nothing</td>
</tr>
<tr>
<td>setWriteChecksum</td>
<td>#</td>
<td>does nothing</td>
</tr>
<tr>
<td>getStatus</td>
<td>#</td>
<td>default, returns incorrect default data</td>
</tr>
<tr>
<td>setPermission</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>setOwner</td>
<td>#</td>
<td></td>
</tr>
</tbody>
</table>
Using JMX to read DSEFS metrics

DSEFS reports status and performance metrics through JMX in the domain `com.datastax.bdp:type=dsefs`. This page describes the classes exposed in JMX.

dse.yaml
The location of the `dse.yaml` file depends on the type of installation:

<table>
<thead>
<tr>
<th>Method</th>
<th>Status</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>setTimes</td>
<td>#</td>
<td>does nothing</td>
</tr>
<tr>
<td>createSnapshot</td>
<td>#</td>
<td>throws UnsupportedOperationException</td>
</tr>
<tr>
<td>renameSnapshot</td>
<td>#</td>
<td>throws UnsupportedOperationException</td>
</tr>
<tr>
<td>deleteSnapshot</td>
<td>#</td>
<td>throws UnsupportedOperationException</td>
</tr>
<tr>
<td>modifyAclEntries</td>
<td>#</td>
<td>throws UnsupportedOperationException</td>
</tr>
<tr>
<td>removeAclEntries</td>
<td>#</td>
<td>throws UnsupportedOperationException</td>
</tr>
<tr>
<td>removeDefaultAcl</td>
<td>#</td>
<td>throws UnsupportedOperationException</td>
</tr>
<tr>
<td>removeAcl</td>
<td>#</td>
<td>throws UnsupportedOperationException</td>
</tr>
<tr>
<td>setAcl</td>
<td>#</td>
<td>throws UnsupportedOperationException</td>
</tr>
<tr>
<td>getAclStatus</td>
<td>#</td>
<td>throws UnsupportedOperationException</td>
</tr>
<tr>
<td>setXAttr</td>
<td>#</td>
<td>throws UnsupportedOperationException</td>
</tr>
<tr>
<td>getXAttr</td>
<td>#</td>
<td>throws UnsupportedOperationException</td>
</tr>
<tr>
<td>getXAttrs</td>
<td>#</td>
<td>throws UnsupportedOperationException</td>
</tr>
<tr>
<td>listXAttrs</td>
<td>#</td>
<td>throws UnsupportedOperationException</td>
</tr>
<tr>
<td>removeXAttr</td>
<td>#</td>
<td>throws UnsupportedOperationException</td>
</tr>
<tr>
<td>Package installations</td>
<td>/etc/dse/dse.yaml</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>Installer-Services installations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tarball installations</td>
<td>installation_location/</td>
<td></td>
</tr>
<tr>
<td>Installer-No Services installations</td>
<td>resources/dse/conf/dse.yaml</td>
<td></td>
</tr>
</tbody>
</table>

**Location**

Location metrics provide information about each DSEFS location status. There is one set of Location metrics for each DSEFS location. Every DSE node knows about all locations, so connect to any node to get the full status of the cluster. The following gauges are defined:

- **directory**
  - Path to the directory where DSEFS data is stored. This is a constant value configured in dse.yaml.

- **estFreeSpace**
  - Estimated amount of free space on the device where the storage directory is located, in bytes. This value is refreshed periodically, so if you need an up-to-date value, read the BlockStore.freeSpace metric.

- **estUsedSpace**
  - Estimated amount of space used by the contents of the storage directory, in bytes. This value is refreshed periodically, so if you need an up-to-date value, read the BlockStore.usedSpace metric.

- **minFreeSpace**
  - Amount of reserved space in bytes. Configured statically in dse.yaml.

- **privateAddress**
  - IP and port of the endpoint for DSEFS internode communication.

- **publicAddress**
  - IP and port of the endpoint for DSEFS clients.

- **readOnly**
  - Returns true if the location is in read-only mode.

- **status**
  - One of the following values: up, down, unavailable. If the location is up, the location is fully operational and this node will attempt to read or write from it. If the location is down, the location is on a node that has been gracefully shut down by the administrator and no reads or writes will be attempted. If the location is unavailable, this node has problems with communicating with that location, and the real status is unknown. This node will check the status periodically.

- **storageWeight**
  - How much data relative to other locations will be stored in this location. This is a static value configured in dse.yaml.

**BlockStore**

BlockStore metrics report how fast and how much data is being read/written by the data layer of the DSEFS node. They are reported only for the locations managed by the node to which you connect with JMX. In order to get metrics information for all the locations in the cluster, you need to individually connect to all nodes with DSEFS.
blocksDeleted
How many blocks are deleted, in blocks per second.

blocksRead
Read accesses in blocks per second.

blocksWritten
Writes in blocks per second.

bytesDeleted
How fast data is removed, in bytes per second.

bytesRead
How fast data is being read, in bytes per second.

bytesWritten
How fast data is written, in bytes per second.

readErrors
The total count and rate of read errors (rate in errors per second).

writeErrors
The total count and rate of write errors (rate in errors per second).

directory
The path to the storage directory of this location.

freeSpace
How much space is left on the device in bytes.

usedSpace
Estimated amount of space used by this location in bytes.

RestServer

RestServer reports metrics related to the communication layer of DSEFS, separately for internode traffic and clients. Each set of these metrics is identified by a scope of the form: *listen address:*listen port. By default port 5598 is used for clients, and port 5599 is for internode communication.

connectionCount
The current number of open inbound connections.

connectionRate
The total rate and count of connections since the server was started.

requestRate
deleteRate
getRate
postRate
putRate
The total rate and number of requests, respectively: all, DELETE, GET, POST, and PUT requests.

downloadBytesRate
Throughput in bytes per second of the transfer from server to client.

uploadBytesRate
Throughput in bytes per second of the transfer from client to server.

responseTime
The time that elapses from receiving the full request body to the moment the server starts sending out the response.

uploadTime
Using DataStax Enterprise advanced functionality

- **downloadTime**: The time it takes to read the request body from the client.
- **responseTime**: The time it takes to send the response body to the client.
- **errors**: A counter which is increased every time the service handling the request throws an unexpected error. Errors are not increased by errors handled by the service logic. For example, file not found errors do not increment.

**CassandraClient**

CassandraClient reports metrics related to the communication layer between DSEFS and the database.

- **responseTime**: Tracks the response times of database queries.
- **errors**: A counter increased by query execution errors (for example, timeout errors).

### About the Cassandra File System (CFS) - deprecated

Analytics jobs require a distributed file system. DataStax Enterprise provides a replacement for the Hadoop Distributed File System (HDFS) called the Cassandra File System (CFS). See also the DataStax Enterprise file system (DSEFS (page 398)). DSEFS is the default distributed file system on DSE Analytics nodes.

When an analytics node starts up with CFS enabled, DataStax Enterprise creates a CFS rooted at `cfs:/` and an archive file system named `cfs-archive`, which is rooted at `cfs-archive:/`. CFS is available only on analytics nodes. DataStax Enterprise creates a keyspace for the `cfs-archive` file system, and every other CFS file system. The keyspace name is similar to the file system name except the hyphen in the name is replaced by an underscore. For example, the `cfs-archive` file system keyspace is `cfs_archive`.

CFS locations must be specified using the `cfs:/` prefix and the hostname of an analytics node. For example, `cfs://node2/tmp`.

#### Increasing the replication factor of default CFS keyspaces

You must increase the replication factor of default CFS keyspaces to prevent problems when running analytics jobs.

#### Encrypting CFS keyspace data

Spark accesses the Cassandra File System (CFS) as part of the Hadoop File System (HDFS) using the configured authentication. If you encrypt the CFS keyspace sblocks and inode tables, all CFS data is encrypted.

#### Configuring a CFS superuser

A CFS superuser is the DataStax Enterprise daemon user, the user who starts DataStax Enterprise. A Cassandra superuser, set up using the CQL `CREATE ROLE` command, is also a CFS superuser.
A CFS superuser can modify files in the CFS without any restrictions. Files that a superuser adds to the CFS are password-protected.

Deleting files from the CFS

DSE does not immediately remove deleted data from disk when you use the `dse hadoop fs -rm file` command. Instead, DSE treats the deleted data like any data that is deleted from the database. A tombstone is written to indicate the new data status. Data that is marked with a tombstone exists for a configured time period (defined by the `gc_grace_seconds` value that is set on the table). When the grace period expires, the compaction process permanently deletes the data. You do not have to manually remove expired data.

Checkpointing with the CFS

DataStax Enterprise does not support checkpointing to CFS.

Managing the CFS consistency level

The default read and write consistency level for CFS is `LOCAL_QUORUM` or `QUORUM`, depending on the keyspace replication strategy, `SimpleStrategy` or `NetworkTopologyStrategy`, respectively. You can change the consistency level by specifying a value for `dse.consistencylevel.read` and `dse.consistencylevel.write` properties in the `core-site.xml` file.

Setting CFS as the default distributed file system in DataStax Enterprise

DSEFS is the default distributed file system.

To make CFS the default file system, add the following properties to the `core-site.xml` Hadoop configuration file:

```xml
<configuration>
 ...
 <property>
 <name>fs.default.name</name>
 <value>cfs://127.0.0.1/</value>
 </property>
 <property>
 <name>fs.defaultFS</name>
 <value>cfs://127.0.0.1/</value>
 </property>
</configuration>
```

Replace 127.0.0.1 with the value of `broadcast_rpc_address` set in `cassandra.yaml`.

Using multiple Cassandra File Systems

You can use more than one CFS. Typical reasons for using an additional CFS are:

- To isolate analytics jobs
- To configure keyspace replication by job
- To segregate file systems in different physical datacenters
Using DataStax Enterprise advanced functionality

- To separate analytics data in some other way

To create an additional CFS:

1. Open the core-site.xml file for editing.

2. Add one or more property elements to core-site.xml using this format:

   ```xml
 <property>
 <name>fs.cfs-file_system_name.impl</name>
 <value>com.datastax.bdp.hadoop.cfs.CassandraFileSystem</value>
 </property>
   ```

   With multiple CFS, you must override the default file system name for the newly created CFS to avoid conflicts with existing CFS on other datacenters. Each datacenter requires a unique default file system. For example, instead of the default value `cfs://127.0.0.1/`, specify a unique file system name for the new CFS, like `cfs-myfs://127.0.0.1/`:

   ```xml
 <property>
 <name>fs.cfs-myfs.impl</name>
 <value>com.datastax.bdp.hadoop.cfs.CassandraFileSystem</value>
 </property>
 <property>
 <name>fs.default.name</name>
 <value>cfs-myfs://127.0.0.1/</value>
 </property>
   ```

3. Save the file and restart DSE.

   DataStax Enterprise creates the new CFS.

4. To access the new CFS, construct a URL using the following format:

   `cfs-file_system_name:path`

   For example, assuming the new file system name is `NewCassandraFS` use the to put data on the new CFS.

   ```bash
 dse hadoop fs -put /tmp/giant_log.gz cfs-NewCassandraFS://hostname/tmp &
 dse hadoop fs distcp hdfs:/// cfs-NewCassandraFS://hostname/
   ```
DSE Search

DSE Search allows you to quickly find data and provide a modern search experience for your users, helping you create features like product catalogs, document repositories, ad-hoc reporting engines, and more.

Because DataStax Enterprise is a cohesive data management platform, other workloads such as DSE Graph (page 561), DSE Analytics and Search integration (page 295), and DSE Analytics (page 293) can take full advantage of the indexing and query capabilities of DSE Search.

About DSE Search

DSE Search is an integral part of the always-on DataStax Enterprise (DSE) data platform. DSE Search simplifies using search applications for data stored in a database. DSE Search allows you to quickly find data and provide a modern search experience for your users, helping you create features like product catalogs, document repositories, ad-hoc reporting engines, and more. See DSE Search architecture.

Because DataStax Enterprise is a cohesive data management platform, other workloads such as DSE Graph (page 561), DSE Analytics and Search integration (page 295), and DSE Analytics (page 293) can take full advantage of the indexing and query capabilities of DSE Search.

DSE Search integrates Apache Solr™ 6.0.1 to manage search indexes with a persistent store.

The benefits of running enterprise search functions through DataStax Enterprise and DSE Search include:

- DSE Search is backed by a scalable database.
- A persistent store for search indexes.
- A fully fault-tolerant, no-single-point-of-failure search architecture across multiple datacenters.
- Add search capacity just like you add capacity in the DSE database.
- Set up replication for DSE Search nodes the same way as other nodes by creating a keyspace or changing the replication factor of a keyspace to optimize performance.
- DSE Search has two indexing modes: Near-real-time (NRT) and live indexing, also called real-time (RT) indexing. Configure and tune DSE Search for maximum indexing throughput.
- Near real-time query capabilities.
- TDE encryption of DSE Search data, including search indexes and commit logs.
- CQL index management commands (page 461) simplify search index management.
- Local node (optional) management of search indexing resources with dsetool (page 445) commands.
Using DataStax Enterprise advanced functionality

- Read/write to any DSE Search node and automatically index stored data.
- Examine and aggregate real-time data using CQL.
- Fault-tolerant queries, efficient deep paging (page 507), and advanced search node resiliency.
- Virtual nodes (vnodes) (page 290) support.
- Set the location of the search index.
- Using CQL, DSE Search supports partial document updates that enable you to modify existing information while maintaining a lower transaction cost.
- Supports indexing and querying of advanced data types, including tuples and User-defined type (UDT).
- Supports all Solr tools and APIs, with several specific unsupported features (page 433).

Solr resources

Resources for more information on using Open Source Solr (OSS):
- Apache Solr documentation
- Solr Tutorial on Apache Lucene site
- Comma-Separated-Values (CSV) file importer
- JSON importer
- Solr cell project, including a tool for importing data from PDFs

DSE Search versus Open Source Apache Solr™

By virtue of its integration into DataStax Enterprise, differences exist between DSE Search and Open Source Solr (OSS).

Major differences

<table>
<thead>
<tr>
<th>Capability</th>
<th>DSE Search</th>
<th>OS Solr</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Includes a database</td>
<td>yes</td>
<td>no</td>
<td>For OSS, create an interface to add a database.</td>
</tr>
<tr>
<td>Indexes real-time data</td>
<td>yes</td>
<td>no</td>
<td>Ingests real-time data and automatically indexes the data.</td>
</tr>
<tr>
<td>Provides an intuitive way to update data</td>
<td>yes</td>
<td>no</td>
<td>CQL for loading and updating data.</td>
</tr>
<tr>
<td>Supports data distribution</td>
<td>yes</td>
<td>yes [1]</td>
<td>Transparently distributes real-time, analytics, and search data to multiple nodes in a cluster.</td>
</tr>
<tr>
<td>Balances loads on nodes/shards</td>
<td>yes</td>
<td>no</td>
<td>Unlike Solr and Solr Cloud, DSE Search loads can be efficiently rebalanced.</td>
</tr>
<tr>
<td>Spans indexes over multiple datacenters</td>
<td>yes</td>
<td>no</td>
<td>A DSE cluster can have more than one datacenter for different types of nodes.</td>
</tr>
</tbody>
</table>
### Feature differences

DSE Search supports limiting queries by time by using the Solr `timeAllowed` parameter. DSE Search differs from native Solr:

- If the `timeAllowed` is exceeded, an exception is thrown.
- If the `timeAllowed` is exceeded, and the additional `shards.tolerant` parameter is set to true, the application returns the partial results collected so far.

When partial results are returned, the CQL custom payload contains the `DSESearch.isPartialResults` key.

### Unsupported features for DSE Search

Unsupported features include Apache Cassandra™ and Apache Solr™ features.

**Apache Solr™ and Apache Lucene® limitations**

Apache Solr and Lucene limitations apply to DSE Search. For example:

- The 2 billion records per node limitation as described in Lucene limitations.
- The 1024 maxBoolean clause limit in SOLR-4586.
- Solr field name policy applies to the indexed field names:
  
  # Every field must have a name.
  
  # Field names must consist of alphanumeric or underscore characters only.
  
  # Fields cannot start with a digit.
  
  # Names with both leading and trailing underscores (for example, `_version_`) are reserved.
**Note:** Non-compliant field names are not supported from all components. Backward compatibility is not guaranteed.

- Limitations and known Apache Solr issues apply to DSE Search queries. For example: incorrect `SORT` results for tokenized text fields.

**Unsupported Apache Cassandra features**

These limitations apply to DSE Search:

- Column aliases are not supported in solr_query queries.
- Continuous paging.
- Static columns
- **Compound primary keys** for **COMPACT STORAGE** tables
- Counter columns
- Super columns
- Thrift-compatible tables with column comparators other than UTF-8 or ASCII.
- PER PARTITION clause is not supported for DSE Search solr_query queries.
- Indexing frozen maps is not supported. However, indexing frozen sets and lists of native and user-defined (tuple/UDT) element types is supported.
- Using DSE Search with newly created COMPACT STORAGE tables is deprecated.

**Unsupported Apache Solr™ features**

These limitations apply to DSE Search:

- DSE Search does not support **Solr Managed Resources**.
- Solr schema fields that are both dynamic and multiValued only for CQL-based search indexes.
- The deprecated replaceFields request parameters on document updates for CQL-based search indexes. Instead, use the suggested procedure ([page 496](#)) for inserting/updating data.
- Block joins based on the Lucene BlockJoinQuery in search indexes and CQL tables.
- Schemaless mode.
- Partial schema updates through the REST API after search indexes are changed.

For example, to update individual fields of a schema using the REST API to add a new field to a schema, you must change the `schema.xml` file, upload it again, and reload the core (same for copy fields).

- org.apache.solr.spelling.IndexBasedSpellChecker and org.apache.solr.spelling.FileBasedSpellChecker

  Instead use org.apache.solr.spelling.DirectSolrSpellChecker for spell checking.

- The commitWithin parameter.
- The SolrCloud CloudSolrServer feature of SolrJ for endpoint discovery and round-robin load balancing.
• The DSE Search configurable SolrFilterCache does not support auto-warming.
• DSE Search does not support the duration Cassandra data type.
• SELECT statements with DISTINCT are not supported with solr_query.
• UnInvertedFieldRealtime field value cache.
• GetReplicationHandler: Store & Restore.
• useDocValuesAsStored in schema fields and as a query request parameter.
• Graph queriesSolr SQLStreaming aggregations.
• Data import handler.
• Tuple/UDT subfield sorting and faceting.
• The dataDir parameter in solrconfig.xml.

Deprecated Solr features

The Tika functionality that is bundled with Apache Solr is deprecated. Instead, use the stand-alone Apache Tika project.

Other unsupported features

• JBOD mode.
• The Solr updatelog is not supported in DSE Search.

  The commit log replaces the Solr updatelog. Consequently, features that require the updateLog are not supported. Instead of using atomic updates, partial document updates are available by running the update with CQL.

• CQL Solr queries do not support native functions or column aliases as selectors.
• RamDirectoryFactory or other non-persistent DirectoryFactory implementations.
• Tuple and UDT (page 481) limitations apply.

Configuring DSE Search

DSE Search reference

Reference information for DSE Search.

Search index config

Reference information to change query behavior for search indexes:

• DataStax recommends CQL CREATE SEARCH INDEX and ALTER SEARCH INDEX CONFIG commands.
• dsetool (page 445) commands can also be used to manage search indexes.

Changing search index config

To create and make changes to the search index config, follow these basic steps:

1. Create a search index. For example:
Using DataStax Enterprise advanced functionality

CREATE SEARCH INDEX ON demo.health_data;

2. Alter the search index. For example:

ALTER SEARCH INDEX CONFIG ON demo.health_data SET autoCommitTime = 30000;

3. Optionally view the XML of the pending search index. For example:

DESCRIBE PENDING SEARCH INDEX CONFIG on demo.health_data;

4. Make the pending changes active. For example:

RELOAD SEARCH INDEX ON demo.health_data;

Sample search index config

```xml
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<config>
 <abortOnConfigurationError>${solr.abortOnConfigurationError:true}</abortOnConfigurationError>
 <luceneMatchVersion>LUCENE_6_0_0</luceneMatchVersion>
 <dseTypeMappingVersion>2</dseTypeMappingVersion>
 <directoryFactory class="solr.StandardDirectoryFactory" name="DirectoryFactory"/>
 <indexConfig>
 <rt>false</rt>
 <rtOffheapPostings>true</rtOffheapPostings>
 <useCompoundFile>false</useCompoundFile>
 <ramBufferSizeMB>512</ramBufferSizeMB>
 <mergeFactor>10</mergeFactor>
 <reopenReaders>true</reopenReaders>
 <deletionPolicy class="solr.SolrDeletionPolicy">
 <str name="maxCommitsToKeep">1</str>
 <str name="maxOptimizedCommitsToKeep">0</str>
 </deletionPolicy>
 <infoStream file="INFOSTREAM.txt">false</infoStream>
 </indexConfig>
</config>
```
For CQL index management, use configuration element shortcuts with CQL commands.
Configuration elements are listed alphabetically by shortcut. The XML element is shown with the element start tag. An ellipsis indicates that other elements or attributes are not shown.

**autoCommitTime**
Defines the time interval between updates to the search index with the most recent data after an INSERT, UPDATE, or DELETE. By default, changes are automatically committed every 10000 milliseconds. To change the time interval between updates:

1. Set auto commit time on the pending search index:

   ```
 ALTER SEARCH INDEX CONFIG ON wiki.solr SET autoCommitTime = 30000;
   ```

2. You can view the pending search config:

   ```
 DESCRIBE PENDING SEARCH INDEX CONFIG on wiki.solr;
   ```

   The resulting XML shows the maximum time between updates is 30000 milliseconds:

   ```
 <updateHandler class="solr.DirectUpdateHandler2">
 <autoSoftCommit>
 <maxTime>30000</maxTime>
 </autoSoftCommit>
 </updateHandler>
   ```

3. To make the pending changes active, reload the search index:

   ```
 RELOAD SEARCH INDEX ON wiki.solr;
   ```

See Configuring and tuning indexing performance.

**defaultQueryField**
Name of the default field to query. Default not set. To set the field to use when no field is specified by the query, see Setting up default query field (page 464).

**directoryFactory**
The directory factory to use for search indexes. Encryption is enabled per search index. To enable encryption for a search index, change the class for directoryFactory to EncryptedFSDirectoryFactory.

1. Enable encryption on the pending search index:

   ```
 ALTER SEARCH INDEX CONFIG ON wiki.solr SET directoryFactory = EncryptedFSDirectoryFactory;
   ```

2. You can view the pending search config:
DESCRIBE PENDING SEARCH INDEX CONFIG on wiki.solr;

The resulting XML shows that encryption is enabled:

```xml
<directoryFactory class="solr.EncryptedFSDirectoryFactory"
 name="DirectoryFactory"/>
```

3. To make the pending changes active, reload the search index:

RELOAD SEARCH INDEX ON wiki.solr;

Even though additional properties are available to tune encryption, DataStax recommends using the default settings.

**filterCacheLowWaterMark**
Default is 1024 MB. See below.

**filterCacheHighWaterMark**
Default is 2048 MB.

The DSE Search configurable filter cache reliably bounds the filter cache memory usage for a search index. This implementation contrasts with the default Solr implementation which defines bounds for filter cache usage per segment. SolrFilterCache bounding works by evicting cache entries after the configured per search index (per core) high watermark is reached, and stopping after the configured lower watermark is reached.

**Note:**
- The filter cache is cleared when the search index is reloaded.
- SolrFilterCache does not support auto-warming.

SolrFilterCache defaults to offheap. In general, the larger the index is, then the larger the filter cache should be. A good default is 1 to 2 GB. If the index is 1 billion docs per node, then set to 4 to 5 GB.

1. To change cache eviction for a large index, set the low and high values one at a time:

```
ALTER SEARCH INDEX CONFIG ON solr.wiki SET
 filterCacheHighWaterMark = 5000;
```

```
ALTER SEARCH INDEX CONFIG ON solr.wiki SET
 filterCacheLowWaterMark = 2000;
```

2. View the pending search index config:

```xml
<query>
 ...
 <filterCache class="solr.SolrFilterCache"
 highWaterMarkMB="5000" lowWaterMarkMB="2000"/>
```
Using DataStax Enterprise advanced functionality

3. To make the pending changes active, reload the search index:

```
RELOAD SEARCH INDEX ON wiki.solr;
```

mergeFactor

When a new segment causes the number of lowest-level segments to exceed the merge factor value, then those segments are merged together to form a single large segment. When the merge factor is 10, each merge results in the creation of a single segment that is about ten times larger than each of its ten constituents. When there are 10 of these larger segments, then they in turn are merged into an even larger single segment. Default is 10.

1. To change the number of segments to merge at one time:

```
ALTER SEARCH INDEX CONFIG ON solr.wiki SET mergeFactor = 5;
```

2. View the pending search index config:

```
<indexConfig>
 ...
 <mergeFactor>10</mergeFactor>
 ...
</indexConfig>
```

3. To make the pending changes active, reload the search index:

```
RELOAD SEARCH INDEX ON wiki.solr;
```

mergeMaxThreadCount

Must configure with mergeMaxMergeCount. The number of concurrent merges that Lucene can perform for the Solr core. The default mergeScheduler settings are set automatically. Do not adjust this setting.

mergeMaxMergeCount

Must configure with mergeMaxThreadCount. The number of pending merges (active and in the backlog) that can accumulate before segment merging starts to block/throttle incoming writes. The default mergeScheduler settings are set automatically. Do not adjust this setting.

ramBufferSize

The index RAM buffer size in megabytes (MB). The RAM buffer holds uncommitted documents. A larger RAM buffer reduces flushes. Segments are also larger when flushed. Fewer flushes reduces I/O pressure which is ideal for higher write workload scenarios. Default is 512.

For example, adjust the ramBufferSize when you configure live indexing:
### realtime

Enables live indexing to increase indexing throughput. Enable live indexing on only one node per cluster. Live indexing, also called real-time (RT) indexing, supports searching directly against the Lucene RAM buffer and more frequent, cheaper soft-commits, which provide earlier visibility to newly indexed data.

Live indexing requires a larger RAM buffer and more memory usage than an otherwise equivalent NRT setup. See [Tuning RT indexing](#).

### Configuration elements without shortcuts

To specify configuration elements that do not have shortcuts, you can specify the XML path to the setting and separate child elements using a period.

#### deleteApplicationStrategy

Controls how to retrieve deleted documents when deletes are being applied. `Seek exact` is the safe default most people should choose, but if you are looking for a little extra performance you can try `seek ceiling`.

Valid case-insensitive values are:

- **seekexact**
  
  Uses bloom filters to avoid reading from most segments. Use when memory is limited and the unique key field data does not fit into memory.

- **seekceiling**
  
  More performant when documents are deleted/inserted into the database with sequential keys, because this strategy can stop reading from segments when it is known that terms can no longer appear.

#### mergePolicyFactory

The `AutoExpungeDeletesTieredMergePolicy` custom merge policy is based on `TieredMergePolicy`. This policy cleans up the large segments by merging them when deletes reach the percentage threshold. A single auto expunge merge occurs at a time. Use for large indexes that are not merging the largest segments due to deletes. To determine whether this merge setting is appropriate for your workflow, view the segments on the Solr [Segment Info](#) screen.

When set, the XML is described as:

```xml
<indexConfig>
 <mergePolicyFactory
 class="org.apache.solr.index.AutoExpungeDeletesTieredMergePolicyFactory">
 <int name="maxMergedSegmentMB">1005</int>
 <int name="forceMergeDeletesPctAllowed">25</int>
 </mergePolicyFactory>
</indexConfig>
```
To extend TieredMergePolicy to support automatic removal of deletes:

1. To enable automatic removal of deletes, set the custom policy:

   ```
 ALTER SEARCH INDEX CONFIG ON wiki.solr SET
 indexConfig.mergePolicyFactory[@class='org.apache.solr.index.AutoExpungeDeletesTieredMergePolicyFactory'].bool[@name='mergeSingleSegments'] = true;
   ```

2. Set the maximum segment size in MB:

   ```
 ALTER SEARCH INDEX CONFIG ON wiki.solr SET
 indexConfig.mergePolicyFactory[@class='org.apache.solr.index.AutoExpungeDeletesTieredMergePolicyFactory'].int[@name='maxMergedSegmentMB'] = 1005;
   ```

3. Set the percentage threshold for deleting from the large segments:

   ```
 ALTER SEARCH INDEX CONFIG ON wiki.solr SET
 indexConfig.mergePolicyFactory[@class='org.apache.solr.index.AutoExpungeDeletesTieredMergePolicyFactory'].int[@name='forceMergeDeletesPctAllowed'] = 25;
   ```

If mergeFactor is in the existing index config, you must drop it from the search index before you alter the table to support automatic removal of deletes:

```
ALTER SEARCH INDEX CONFIG ON wiki.solr DROP
indexConfig.mergePolicyFactory;
```

**parallelDeleteTasks**

Regulates how many tasks are created to apply deletes during soft/hard commit in parallel. Supported for RT and NRT indexing. Specify a positive number greater than 0. The default value is the number of available processors.

Leave parallelDeleteTasks at the default value, except when issues occur with write load when running a mixed read/write workload. If writes occasionally spike in utilization and negatively impact your read performance, then set this value lower. To prevent writes from overwhelming reads, reduce this value and adjust `max_solr_concurrency_per_core (page 248)` in dse.yaml.

**Search index schema**

Search index schema reference information to use for creating and altering a search index schema:

- DataStax recommends CQL CREATE SEARCH INDEX and ALTER SEARCH INDEX SCHEMA commands.
- dsetool (page 445) commands can also be used to manage search indexes.
The schema defines the relationship between data in a table and a search index. See Creating a search index with default values (page 463) and Quick Start for CQL index management (page 538) for details and examples.

A sample search index schema XML:

Sample XML

```xml
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<schema name="autoSolrSchema" version="1.5">
 <types>
 <fieldType class="org.apache.solr.schema.TextField" name="TextField">
 <analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 </analyzer>
 </fieldType>
 <fieldType class="org.apache.solr.schema.TrieIntField" name="TrieIntField"/>
 </types>
 <fields>
 <field indexed="true" multiValued="false" name="grade_completed" stored="true" type="TextField"/>
 <field indexed="true" multiValued="false" name="diagnosed_thyroid_disease" stored="true" type="TextField"/>
 <field indexed="true" multiValued="false" name="pets" stored="true" type="TextField"/>
 <field indexed="true" multiValued="false" name="secondary_smoke" stored="true" type="TextField"/>
 <field indexed="true" multiValued="false" name="diagnosed_lupus" stored="true" type="TextField"/>
 <field indexed="true" multiValued="false" name="gender" stored="true" type="TextField"/>
 <field indexed="true" multiValued="false" name="birthplace" stored="true" type="TextField"/>
 <field indexed="true" multiValued="false" name="income_group" stored="true" type="TrieIntField"/>
 <field indexed="true" multiValued="false" name="marital_status" stored="true" type="TextField"/>
 <field indexed="true" multiValued="false" name="age_months" stored="true" type="TrieIntField"/>
 <field indexed="true" multiValued="false" name="bird" stored="true" type="TextField"/>
 <field indexed="true" multiValued="false" name="hay_fever" stored="true" type="TextField"/>
 <field indexed="true" multiValued="false" name="diagnosed_hay_fever" stored="true" type="TextField"/>
 <field indexed="true" multiValued="false" name="routine_medical_coverage" stored="true" type="TextField"/>
 <field indexed="true" multiValued="false" name="annual_income_20000" stored="true" type="TextField"/>
 </fields>
</schema>
```
Using DataStax Enterprise advanced functionality

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<field indexed="true" multiValued="false" name="exam_status" stored="true" type="TextField"/>
<field indexed="true" multiValued="false" name="other_pet" stored="true" type="TextField"/>
<field indexed="true" multiValued="false" name="diagnosed_stroke" stored="true" type="TextField"/>
<field indexed="true" multiValued="false" name="employer_paid_plan" stored="true" type="TextField"/>
<field docValues="true" indexed="true" multiValued="false" name="family_sequence" stored="true" type="TrieIntField"/>
<field indexed="true" multiValued="false" name="diagnosed_cataracts" stored="true" type="TextField"/>
<field indexed="true" multiValued="false" name="major_medical_coverage" stored="true" type="TextField"/>
<field indexed="true" multiValued="false" name="diagnosed_gout" stored="true" type="TextField"/>
<field indexed="true" multiValued="false" name="age_unit" stored="true" type="TextField"/>
<field indexed="true" multiValued="false" name="goiter" stored="true" type="TextField"/>
<field indexed="true" multiValued="false" name="chronic_bronchitis" stored="true" type="TextField"/>
<field indexed="true" multiValued="false" name="county" stored="true" type="TextField"/>
<field docValues="true" indexed="true" multiValued="false" name="num_smokers" stored="true" type="TrieIntField"/>
<field indexed="true" multiValued="false" name="screening_month" stored="true" type="TextField"/>
<field indexed="true" multiValued="false" name="diagnosed_emphysema" stored="true" type="TextField"/>
<field indexed="true" multiValued="false" name="diagnosed_other_cancer" stored="true" type="TextField"/>
<field docValues="true" indexed="true" multiValued="false" name="id" stored="true" type="TrieIntField"/>
<field indexed="true" multiValued="false" name="dental_coverage" stored="true" type="TextField"/>
<field indexed="true" multiValued="false" name="health_status" stored="true" type="TextField"/>
<field docValues="true" indexed="true" multiValued="false" name="monthly_income_total" stored="true" type="TrieIntField"/>
<field indexed="true" multiValued="false" name="fish" stored="true" type="TextField"/>
<field indexed="true" multiValued="false" name="dog" stored="true" type="TextField"/>
<field indexed="true" multiValued="false" name="asthma" stored="true" type="TextField"/>
<field indexed="true" multiValued="false" name="ethnicity" stored="true" type="TextField"/>
<field indexed="true" multiValued="false" name="age" stored="true" type="TrieIntField"/>
<field indexed="true" multiValued="false" name="diagnosed_asthma" stored="true" type="TextField"/>
<field indexed="true" multiValued="false" name="race_ethnicity" stored="true" type="TextField"/>
dsetool search index commands

dsetool commands for DSE Search

The dsetool commands for DSE Search provide search index management.

- dsetool create_core (page 1179)
- dsetool core_indexing_status (page 1177)
- dsetool get_core_config (page 1184)
- dsetool get_core_schema (page 1186)
- dsetool index_checks (experimental) (page 1190)
- dsetool infer_solr_schema (page 1192)
- dsetool list_index_files (page 1202)
- dsetool read_resource (page 1217)
- dsetool rebuild_indexes (page 1218)
- dsetool reload_core (page 1221)
- dsetool stop_core_reindex (page 1230)
- dsetool unload_core (page 1235)
- dsetool upgrade_index_files (page 1237)
- dsetool write_resource (page 1238)
Using DataStax Enterprise advanced functionality

DataStax recommends using CQL commands to manage search indexes.

**Configuration properties**

Reference information for DSE Search configuration properties.

- Data location in cassandra.yaml *(page 446)*
- Scheduler settings in dse.yaml *(page 446)*
- Indexing resources in dse.yaml *(page 447)*
- Indexing settings in dse.yaml *(page 447)*
- Safety thresholds in cassandra.yaml *(page 448)*
- Inter-node communication in dse.yaml *(page 449)*
- Query options in dse.yaml *(page 449)*
- Client connections in dse.yaml *(page 449)*
- Performance in cassandra.yaml *(page 450)*
- Performance in dse.yaml *(page 450)*

**Data location in cassandra.yaml**

See Set the location of search indexes.

**data_file_directories**

The directory location where table data is stored (in SSTables). The database distributes data evenly across the location, subject to the granularity of the configured compaction strategy. Default locations: /var/lib/cassandra/data.

For production, DataStax recommends RAID 0 and SSDs.

**Scheduler settings in dse.yaml**

Configuration options to control the scheduling and execution of indexing checks.

**ttl_index_rebuild_options**

To ensure that records with TTLs are purged from search indexes when they expire, the search indexes are periodically checked for expired documents. The **ttl_index_rebuild_options** settings control the schedulers in charge of querying for and removing expired records, and the execution of the checks.

**fixed_rate_period**

Schedules how often to check for expired data in seconds. Default: 300

**initial_delay**

Speeds startup time by delaying the first TTL checks in seconds. Default: 20

**max_docs_per_batch**

Sets the maximum number of documents to check and delete per batch by the TTL rebuild thread. Default: 4096

**thread_pool_size**

To manage system resource consumption and prevent many search cores from executing simultaneous TTL deletes, defines the maximum number of cores that can execute TTL cleanup concurrently. Default: 1
Indexing resources in dse.yaml

**solr_resource_upload_limit_mb**
Default: 10. You can configure the maximum resource file size or disable resource upload. Sets the maximum DSE Search resource upload size limit in megabytes (MB). Set to 0 to disable resource uploading.

Indexing settings in dse.yaml

**max_solr_concurrency_per_core**
Configures the maximum number of concurrent asynchronous indexing threads per DSE Search index. Default: `number_of_available_CPU_cores`.

If set to 1, DSE Search reverts to using synchronous indexing behavior, where data is synchronously written to the database in a single thread and indexed for DSE Search.

To achieve optimal performance, assign this value to number of available CPU cores divided by the number of search cores. For example, with 16 CPU cores and 4 search cores, the suggested value is 4. Also see Configuring and tuning indexing performance.

To prevent writes from overwhelming reads, reduce this value and adjust `parallelDeleteTasks (page 442)` in the search index config.

**Note:** Dynamic switching to search concurrency level at 1 is disallowed.

**enable_back_pressure_adaptive_nrt_commit**
Allows back pressure system to adapt max auto soft commit time (defined per search index config) to the actual load. Setting is respected only for NRT (near real time) cores. When DSE search cores have real-time (RT) live indexing, adaptive commits are disabled regardless of this property value. See live indexing with RT.

Default: true

**back_pressure_threshold_per_core**
The total number of queued asynchronous indexing requests per search core. When this number is exceeded, back pressure prevents excessive resource consumption by throttling new incoming requests. DataStax recommends using a `back_pressure_threshold_per_core` value of 1000 * `max_solr_concurrency_per_core (page 248)`.

Default: 2000

**flush_max_time_per_core**
The maximum time, in minutes, to wait for the flushing of asynchronous index updates, which occurs at DSE Search commit time or at flush time. Expert level knowledge is required to change this value. Always set the value reasonably high to ensure flushing completes successfully to fully sync DSE Search indexes with the database data. If the configured value is exceeded, index updates are only partially committed, and the commit log is not truncated to ensure data durability.
Using DataStax Enterprise advanced functionality

Note: When a timeout occurs, it usually means this node is being overloaded and cannot flush in a timely manner. Live indexing increases the time to flush asynchronous index updates.

Default: 5

load_max_time_per_core
The maximum time, in minutes, to wait for each DSE Search index to load on startup or create/reload operations, expressed. This advanced option should be changed only if exceptions happen during core loading.
Default: 5 (if not specified)

enable_index_disk_failure_policy
DSE Search activates the configured disk failure policy if IOExceptions occur during index update operations.
Default: false

solr_data_dir
The directory to store index data. By default, each DSE Search index is saved in solrconfig_data_dir/keyspace_name.table_name, or as specified by the dse.solr.data.dir system property. See Managing the location of DSE Search data.

solr_field_cache_enabled
The Apache Lucene® field cache is deprecated. Instead, for fields that are sorted, faceted, or grouped by, set docValues="true" on the field in the schema.xml file. Then reload the core and reindex. The default value is false. To override false, set useFieldCache=true in the request.

async_bootstrap_reindex
For DSE Search, configure whether to asynchronously reindex bootstrapped data. Default: false

- If enabled, the node joins the ring immediately after bootstrap and reindexing occurs asynchronously. Do not wait for post-bootstrap reindexing so that the node is not marked down.
- If disabled, the node joins the ring after reindexing the bootstrapped data.

Safety thresholds
Configure safety thresholds and fault tolerance for DSE Search with options in dse.yaml and cassandra.yaml.

Safety thresholds in cassandra.yaml
Configuration options include:

read_request_timeout_in_ms
Default: 5000. The number of milliseconds that the coordinator waits for read operations to complete before timing it out.

Security in dse.yaml
Security options for DSE Search. See DSE Search security checklist.

solr_encryption_options
Specify settings to tune encryption of search indexes.

decryption_cache_offheap_allocation
Specify whether to allocate shared DSE Search decryption cache off JVM heap. Default: true

decryption_cache_size_in_mb
Sets the maximum size of shared DSE Search decryption cache, in megabytes (MB). Default: 256

http_principal
The http_principal is used by the Tomcat application container to run DSE Search. The Tomcat web server uses GSS-API mechanism (SPNEGO) to negotiate the GSSAPI security mechanism (Kerberos). Set REALM to the name of your Kerberos realm. In the Kerberos principal, REALM must be uppercase.

Inter-node communication in dse.yaml
Inter-node communication between DSE Search nodes.

shard_transport_options
For inter-node communication between DSE Search nodes.

netty_client_request_timeout
Default: 60000. The client request timeout is the maximum cumulative time (in milliseconds) that a distributed search request will wait idly for shard responses. Defines timeout behavior during distributed queries.

Query options in dse.yaml
Options for CQL Solr queries.

cql_solr_query_paging
Options to specify the paging behavior.

• **off** - Default. Paging is off. Ignore driver paging settings for CQL Solr queries and use normal Solr paging unless:
  
  # The current workload is an analytics workload, including SearchAnalytics. SearchAnalytics nodes always use driver paging settings.
  
  # The cqlsh query parameter paging is set to driver.

  Even when cql_solr_query_paging: off, paging is dynamically enabled with the "paging":"driver" parameter in JSON queries (page 503).

• **driver** - Respects driver paging settings. Specifies to use Solr pagination (page 507) (cursors) only when the driver uses pagination. Enabled automatically for DSE SearchAnalytics workloads.

cql_solr_query_row_timeout
The maximum time in milliseconds to wait for each row to be read from the database during CQL Solr queries. Default: 10000 (10 seconds).

Client connections in dse.yaml
The default IP address that the HTTP and Solr Admin interface uses to access DSE Search. See Changing Tomcat web server settings.

rpc_address
Default: localhost. The listen address for client connections (Thrift RPC service and native transport). Valid values:
• unset:
  Resolves the address using the configured hostname configuration of the
  node. If left unset, the hostname resolves to the IP address of this node
  using /etc/hostname, /etc/hosts, or DNS.

• 0.0.0.0:
  Listens on all configured interfaces. You must set the
  broadcast_rpc_address (page 220) to a value other than 0.0.0.0.

• IP address
• hostname

Related information: Network

Performance in cassandra.yaml
  Decreasing the memtable space to make room for Solr caches might improve
  performance. See Changing the stack size and memtable space.

concurrent_writes
  Default: 32. note (page 199) Writes in DSE are rarely I/O bound, so the ideal
  number of concurrent writes depends on the number of CPU cores on the node.
  The recommended value is 8 × number_of_cpu_cores.

memtable_heap_space_in_mb
  Default: 1/4 of heap size. note (page 199)
  The amount of on-heap memory allocated for memtables. The database uses
  the total of this amount and the value of memtable_offheap_space_in_mb
  to set a threshold for automatic memtable flush. For details, see
  memtable_cleanup_threshold (page 210).

  Related information: Tuning the Java heap (page 1345)

Performance in dse.yaml
  Node routing odtions.

node_health_options
  Node health options are always enabled for all nodes. Node health is a score-
  based representation of how fit a node is to handle search queries.

refresh_rate_ms
  Default: 60000

uptime_ramp_up_period_seconds
  Default: 10800 (3 hours). The amount of continuous uptime required for the
  node’s uptime score to advance the node health score (page 1357) from 0 to 1
  (full health), assuming there are no recent dropped mutations. The health score
  is a composite score based on dropped mutations and uptime. Tip: If a node
  is repairing after a period of downtime, you might want to increase the uptime
  period to the expected repair time.

dropped_mutation_window_minutes
Default: 30. The historic time window over which the rate of dropped mutations affect the node health score.

**Viewing search index schema and config**

Search index schema and config are stored internally in the database. When you modify a search index schema or config, the changes are *pending*.

Use the **RELOAD SEARCH INDEX** command to apply the pending changes to the active (in use) search index.

DataStax recommends using CQL to view the pending or active (in use) schema or config.

**CQL shell DESCRIBE command**

Use the CQL shell command DESCRIBE SEARCH INDEX to view the active and pending schema and config.

Show the active index config for wiki.solr:

```
DESCRIBE ACTIVE SEARCH INDEX CONFIG ON demo.health_data;
```

The results are shown in XML:

```
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<config>
 <abortOnConfigurationError>${solr.abortOnConfigurationError:true}</abortOnConfigurationError>
 <luceneMatchVersion>LUCENE_6_0_0</luceneMatchVersion>
 <dseTypeMappingVersion>2</dseTypeMappingVersion>
 <directoryFactory class="solr.StandardDirectoryFactory" name="DirectoryFactory"/>
 <indexConfig>
 <rt>false</rt>
 <rtOffheapPostings>true</rtOffheapPostings>
 <useCompoundFile>false</useCompoundFile>
 <ramBufferSizeMB>512</ramBufferSizeMB>
 <mergeFactor>10</mergeFactor>
 <reopenReaders>true</reopenReaders>
 <deletionPolicy class="solr.SolrDeletionPolicy">
 <str name="maxCommitsToKeep">1</str>
 <str name="maxOptimizedCommitsToKeep">0</str>
 </deletionPolicy>
 <infoStream file="INFOSTREAM.txt">false</infoStream>
 </indexConfig>
 <jmx/>
 <updateHandler class="solr.DirectUpdateHandler2">
 <autoSoftCommit>
 <maxTime>10000</maxTime>
 </autoSoftCommit>
 </updateHandler>
 <query>
 <maxBooleanClauses>1024</maxBooleanClauses>
 </query>
</config>
```
Using DataStax Enterprise advanced functionality

```xml
 <filterCache class="solr.SolrFilterCache" highWaterMarkMB="2048"
 lowWaterMarkMB="1024"/>
 <enableLazyFieldLoading>true</enableLazyFieldLoading>
 <useColdSearcher>true</useColdSearcher>
 <maxWarmingSearchers>16</maxWarmingSearchers>
</query>
 <requestDispatcher handleSelect="true">
 <requestParsers enableRemoteStreaming="true"
 multipartUploadLimitInKB="2048000"/>
 <httpCaching never304="true"/>
 </requestDispatcher>
 <requestHandler class="solr.SearchHandler" default="true"
 name="search">
 <lst name="defaults">
 <int name="rows">10</int>
 </lst>
 </requestHandler>
 <requestHandler class="com.datastax.bdp.search.solr.handler.component.CqlSearchHandler"
 name="solr_query">
 <lst name="defaults">
 <int name="rows">10</int>
 </lst>
 </requestHandler>
 <requestHandler class="/update">
 </requestHandler>
 <requestHandler class="/update/csv" startup="lazy"/>
 <requestHandler class="/update/json" startup="lazy"/>
 <requestHandler class="/analysis/field" startup="lazy"/>
 <requestHandler class="/analysis/document" startup="lazy"/>
 <requestHandler class="/admin/">
 <lst name="invariants">
 <str name="qt">search</str>
 <str name="q">solrpingquery</str>
 </lst>
 <lst name="defaults">
 <str name="echoParams">all</str>
 </lst>
 </requestHandler>
 <requestHandler class="/debug/dump">
 <lst name="defaults">
 <str name="echoParams">explicit</str>
 <str name="echoHandler">true</str>
 </lst>
 </requestHandler>
 <admin>
 <defaultQuery>*:*</defaultQuery>
 </admin>
```
You can also view pending search index config or schema before it is active. For example, to view the pending index schema for demo.health_data:

```
DESCRIBE PENDING SEARCH INDEX SCHEMA ON demo.health_data;
```

The results are shown in XML:

```
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<schema name="autoSolrSchema" version="1.5">
 <types>
 <fieldType class="org.apache.solr.schema.TextField" name="TextField">
 <analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 </analyzer>
 </fieldType>
 <fieldType class="org.apache.solr.schema.TrieIntField" name="TrieIntField"/>
 </types>
 <fields>
 <field indexed="true" multiValued="false" name="grade_completed" stored="true" type="TextField"/>
 <field indexed="true" multiValued="false" name="diagnosed_thyroid_disease" stored="true" type="TextField"/>
 <field indexed="true" multiValued="false" name="pets" stored="true" type="TextField"/>
 <field indexed="true" multiValued="false" name="secondary_smoke" stored="true" type="TextField"/>
 <field indexed="true" multiValued="false" name="diagnosed_lupus" stored="true" type="TextField"/>
 <field indexed="true" multiValued="false" name="gender" stored="true" type="TextField"/>
 <field indexed="true" multiValued="false" name="birthplace" stored="true" type="TextField"/>
 <field docValues="true" indexed="true" multiValued="false" name="income_group" stored="true" type="TrieIntField"/>
 <field indexed="true" multiValued="false" name="marital_status" stored="true" type="TextField"/>
 <field docValues="true" indexed="true" multiValued="false" name="age_months" stored="true" type="TrieIntField"/>
 <field indexed="true" multiValued="false" name="bird" stored="true" type="TextField"/>
 <field indexed="true" multiValued="false" name="hay_fever" stored="true" type="TextField"/>
 <field indexed="true" multiValued="false" name="diagnosed_hay_fever" stored="true" type="TextField"/>
 </fields>
</schema>
```
Using DataStax Enterprise advanced functionality

```xml
 <field indexed="true" multiValued="false" name="exam_status" stored="true" type="TextField"/>
 <field indexed="true" multiValued="false" name="other_pet" stored="true" type="TextField"/>
 <field indexed="true" multiValued="false" name="diagnosed_stroke" stored="true" type="TextField"/>
 <field indexed="true" multiValued="false" name="employer_paid_plan" stored="true" type="TextField"/>
 <field docValues="true" indexed="true" multiValued="false" name="family_sequence" stored="true" type="TrieIntField"/>
 <field indexed="true" multiValued="false" name="diagnosed_cataracts" stored="true" type="TextField"/>
 <field indexed="true" multiValued="false" name="major_medical_coverage" stored="true" type="TextField"/>
 <field indexed="true" multiValued="false" name="diagnosed_gout" stored="true" type="TextField"/>
 <field indexed="true" multiValued="false" name="age_unit" stored="true" type="TextField"/>
 <field indexed="true" multiValued="false" name="goiter" stored="true" type="TextField"/>
 <field indexed="true" multiValued="false" name="chronic_bronchitis" stored="true" type="TextField"/>
 <field indexed="true" multiValued="false" name="county" stored="true" type="TextField"/>
 <field docValues="true" indexed="true" multiValued="false" name="num_smokers" stored="true" type="TrieIntField"/>
 <field indexed="true" multiValued="false" name="screening_month" stored="true" type="TextField"/>
 <field indexed="true" multiValued="false" name="diagnosed_emphysema" stored="true" type="TextField"/>
 <field indexed="true" multiValued="false" name="diagnosed_other_cancer" stored="true" type="TextField"/>
 <field docValues="true" indexed="true" multiValued="false" name="id" stored="true" type="TrieIntField"/>
 <field indexed="true" multiValued="false" name="dental_coverage" stored="true" type="TextField"/>
 <field indexed="true" multiValued="false" name="health_status" stored="true" type="TextField"/>
 <field docValues="true" indexed="true" multiValued="false" name="monthly_income_total" stored="true" type="TrieIntField"/>
 <field indexed="true" multiValued="false" name="fish" stored="true" type="TextField"/>
 <field indexed="true" multiValued="false" name="dog" stored="true" type="TextField"/>
 <field indexed="true" multiValued="false" name="asthma" stored="true" type="TextField"/>
 <field indexed="true" multiValued="false" name="ethnicity" stored="true" type="TextField"/>
 <field docValues="true" indexed="true" multiValued="false" name="age" stored="true" type="TrieIntField"/>
 <field indexed="true" multiValued="false" name="diagnosed_asthma" stored="true" type="TextField"/>
 <field indexed="true" multiValued="false" name="race_ethnicity" stored="true" type="TextField"/>
```
Alternate ways to view

Other ways to view the search index schema and config in XML:

- **dsetool**
  
  View the pending (uploaded) or active (in use) schema or config.

  ```bash
 # dsetool get_core_config (page 1184)
 # dsetool get_core_schema (page 1186)
  ```

- **Solr Admin**
  
  View only the last uploaded (pending) resource.

**Customizing the search index schema**

A search schema defines the relationship between data in a table and a search index. The schema identifies the columns to index and maps column names to Apache Solr™ types (page 472).

**Schema defaults**

DSE Search automatically maps the CQL column type to the corresponding Solr field type, defines the field type analyzer and filtering classes, and sets the DocValue.

**Tip:** If required, modify the schema using the CQL-Solr type compatibility matrix.
Table and schema definition

Fields with `indexed="true"` are indexed and stored as secondary files in Lucene so that the fields are searchable. The indexed fields are stored in the database, not in Lucene, regardless of the value of the `stored` attribute value, with the exception of copy fields. Copy field destinations are not stored in the database.

- To store a field with `indexed="false"` and enable the field to be returned on search queries, set `stored="true"`.
- To ignore the field, set both `indexed="false"` and `stored="false"`.
- To enable search but not return the value (for example, to find a user by passport number and return the user but not the passport number), set `indexed="true"` and `stored="false"`.
- To enable search and return the value, set both `indexed="true"` and `stored="true"`.
- To set field values as lowercase and have them stored as lowercase in `docValues`, use the custom `LowerCaseStrField` type. Refer to Using `LowerCaseStrField` with search indexes (page 460).

Sample schema

The following example from Querying CQL collections (page 525) uses a simple primary key. The schema version attribute is the Solr version number for the schema syntax and semantics. In this example, version="1.5".

```xml
<schema name="my_search_demo" version="1.5">
 <types>
 <fieldType class="solr.StrField" multiValued="true" name="StrCollectionField"/>
 <fieldType name="string" class="solr.StrField"/>
 <fieldType name="text" class="solr.TextField"/>
 <fieldType class="solr.TextField" multiValued="true" name="textcollection">
 <analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 </analyzer>
 </fieldType>
 </types>
 <fields>
 <field name="id" type="string" indexed="true" stored="true"/>
 <field name="quotes" type="textcollection" indexed="true" stored="true"/>
 <field name="name" type="text" indexed="true" stored="true"/>
 <field name="title" type="text" indexed="true" stored="true"/>
 </fields>
 <defaultSearchField>quotes</defaultSearchField>
 <uniqueKey>id</uniqueKey>
</schema>
```

DSE Search indexes the id, quotes, name, and title fields.
Mapping CQL primary keys and Solr unique keys

DSE Search supports **CQL tables** using simple or **compound primary keys**.

If the field is a **compound primary key** or **composite partition key** column in the database, the unique key value is enclosed parentheses. The schema for this kind of table requires a different syntax than the simple primary key:

- List each compound primary key column that appears in the CQL table in the schema as a field, just like any other column.
- Declare the unique key using the key columns enclosed in parentheses.
- Order the keys in the uniqueKey element as the keys are ordered in the CQL table.
- When using composite partition keys, do not include the extra set of parentheses in the uniqueKey.

### Changing auto-generated search index settings

Using dsetool, you can customize the default settings for auto-generated search indexes by providing a YAML-formatted file with these options:

```yaml
auto_soft_commit_max_time:ms
 The maximum auto soft commit time in milliseconds.

default_query_field:field
 The query field to use when no field is specified in queries.

distributed=(true | false)
 Whether to distribute and apply the operation to all nodes in the local datacenter.

 - True applies the operation to all nodes in the local datacenter.
 - False applies the operation only to the node it was sent to. False works only when recovery=true.

 Default: true

 Warning: Distributing a re-index to an entire datacenter degrades performance severely in that datacenter.

enable_string_copy_fields:(true | false)
 Whether to generate non-stored string copy fields for non-key text fields, so that you can have text both tokenized or non tokenized.

 Default: false

exclude_columns: col1, col2, col3, ...
 A comma-separated (CSV) list of columns to exclude.

generate_DocValues_for_fields:(* | field1, field2, ...)
 The fields to automatically configure DocValues in the generated search index schema. Specify '*' to add all possible fields:

```

```
Using DataStax Enterprise advanced functionality

Due to SOLR-7264, setting docValues to true on a boolean field in the Solr schema does not work. A workaround for boolean docValues is to use 0 and 1 with a TrieIntField.

`generateResources=(true | false)`
Whether to automatically generate search index resources based on the existing CQL table metadata. Cannot be used with schema= and solrconfig=.

Valid values:
- true - Automatically generate search index schema and configuration resources if resources do not already exist. If resources exist,
- false - Default. Do not automatically generate search index resources.

`include_columns=col1, col2, col3, ...`
A comma-separated (CSV) list of columns to include. Empty = includes all columns.

`index_merge_factor:segments`
How many segments of equal size to build before merging them into a single segment.

`index_ram_buffer_size=MB`
The index ram buffer size in megabytes (MB).

`lenient=(true | false)`
Ignore non-supported type columns and continue to generate resources, instead of erroring out when non-supported type columns are encountered. Default: false

`resource_generation_profiles`
To minimize index size, specify a CSV list of profiles to apply while generating resources.

<table>
<thead>
<tr>
<th>Profile name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>spaceSavingAll</td>
<td>Applies all options: spaceSavingNoTextfield, spaceSavingNoJoin, and spaceSavingSlowTriePrecision.</td>
</tr>
<tr>
<td>spaceSavingNoTextfield</td>
<td>No TextFields. Use StrField instead.</td>
</tr>
<tr>
<td>spaceSavingNoJoin</td>
<td>Do not index a hidden primary key field. Prevents joins across cores.</td>
</tr>
<tr>
<td>spaceSavingSlowTriePrecision</td>
<td>Set trie fields precisionStep to '0', allowing for greater space saving but slower querying.</td>
</tr>
</tbody>
</table>

Note: Using spaceSavings profiles disables auto generation of DocValues.

For example:

```
resource_generation_profiles: spaceSavingNoTextfield, spaceSavingSlowTriePrecision
```

`rt=true`
Whether to enable live indexing to increase indexing throughput. Enable live indexing on only one search index per cluster.

```
rt=true
```

CQL index management command examples

For example:

```
CREATE SEARCH INDEX CONFIG ON wiki.solr SET
defaultQueryField='last_name';
```

See About search index management (page 461).

Using dsetool

Customize the search index config with YAML-formatted files

Create a `config.yaml` file that lists the following options to customize the config and schema files:

```
default_query_field: name
auto_soft_commit_max_time: 1000
generate_DocValues_for_fields: '*'
enable_string_copy_fields: false
```

Use the dsetool command to generate the search index with these options to customize the config and schema generation. Use coreOptions to specify the `config.yaml` file:

```
$ dsetool create_core demo.health_data coreOptions=config.yaml
```

Customize the search index with options inline

Use the dsetool command to generate the search index and customize the schema generation. Use coreOptions to turn on live indexing (also called RT):

```
$ dsetool create_core udt_ks.users generateResources=true reindex=true coreOptions=rt.yaml
```

You can verify that DSE Search created the solrconfig and schema by reading core resources using dsetool.

Enable encryption for a new search index

Specify the class for directoryFactory to `solr.EncryptedFSDirectoryFactory` with coreOptionsInline:
Using DataStax Enterprise advanced functionality

```
$ dsetool create_core keyspace_name.table_name generateResources=true
coreOptionsInline="directory_factory_class:solr.EncryptedFSDirectoryFactory"
```

Using LowerCaseStrField with search indexes

DataStax Enterprise 5.1.15 and 6.0.8 introduce a custom field type, `LowerCaseStrField`, which provides the following features:

- Converts the data into lowercase and correctly stores the lowercase data in `docValues`.
- Converts the query values to lowercase.

Note: You cannot apply `LowerCaseStrField` to a table’s primary key. You also cannot use any analyzers with `LowerCaseStrField`.

DataStax advises against using `TextField with solr.KeywordTokenizer` and `solr.LowerCaseFilterFactory`. Unintended search results could occur because the raw data was not stored as lowercase in `docValues`, contrary to expectations. Instead, use the custom `LowerCaseStrField` type as described in this topic.

To use `LowerCaseStrField` on a field in a new index:

```
CREATE SEARCH INDEX ON <table> WITH COLUMNS *, column { lowerCase : true };
```

The command creates a search index with `column` using the `LowerCaseStrField` field type. The field type is added automatically.

To add a new field to an existing column with the `LowerCaseStrField` field type:

```
ALTER SEARCH INDEX SCHEMA ON <table> ADD lowerCaseString column;
RELOAD SEARCH INDEX ON <table>;
REBUILD SEARCH INDEX ON <table>;
```

The `ALTER SEARCH` command adds the `LowerCaseStrField` field type if it does not exist.

There is a workaround to apply `LowerCaseStrField` to primary key columns. To do so, use the `copyField` declaration to copy the primary key field data to the new field that’s defined as type `LowerCaseStrField`. Example:

```
ALTER SEARCH INDEX SCHEMA ON <table> ADD lowerCaseString
    key_column_copy;

ALTER SEARCH INDEX SCHEMA ON <table> ADD copyField[@source='key_column',
    @dest='key_column_copy'];
RELOAD SEARCH INDEX ON <table>;
```
The search query is case insensitive. All queries are converted to lowercase and return the same result. For example, searches for the following values return the same result:

- name
- Name
- NAME

Managing search indexes

In DSE Search, a search index is an Apache Solr™ core. Each DSE Search index uses an internally stored index configuration pair (schema.xml and solrconfig.xml) that is automatically generated when the index is created.

About search index management

Use the following DSE Search CQL commands to manage search indexes:

- **CREATE SEARCH INDEX** Generates a new search index on an existing table with default schema and config.
- **DESCRIBE SEARCH INDEX** Displays the active or pending schema or config in XML format.
- **ALTER SEARCH INDEX CONFIG** Modifies the search index config. After modifying, use reload to push the changes live.
- **ALTER SEARCH INDEX SCHEMA** Modifies the search index schema. After modifying, use reload to push the changes live.
- **RELOAD SEARCH INDEX** Loads pending changes to the index schema and config. Some changes such as adding or removing indexed fields require a rebuild.
- **REBUILD SEARCH INDEX** Reconstructs the search index using the active schema and config.
- **COMMIT SEARCH INDEX** Forces a reload of data into the index after data is added, modified, or removed from the corresponding CQL table.
- **DROP SEARCH INDEX** Removes the search index and corresponding files.

Tip: The index configuration pair (schema and config) is stored and persisted in the DSE database table `solr_admin.solr_resources`.

Local node (optional) management of search indexing resources with dsetool (page 445) commands.

Remember: In DSE authorization enabled environments, you must grant permission to run search index commands; see Controlling access to search indexes.

Adjusting timeout for index management
When running search index management commands on large datasets using cqlsh or dsetool, the process might take longer than the default timeout period (10 minutes).

Temporarily increase the timeout period for index management commands by setting an environment variable:

- **cqlsh**: Before starting a cqlsh session, set the CQLSH_SEARCH_MANAGEMENT_TIMEOUT_SECONDS environment variable:
  ```bash
  export CQLSH_SEARCH_MANAGEMENT_TIMEOUT_SECONDS=900;
  ```
 Overrides the cqlsh --request-timeout setting.

- **dsetool**: Before running an index management command, set the dse.search.client.timeout.secs:
  ```bash
  export JVM_OPTS="-Ddse.search.client.timeout.secs=900"
  ```
 Overrides the default timeout.

About search indexes

Use the CQL command `CREATE SEARCH INDEX` to generate a search index for an existing table. Indexes created with CQL commands are automatically distributed to all search nodes in the datacenter.

Restriction:

Solr field name policy applies to the indexed field names:

- Every field must have a name.
- Field names must consist of alphanumeric or underscore characters only.
- Fields cannot start with a digit.
- Names with both leading and trailing underscores (for example, _version_) are reserved.

Note: Non-compliant field names are not supported from all components. Backward compatibility is not guaranteed.

Starting cqlsh on a search node

Connect to a search node to use CQL search management commands.

1. Determine which nodes in the cluster are running search:
   ```bash
   $ dsetool status
   ```
 Tip: DSE Search operations are available only on search-enabled nodes. DataStax recommends single workload datacenters.
The following example shows a development environment where all nodes in the cluster are in the same physical location, on the same rack, and the nodes have been separated into datacenters based on their workloads.

<table>
<thead>
<tr>
<th>DC: Main</th>
<th>Workload: Cassandra</th>
<th>Graph: no</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status=Up/Down</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>State=Normal/Leaving/Joining/Moving</td>
<td></td>
</tr>
<tr>
<td>-- Address</td>
<td>Load</td>
<td>Owns</td>
</tr>
<tr>
<td>Rack</td>
<td>Health [0,1]</td>
<td></td>
</tr>
<tr>
<td>UN 10.10.10.111</td>
<td>15.51 MiB</td>
<td>?</td>
</tr>
<tr>
<td>rack1</td>
<td>0.90</td>
<td></td>
</tr>
<tr>
<td>UN 10.10.10.113</td>
<td>19.51 MiB</td>
<td>?</td>
</tr>
<tr>
<td>rack1</td>
<td>0.90</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DC: Search</th>
<th>Workload: Search</th>
<th>Graph: no</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status=Up/Down</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>State=Normal/Leaving/Joining/Moving</td>
<td></td>
</tr>
<tr>
<td>-- Address</td>
<td>Load</td>
<td>Owns</td>
</tr>
<tr>
<td>Rack</td>
<td>Health [0,1]</td>
<td></td>
</tr>
<tr>
<td>UN 10.10.10.108</td>
<td>18.13 MiB</td>
<td>?</td>
</tr>
<tr>
<td>rack1</td>
<td>0.90</td>
<td></td>
</tr>
<tr>
<td>UN 10.10.10.110</td>
<td>17.4 MiB</td>
<td>?</td>
</tr>
<tr>
<td>rack1</td>
<td>0.90</td>
<td></td>
</tr>
</tbody>
</table>

2. For large datasets, increase the cqlsh timeout:

```bash
export CQLSH_SEARCH_MANAGEMENT_TIMEOUT_SECONDS=900;
```

3. Launch a `cqlsh` session on a search node:

```bash
$cqlsh hostname
```

A CQL sessions starts on the remote host.

Connected to cluster1 at 10.10.10.108:9042.
[cqlsh 5.0.1 | Cassandra 3.11.0.1805 | DSE 5.1.3 | CQL spec 3.4.4 |
Native protocol v4]
Use HELP for help.
cqlsh>

Creating a search index with default values

Use the DataStax Enterprise `CREATE SEARCH INDEX` to generate a search index for an existing table that is automatically distributed to all search nodes.

The search index (schema and config) is generated using default values. The schema and config are stored internally in the `solr_admin.resources` table and displayed in XML format.
Using DataStax Enterprise advanced functionality

Create a search index on an existing table.

```sql
CREATE SEARCH INDEX ON keyspace_name.table_name;
```

All columns are indexed using the default settings.

Setting up default query field

Set up a catch-all field for searches when no field is specified by the query.

Note: Adding the leading element `fields.` in `ADD fields.field fieldname` is optional and provides only cosmetic structure.

1. Create a new index-only field:

   ```sql
   ALTER SEARCH INDEX SCHEMA ON wiki.solr 
   ADD fields.field[ @name='catch_all', 
   @type='TextField', 
   @multiValued='true'];
   ```

 Note: Since this new field contains values from two fields, set multiValued to `true`.

Show the pending schema changes:

```sql
DESCRIBE PENDING SEARCH INDEX SCHEMA ON wiki.solr;
```

The new field is listed in bold:

```xml
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<schema name="autoSolrSchema" version="1.5">
  <types>
    <fieldType class="org.apache.solr.schema.TextField"
     name="TextField">
      <analyzer>
       <tokenizer class="solr.StandardTokenizerFactory"/>
       <filter class="solr.LowerCaseFilterFactory"/>
      </analyzer>
    </fieldType>
    <fieldType class="org.apache.solr.schema.TrieDateField"
     name="TrieDateField"/>
    <fieldType class="org.apache.solr.schema.StrField"
     name="StrField"/>
  </types>
  <fields>
    <field indexed="true" multiValued="false" name="body"
     stored="true" type="TextField"/>
    <field docValues="true" indexed="true" multiValued="false"
     name="real_date" stored="true" type="TrieDateField"/>
    <field indexed="true" multiValued="false" name="title"
     stored="true" type="TextField"/>
    <field indexed="true" multiValued="false" name="id"
     stored="true" type="StrField"/>
  </fields>
</schema>
```
2. Set up a copy field directive to collect the data from all CQL columns:

```
ALTER SEARCH INDEX SCHEMA ON wiki.solr ADD
copyField[@source='title', @dest='catch_all'];
ALTER SEARCH INDEX SCHEMA ON wiki.solr ADD
copyField[@source='body', @dest='catch_all'];
```

Show the pending schema changes:

```
DESCRIBE PENDING SEARCH INDEX SCHEMA ON wiki.solr ;
```

The new copy field directives are listed in bold below:

```
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<schema name="autoSolrSchema" version="1.5">
  <types>
    <fieldType class="org.apache.solr.schema.TextField"
              name="TextField">
      <analyzer>
        <tokenizer class="solr.StandardTokenizerFactory"/>
        <filter class="solr.LowerCaseFilterFactory"/>
      </analyzer>
    </fieldType>
    <fieldType class="org.apache.solr.schema.TrieDateField"
              name="TrieDateField"/>
    <fieldType class="org.apache.solr.schema.StrField"
              name="StrField"/>
  </types>
  <fields>
    <field indexed="true" multiValued="false" name="body"
            stored="true" type="TextField"/>
    <field docValues="true" indexed="true" multiValued="false"
           name="real_date" stored="true" type="TrieDateField"/>
    <field indexed="true" multiValued="false" name="title"
            stored="true" type="TextField"/>
    <field indexed="true" multiValued="false" name="id"
            stored="true" type="StrField"/>
    <field indexed="true" multiValued="false" name="date"
            stored="true" type="TextField"/>
    <field indexed="true" multiValued="true" name="catch_all"
            type="TextField"/>
  </fields>
  <uniqueKey>id</uniqueKey>
</schema>
```

```xml
<field indexed="true" multiValued="false" name="date"
        stored="true" type="TextField"/>
<field indexed="true" multiValued="true" name="catch_all"
        type="TextField"/>
```
Using DataStax Enterprise advanced functionality

3. Define the default field in the search index config:

```sql
ALTER SEARCH INDEX CONFIG ON wiki.solr SET defaultQueryField = 'catch_all';
```

```xml
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<config>
  <luceneMatchVersion>LUCENE_6_0_1</luceneMatchVersion>
  <dseTypeMappingVersion>2</dseTypeMappingVersion>
  <directoryFactory class="solr.StandardDirectoryFactory" name="DirectoryFactory"/>
  <indexConfig>
    <ramBufferSizeMB>512</ramBufferSizeMB>
    <rt>false</rt>
  </indexConfig>
  <jmx/>
  <updateHandler>
    <autoSoftCommit>
      <maxTime>10000</maxTime>
    </autoSoftCommit>
  </updateHandler>
  <query>
    <filterCache class="solr.SolrFilterCache" highWaterMarkMB="2048" lowWaterMarkMB="1024"/>
    <enableLazyFieldLoading>true</enableLazyFieldLoading>
    <useColdSearcher>true</useColdSearcher>
    <maxWarmingSearchers>16</maxWarmingSearchers>
  </query>
  <requestDispatcher>
    <requestParsers enableRemoteStreaming="true" multipartUploadLimitInKB="2048000"/>
    <httpCaching never304="true"/>
  </requestDispatcher>
  <requestHandler class="solr.SearchHandler" default="true" name="search">
    <lst name="defaults">
      <str name="df">catch_all</str>
    </lst>
  </requestHandler>
  <requestHandler class="com.datastax.bdp.search.solr.handler.component.CqlSearchHandler" name="solr_query">
    <lst name="defaults">
      <str name="df">catch_all</str>
    </lst>
  </requestHandler>
  <requestHandler class="solr.UpdateRequestHandler" name="/update"/>
  <requestHandler class="solr.UpdateRequestHandler" name="/update/csv" startup="lazy"/>
</config>
```
4. Reload the schema and config to make the pending search index schema and config active:

```
RELOAD SEARCH INDEX ON wiki.solr ;
```

5. Rebuild the index to update the search index for the existing data:

```
REBUILD SEARCH INDEX ON wiki.solr ;
```

Generating an index with joins disabled

By default, the partition key fields are combined into a single field, `_partitionKey`, and stored as a string field to support joins between indexes. When join is not required, create an index with join disabled.

Note: To disable joins after an index has been created, see Configuring search index joins (page 490).

1. Create a search index with join disabled:

 The `PROFILES spaceSavingNoJoin` option disables joins when creating a search index. For example:
Using DataStax Enterprise advanced functionality

```
CREATE SEARCH INDEX ON demo.health_data
WITH PROFILES spaceSavingNoJoin;
```

2. Verify that joins are disabled:

```
DESCRIBE ACTIVE SEARCH INDEX SCHEMA ON demo.health_data;
```

...<field docValues="false" indexed="false" multiValued="false"
name="_partitionKey" omitNorms="true" stored="false"
type="StrField"/>
...

Managing search index fields

Add, remove, and change indexing definitions for table columns in the search index schema.

Syntax for changing schema settings

The search index schema is in XML format and supports most Solr schema.xml elements:

```xml
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<schema name="autoSolrSchema" version="1.5">
  <types>
    <fieldType class="class_name" name="type_name"/>
    <analyzer>
      <tokenizer class="class_name"/>
      <filter class="class_name"/>
    </analyzer>
  </fieldType>
  <fields>
    <field indexed="boolean" multiValued="boolean" name="unique_name"
      stored="boolean" type="type_name"/>
    <dynamicField indexed="boolean" multiValued="boolean"
      name="fieldname_wildcard_match" stored="boolean" type="type_name"/>
  </fields>
</schema>
```

CQL ALTER SEARCH INDEX SCHEMA basic syntax:

```
ALTER SEARCH INDEX SCHEMA ON keyspace_name.table_name
ADD ([shortcut] | element_path) [ element_definition | WITH $jsonsnippet$$];
```
Using shortcut keywords

Use shortcuts *field*, *fieldType*, and *copyField* to:

- Add or drop table columns from the index. Example:

  ```
  ALTER SEARCH INDEX SCHEMA ON <table> ADD field gender;
  ```

 If the field name matches a column name the field definition is automatically added to the pending schema.

- Identify the element (*field*, *fieldType*, and *copyField*) and then change the setting using an element path or JSON definition. Example:

  ```
  ALTER SEARCH INDEX SCHEMA ON <table> ADD copyField[@source='title', @dest='catch_all'];
  ```

Using element paths

The element path uniquely describes the setting in the schema XML. Enclose attributes after an element in brackets; to define multiple attributes use a comma-separated list. When adding an element, include all of the attributes.

```
top_level_element_name.child_element_name[@attribute_name='value', ...]
```

For example to add a the Text field type definition:

```
types.fieldType[ @name='TextField_intl' , @class='org.apache.solr.schema.TextField' ]
```

The element path can also be used to describe a sub-element in the schema.

Removing elements or attributes

The CQL command syntax to remove the second filter on the search phase analyzer:

```
ALTER SEARCH INDEX SCHEMA ON demo.users
  DROP types.fieldType[@name='TextField_intl']
    .analyzer[@type='search']
    .filter[@class='solr.ClassicFilterFactory'];
```

Changes the fieldType to:

```
<fieldType class="org.apache.solr.schema.TextField"
  name="TextField_intl">
  ...
  <analyzer type="search">
    <filter class="solr.LowerCaseFilterFactory"/>
    <tokenizer class="solr.StandardTokenizerFactory"/>
  </analyzer>
</fieldType>
```
Defining complex elements with JSON

This JSON snippet is translated into XML elements and attributes:

- JSON pair translates to XML attribute.
- JSON object translates to XML element.

The JSON is translated into these XML attributes:

```
$$
  "analyzer": [
    {
      "type": "index",
      "tokenizer": { "class": "solr.StandardTokenizerFactory" },
      "filter": [ 
        { "class": "solr.LowerCaseFilterFactory" },
        { "class": "solr.ASCIIFoldingFilterFactory" }
      ]
    },
    {
      "type": "search",
      "tokenizer": { "class": "solr.StandardTokenizerFactory" },
      "filter": [ 
        { "class": "solr.LowerCaseFilterFactory" },
        { "class": "solr.ASCIIFoldingFilterFactory" }
      ]
    }
  ]
$$
```

The JSON is translated into these XML elements:

```
"analyzer": [ 
  { "type": "index", <analyzer type="index">
    "tokenizer": 
      { "class": "solr.Standard..." }, <tokenizer class="solr.Standard...">
    <tokenizer>
      "filter": [ 
        { "class": "solr.LowerCase..." }, <filter class="solr.LowerCase...">
      <filter>
        { "class": "solr.ASCIIFolding..." } <filter class="solr.ASCIIFolding..."/>
    </tokenizer>
  </tokenizer>
</analyzer>
```

Schema

Describes the CQL columns to index, sets the Solr data type, defines how to index and search each field type, and defines the primary key.

The schema displays in XML format. Use element paths to define and identify elements and attributes:

```
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<schema name="autoSolrSchema" version="1.5">
  <types>
```
ADD field column_name

Adds a column from the CQL table to the pending search index schema using the default mapping.

```
ALTER SEARCH INDEX SCHEMA ON demo.health_data ADD field fips;
```

ADD fields.field[@attribute_name='value', ...]

Adds a new field to the pending schema and manually set the attributes. For example, add a column from the table to the index and set the field type to string.

```
ALTER SEARCH INDEX SCHEMA ON demo.health_data ADD fields.field[@name='fish', @type='StrField', @indexed='true'];
```

ADD copyField[@attribute_name='value', ...]

Copy the value of the source field to a new field. For example, as a workaround to the rule that you cannot use `LowerCaseStrField` on a primary key column, you can use `copyField` to copy the primary key field data to a new field defined as type `LowerCaseStrField`.

```
ALTER SEARCH INDEX SCHEMA ON <table> ADD field[@name='key_column_copy', @type='LowerCaseStrField', @indexed='true', @stored='true', @docValues='true'];
```

```
ALTER SEARCH INDEX SCHEMA ON <table> ADD copyField[@source='<key_column>', @dest='key_column_copy'];
```
Using DataStax Enterprise advanced functionality

Removes a field from the *pending* search index schema.

```sql
ALTER SEARCH INDEX SCHEMA ON demo.health_data
DROP field fips;
```

SET `fields.field[@name='field_name']@attribute_name='value'`

Changes the field identified by the attribute in brackets by adding or replacing the *attribute_to_change*.

Field attributes:

- **name**: Matches a CQL table column name or the name of a copyField destination.
- **type**: Name of a defined fieldType.
- **indexed**: True indicates that the field is indexed. By default, only the fields that are included in the index on creation are displayed.

 Note: Primary key columns must be indexed (`indexed="true"`).

- **docValues**: Creates a forward index on the field values.
- **multiValued**: Contains more than one value, such as a set, map, list column, or the destination of multiple copyField definitions.

```sql
ALTER SEARCH INDEX SCHEMA ON demo.health_data
SET fields.field[@name='gender_s']@multiValued='true';
```

ADD `types.fieldType[@attribute_name='value', …] WITH $$ { json_map } $$`

Adds a field type definition to the schema for analyzing, tokenizing, and filtering fields in the index.

```sql
ADD types.fieldType[@name='TrieIntField',
@class='solr.TrieIntField']
```

Note: Optionally add the leading element `fields.in ADD or SET fields.field` to follow a naming convention and provide structure.

Defining index field types

Default field type definitions

A field type definition is required for parsing CQL columns into the corresponding Solr field type. Add processing instructions to the analyzer section of the fieldType definition.

TrieField types

Used with a type attribute and value: integer, long, float, double, date.

TrieDoubleField

```xml
<fieldType class="org.apache.solr.schema.TrieDoubleField"
name="TrieDoubleField"/>
```

TrieDateField
Date field for Lucene TrieRange processing, supports indexing negative date. For example: -28011-12-02T00:00:00.002Z. To insert negative dates for the CQL timestamp, insert an epoch time in milliseconds. The TimestampType does not accept a textual representation of negative dates.

```xml
<fieldType class="org.apache.solr.schema.TrieDateField"
name="TrieDateField"/>
```

TrieFloatField

```xml
<fieldType class="org.apache.solr.schema.TrieFloatField"
name="TrieFloatField"/>
```

StringField types

VarIntStrField

Define with the DataStax class to convert a CQL varint.

```xml
<fieldType
class="com.datastax.bdp.search.solr.core.types.VarIntStrField"
name="VarIntStrField"/>
```

AsciiStrField

Converts a CQL ascii into a standard Solr StrField.

```xml
<fieldType
class="com.datastax.bdp.search.solr.core.types.AsciiStrField"
name="AsciiStrField"/>
```

SimpleDateField

Define with the DataStax class to convert a CQL date field into a compatible Solr date field.

```xml
<fieldType
class="com.datastax.bdp.search.solr.core.types.SimpleDateField"
name="SimpleDateField"/>
```

BoolField

Due to SOLR-7264, setting docValues to true on a boolean field in the Solr schema does not work. A workaround for boolean docValues is to use 0 and 1 with a TrieIntField.

```xml
<fieldType class="org.apache.solr.schema.BoolField"
name="BoolField"/>
```

BinaryField

```xml
<fieldType class="org.apache.solr.schema.BinaryField"
name="BinaryField"/>
```

UUIDField

A value of this type is a Type 1 UUID that includes the time of its generation. Values are sorted by conflict-free timestamps. For example, use the TimeUUID...
Using DataStax Enterprise advanced functionality

type to identify a column, such as a blog entry, by its timestamp and allow multiple clients to write to the same partition key simultaneously. To find data mapped from a TimeUUID to a UUIDField, search for the entire UUID value, not just its time component.

```xml
<fieldType class="org.apache.solr.schema.UUIDField" name="UUIDField"/>
```

Default index field definitions for CQL column types

Restriction: Decimal and varint are indexed as strings. Apache Lucene® does not support the precision required by these numeric types. Range and sorting queries do not work as expected if a table uses these types.

Table 44: Default column definitions

<table>
<thead>
<tr>
<th>CQL data type</th>
<th>Field type name</th>
<th>docValues</th>
<th>multiValued</th>
</tr>
</thead>
<tbody>
<tr>
<td>ascii</td>
<td>AsciiStrField</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>bigint</td>
<td>TrieLongField</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>blob</td>
<td>BinaryField</td>
<td>not supported</td>
<td>false</td>
</tr>
<tr>
<td>boolean</td>
<td>BoolField</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>date</td>
<td>SimpleDateField</td>
<td>not supported</td>
<td>false</td>
</tr>
<tr>
<td>decimal</td>
<td>DecimalStrField</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>double</td>
<td>TrieDoubleField</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>float</td>
<td>TrieFloatField</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>inet</td>
<td>InetField</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>int</td>
<td>TrieIntField</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>smallint</td>
<td>TrieIntField</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>text</td>
<td>TextField</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>time</td>
<td>TimeField</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>timestamp</td>
<td>TrieDateField</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>timeuuid</td>
<td>TimeUUIDField</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>tinyint</td>
<td>TrieIntField</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>uuid</td>
<td>UUIDField</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>varchar</td>
<td>TextField</td>
<td>not supported</td>
<td>false</td>
</tr>
<tr>
<td>varint</td>
<td>VarIntStrField</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>CQL data type</td>
<td>Field name</td>
<td>docValues</td>
<td>multiValued</td>
</tr>
<tr>
<td>---------------</td>
<td>------------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>list</td>
<td></td>
<td></td>
<td>true</td>
</tr>
<tr>
<td>map</td>
<td></td>
<td></td>
<td>true</td>
</tr>
<tr>
<td>set</td>
<td></td>
<td></td>
<td>true</td>
</tr>
<tr>
<td>tuple/user defined type (UDT)</td>
<td>TupleField</td>
<td>false</td>
<td>false</td>
</tr>
</tbody>
</table>

CQL data type compatibility with field type classes

Table 45: Compatibility matrix

<table>
<thead>
<tr>
<th>CQL</th>
<th>Field name</th>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ascii</td>
<td>AsciiStrField</td>
<td>AsciiType</td>
<td>Indexed as a standard Solr StrField.</td>
</tr>
<tr>
<td>blob</td>
<td>BinaryField</td>
<td>BytesType</td>
<td>Binary data.</td>
</tr>
<tr>
<td>boolean</td>
<td>BoolField</td>
<td>BooleanType</td>
<td>True (1, t, or T) or False (not 1, t, or T)</td>
</tr>
<tr>
<td>DateRangeType</td>
<td>DateRangeField</td>
<td>DateRangeType</td>
<td>Point-in-time with millisecond precision with support for date ranges. See Using date ranges in solr_query (page 526).</td>
</tr>
<tr>
<td>decimal</td>
<td>DecimalStrField</td>
<td>DecimalType</td>
<td>Indexed as a standard Solr StrField.</td>
</tr>
<tr>
<td>text, varchar</td>
<td>EnumField</td>
<td>UTF8Type</td>
<td>A closed set with a pre-determined sort order.</td>
</tr>
<tr>
<td>text, varchar</td>
<td>ExternalFileField</td>
<td>UTF8Type</td>
<td>Values from disk file.</td>
</tr>
<tr>
<td>text, varchar</td>
<td>GeoHashField</td>
<td>UTF8Type</td>
<td>Hash of coordinate pair (latitude,longitude) stored as a string.</td>
</tr>
<tr>
<td>inet</td>
<td>InetField</td>
<td>InetAddressType</td>
<td>InetField is implemented and indexed as a standard Solr StrField.</td>
</tr>
<tr>
<td>text, varchar</td>
<td>LatLonType</td>
<td>UTF8Type</td>
<td>Latitude/Longitude 2-D point, latitude first.</td>
</tr>
<tr>
<td>text, varchar</td>
<td>PointType</td>
<td>UTF8Type</td>
<td>Arbitrary n-dimensional point for spatial search.</td>
</tr>
<tr>
<td>text, varchar</td>
<td>RandomSortField</td>
<td>UTF8Type</td>
<td>Dynamic field in random order.</td>
</tr>
<tr>
<td>CQL</td>
<td>Field name</td>
<td>Class</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------------------------</td>
<td>----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>date</td>
<td>SimpleDateField</td>
<td>SimpleDateType</td>
<td>TrieDateField holding a CQL date.</td>
</tr>
<tr>
<td>PointType</td>
<td>SpatialRecursivePrefixTreeFieldType</td>
<td>SpatialRecursivePrefixTreeFieldType</td>
<td>Spatial field type for a point geospatial (page 514) context.</td>
</tr>
<tr>
<td>text, varchar</td>
<td>SpatialRecursivePrefixTreeFieldType</td>
<td>SpatialRecursivePrefixTreeFieldType</td>
<td>Spatial field type for a geospatial context.</td>
</tr>
<tr>
<td>text, varchar</td>
<td>StrField</td>
<td>UTF8Type</td>
<td>String (UTF-8 encoded string or Unicode).</td>
</tr>
<tr>
<td>text, varchar</td>
<td>TextField</td>
<td>UTF8Type</td>
<td>Text, usually multiple words or tokens.</td>
</tr>
<tr>
<td>time</td>
<td>TimeField</td>
<td>TimeType</td>
<td>A TrieLongField holding a CQL time.</td>
</tr>
<tr>
<td>timeuuid</td>
<td>TimeUUIDField</td>
<td>TimeUUIDType</td>
<td>Type 1 Universally Unique Identifier (UUID).</td>
</tr>
<tr>
<td>timestamp</td>
<td>TrieDateField</td>
<td>DateType</td>
<td>Date field for Lucene TrieRange processing; supports indexing negative dates.</td>
</tr>
<tr>
<td>double</td>
<td>TrieDoubleField</td>
<td>DoubleType</td>
<td>Double field for Lucene TrieRange processing.</td>
</tr>
<tr>
<td>N/A</td>
<td>TrieField</td>
<td>N/A</td>
<td>Same as any Trie field type.</td>
</tr>
<tr>
<td>float</td>
<td>TrieFloatField</td>
<td>FloatType</td>
<td>Floating point field for Lucene TrieRange processing.</td>
</tr>
<tr>
<td>int, smallint</td>
<td>TrieIntField</td>
<td>Int32Type, ShortType</td>
<td>32-bit signed integer field for Lucene TrieRange processing.</td>
</tr>
<tr>
<td>tinyint</td>
<td>TrieIntField</td>
<td>ByteType</td>
<td>32-bit signed integer field for Lucene TrieRange processing.</td>
</tr>
<tr>
<td>bigint</td>
<td>TrieLongField</td>
<td>LongType</td>
<td>Long field for Lucene TrieRange processing.</td>
</tr>
<tr>
<td>uuid, timeuuid</td>
<td>UUIDField</td>
<td>UUIDType</td>
<td>Universally Unique Identifier (UUID).</td>
</tr>
<tr>
<td>varint</td>
<td>VarIntStrField</td>
<td>IntegerType</td>
<td>Indexed as a standard Solr StrField.</td>
</tr>
<tr>
<td>CQL</td>
<td>Field name</td>
<td>Class</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------</td>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>text, varchar</td>
<td>Other</td>
<td>UTF8Type</td>
<td>Indexed as a standard Solr StrField.</td>
</tr>
</tbody>
</table>

Adding a new field type

Add the Solr field type definitions to the search index schema, and then use the new type.

1. Add the field type definition if it does not exist:

   ```
   ALTER SEARCH INDEX SCHEMA ON [keyspace_name.]table_name
   ADD types.fieldtype[@class='field_class', @name='type_name'];
   ```

2. Change the type of the field:

   ```
   ALTER SEARCH INDEX SCHEMA ON [keyspace_name.]table_name
   SET field[@name='column_name']@type='fieldtype_name';
   ```

 Note: If a field name in the schema matches a table column, the column is indexed.

3. Verify the pending changes:

   ```
   DESCRIBE PENDING SEARCH INDEX SCHEMA ON [keyspace_name.]table_name;
   ```

4. Activate the changes:

   ```
   RELOAD SEARCH INDEX ON [keyspace_name.]table_name;
   ```

 Copies the pending schema over the active schema. New transactions, such as data inserted into the table, are processed using the active schema. The existing data is not effected by a schema change.

5. Rebuild the index:

   ```
   REBUILD SEARCH INDEX ON [keyspace_name.]table_name;
   ```

 The REBUILD SEARCH INDEX regenerates the index using existing data. Rebuilding is required when changing the way that data is indexed, such as changing the type of field or if a field is added to the index.

To run a faceted queries using the gender field, change the type to StrField.

1. Add the Solr string field type to the health_data table:

   ```
   ALTER SEARCH INDEX SCHEMA ON demo.health_data
   ```
Using DataStax Enterprise advanced functionality

2. Change the gender field type:

```
ALTER SEARCH INDEX SCHEME ON demo.health_data
SET field[@name='gender']@type='StrField';
```

See Adding a column to the index (page 478).

Adding a column to the index

Add a table column to the index. Field types are inferred when fields are added. The field types are added if they do not exist in the schema. Field type names are generated using the field type name as the simple name of the field type.

1. Add a table column to the index:
 - **Add a regular column**

 For example, to add a field to the wiki demo index:

   ```
   ALTER TABLE wiki.solr ADD intfield int;
   ALTER SEARCH INDEX SCHEMA ON wiki.solr ADD field intfield;
   ```

 Adds the following field:

   ```
   <field indexed="true" multiValued="false" name="intfield" stored="true" type="TrieIntField"/>
   ```

 And the following field type:

   ```
   <fieldType name="TrieIntField" class="org.apache.solr.schema.TrieIntField"/>
   ```

 - **Add a table column that is a Tuple or UDT**

 Tuple columns are added as multiple fields:

   ```
   ALTER TABLE solr.wiki ADD fieldname tuple<text,int>;
   ALTER SEARCH INDEX SCHEMA ON solr.wiki ADD
   fields.field fieldname;
   ```

 Adds the following to the schema:

   ```
   <field indexed="true" multiValued="false" name="fieldname" stored="true" type="TupleField"/>
   <field indexed="true" multiValued="false" name="fieldname.field1" stored="true" type="TextField"/>
   ```
Using DataStax Enterprise advanced functionality

Note: Adding the leading element fields in ADD fields.field
fieldname is optional and provides only cosmetic structure.

2. Verify the pending changes:
 DESCRIBE PENDING SEARCH INDEX SCHEMA ON [keyspace_name.]table_name;

3. Activate the changes:
 RELOAD SEARCH INDEX ON [keyspace_name.]table_name;

 Copies the pending schema over the active schema. New transactions, such as
data inserted into the table, are processed using the active schema. The existing
data is not effected by a schema change.

4. Rebuild the index:
 REBUILD SEARCH INDEX ON [keyspace_name.]table_name;

 The REBUILD SEARCH INDEX regenerates the index using existing data.
 Rebuilding is required when changing the way that data is indexed, such as
 changing the type of field or if a field is added to the index.

Indexing tuples and UDTs fields

Guidelines

Guidelines for advanced data types, including tuples and user-defined types (UDT):

- The tuple data type holds fixed-length sets of typed positional fields. Use a tuple as
 an alternative to a UDT.
- A UDT facilitates handling multiple fields of related information in a table. UDTs are a
 specialization of tuples. All examples and documentation references to tuples apply to
 both tuples and UDTs.

Simplify applications that require multiple tables by using UDTs to represent the
related fields of information, instead of storing the information in a separate table.

DSE Search does not support:

- Tuples and UDTs that are used inside primary key declarations.
- Tuples and UDTs that are used as CQL map values. Instead, use a workaround to
 simulate a map-like data model (page 482).
- Dynamic fields as tuples or UDTs.
Using DataStax Enterprise advanced functionality

- Tuple/UDT subfield sorting and faceting.

Performance and memory

Tuples and UDTs are read and written as a single unit of information. Consider performance and memory impact when working with tuples and UDTs. Subfields are managed as the full tuple or UDT, and are not handled individually.

Highlights

Add CQL tuple and user-defined type (UDT) columns to an existing search index.

- Define a field for the table column using the DataStax Tuple class (com.datastax.bdp.search.solr.core.types.TupleField).
- Define a field for each value in the CQL tuple or UDT column using the corresponding Solr field type.

Note: The schema field name is `column_name.fieldN` where the `column_name` matches the CQL column and `N` is the field position starting at 1.

Tuple configuration example

Tuples

Tuple columns are added as multiple fields:

```plaintext
ALTER TABLE solr.wiki ADD fieldname tuple<text,int>;
ALTER SEARCH INDEX SCHEMA ON solr.wiki ADD fields.field fieldname;
```

Adds the following to the schema:

```xml
<field indexed="true" multiValued="false" name="fieldname" stored="true" type="TupleField" />
<field indexed="true" multiValued="false" name="fieldname.field1" stored="true" type="TextField" />
<field indexed="true" multiValued="false" name="fieldname.field2" stored="true" type="TrieIntField" />
```

Note: Adding the leading `fields` in `ADD fields.field` `fieldname` is optional and provides only cosmetic structure.

Drops the TupleField and all the child fields when dropping the base field name:

```plaintext
ALTER SEARCH INDEX SCHEMA ON solr.wiki DROP field fieldname;
```

To drop individual child fields:

```plaintext
ALTER SEARCH INDEX SCHEMA ON solr.wiki DROP field "fieldname.field1";
```
Tuple columns are added as multiple fields:

```
ALTER TABLE solr.wiki ADD fieldname tuple<text,int>;
ALTER SEARCH INDEX SCHEMA ON solr.wiki ADD fields.field fieldname;
```

Adds the following to the schema:

```
<field indexed="true" multiValued="false" name="fieldname"
  stored="true" type="TupleField" />
  <field indexed="true" multiValued="false"
    name="fieldname.field1" stored="true" type="TextField" />
  <field indexed="true" multiValued="false"
    name="fieldname.field2" stored="true" type="TrieIntField" />
```

Note: Adding the leading element `fields` in `ADD fields.field fieldname` is optional and provides only cosmetic structure.

Drops the TupleField and all the child fields when dropping the base field name:

```
ALTER SEARCH INDEX SCHEMA ON solr.wiki DROP field fieldname;
```

To drop individual child fields:

```
ALTER SEARCH INDEX SCHEMA ON solr.wiki DROP field
"fieldname.field1";
```

UDT configuration example

Example steps to configure a UDT for DSE Search.

In the search schema, declare the UDTField class

```
<fieldType class="com.datastax.bdp.search.solr.core.types.TupleField"
  name="UDTField"/>
```

Note: Use CQL commands to manage search indexes.

Create a type with the UDT

You must create a type for UDTs.

```
CREATE TYPE Address (street text, city text)
```

Create a table with the tuple

```
CREATE TABLE Location ( id text primary key, address
  frozen<Address> );
```

Configure the UDTField in the search schema

```
<field name="address" type="UDTField" indexed="true" stored="true"/>
```
Nesting tuples and UDTs

DSE Search supports queries for nested tuples and UDTs. For example, you can nest and declare tuples and UDTs inside CQL lists and sets. You cannot nest tuples and UDTs inside maps or keys.

Create a type with the Address tuple

```
CREATE TYPE Address (street text, city text, residents set<tuple<text, text>>)
```

Create a table with the Address tuple

```
CREATE TABLE Location (id text, address Address)
```

In the search schema, declare the TupleField and the nested TupleField

```
<field name="address" type="TupleField" indexed="true" stored="true"/>
<field name="address.street" type="text" indexed="true" stored="true"/>
<field name="address.city" type="text" indexed="true" stored="true"/>
<field name="address.residents" type="TupleField" indexed="true" multivalued="true"/>
<field name="address.residents.field1" type="text" indexed="true" stored="true"/>
<field name="address.residents.field2" type="text" indexed="true" stored="true"/>
```

The residents nested tuple is TupleField. Each nested field is concatenated with each parent tuple or UDT by using periods.

See

Tuples and UDTs as CQL map values

DSE Search does not support using tuples and UDTs as CQL map values. Use this workaround to simulate a map-like data model.

1. Declare a collection of tuples or UDTs that have a type field that represents what would have been the map key:

 Create the tuple type. The tuple type applies to tuples and UDTs.

   ```
   CREATE TYPE Address (type text, street text, city text)
   ```

 Create table for UDT:
CREATE TABLE Person (name text primary key, addresses set<frozen<address>>)

Or create a table for a tuple:

CREATE TABLE Person (name text primary key, addresses set<frozen<tuple<text, text, text>>>)

2. Using this collection of tuples or UDTs as a map-like data model, it is possible to query for person addresses of a given type (key).

For example, to query for persons whose home address is in London:

{"tuple}addresses.type:Home AND addresses.city:London

Indexing map columns

DataStax Enterprise Search indexes a CQL map column using a Solr dynamic field (page 515). Dynamic fields apply the field definition using a wildcard match on the name. In the search index schema, DSE sets the dynamic field name to the CQL column name with an asterisk appended. DSE parses the data from a map using the key name and Solr will index only the keys that have the column name as the prefix. Keys that do not have the column name as a prefix are ignored.

For example, when creating a search index with the default settings on the cycling birthday_list table, the blist_ map column definition is:

<dynamicField indexed="true" multiValued="false" name="blist_*" type="StrField"/>

When DSE builds the index from the CQL rows, the key name is used (not the column name). Therefore, all keys that have the blist_ as the prefix in the example are indexed and the rest are ignored. Only blist_age and blist_nation are indexed when the following data is inserted:

```
INSERT INTO cycling.birthday_list (cyclist_name, blist_)
VALUES ('Allan DAVIS',
   { 'blist_age':'35',
     'bday':'27/07/1980',
     'blist_nation':'AUSTRALIA'});
```

All key-value pairs in CQL maps have the same data type, the map in the example above sets all values to text (blist_ map<text,text>). Because DSE Search loads the data by mapping the key name to the Solr dynamic field name, you can customize field type for each key.

Prerequisites:
This section walks you through the process of customizing the search index for data that has the same three map keys in every record, blist_age, bday (birth date), and blist_nation where only blist_age and blist_nation are indexed. Set up the following keyspace and table to use this example:

- Create the cycling keyspace
- Add the birthday_list table and data

1. Create an index that excludes the blist_map column:

   ```
   CREATE SEARCH INDEX ON cycling.birthday_list
   WITH COLUMNS blist_ {excluded:true};
   ```

2. View the active schema:

   ```
   DESC ACTIVE SEARCH INDEX SCHEMA ON cycling.birthday_list;
   ```

 DSE sets CQL text to Solr StrField type.

   ```
   <?xml version="1.0" encoding="UTF-8" standalone="no"?>
   <schema name="autoSolrSchema" version="1.5">
     <types>
       <fieldType class="org.apache.solr.schema.StrField"
                  name="StrField"/>
     </types>
     <fields>
       <field indexed="true" multiValued="false" name="cyclist_name"
                  type="StrField"/>
     </fields>
     <uniqueKey>cyclist_name</uniqueKey>
   </schema>
   ```

 In order to set blist_age to an integer, the type definition is also required.

3. Define the blist_age type and configure a field definition:

   ```
   ALTER SEARCH INDEX SCHEMA ON cycling.birthday_list
   ADD types.fieldType[@class='org.apache.solr.schema.TrieIntField',
                     @name='TrieIntField'];
   ```

   ```
   ALTER SEARCH INDEX SCHEMA ON cycling.birthday_list
   ADD fields.field[@indexed='true', @multiValued='false',
                    @name='blist_age', @type='TrieIntField'];
   ```

4. Define the blist_nation field as a string type, which already has a corresponding type definition.

   ```
   ALTER SEARCH INDEX SCHEMA ON cycling.birthday_list
   ```
ADD fields.field[@name='blist_nation', @indexed='true', @multiValued='false', @type='StrField'];

5. View the pending changes to the schema to ensure that the syntax is correct.
 DESC PENDING SEARCH INDEX SCHEMA ON cycling.birthday_list;

 <?xml version="1.0" encoding="UTF-8" standalone="no"?><schema name="autoSolrSchema" version="1.5"><types>
 <fieldType class="org.apache.solr.schema.StrField" name="StrField"/>
 <fieldType class="org.apache.solr.schema.TrieIntField" name="TrieIntField"/>
 </types><fields>
 <field indexed="true" multiValued="false" name="cyclist_name" type="StrField"/>
 <field indexed="true" multiValued="false" name="blist_age" type="TrieIntField"/>
 <field indexed="true" multiValued="false" name="blist_nation" type="StrField"/>
 </fields><uniqueKey>cyclist_name</uniqueKey></schema>

6. Reload the index configuration and schema to push the changes live:
 RELOAD SEARCH INDEX ON cycling.birthday_list;

7. Rebuild the index whenever fields are added.
 REBUILD SEARCH INDEX ON cycling.birthday_list;

8. Use the map fields to filter queries.
 - Limit by age 23:
 SELECT * FROM cycling.birthday_list WHERE solr_query = 'blist_age:23';

cyclist_name	blist_	solr_query
Claudio HEINEN	{'bday': '27/07/1992', 'blist_age': '23', 'blist_nation': 'GERMANY'}	null
Laurence BOURQUE	{'bday': '27/07/1992', 'blist_age': '23', 'nation': 'CANADA'}	null
Limit by nation GERMANY (which is case sensitive because the type is string):

```sql
SELECT * FROM cycling.birthday_list WHERE solr_query = 'blist_nation:GERMANY';
```

<table>
<thead>
<tr>
<th>cyclist_name</th>
<th>blist_</th>
<th>solr_query</th>
</tr>
</thead>
<tbody>
<tr>
<td>Claudio HEINEN</td>
<td>{'bday': '27/07/1992', 'blist_age': '23', 'blist_nation': 'GERMANY'}</td>
<td>null</td>
</tr>
</tbody>
</table>

(1 rows)

Dropping columns from the index

Remove a CQL column using the `ALTER SEARCH INDEX SCHEMA` field shortcut. The field is removed based on the name that is defined in the schema.

1. Remove a CQL column from the index:
 - Remove a regular column:
     ```sql
     ALTER SEARCH INDEX SCHEMA ON wiki.solr DROP field intfield;
     ALTER TABLE wiki.solr DROP intfield int;
     ```
 - Remove a tuple column from the index:
 When dropping the base field name, drop the TupleField and all the child fields:
     ```sql
     ALTER SEARCH INDEX SCHEMA ON solr.wiki DROP field fieldname;
     ```
 To drop individual child fields:
     ```sql
     ALTER SEARCH INDEX SCHEMA ON solr.wiki DROP field "fieldname.field1";
     ```

2. Verify the pending changes:
   ```sql
   DESCRIBE PENDING SEARCH INDEX SCHEMA ON [keyspace_name.]table_name;
   ```

3. Activate the changes:
   ```sql
   RELOAD SEARCH INDEX ON [keyspace_name.]table_name;
   ```
Using DataStax Enterprise advanced functionality

Copies the pending schema over the active schema. New transactions, such as data inserted into the table, are processed using the active schema. The existing data is not effected by a schema change.

4. Rebuild the index:

```
REBUILD SEARCH INDEX ON [keyspace_name.]table_name;
```

The REBUILD SEARCH INDEX regenerates the index using existing data. Rebuilding is required when changing the way that data is indexed, such as changing the type of field or if a field is added to the index.

Indexing a column for different analysis

DSE Search supports indexing a CQL table column for different types of analysis using the Solr copyField directive.

Tip: For a complete explanation, see the Solr Reference Guide Copying fields.

When specified during search index creation, DSE automatically defines a new index string field and sets up the data copy. The new field is not stored in the database or returned in query results.

Restriction: Copying from/to the same dynamic field and setting the maximum number of characters (maxChars) in the copyField definition are unsupported.

The following example uses copy fields to copy various CQL columns, such as a twitter name and email, to a multiValued field. You can then query the multiValued field using a term to search for all columns in a single query.

1. Create a keyspace using the replication strategy and replication factor that makes sense for your environment. The following example is for a single node test cluster:

```
CREATE KEYSPACE user_info
    WITH_REPLICATION = ( 'class' : 'SimpleStrategy',
                       'replication_factor' : 1 );
```

2. Create a table:

```
CREATE TABLE user_info.users ( id text PRIMARY KEY,
                               name text,
                               email text,
                               skype text,
                               irc text,
                               twitter text
                        ) ;
```
3. Insert some data:

```sql
INSERT INTO user_info.users (id, name, email, skype, irc, twitter) VALUES
    ('user1', 'john smith', 'jsmith@abc.com', 'johnsmith', 'smitty', '@johnsmith');

INSERT INTO user_info.users (id, name, email, skype, irc, twitter) VALUES
    ('user2', 'elizabeth doe', 'lizzy@swbell.net', 'roadwarriorliz', 'elizdoe', '@edoe576');

INSERT INTO user_info.users (id, name, email, skype, irc, twitter) VALUES
    ('user3', 'dan graham', 'etnaboy1@aol.com', 'danielgra', 'dgraham', '@dannyboy');

INSERT INTO user_info.users (id, name, email, skype, irc, twitter) VALUES
    ('user4', 'john smith', 'jonsmit@fyc.com', 'johnsmith', 'jsmith345', '@johnrsmith');

INSERT INTO user_info.users (id, name, email, skype, irc, twitter) VALUES
    ('user5', 'john smith', 'jds@adeck.net', 'jdsmith', 'jdansmith', '@smithjd999');

INSERT INTO user_info.users (id, name, email, skype, irc, twitter) VALUES
    ('user6', 'dan graham', 'hacker@legalb.com', 'dangrah', 'dgraham', '@graham222');
```

4. Create a search index on the table:

```sql
CREATE SEARCH INDEX ON user_info.users;
```

5. Create a field that is only in the index that will contain all the data:

```sql
ALTER SEARCH INDEX SCHEMA ON user_info.users
ADD fields.field[ @name='all',
    @type='StrField',
    @multiValued='true'];
```

6. Use `copyField` to copy the data from all the CQL columns into the new `all` field of the index:

```sql
ALTER SEARCH INDEX SCHEMA ON user_info.users
ADD copyField[@source='id', @dest='all'];
ALTER SEARCH INDEX SCHEMA ON user_info.users
```
ADD copyField[@source='name', @dest='all'];
ALTER SEARCH INDEX SCHEMA ON user_info.users
ADD copyField[@source='email', @dest='all'];
ALTER SEARCH INDEX SCHEMA ON user_info.users
ADD copyField[@source='skype', @dest='all'];
ALTER SEARCH INDEX SCHEMA ON user_info.users
ADD copyField[@source='irc', @dest='all'];
ALTER SEARCH INDEX SCHEMA ON user_info.users
ADD copyField[@source='twitter', @dest='all'];

7. To allow faceting on the name column, set `docValues` to `true`:

 ALTER SEARCH INDEX SCHEMA ON user_info.users
 SET fields.field[@name='name']@docValues='true';

8. Reload the schema to make the pending changes active:

 RELOAD SEARCH INDEX ON user_info.users;

9. Rebuild the index to apply the new schema to the existing data:

 REBUILD SEARCH INDEX ON user_info.users;

10. Filter the query using the index to return all records that contain `smitty` in any of the columns.

 SELECT * FROM user_info.users WHERE solr_query = 'all:smitty';

 The output is:

 id | email | irc | name | skype |
 solr_query | twitter |
 -------+----------------+--------+------------+-----------
 +----------+----------------+--------+------------+-----------
 user1 | jsmith@abc.com | smitty | john smith | johnsmith |
 null | @johnsmith |

 (1 rows)

11. Get a count of unique names (skip nulls):

 SELECT name FROM user_info.users
 WHERE solr_query= '{"q":"*","facet":
 {"field":"name","mincount":1}}';

 At the bottom of the output, the facet results appear: 3 instances of john smith, 2 instances of dan graham, and 1 instance of elizabeth doe:
Configuring search index joins

DataStax Enterprise supports solr_query joins on the partition key field (_partitionKey). By default, the solr_query join functionality is enabled and DSE indexes the partitioning columns in this additional field. This field, _partitionKey, increases search index size. Disabling joins can decrease the amount of disk space the search indexes uses.

Join settings in the schema

DESCRIBE ACTIVE SEARCH INDEX SCHEMA displays the schema settings of a search index. DSE hides the definition of the _partitionKey when joins are enabled.

If the schema contains a field named _partitionKey, support for joins is:

- **Enabled**: attributes `docValues` and `indexed` are set to true. For example:

  ```xml
  <field name="_partitionKey" docValues="true" indexed="true" stored="false" type="StrField"/>
  ```

- **Disabled**: attributes `docValues` and `indexed` are set to false. For example:

  ```xml
  <field docValues="false" indexed="false" multiValued="false" name="_partitionKey" omitNorms="true" stored="false" type="StrField"/>
  ```

 Note: If the schema contains no field definition for _partitionKey, then joins are enabled.

Prerequisite

This section uses the Term and phrase searches using the wikipedia demo *(page 541)*.

Disable joins

Disable join on a search index by setting the _partitionKey field attributes `indexed` and `docValues` to false in the schema.

1. **Verify if schema has the field _partitionKey and fieldType StrField definitions.**

   ```sql
   DESCRIBE ACTIVE SEARCH INDEX SCHEMA ON wiki.solr;
   ```

 The example search index has joins enabled with no _partitionKey definition:

   ```xml
   <?xml version="1.0" encoding="UTF-8" standalone="no"?>
   ```
2. If required, add the string type definition:

```sql
ALTER SEARCH INDEX SCHEMA ON wiki.solr
ADD types.fieldType[@class='org.apache.solr.schema.StrField', @name='StrField'];
```

The definition is added to the pending schema and is not immediately applied.

3. Define the partition key field:

- If the search index already has the partition key field, change the `indexed` and `docValues` to `false`:

```sql
ALTER SEARCH INDEX SCHEMA ON wiki.solr
SET field[@name='__partitionKey']@docValues='false';
ALTER SEARCH INDEX SCHEMA ON wiki.solr
SET field[@name='__partitionKey']@indexed='false';
```

- If the schema does not have a `__partitionKey` definition, add one to override the default settings:

```sql
ALTER SEARCH INDEX SCHEMA ON wiki.solr
ADD fields.field[@name='__partitionKey']
```
Using DataStax Enterprise advanced functionality

```java
ADD fields.field[@name='_partitionKey', @type='StrField', @docValues='false', @indexed='false'];

Note: The type definition StrField is also required.
```

4. Verify that the schema definition was correctly modified:

```sql
DESCRIBE PENDING SEARCH INDEX SCHEMA ON wiki.solr;
```

For example, a simple table with three fields and a single partition key:

```xml
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<schema name="autoSolrSchema" version="1.5">
  <types>
    <fieldType class="org.apache.solr.schema.TextField"
      name="TextField">
      <analyzer>
        <tokenizer class="solr.StandardTokenizerFactory"/>
        <filter class="solr.LowerCaseFilterFactory"/>
      </analyzer>
    </fieldType>
    <fieldType class="org.apache.solr.schema.TrieDateField"
      name="TrieDateField"/>
    <fieldType class="org.apache.solr.schema.StrField"
      name="StrField"/>
  </types>
  <fields>
    <field indexed="true" multiValued="false" name="body"
      stored="true" type="TextField"/>
    <field docValues="true" indexed="true" multiValued="false"
      name="real_date" stored="true" type="TrieDateField"/>
    <field indexed="true" multiValued="false" name="title"
      stored="true" type="TextField"/>
    <field indexed="true" multiValued="false" name="id"
      stored="true" type="StrField"/>
    <field indexed="true" multiValued="false" name="date"
      stored="true" type="TextField"/>
    <field docValues="false" indexed="false" name="_partitionKey"
      type="StrField"/>
  </fields>
  <uniqueKey>id</uniqueKey>
</schema>
```

5. Reload the schema to make it active:

```sql
RELOAD SEARCH INDEX ON wiki.solr;
```

6. Optional, rebuild the search index:

```sql
REBUILD SEARCH INDEX ON wiki.solr;
```
Note: Rebuilding from CQL regenerates the index from the existing data on all search nodes, which use significant resources and is not required when disabling joins. When no rebuild command is executed after a schema change, new data in the field is not be duplicated and indexed. Use `dsetool rebuild_indexes (page 1218)` to regenerate the index on a node-by-node basis.

Enable joins

To enable join on a search index that previously had join disabled, set the `_partitionKey`, `docValues`, and `indexed` attributes to true, reload the schema, and rebuild the index.

Note: Rebuilding the search index on a large dataset might take longer than the default timeout for `cqlsh`. Before launching `cqlsh`, you can override the timeout. See Adjusting timeout for index management (page 461).

1. Start `cqlsh` on a node that is running DSE Search.

2. Set the `docValues` and `indexed` attributes to true:

   ```
   ALTER SEARCH INDEX SCHEMA ON wiki.solr
   SET field[@name='_partitionKey']@docValues='true';
   ALTER SEARCH INDEX SCHEMA ON wiki.solr
   SET field[@name='_partitionKey']@indexed='true';
   ```

3. Verify that the schema definition was correctly modified:

   ```
   DESCRIBE PENDING SEARCH INDEX SCHEMA ON wiki.solr;
   ```

 For example, a simple table with three fields and a single partition key:

   ```xml
   <?xml version="1.0" encoding="UTF-8" standalone="no"?>
   <schema name="autoSolrSchema" version="1.5">
     <types>
       <fieldType class="org.apache.solr.schema.TextField" name="TextField">
         <analyzer>
           <tokenizer class="solr.StandardTokenizerFactory"/>
           <filter class="solr.LowerCaseFilterFactory"/>
         </analyzer>
       </fieldType>
       <fieldType class="org.apache.solr.schema.TrieDateField" name="TrieDateField"/>
       <fieldType class="org.apache.solr.schema.StrField" name="StrField"/>
     </types>
     <fields>
       <field indexed="true" multiValued="false" name="body" stored="true" type="TextField"/>
     </fields>
   </schema>
   ```
4. Reload the schema to make it active:

 RELOAD SEARCH INDEX ON wiki.solr;

5. Rebuild the search index:

 REBUILD SEARCH INDEX ON wiki.solr;

Reloading the search index

After you modify the search index schema (page 442), config (page 435), or upload custom resource files (like a synonym file), reload the search index to make the pending search index active.

Changing search index config

To create and make changes to the search index config, follow these basic steps:

1. Create a search index. For example:

 CREATE SEARCH INDEX ON demo.health_data;

2. Alter the search index. For example:

 ALTER SEARCH INDEX CONFIG ON demo.health_data SET autoCommitTime = 30000;

3. Optionally view the XML of the pending search index. For example:

 DESCRIBE PENDING SEARCH INDEX CONFIG on demo.health_data;

4. Make the pending changes active. For example:
The CQL command `RELOAD SEARCH INDEX` replaces the active search index with the pending version.

For operations, you can optionally reload a search index (also called a search core) on a single node using `dsetool reload_core (page 1221).

Note: If one or more nodes fail to reload the core in distributed operations, an error message indicates a list of the failing node or nodes. Issue the reload again only on those failing nodes using `distributed=false`.

Reindexing in place

Setting `reindex=true` and `deleteAll=false` reindexes data and keeps the existing index. During the uploading process, user searches yield inaccurate results. To perform an in-place reindex, use this syntax:

```bash
$ dsetool reload_core keyspace_name.table_name reindex=true deleteAll=false
```

Reindexing in full

Setting `reindex=true` and `deleteAll=true` deletes the index and reindexes the dataset. User searches initially return no or partial documents as the search cores reload and data is reindexed.

```bash
$ dsetool reload_core keyspace_name.table_name reindex=true deleteAll=true
```

During reindexing, a series of criteria routes sub-queries to the nodes most capable of handling them. See [Shard routing for distributed queries](#).

Removing a search index

Drop a search index from a table and delete all related data using the DROP SEARCH INDEX command.

The CQL syntax:

```cql
DROP SEARCH INDEX on [keyspace_name.]table_name;
```

Keyspace and table names are case-sensitive. Enclose names that contain uppercase in double quotation marks.

Updating the index after data expires (TTL)

Time-To-Live (TTL) set on a CQL field also applies to the indexed values. The DSE Search engine purges expired and deleted data by rebuilding the index as defined by the
Using DataStax Enterprise advanced functionality

ttl_index_rebuild_options (page 246) in the dse.yaml (page 233) file. The default rebuild interval is 300 seconds (5 minutes).

Setting data expiration in CQL

1. Using CQL INSERT or UPDATE, set the TTL property.

 For example, insert a row with a life of 60 seconds into the health_data demo (page 532):

   ```cql
   INSERT INTO demo.health_data (id, age, gender)
   VALUES (9999,88,'female') USING TTL 60;
   ```

2. Force the index to update with the new data:

   ```cql
   COMMIT SEARCH INDEX ON demo.health_data ;
   ```

3. After 60 seconds, the row is removed from the CQL table and the search index.

Inserting, updating, and deleting data

For DSE Search, inserting and updating data uses the same CQL statements like any update to the database.

Updates to a CQL-based search index replace the entire row. You cannot replace only a field in a CQL table.

To update a CQL-based search index:

- Building on the Querying CQL collections (page 525) example, insert data into mykeyspace.mytable and the search index.

  ```cql
  INSERT INTO mykeyspace.mysolr ('id', 'quotes', 'name', 'title')
  VALUES ('130', 'Life is a beach', 'unknown', 'Life');
  ```

When you use CQL to update a field, DSE Search implicitly updates individual fields in the Solr document. The reindexing of data occurs automatically.

Filtering CQL queries with a search index

DataStax Enterprise supports production-grade implementation of CQL Solr queries in DSE Search.

Search index filter syntax

DataStax Enterprise supports production-grade implementation of CQL Solr queries in DSE Search. You can develop CQL-centric applications supporting full-text search without having to work with Apache Solr™-specific APIs. Only full text search queries are supported.
Using DataStax Enterprise advanced functionality

Restriction:
- CQL Solr queries are defaulted to an equivalent LIMIT 10.
- Pagination is off by default. In dse.yaml, the `cql_solr_query_paging` option specifies when to use pagination (also called cursors).
- Solr restrictions apply to pagination.
- Queries with smaller result sets will see increased performance with paging off.
- Limitations and known Apache Solr issues apply to DSE Search queries. For example: incorrect SORT results for tokenized text fields.
- Column aliases are not supported in solr_query queries.
- All of the fields that are queried on DSE SearchAnalytics clusters must be defined in the search index schema definition. Fields that are not defined in the search index schema are excluded in the results returned from Spark queries.

Search index query syntax

Execute queries against indexed columns using the `solr_query` option of the SELECT statement WHERE clause.

Synopsis

```
SELECT selectors
FROM table
WHERE solr_query = 'search_expression'
[ LIMIT n ];
```

There are two types of search index expressions:

- Basic search index queries using only a `q` parameter expression, see Writing a basic index query. The following examples show expressions supported by the Solr q parameter. For improved performance, you should use Solr filter queries (fq) whenever possible. See Search index filtering best practices.
- Advanced search index queries using a full JSON expression.

Note: Use the `solr_query` option to filter on the search index fields. For example:

```
SELECT *
FROM users
WHERE solr_query = 'irc:jdoe';
```

The search indexes cannot be directly queried. For example, this syntax fails:

```
SELECT *
FROM users
WHERE irc = 'jdoe';
```
Writing a basic index query

The CQL query expression uses the syntax supported by the Solr q parameter. In CQL, to use a single quotation mark in a string literal, you must escape it using a single quotation mark (so you'll need to double the single quotation marks). See CQL escaping characters. For example:

```cql
SELECT *
FROM keyspace.table
WHERE solr_query = 'name: cat name: dog -name:fish';
```

When you name specific columns, DSE Search retrieves only the specified columns and returns the columns as part of the resulting rows. DSE Search supports projections (SELECT a, b, c...) only, not functions, for the select expression. The following example retrieves only the name column:

```cql
SELECT name
FROM keyspace.table
WHERE solr_query = 'name: cat name: dog -name:fish';
```

Use the LIMIT clause to specify how many rows to return. The following example retrieves only 1 row:

```cql
SELECT *
FROM keyspace.table
WHERE solr_query = 'name: cat name: dog -name:fish'
LIMIT 1;
```

Use the count() function in CQL Solr queries to return the number of rows that satisfy the Solr query:

```cql
SELECT count(*)
FROM table
WHERE solr_query = '...';
```

Using count() in combination with LIMIT or facets results in an error.

All response queries of the drivers have a custom payload where the total number of documents found is returned. This number is keyed as DSESearch.numFound.

Writing advanced solr_query expressions

DSE Search supports filtering CQL queries using more advanced Solr searches with JSON-based expressions.

On this page:

- JSON query syntax *(page 499)*
- JSON queries with literal characters that are Apache Solr/Apache Lucene special characters *(page 500)*
- Escaping single quotation marks *(page 504)*
• Field, query, and range faceting with a JSON query (page 501)
• Tracing distributed queries (page 502)
• JSON single-pass distributed query (page 502)
• JSON query name option (page 503)
• JSON query commit option (page 503)
• Queries to dynamically enable paging (page 503)

See also Overriding the default TimeZone (UTC) in search queries (page 526).

JSON query syntax

The JSON query expression syntax is a JSON string. The JSON-based query expression supports local parameters in addition to the following parameters:

```json
{
  "q": query_expression (string),
  "fq": filter_query_expression(s) (string_or_array_of_strings, ...),
  "facet": facet_query_expression (object)
  "sort": sort_expression (string),
  "start": start_index(number),
  timeAllowed (page 503): search_time_limit_ms,
  "TZ" (page 526): zoneID), // Any valid zone ID in java TimeZone class
  "paging": "driver" (string),
  "distrib.singlePass": true/false (boolean),
  "shards.failover": true/false (boolean), // Default: true
  "shards.tolerant": true/false (boolean), // Default: false
  "commit": true/false (boolean),
  "route.partition": partition_routing_expression (array_of_strings),
  "route.range": range_routing_expression (array_of_strings),
  "query.name": query_name (string),
}
```

For example:

```sql
SELECT id FROM nhanes_ks.nhanes WHERE
  solr_query='{"q":"ethnicity:Asian"}';

SELECT id FROM nhanes_ks.nhanes WHERE
  solr_query='{"q":"ethnicity:Mexi\*", "sort":"id asc"} LIMIT 3;

SELECT * FROM mykeyspace.mytable WHERE
  solr_query='{"q" : "{! edismax}quotes:yearning or kills"}';
```

Note: To use Apache Solr™ Extended DisMax Query Parser (eDisMax) with solr_query, you must include defaultSearchField in your schema.
Making distributed queries tolerant of shard failures

Since distributed queries contact many shards, making queries more tolerant of shard failures ensures more successful completions. Use shards.failover or shards.tolerant parameters to define query failover and tolerance of shard failures during JSON queries:

<table>
<thead>
<tr>
<th>Valid configurations</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>"shards.failover": true, "shards.tolerant": false,</td>
<td>This default configuration enables query failover and disables fault tolerance. Attempt to retry the failed shard requests when errors indicate that there is a reasonable chance of recovery. If any of the nodes (shards) that we scatter to fail before the query is complete, retry the shard query against a replica.</td>
</tr>
<tr>
<td>"shards.failover": false, "shards.tolerant": true,</td>
<td>Disable query failover. Enable fault tolerance. Make the query succeed, even if the query only partially succeeded, and did not succeed for all nodes.</td>
</tr>
<tr>
<td>"shards.failover": false, "shards.tolerant": false,</td>
<td>Disable query failover. Disable fault tolerance.</td>
</tr>
</tbody>
</table>

Note: Failover and tolerance of partial results cannot coexist in the same query. Queries support enabling tolerance for only one parameter.

Other fault tolerance configuration options include: *netty_client_request_timeout* (page 248) in dse.yaml and *read_request_timeout_in_ms* (page 218) in cassandra.yaml.

JSON queries with literal characters that are Apache Solr™/Apache Lucene® special characters

Lucene supports escaping special characters that are part of the query syntax. Special characters are: +, -, &&, ||, !, (,), "", ~, *, ?, and :. Using JSON with solr_query requires additional syntax for literal characters that are Lucene special characters.

Syntax for a simple search string:

<table>
<thead>
<tr>
<th>Simple search string</th>
<th>Solr query</th>
<th>CQL Solr query</th>
</tr>
</thead>
<tbody>
<tr>
<td>mytestuser1?</td>
<td>name:mytestuser1?</td>
<td>solr_query='{"q":"name:mytestuser1?"}'</td>
</tr>
</tbody>
</table>

Syntax for a complex search string:

<table>
<thead>
<tr>
<th>Complex search string</th>
<th>Solr query</th>
<th>CQL Solr query</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1+1):2</td>
<td>e:\(1+1)\:2</td>
<td>solr_query='{"q":"e:\(1+1)\:2"}'</td>
</tr>
</tbody>
</table>
Field, query, and range faceting with a JSON query

Specify the facet parameters inside a facet JSON object to perform field, query, and range faceting inside Solr queries. Distributed pivot faceting is supported. The query syntax is less verbose to specify facets by:

- Specifying each facet parameter without the facet prefix that is required by HTTP APIs.
- Expressing multiple facet fields and queries inside a JSON array.

Faceted search example

```sql
SELECT * FROM solr WHERE solr_query='{"q":"id:*","facet":
{"field":"type"}}';
```

Query facet example

```sql
SELECT * FROM solr WHERE solr_query='{"q":"id:*","facet":
{"query":"type:0"}}';
```

Multiple queries example

```sql
SELECT * FROM solr WHERE solr_query='{"q":"id:*","facet":
{"query":["type:0","type:1"]}}';
```

Distributed pivot faceting example

```sql
SELECT id FROM table WHERE solr_query='{"q":"id:*","facet":
{"pivot":"type,value","limit":"-1"}}';
```

Range facet example

```sql
SELECT * FROM solr WHERE solr_query='{"q":"business_date:*","facet":
{"range":"business_date",
  "f.business_date.range.start":"2015-01-01T00:00:00Z",
  "f.business_date.range.end":"2015-08-01T00:00:00Z",
  "f.business_date.range.gap":"+1MONTH"}}';
```

The returned result is formatted as a single row with each column corresponding to the output of a facet (either field, query, or range). The value is represented as a JSON blob because facet results can be complex and nested. For example:

<table>
<thead>
<tr>
<th>facet_fields</th>
<th>facet_queries</th>
</tr>
</thead>
<tbody>
<tr>
<td>"type":{"0":2,"1":1}</td>
<td>{"type:0":2,"type:1":1}</td>
</tr>
</tbody>
</table>

Range by date facet example

```sql
SELECT * FROM solr WHERE
solr_query='{"q":"business_date:*","facet":
{"range":"business_date",
  "f.business_date.range.start":"2015-01-01T00:00:00Z",
  "f.business_date.range.end":"2015-08-01T00:00:00Z",
  "f.business_date.range.gap":"+1MONTH"}}';
```
Warning: Solr range facets before, after, and between might return incorrect and inconsistent results on multi-node clusters. See SOLR-6187 and SOLR-6375.

Interval facet example

```sql
SELECT * FROM solr WHERE solr_query='{"q":"id:*","facet":
{"interval":"id", "interval.set": "[*,500]"}';
```

Tracing distributed queries

During a distributed query, every node is responsible for a set of token ranges. A shard is the node/ranges combination. The shard token range is reported:

- In the shards.info response for HTTP queries.
- In the system_traces.events table for HTTP queries that provide cassandra.trace=true and CQL Solr queries that enable tracing at the driver level.

JSON single-pass distributed query

Single-pass distributed queries are supported in CQL Solr queries.

To use a single pass distributed query instead of the standard two-pass query, specify the `distrib.singlePass` Boolean parameter in the JSON query expression:

```json
SELECT * FROM ks.cf WHERE solr_query = '{"q" : "*:*",
    "distrib.singlePass" : true}'
```

Using a single-pass distributed query has an operational cost that includes potentially more disk and network overhead. With single-pass queries, each node reads all rows that satisfy the query and returns them to the coordinator node. An advanced feature, a single-pass distributed query saves one network round trip transfer during the retrieval of queried rows. A regular distributed query performs two network round trips, the first one to retrieve IDs from DSE Search that satisfy the query and another trip to retrieve only the rows that satisfy the query from the database, based on IDs from the first step. Single-pass distributed queries are most efficient when most of the documents found are returned in the search results, and they are not efficient when most of the documents found will not be returned to the coordinator node.

For example, a distributed query that only fans out to a single node from the coordinator node will likely be most efficient as a single-pass query.

Single pass distributed queries for CQL are supported when the additional `distrib.singlePass` boolean parameter is included in the JSON query.

With single-pass queries, there is a limitation that only document fields that are defined in the search schema are returned as query results. This limitation also applies to map entries that do not conform to the dynamic field mapping (page 515).
JSON query name option

Using the following syntax to name your queries to support metrics and monitoring for performance objects. Naming queries can be useful for tagging and JMX operations, for example.

```sql
SELECT id FROM nhanes_ks.nhanes WHERE solr_query='{"query.name":"Asian subjects", "q":"ethnicity:Asia*"}' LIMIT 50;
```

JSON query commit option

If you are executing custom queries after bulk document loading, and the auto soft commit is disabled or the configured value is extremely infrequent, and you want the latest data to be visible to your query, use the JSON query commit option to ensure that all pending updates are soft-committed before the query runs. By default, the commit option is set to false.

For example:

```sql
SELECT id FROM nhanes_ks.nhanes WHERE solr_query='{"q":"ethnicity:Asia*", "commit":true}' LIMIT 50;
```

Warning: Do not use the JSON commit option for live operations against a production cluster. DataStax recommends using the JSON commit option only when you would otherwise be forced to issue a commit through the Solr HTTP interface. The commit option is not a replacement for the normal auto soft commit process.

Queries to dynamically enable paging

To dynamically enable pagination when `cql_solr_query_paging: off` (page 247) in `dse.yaml`, use the "paging":"driver" parameter:

```sql
select id from wiki.solr where solr_query='{"q":*, "sort":"id asc", "paging":"driver"}';
```

Limit queries by time

DSE Search supports limiting queries by time by using the Solr `timeAllowed` parameter. DSE Search differs from native Solr:

- If the timeAllowed is exceeded, an exception is thrown.
- If the timeAllowed is exceeded, and the additional shards.tolerant parameter is set to true, the application returns the partial results collected so far.

When partial results are returned, the CQL custom payload contains the `DSESearch.isPartialResults` key.

Example with a 30 second timeout:
Using DataStax Enterprise advanced functionality

```sql
SELECT * FROM users where solr_query = '{ "q": "*:*", "timeAllowed":30000}';
```

Escaping characters in a solr_query

Solr queries require escaping special characters that are part of the query syntax. Special characters are: +, -, &&, ||, !, (), "", ~, *, ?, and :. To escape these characters, use a slash (\) before the character to escape. For example, to search for a literal double quotation mark (") character, escape the " for Solr with \".

When using `solr_query` you can escape special characters in two forms:

CQL
```
...WHERE solr_query='field:value'
```

JSON
```
WHERE solr_query='{ "q": "field:value"}'
```

JSON-encoded queries require that values must also be JSON-escaped for special characters.

For queries that contain double quotation marks, use triple slashes `\\\`:
- For query syntax: One slash \ to escape the "
- For the JSON string syntax: Two slashes `\` to escape the \
 Triple slashes `\\\` escape both characters in " to produce `\` (an escaped escape) and `\"` (an escaped double quote).

Escaping single quotation marks

- Double the single quotation mark (’)
  ```
  **CQL**
  ...WHERE solr_query='name:Walter''s'
  **JSON**
  ...WHERE solr_query='{ "q": "Walter''s"}'
  ```
- Use dollar-quotes for the string constant
  ```
  **CQL**
  ...WHERE solr_query=$$name:Walter's$$
  **JSON**
  ...WHERE solr_query=$${ "q": "Walter's"}$$
  ```

Query examples for escaping double quotation marks

CQL
```
Double the single quotation mark (’) and add the backslash (\) for Solr escaping
...WHERE solr_query='name:Walter''s'
```

JSON
```
Escape \" to \\" to escape both special characters for JSON
```
Using DataStax Enterprise advanced functionality

...WHERE solr_query='{"q": "Walter\\\"s"'}'

Exact and fuzzy query examples

Exact phrase query
For a row that looks like this, with an email address that includes a double quotation mark:

```
INSERT INTO users(id, email) VALUES(1, 'greenr"q@example.com')"
```

Perform a phrase query to search for the email address that is enclosed in double quotation marks:

```
SELECT * FROM users where solr_query = '
{ "q": "+:*", "fq": "email:\"greenr\\\"q@example.com\\\""}
';
```

Fuzzy query
For a row that looks like this, with the same email address that includes a double quotation mark:

```
SELECT * FROM users where solr_query = '
{ "q": "email:r\\\"q@example"}
';
```

Using JSON with `solr_query` requires additional syntax for literal characters that are Lucene special characters. See JSON queries with literal characters that are Solr special characters (page 500).

Search index filtering best practices

DataStax recommends following these best practices for running queries in DSE Search:

- Use CQL (page 496) to run search queries.
 - Perform all data manipulation with CQL, except for deleting by query (page 560).
- Use the simplest and best fit Solr types to fulfill the required type for your query. See Defining index field types (page 472).
- For improved performance, use Solr filter query (fq) parameters instead of q parameters whenever possible. The results from filter queries are stored in a cache.
You can reduce the average response time from seconds to milliseconds. The following example queries the cyclist first name and last name:

```
{"q":"*:*", "fq":"firstname:Alex AND lastname:FRAME"}"
```

Each fq name and value string pair can be a member of an fq array. Fq name and value pairs are treated as if they are separated by AND. For example:

```
{"q":"*:*", "fq": ["lastname:BELKOV", "nationality:Russia"]}
```

Adjust your queries so that the results fit into the memory cache.

- Use profiles when creating (page 463) a search index.
- Avoid querying nodes that are indexing.

For responding to queries, DSE Search ranks the nodes that are not performing search indexing higher than indexing ones. If nodes that are indexing are the only nodes that can satisfy the query, the query does not fail but can return only partial results.

- When vnodes are not used, distributed queries in DSE Search are most efficient when the number of nodes in the queried data center (DC) is a multiple of the replication factor (RF) in that DC.
- Avoid using too many terms in the query, like:

```
SELECT request_id, store_id
FROM store_search.transaction_search
WHERE solr_query = 
  '{"q":"*:*","shards.failover":true,"shards.tolerant":false,
   "fq":"store_id:store1a store_id:store2b store_id:store2c ...
   store_id:store19987d"}';
```

Instead, use a terms filter query.

- When writing collections with few collection updates, DataStax recommends frozen collections over non-frozen collections to address query latency.

For example, a simple frozen set of text elements:

```
CREATE TABLE foo (   
  id text, values frozen<set<text>>, PRIMARY KEY (id) 
);  

CREATE TYPE name (   
  first text, last text 
);  
```

A frozen list of UDTs:

```
CREATE TABLE tableWithList (   
  id text, names frozen<list<frozen<name>>>, PRIMARY KEY (id) 
);  
```
Limiting results and paging

DSE Search integrates native driver paging with Apache Solr™ cursor-based paging. Pagination, also called cursors, supports using a cursor to scan results. Solr pagination restrictions apply.

Note: When using CQL Solr queries with pagination enabled, you might experience a performance slowdown because Solr is not able to use its query result cache when pagination is configured. If you do not want to paginate through large result sets, disable pagination when running CQL Solr queries. See the driver documentation.

Using pagination (cursors) with CQL Solr queries

In dse.yaml, the `cql_solr_query_paging (page 247)` option specifies when to use pagination (also called cursors):

• When a driver connects to the database and executes a CQL SELECT statement using a search index (`solr_query` option), you can specify to use the driver pagination settings by default by changing the `cql_solr_query_paging (page 247)` to `driver`.

• To enable pagination persistently with CQL Solr queries, set `cql_solr_query_paging: on (page 247)` in dse.yaml and restart the node.

To dynamically enable pagination when `cql_solr_query_paging: off (page 247)` in dse.yaml, use the "paging":"driver" parameter:

```cql
select id from wiki.solr where solr_query='{"q":"*", "sort":"id asc", "paging":"driver"}';
```

Note: SearchAnalytics nodes always use driver paging settings. See DSE Analytics and Search integration (page 295).

See the documentation for the CQL shell PAGING command and the driver.

It is not mandatory to use a sort clause. However, if a sort clause is not provided, sorting is undefined.

Examples

The word Journal is contained in ~159 entries in the body or title. Use count to determine how many rows match:

```cql
SELECT count(*) FROM wiki.solr WHERE solr_query = 'Journal';
```

Count returns only a single row; it is not effected by the 10 row limit.
Using DataStax Enterprise advanced functionality

Run the same query without count (and \texttt{cql_solr_query_paging: off} \textit{(page 247)}):

\begin{verbatim}
SELECT id FROM wiki.solr WHERE solr_query = 'Journal';
\end{verbatim}

Only 10 rows are returned.

\begin{verbatim}
id

23759487
23732986
23759527
23759551
23759455
23760810
23731949
23760697
23760871
23738270
\end{verbatim}

(10 rows)

To return all matching IDs, override the \texttt{cql_solr_query_paging} setting:

\begin{verbatim}
SELECT id FROM wiki.solr
WHERE solr_query='{"q":"Journal", "paging":"driver"}';
\end{verbatim}

\textbf{Note:} If \texttt{cqlsh} \texttt{PAGING} is enabled.

dse.yaml

The location of the \texttt{dse.yaml} file depends on the type of installation:

<table>
<thead>
<tr>
<th>Package installations</th>
<th>Installer-Services installations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>/etc/dse/dse.yaml</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tarball installations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer-No Services installations</td>
</tr>
<tr>
<td>installation_location/</td>
</tr>
<tr>
<td>resources/dse/conf/dse.yaml</td>
</tr>
</tbody>
</table>

Identifying the partition key

Solr CQL queries support restriction to a single partition key. Partition key restrictions work only when \texttt{_partitionKey} is explicitly indexed or the schema explicitly includes all of the components of the database partition key. In your schema, you can override \texttt{_partitionKey} when not using joins.

Example:

\begin{verbatim}
SELECT id, date, value FROM keyspace.table WHERE id = 'series1' AND solr_query='value:bar*';
\end{verbatim}
CQL partition key restrictions work only with fully specified partition keys. For example, with this table:

```
CREATE TABLE vtbl (k1 text, k2 text, valuetext, PRIMARYKEY ((k1, k2)))
```

Avoid using a query like this:

```
SELECT * FROM vtbl WHERE k1 = '50' AND solr_query='value:*'
```

Use a filter query against the partially specified composite partition key:

```
SELECT * FROM valuetable WHERE solr_query='{"q":"value:*", "fq":"k1:50"}'
```

Using the Solr token function

Solr CQL queries support limited use of the token function. The token function enables targeted search that restricts the nodes queried to reduce latency.

Note: Using the Solr token function is for advanced users only and is supported only in specific use cases.

Example:

```
SELECT id, value FROM keyspace.table WHERE token(id) >= -3074457345618258601 AND token(id) <= 3074457345618258603 AND solr_query='id:*'
```

Example with an open range:

```
SELECT id, value FROM keyspace.table WHERE token(id) >= 3074457345618258604 AND solr_query='id:*'
```

Constraints apply to using the token function with Solr CQL queries:

- `token()` cannot be used with `route.range` or `route.partition`
- Wrapping `token()` ranges are not supported
- A specified `token()` range must be owned by a single node; ranges cannot span multiple nodes
- Because DSE uses the Solr single-pass ([page 498](#)) queries, only the fields that are declared in the search schema are returned in the query results. If you have columns that do not need to be indexed, but still need to be returned by using a token-restricted query, you can declare the columns as stored non-indexed fields in your `schema.xml` file.
Using DataStax Enterprise advanced functionality

1.

Filtering on terms

Filter rows returned by a CQL SELECT statement on terms using the Solr Standard Parser syntax.

The basic syntax to limit queries has the following syntax:

```
SELECT column_list FROM table_name
WHERE solr_query = 'standard_term_expression ...';
```

The Solr Standard Parser is a case-sensitive term search that supports boolean expressions with wildcards.

Tip: CQL for DSE Search also supports more complex searches using JSON-formatted query strings.

This section uses the Wikipedia Demo included in DataStax Enterprise. Replace `standard_term_expression` with the `solr_query` value from corresponding tables below to return the results:

```
SELECT count(*) FROM solr
WHERE solr_query = 'q_search_expression';
```

Attention: CQL Solr queries do not support native functions or column aliases as selectors. Only `count(*)` is supported with search index queries. Results use the Solr count process. Results might vary from the native CQL count function.

Filtering on words, phrases, or substrings

Find rows that contain words, phrases, or substrings in indexed fields. (Similar to LIKE in SQL.)

- **Term:** A word that contains no spaces or punctuation and is separated from other content by a beginning or end of line, space, or punctuation mark.
- **Substring:** Match character patterns in a term. Use asterisk (*) for zero or more characters. Use question mark (?) for zero or one character in a term search.
- **Phrase:** Exact string that contains spaces and/or punctuation. Wrap phrases in double-quotes to search for the complete string when separated from other content by a line beginning or end, space, or punctuation mark.

Prerequisites: To run the examples in this section, set up Term and phrase searches using the wikipedia demo (page 541). Use cqlsh on a search node and replace the `search_expression` in the following statement with the example string.

```
SELECT count(*) FROM wiki.solr
WHERE solr_query = search_expression;
```

- Search for a single term on any indexed column or a specific column:
Table 46: Word examples

<table>
<thead>
<tr>
<th>Search in</th>
<th>Syntax</th>
<th>Example</th>
<th>Results</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any column</td>
<td>'term'</td>
<td>'Journal'</td>
<td>count</td>
<td>159</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-------</td>
<td>Count of rows that contain the word African in the title or body fields.</td>
</tr>
<tr>
<td>Specific column</td>
<td>'column_name</td>
<td>'title:</td>
<td>count</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>term'</td>
<td>Journal'</td>
<td>-------</td>
<td>Count of rows that contain the word Journal in the title. Use column</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>names in the query syntax to limit searches to specific columns.</td>
</tr>
</tbody>
</table>

- Search for substrings:

 Asterisk indicates zero or more characters.
 Question mark indicates zero or one character.

Table 47: Substring examples

<table>
<thead>
<tr>
<th>Type</th>
<th>Example</th>
<th>Results</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beginning of</td>
<td>'title:Africa?'</td>
<td>count</td>
<td>Count of rows that have a term that begins with Africa in</td>
</tr>
<tr>
<td>term</td>
<td></td>
<td>-------</td>
<td>the title, but can have only one additional character.</td>
</tr>
<tr>
<td>Anywhere in</td>
<td>'title:at'</td>
<td>count</td>
<td>Count of rows that have the term at or a term that contains</td>
</tr>
<tr>
<td>term</td>
<td></td>
<td>-------</td>
<td>at.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Searching for a phrase in any column or a specific column:

Table 48: Phrase examples

<table>
<thead>
<tr>
<th>Search in</th>
<th>Syntax</th>
<th>Example</th>
<th>Results</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any column</td>
<td>"phrase"</td>
<td>"African</td>
<td>count</td>
<td>Count of rows that contain the complete phrase</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Journal"</td>
<td>-------</td>
<td>in the title or body.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Specific column</td>
<td>'column_name:phrase'</td>
<td>'title:"African Journal"'</td>
<td>count</td>
<td>8</td>
</tr>
</tbody>
</table>
• Search for multiple words or phrases using operators:

<table>
<thead>
<tr>
<th>Location</th>
<th>Example</th>
<th>Results</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Require multiple terms</td>
<td>'title:(+Journal, +Science)''</td>
<td>count</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>'title:Journal AND Science'</td>
<td></td>
<td>Count of rows that contain both Journal and Science in the title. To use a list of terms, enclose a comma or space separated list of terms and specify a boolean operator. In this case + requires the term; therefore both terms must be in the title.</td>
</tr>
<tr>
<td>Either term</td>
<td>'title:(Journal</td>
<td></td>
<td>Science)'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Count of rows that contain either Journal or Science in the title. Separate the terms using two pipe characters. To search for either phrase surround the string with double quotes ('("Journal of Science"</td>
</tr>
<tr>
<td>Substring beginning of term, including</td>
<td>'title:Africa?'</td>
<td>count</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Count of rows that have a term that begins with Africa in the title but can only have one additional character.</td>
</tr>
<tr>
<td>Substring anywhere in term, including term</td>
<td>'title:at'</td>
<td>count</td>
<td>559</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Count of rows that have the term at or a term that contains at.</td>
</tr>
<tr>
<td></td>
<td>'("Journal of Science"</td>
<td></td>
<td>"Science Journal")'</td>
</tr>
<tr>
<td></td>
<td>'title:(+"African Journal", +(Science</td>
<td></td>
<td>"Legal Studies"))'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Use Solr booleans to create more complex queries; this example counts row with African Journal in the title that also contain either Science or Legal Studies.</td>
</tr>
</tbody>
</table>

Advanced term and phrase searches

• Find terms with like spelling:

The Solr fuzzy search syntax uses the Damerau-Levenshtein Distance algorithm to determine similarity of spelling based on distance. The default distance is 2. Change the distance by specifying 0-2 after the tilde (Kenya~1).
<table>
<thead>
<tr>
<th>Type of query</th>
<th>solr_query value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Like spelling</td>
<td>"Kenya~"</td>
<td>Searches for documents containing the word "Kenya" in any part of the text.</td>
</tr>
<tr>
<td>Proximity search</td>
<td>"football Bolivia~10"</td>
<td>Searches for football and Bolivia within 10 words of each other.</td>
</tr>
<tr>
<td>Range searches</td>
<td>"title:[football TO soccer]"</td>
<td>Supports both inclusive and exclusive bounds using square brackets and curly braces, respectively.</td>
</tr>
<tr>
<td>Term boosting</td>
<td>"football"^4 "soccer"</td>
<td>By default, the boost factor is 1. Must be a positive number.</td>
</tr>
</tbody>
</table>

The following example shows a search for science using the default distance 2:

```sql
SELECT title FROM solr WHERE solr_query = 'title:Science~';
```

The first row is unexpected, the letters are close together but the meaning is dissimilar.

<table>
<thead>
<tr>
<th>title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aitken Spence</td>
</tr>
<tr>
<td>African Journal of Marine Science</td>
</tr>
<tr>
<td>African Journal of Range and Forage Science</td>
</tr>
<tr>
<td>African Journal of Science and Technology</td>
</tr>
<tr>
<td>Maarten Schenck</td>
</tr>
<tr>
<td>van Nydeggen</td>
</tr>
<tr>
<td>African Journal of Neurological Sciences</td>
</tr>
<tr>
<td>Foundation of China</td>
</tr>
<tr>
<td>China Association for Science and Technology</td>
</tr>
<tr>
<td>Philippine Science High School Cordillera Administrative Region Campus</td>
</tr>
<tr>
<td>African Journal of Library, Archives and Information Science</td>
</tr>
</tbody>
</table>

(10 rows)

The following example shows a search for science using a smaller distance:

```sql
SELECT title FROM solr WHERE solr_query = 'title:Science~1';
```

<table>
<thead>
<tr>
<th>title</th>
</tr>
</thead>
</table>

(10 rows)
Geospatial queries for Point and LineString

Performing geospatial queries for Point and LineString.

Defining schemas for geospatial Point and LineString types

Define the schema for geospatial fields types. For example:

```xml
<?xml version="1.0" ?>
<schema name="spatial-no-jts" version="1.5">
  <types>
    <fieldType name="string" class="solr.StrField" />
    <fieldType name="boolean" class="solr.BoolField" />
    <!-- When geo="false", indicate worldBounds using ENVELOPE(minX, maxX, maxY, minY) notation -->
    <fieldType name="rpt" class="solr.SpatialRecursivePrefixTreeFieldType" geo="false"
               worldBounds="ENVELOPE(-1000, 1000, 1000, -1000)
                          maxDistErr="0.001"
                          distanceUnits="degrees" />
  </types>
  <fields>
    <field name="id" type="string" indexed="true" stored="true" />
    <field name="point" type="rpt" indexed="true" stored="true" />
    <field name="linestring" type="rpt" indexed="true" stored="true" />
  </fields>
  <uniqueKey>id</uniqueKey>
</schema>
```
Using DataStax Enterprise advanced functionality

</schema>

Apache Solr™ geospatial field types
For Solr geospatial field types, declare each geospatial field type in the table schema. For
example:
CREATE TABLE test (
id text PRIMARY KEY,
point 'PointType', linestring 'LineStringType');

Inserting or updating geospatial data
To insert or update data in the database, specify geotypes in the INSERT or UPDATE
command. For example:
INSERT INTO test (id, point, linestring) VALUES ('1', 'POINT(5 50)',
'LINESTRING (30 10, 10 30, 40 40)');
INSERT INTO test (id, point, linestring) VALUES ('2', 'POINT(100 100)',
'LINESTRING (50 20, 20 40, 50 50)');

Querying geospatial data
Find points within a 10 unit radius from point (4, 49):
SELECT * FROM test WHERE solr_query=' {"q":"*:*", "fq":"point:
\"IsWithin(BUFFER(POINT(4.0 49.0), 10.0))\""}';

Find linestring that contains the point (10, 30):
SELECT * FROM test WHERE solr_query='linestring:"Intersects(POINT(10
30))"';

See this tutorial for details on how to index and query geospatial Polygons and
MultiPolygons.

Using dynamic fields
Using dynamic fields, you can index content in fields that are not explicitly defined by the
schema. A common use case for dynamic fields is to identify fields that should not be
indexed or to implement a schema-less index.
Search schema fields that are dynamic and multiValued are not supported in CQL-based
search indexes.

Spatial subfields prefix naming conventions
Dynamic fields for spatial subfields use prefix naming conventions to enable using map
types to store geospatial data:
<types>
<fieldType class="solr.LatLonType" multiValued="false"
name="LatLonType" subFieldPrefix="llt_"/>

DSE 5.1 Developer Guide Earlier version, latest patch 5.1.15

Page 515


Using DataStax Enterprise advanced functionality

Best practices

• Avoid or limit the use of dynamic fields.

 Apache Lucene® allocates memory for each unique field (column) name. For example, for a row with columns A, B, C, and another row with B, D, E, Lucene allocates 5 chunks of memory. For millions of rows, the heap is unwieldy.

• Instead of using dynamic fields, use a default query field (page 464), and then perform queries against the combined field.

• Use the FieldInputTransformer (page 553) (FIT) API.

To use a dynamic field

• Include an Apache Solr™ dynamic field in the search index schema.

 Name the field using a wildcard at the beginning or end of the field. For example, an asterisk prefix or suffix in the field name in the schema designates a dynamic field.

 # dyna_*
 # *s

• To define the map collection column in CQL, use the same base name (no asterisk) that you used for the field in search index schema.

 For example, use dyna_* in the search index schema and dyna_ for the name of the CQL map collection.

• Use type text for the map key:

 CREATE TABLE my_dynamic_table {
 ...
 dyna_ map<text, int>,
 ...
 };

• Using CQL, insert data into the map using the base name as a prefix or suffix in the first component of each map pair:

 { prefix_literal : literal, prefix_literal : literal, . . . }

 The CQL map looks like:
Using DataStax Enterprise advanced functionality

DSE Search maps the dynamic field to a map collection column.

Joining cores

DSE Search supports the **OS Solr query time join** through a custom implementation. You can join search documents, including those having different search indexes under these conditions:

- Search indexes must have the same keyspace and same database partition key.
- Both tables that support the search indexes to be joined must be CQL-compatible.
- The type of the unique key (database key validator of the partition key) are the same in both search documents.
- The order of table partition keys and schema unique keys are the same in both search documents.

Using the simplified syntax automatically takes advantage of joins.

Simplified syntax

DataStax recommends this simplified syntax to join search indexes:

```sql
q={!join fromIndex=test/from}field:value
```

The custom DSE Search implementation does not use the to/from parameters that are required by OS Apache Solr™. Based on the key structure, DSE Search determines the parameters. For backward compatibility with applications, the verbose legacy syntax ([page 521](#)) is also supported.

Example of using a query time join

This example creates two tables:

- The songs table uses a simple primary key: the UUID of a song.
- The primary key of the songs table is its partition key.
- The lyrics table uses a compound primary: id and song, both of type UUID.
- Both tables use the same partition key.

After joining search indexes, you can construct a single query to retrieve information about songs having lyrics that include "love".

To join the search indexes:

1. Download and unzip the file.

 This action creates /songs and /lyrics directories, schemas, and config files for indexing data in the songs and lyrics tables.

2. Start cqlsh, and then create and use a keyspace named internet.
Using DataStax Enterprise advanced functionality

You can copy from the downloaded commands.txt file.

3. Create two tables, song and lyrics, that share the internet keyspace and use the same partition key.

```
cqlsh> CREATE TABLE songs (song uuid PRIMARY KEY, title text, artist text);
cqlsh> CREATE TABLE lyrics (song uuid, id uuid, words text, PRIMARY KEY (song, id));
```

Both tables share the song partition key, a uuid. The second table also contains the id clustering column.

4. Insert the data from the downloaded file into the songs table.

5. Insert data into the lyrics table.

The lyrics of songs by Big Data and John Cedrick mention love.

6. Navigate to the songs directory that you created in step 1, and take a look at the schema.xml. Navigate to the lyrics directory and take a look at the schema. Notice that the order of the unique key in the schema and the partition key of the lyrics table are the same: (song, id). Using (id, song) does not work.

```
<schema name="songs_schema" version="1.5">
  <types>
    <fieldType name="uuid" class="solr.UUIDField" />
    <fieldType name="text" class="solr.TextField">
      <analyzer>
        <tokenizer class="solr.StandardTokenizerFactory"/>
      </analyzer>
    </fieldType>
  </types>
  <fields>
    <field name="song" type="uuid" indexed="true" stored="true"/>
    <field name="title" type="text" indexed="true" stored="true"/>
    <field name="artist" type="text" indexed="true" stored="true"/>
  </fields>
  <defaultSearchField>artist</defaultSearchField>
  <uniqueKey>song</uniqueKey>
</schema>

<schema name="lyrics_schema" version="1.5">
  <types>
    <fieldType name="uuid" class="solr.UUIDField" />
    <fieldType name="text" class="solr.TextField">
      <analyzer>
        <tokenizer class="solr.StandardTokenizerFactory"/>
      </analyzer>
    </fieldType>
  </types>
</schema>
```
Using DataStax Enterprise advanced functionality

```xml
<types>
  <fields>
    <field name="song" type="uuid" indexed="true" stored="true"/>
    <field name="id" type="uuid" indexed="true" stored="true"/>
    <field name="words" type="text" indexed="true" stored="true"/>
  </fields>
  <defaultSearchField>words</defaultSearchField>
  <uniqueKey>(song, id)</uniqueKey>
</schema>
```

7. In the songs directory, create the search index config and schema for the internet.songs table.

8. In the lyrics directory, create the search index config and schema for the internet.lyrics core, and create the search core for internet.lyrics.

9. Search for songs that have lyrics about love.

   ```
   http://localhost:8983/solr/internet.songs/select/?q={!join +fromIndex=internet.lyrics}words:love&indent=true&wt=json
   ```

 The output includes two songs having the word "love" in the lyrics, one by Big Data and the other by John Cedrick:

   ```
   "response":{"numFound":2,"start":0,"docs":[
     {"song":"a3e64f8f-bd44-4f28-b8d9-6938726e34d4","title":"Dangerous","artist":"Big Data"},
     {"song":"8a172618-b121-4136-bb10-f665cfc469eb","title":"Internet Love Song","artist":"John Cedrick"}]
   }
   ```

Recursive join support

You can nest a join query to use the result of one join as an input for another join, and another, recursively. All joined data must reside on the same partition. To embed one query in the query string of another, use the magic field name _query_.

Use this syntax to construct a query that recursively joins search indexes:

```
F1:V1 AND _query_:"{!join fromIndex=keyspace.table}(F2:V2 AND _query_: "{!join fromIndex=keyspace.table}(F3:V3)\")"
```

Where the top level from query includes a nested join query. The nested join in this example is:
Using DataStax Enterprise advanced functionality

_like_query_:"{!join fromIndex=keyspace.table}(F3:V3)"

Like an SQL SELECT IN ... (SELECT IN ...) query, the nested join queries run first, enabling multiple nested join queries if required.

Note: A join query is not a relational join where the values from the nested join queries are returned in the results.

Example of a recursive join query

This example builds on the solr query time join example. Embed in the query to join songs and lyrics having words:"love" a second query to join award-winning videos using AND _query_."award:true".

You can copy CQL commands, Solr HTTP requests, and the query from the downloaded commands.txt file.

1. In cqlsh, create a videos table that shares the internet keyspace and uses the same partition key as the songs and lyrics tables.

   ```cql
   cqlsh> CREATE TABLE videos (song uuid, award boolean, title text,
   PRIMARY KEY (song));
   ```

 All three tables use the song partition key, a uuid.

2. Insert the data from the downloaded file into the videos table. The video data sets the award field to true for the videos featuring songs by Big Data and Brad Paisley.

3. Navigate to the videos directory that was created when you unzipped the downloaded file.

4. In the videos directory, post solrconfig.xml and schema.xml, and create the Search core for internet.videos.

5. Use a nested join query to recursively join the songs and lyrics documents with the videos document, and to select the song that mentions love and also won a video award.

   ```http
   http://localhost:8983/solr/internet.songs/select/?q=
   {!join+fromIndex=internet.lyrics}words:love AND _query_:
   {!join +fromIndex=internet.videos}award:true&indent=true&wt=json
   ```

 Output is:

   ```json
   "response":{"numFound":1,"start":0,"docs":[
   
   
   "song":"a3e64f8f-bd44-4f28-b8d9-6938726e34d4",
   "title":"Dangerous",
   ```
Support for the legacy join query

DataStax Enterprise supports using the legacy syntax that includes to/from fields in the query. The requirements for using the legacy syntax are:

- Tables do not use composite partition key.
- The query includes the force=true local parser parameter, as shown in this example that joins mytable1 and mytable2 in mykeyspace.

Legacy syntax example

```plaintext
curl 'http://localhost:8983/solr/mykeyspace.mytable1/select/?q={!join +from=id+to=id+fromIndex=mykeyspace.mytable2+force=true}'
```

Spatial queries with polygons require JTS

JTS (Java Topology Suite) is required to index polygon/multipolygon and perform queries that include polygon shapes. Dynamic fields for spatial subfields use prefix naming conventions ([page 515](#)) to enable map types to store geospatial data. DSE Search includes the Apache Solr™ Spatial4j library that adds advanced spatial types like polygons to search indexes.

Spatial field type with JTS enabled

For optimal indexing of multipolygon shapes, you must set useJtsMulti="false". For example:

```xml
<divField autoIndex="true" useJtsMulti="false"
          class="solr.SpatialRecursivePrefixTreeFieldType" distErrPct="0.0125"
          distanceUnits="kilometers" geo="true" name="WktField"
          spatialContextFactory="org.locationtech.spatial4j.context.jts.JtsSpatialContextFactory"/>
```

Advanced spatial queries

Performing spatial queries that include polygon shapes requires installing the JTS (Java Topology Suite) library into the DataStax Enterprise Solr library directory. Download version 1.13 of the jts.jar file from http://central.maven.org/maven2/com/vividsolutions/jts/1.13/ and install in the Solr library path:

The default Solr library path location depends on the type of installation:

- Package installations and Installer-Services: `/usr/share/dse/solr/lib`
- Tarball installations and Installer-No Services: `installation_location/resources/solr/lib`

Spatial predicates

DSE Search supports these spatial predicates:
Using DataStax Enterprise advanced functionality

- Intersects
- IsWithin
- IsDisjointTo
- Contains

Examples

Intersects

```
fq=geo:"Intersects(-74.093 41.042 -69.347 44.558)"
```

IsWithin

```
fq=geo:"IsWithin(POLYGON((-10 30, -40 40, -10 -20, 40 20, 0 0, -10 30))) distErrPct=0"
```

IsDisjointTo

```
fq=geo:"IsDisjointTo(POLYGON((-10 30, -40 40, -10 -20, 40 20, 0 0, -10 30))) distErrPct=0"
```

Contains

```
fq=geo:"Contains(POLYGON((-10 30, -40 40, -10 -20, 40 20, 0 0, -10 30))) distErrPct=0"
```

Limiting queries by time

DSE Search supports limiting queries by time by using the Solr `timeAllowed` parameter. DSE Search differs from native Solr:

- If the `timeAllowed` is exceeded, an exception is thrown.
- If the `timeAllowed` is exceeded, and the additional `shards.tolerant` parameter is set to true, the application returns the partial results collected so far.

When partial results are returned, the CQL custom payload contains the `DSESearch.isPartialResults` key.

Example with a 30 second timeout:

```
SELECT * FROM users where solr_query = '{ "q": ":*:",
"timeAllowed":30000}';
```

UDT query examples

You can query nested tuples and UDTs (page 482) inside CQL lists and sets. A UDT facilitates handling multiple fields of related information in a table. UDTs are a specialization of tuples. In these examples, `{!tuple}` applies to both UDTs and tuples.
Note: Selecting an entire UDT column in the CQL SELECT clause is supported. Selecting individual fields of a UDT is supported for unfrozen tuples.

Querying fields

```
{!tuple}address.street:sesame
```

Querying dynamic fields

```
<dynamicField name="user.position_*" type="text" indexed="true"
                stored="true"/>
{!tuple}user.position_day1:second
{!tuple}user.position_day2:first
```

Querying collections

```
{!tuple}user.hobbies:swim
```

Querying across different UDT/tuple fields

```
+{!tuple v='father.name.firstname:Sam'} +{!tuple
    v='mother.name.firstname:Anne'}
```

In CQL, to use a single quotation mark in a string literal, you must escape it using a single quotation mark (so you'll need to double the single quotation marks). See CQL escaping characters.

You can also use the discouraged syntax:

```
{(!tuple)father.name.firstname:Sam AND (!
tuple)mother.name.firstname:Anne)
```

Querying UDT/tuple fields with several conditions

You can find a tuple that satisfies several conditions. Notice how all the conditions are on the same tuple all the time. For example:

```
{!tuple v='address.residents.field1:Alice AND
    address.residents.field2:Smith'}
```

You can also use the discouraged syntax:

```
{!tuple}address.residents.field1:Alice AND
    address.residents.field2:Smith
```

The difference in syntax specifies to search across tuples or within a tuple.

- **Across tuples:**

  ```
  +{!tuple v='condition1'} +{!tuple v='condition2'} +{!tuple
  v='conditionN'}
  ```
 searches for documents that satisfy all conditions, but are not necessarily satisfied by the same single tuple/UDT.
Using DataStax Enterprise advanced functionality

• Within a tuple:

 `{!tuple v='condition1 AND condition2 AND conditionN'}` searches for documents that satisfy all conditions within a single tuple/UDT.

Querying nested tuples and UDTs

To query nested tuples and UDTs, use the same dot notation and the tuple query parser. Because UDTs are a specialization of tuples, use the tuple query parser for tuples and UDTs. In this example, the dot notation identifies `address.resident` as a UDT.

Query for locations that have a resident with the first name `Alice` using the nested `address.residents` tuple:

```
{!tuple}address.residents.field1:Alice
```

Query for locations with a resident that has the first name `Alice` and second name `Smith`:

```
+{!tuple v='address.residents.field1:Alice AND address.residents.field2:Smith'}
```

Note: Tuples and UDTs are modelled internally as nested documents. The Apache Solr™ block join is used internally to query them. Parents are identified with the `_parent_=true` field. Children are identified with `_parent_=false`. For certain types of queries, including negative queries and empty field queries, you might need to use the `_parent_` field.

Querying for empty firstnames

The negation (-) and inclusion (+) operators must precede the `{!tuple}` directive:

```
-(!tuple)_parent_:false AND user.name.firstname:[* TO *]
```

Negative queries

Negative queries use this syntax:

```
select * from demo where solr_query='-{!tuple}name.firstname:*'
```

Negative queries with more than one condition must follow the Solr rules. Use this syntax:

```
{!tuple v='address.street:* NOT (address.street:sesame AND address.number:32)'}
```

or

```
-(!tuple v='address.street:sesame AND address.number:32')
```

or
Querying CQL collections

DSE Search supports CQL collections. In this example, you create a table containing a CQL set collection of famous quotations.

1. Start DataStax Enterprise (page 1275) as a DSE Search node.

2. Start cqlsh.

3. Create a keyspace and a table for a collection column and other columns, and then insert data.

   ```
   CREATE KEYSPACE mykeyspace
   WITH REPLICAATION = {'class':'NetworkTopologyStrategy', 'Solr':1};
   USE mykeyspace;
   CREATE TABLE mysolr (id text PRIMARY KEY, name text, title text, quotes set text);
   ```

4. Download the quotations.zip file.

5. Extract the quotations.zip file, copy the insert commands, and paste each command on the cqlsh command line.

6. Run the following command, which is located in the bin directory of tarball installations. For example, from a tarball installation:

   ```
   $ installation_location/bin/dsetool create_core mykeyspace.mysolr
generateResources=true reindex=true
   ```

 If you are recreating the mykeyspace.mysolr core, use the reload_core command instead of the create_core command.

 There is no output from this command. You can search data after indexing finishes.

7. In cqlsh, search the indexed data to find quotes like succ*.

   ```
   SELECT * FROM mykeyspace.mysolr WHERE solr_query='quotes:succ*';
   ```

 Because you created the core using automatically generated resources, the search index config defines the request handler for using CQL for search queries.
8. Using a browser, search-indexed data using the Solr HTTP API to find titles like succ*.

http://localhost:8983/solr/mykeyspace.mysolr/

select?q=quotes%3Asucc*&wt=json&indent=on&omitHeader=on

```json
{
  "response":{
    "numFound":2,"start":0,"docs":[
      {
        "id":"126",
        "title":"Success",
        "quotes":["If A is success in life, then A equals x plus y plus z. Work is x; y is play; and z is keeping your mouth shut.",
        "name":"Albert Einstein"],
      },
      {
        "id":"125",
        "title":"Success",
        "quotes":["Always bear in mind that your own resolution to succeed is more important than any one thing.",
        "Better to remain silent and be thought a fool than to speak out and remove all doubt.",
        "name":"Abraham Lincoln"],
      }
    ]
  }
}
```

Using date ranges in solr_query

The Solr DateRangeField is supported in DSE Search with mapping of Solr DateRangeField to the CQL type DateRangeType.

The CQL type DateRangeType is supported for use with the latest Java driver, the DSE Python driver, and cqlsh commands.

Overriding the default TimeZone (UTC) in search queries

Specify the TZ parameter to overwrite the default TimeZone (UTC) that is used for adding and rounding in date math. The local rules for the specified time zone, including the start and end of daylight saving time (DST) if any, determine when each arbitrary day starts. The time zone rules impact the rounding and adding of DAYs, but also cascades to rounding of HOUR, MIN, MONTH, and YEAR. For example, specifying a different time zone changes the result:

<table>
<thead>
<tr>
<th>Date math</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016-03-10T12:34:562/YEAR</td>
<td>Default TZ 2016-01-01T00:00:00Z</td>
</tr>
<tr>
<td>TZ=America/Los_Angeles</td>
<td>2016-01-01T08:00:00Z</td>
</tr>
</tbody>
</table>
Using DataStax Enterprise advanced functionality

<table>
<thead>
<tr>
<th>Date math</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016-03-10T08:00:00Z+1DAY</td>
<td>Default TZ</td>
</tr>
<tr>
<td></td>
<td>2016-03-11T08:00:00Z</td>
</tr>
<tr>
<td></td>
<td>TZ=Amercia/Los_Angeles</td>
</tr>
<tr>
<td></td>
<td>2016-03-11T07:00:00Z</td>
</tr>
</tbody>
</table>

The value of the TZ parameter can be any zone ID that is supported by the Java TimeZone class.

Primary key or ordinary column

DateRangeType can be used as a primary key or ordinary column:

```
CREATE TABLE taxi_trips(id int PRIMARY KEY, pickup_dropoff_range 'DateRangeType');
```

```
CREATE TABLE weather_sensors(weatherstation_id text, event_time 'DateRangeType', temperature text, PRIMARY KEY (weatherstation_id,event_time));
```

CQL representation

The CQL representation uses the same syntax as Solr DateRangeField:

```
INSERT INTO taxi_trips(id, pickup_dropoff_range) VALUES (1, '[2017-02-02T14:57:00 TO 2017-02-02T15:10:17]');
```

```
INSERT INTO taxi_trips(id, pickup_dropoff_range) VALUES (2, '[2017-02-01T09:00:03 TO 2017-02-01T09:32:00.001]');
```

```
INSERT INTO taxi_trips(id, pickup_dropoff_range) VALUES (3, '[2017-02-03T12:10:01.358 TO 2017-02-03T12:19:57]');
```

dateTime precision

The dateTime precision is preserved from user input. Milliseconds are displayed only when millisecond precision is provided on input.

```
SELECT * FROM taxi_trips;
```

```
 id | pickup_dropoff_range
-------------------------
 1 | [2017-02-02T14:57:00Z TO 2017-02-02T15:10:17Z]
 2 | [2017-02-01T09:00:03Z TO 2017-02-01T09:32:00.001Z]
 3 | [2017-02-03T12:10:01.358Z TO 2017-02-03T12:19:57Z]
```

Create search index:

```
CREATE SEARCH INDEX ON taxi_trips ;
```
Using DataStax Enterprise advanced functionality

Select all trips from February 2017:

```
SELECT * FROM taxi_trips WHERE solr_query = 'pickup_dropoff_range:2017-02';
```

Select all trips started after 2017-02-01 12:00 PM (inclusive) and ended before 2017-02-02 (inclusive):

```
SELECT * FROM taxi_trips WHERE solr_query = 'pickup_dropoff_range: [2017-02-01T12 TO 2017-02-02]';
```

Select all trips started after 2017-02-01 12:00 PM (inclusive) and ended before 2017-02-01:23:59:59.999 (inclusive):

```
SELECT * FROM taxi_trips WHERE solr_query = 'pickup_dropoff_range: [2017-02-01T12 TO 2017-02-01]';
```

Single point in time

DateRangeField can represent a single point in time:

```
INSERT INTO weather_sensors (weatherstation_id, event_time, temperature) VALUES ('A1', '2017-10-02T00:00:05', '12C');
INSERT INTO weather_sensors (weatherstation_id, event_time, temperature) VALUES ('A1', '2017-10-02T00:00:10', '12C');
INSERT INTO weather_sensors (weatherstation_id, event_time, temperature) VALUES ('A1', '2017-10-02T00:15', '13C');
INSERT INTO weather_sensors (weatherstation_id, event_time, temperature) VALUES ('A1', '2017-10-02T00:20', '13C');
INSERT INTO weather_sensors (weatherstation_id, event_time, temperature) VALUES ('A1', '2017-10-02T00:25', '12C');
```

Select all from weather_sensors:

```
SELECT * FROM weather_sensors;
```

<table>
<thead>
<tr>
<th>weatherstation_id</th>
<th>event_time</th>
<th>temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>2017-10-02T00:00:05Z</td>
<td>12C</td>
</tr>
<tr>
<td>A1</td>
<td>2017-10-02T00:00:10Z</td>
<td>12C</td>
</tr>
<tr>
<td>A1</td>
<td>2017-10-02T00:00:15Z</td>
<td>13C</td>
</tr>
<tr>
<td>A1</td>
<td>2017-10-02T00:20Z</td>
<td>13C</td>
</tr>
<tr>
<td>A1</td>
<td>2017-10-02T00:25Z</td>
<td>12C</td>
</tr>
</tbody>
</table>

Create a search index on weather_sensors:

```
CREATE SEARCH INDEX ON weather_sensors ;
```

Select a specific point in time:
Using DataStax Enterprise advanced functionality

```sql
SELECT * FROM weather_sensors WHERE solr_query = 'event_time: [2017-10-02T00:00:10 TO 2017-10-02T00:20]';
```

<table>
<thead>
<tr>
<th>weatherstation_id</th>
<th>event_time</th>
<th>solr_query</th>
<th>temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>2017-10-02T00:10Z</td>
<td>null</td>
<td>12C</td>
</tr>
<tr>
<td>A1</td>
<td>2017-10-02T00:15Z</td>
<td>null</td>
<td>13C</td>
</tr>
<tr>
<td>A1</td>
<td>2017-10-02T00:20Z</td>
<td>null</td>
<td>13C</td>
</tr>
</tbody>
</table>

Open bounds

DateRangeField can have open bounds.

Select from a point in time to an open bound:

```sql
SELECT * FROM weather_sensors WHERE solr_query = 'event_time: [2017-10-02T00:00:10 TO *]';
```

<table>
<thead>
<tr>
<th>weatherstation_id</th>
<th>event_time</th>
<th>solr_query</th>
<th>temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>2017-10-02T00:25Z</td>
<td>null</td>
<td>12C</td>
</tr>
<tr>
<td>A1</td>
<td>2017-10-02T00:10Z</td>
<td>null</td>
<td>12C</td>
</tr>
<tr>
<td>A1</td>
<td>2017-10-02T00:15Z</td>
<td>null</td>
<td>13C</td>
</tr>
<tr>
<td>A1</td>
<td>2017-10-02T00:20Z</td>
<td>null</td>
<td>13C</td>
</tr>
</tbody>
</table>

Select from an open bound up to a point in time:

```sql
SELECT * FROM weather_sensors WHERE solr_query = 'event_time: [* TO 2017-10-02T00:20]';
```

<table>
<thead>
<tr>
<th>weatherstation_id</th>
<th>event_time</th>
<th>solr_query</th>
<th>temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>2017-10-02T00:10Z</td>
<td>null</td>
<td>12C</td>
</tr>
<tr>
<td>A1</td>
<td>2017-10-02T00:15Z</td>
<td>null</td>
<td>13C</td>
</tr>
<tr>
<td>A1</td>
<td>2017-10-02T00:20Z</td>
<td>null</td>
<td>13C</td>
</tr>
<tr>
<td>A1</td>
<td>2017-10-02T00:05Z</td>
<td>null</td>
<td>12C</td>
</tr>
</tbody>
</table>

Select from all points in time:

```sql
SELECT * FROM weather_sensors WHERE solr_query = 'event_time: [* TO *]';
```

<table>
<thead>
<tr>
<th>weatherstation_id</th>
<th>event_time</th>
<th>solr_query</th>
<th>temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>2017-10-02T00:25Z</td>
<td>null</td>
<td>12C</td>
</tr>
<tr>
<td>A1</td>
<td>2017-10-02T00:10Z</td>
<td>null</td>
<td>12C</td>
</tr>
<tr>
<td>A1</td>
<td>2017-10-02T00:15Z</td>
<td>null</td>
<td>13C</td>
</tr>
<tr>
<td>A1</td>
<td>2017-10-02T00:20Z</td>
<td>null</td>
<td>13C</td>
</tr>
<tr>
<td>A1</td>
<td>2017-10-02T00:05Z</td>
<td>null</td>
<td>12C</td>
</tr>
</tbody>
</table>

Insert an open-bounded range into a table:
Using DataStax Enterprise advanced functionality

```
INSERT INTO weather_sensors (weatherstation_id, event_time, temperature)
VALUES ('A1', '[2017-10-02T00:25 TO *]', '12C');
SELECT * FROM weather_sensors WHERE solr_query = 'event_time:[* TO *]';
```

| weatherstation_id | event_time | solr_query |
|-------------------+-----------------------------+------------|
temperature		
+------------------	-----------------------------	------------
A1	2017-10-02T00:25Z	null
12C	2017-10-02T00:10Z	null
12C	2017-10-02T00:15Z	null
12C	2017-10-02T00:20Z	null
12C	2017-10-02T00:05Z	null
12C	[2017-10-02T00:25Z TO *]	null

Restricted query routing

This feature is for experts only and should be used with care.

DSE Search restricted query routing is designed for applications that have a data model that supports restricting common queries to a single partition.

Important: route.partition and route.range filter only which endpoints to query.

To restrict queries to a token or partition, use the CQL solr_query (page 496) instead.

For example:

```
SELECT aid, bkt, ts, rid, mt FROM tt.accounttransactions WHERE aid=1096 AND bkt=0 AND solr_query='{"q":"*:*", "sort":"ts asc"}'
```

to filter:

```
' ;"'
```

Partition key routing

You can restrict routing queries to a limited number of nodes based on a list of partition keys. You can also restrict queries based on a single token range. To specify routing by partition keys, use the route.partition query parameter and set its value to one or more partition keys. DSE Search queries only the nodes that own the given partition keys. The vertical line delimiter separates components of a composite key. The comma delimiter separates different partition keys.

For example:
Using DataStax Enterprise advanced functionality

route.partition=k1c1|k1c2,k2c1|k2c2 . . .

If the actual partition key value contains a delimiter character, use a backslash character to escape the delimiter.

Examples

You can route Solr HTTP API (page 552) and CQL queries (page 496). This example shows how to use the route queries on a table with a composite partition key, where "nike" and "2" are composite key parts.

In CQL:

```sql
SELECT * FROM test.route WHERE solr_query='{"q" : "*:*",
   "route.partition" : ["nike|2","reebok|2"]}'
```

Token range routing

Only use token range routing if you thoroughly understand cluster token placement. For simplicity, DataStax recommends routing queries by partition range instead of routing by token range. To specify routing by token range, use the route.range query parameter and set its value to the two token values that represent the range, separated by comma.

For example:

route.range=t1,t2

DSE Search queries only the nodes in the given token range.

Tutorials and demos

Use these step-by-step tutorials with sample keyspaces, tables, and data that demonstrate DSE Search index functionality.

Useful external resources:

- [Tutorial](#) how to index and query geospatial Polygons and MultiPolygons.
- [Docker container](#) for running Silk on DSE Search.

Creating a healthcare keyspace for tutorials

Step-by-step instructions to create a keyspace for tutorials found in this section.

1. Get a list of datacenter names (DC) in the cluster.

   ```bash
   $ dsetool status
   ```
Using DataStax Enterprise advanced functionality

The header line contains the datacenter name (DC: datacenter_name) and the type of workload.

<table>
<thead>
<tr>
<th>DC: Cassandra</th>
<th>Workload: Cassandra</th>
<th>Graph: no</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC: Solr</td>
<td>Workload: Search</td>
<td>Graph: no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Start a cqlsh session:

cqlsh

Tip: To connect cqlsh to a remote node use the host switch with the hostname or IP address.

3. Create a healthcare keyspace with a replication factor of 1 in each datacenter.

This example is for a multi-datacenter environment, in which case you specify a NetworkTopologyStrategy and set the replication factor for each datacenter to at least one.

```
CREATE KEYSPACE IF NOT EXISTS healthcare
WITH replication = {
    'class': 'NetworkTopologyStrategy',
    'Cassandra': '1',
    'Solr': '1'};
```

If you are creating a keyspace on a single datacenter environment, you can instead use a command such as in this example:

```
CREATE KEYSPACE IF NOT EXISTS healthcare
WITH replication = {'class': 'SimpleStrategy',
    'replication_factor':1};
```

Note: Datacenter names are case-sensitive. Exit cqlsh and ensure that the name exactly matches the DC name from the dsetool status output.

Multi-faceted search using healthcare data

This quick start example provides an overview of creating and altering search indexes using CQL index management commands.

Prerequisites:

1. Create a **healthcare** keyspace with a replication factor of at least 1 in the search datacenter, see Creating a healthcare keyspace for tutorials (page 531).
2. Download the health_data.csv onto a search node.

1. Launch cqlsh on a search node:
 a. Determine which nodes in the cluster are running a search workload:

   ```
   $ dsetool status
   ```

 Tip: DSE Search operations are available only on search-enabled nodes. DataStax recommends single workload datacenters.

 The following example shows a development environment where all nodes in the cluster are in the same physical location, on the same rack, and the nodes have been separated into datacenters based on their workloads:

<table>
<thead>
<tr>
<th>DC: Main</th>
<th>Workload: Cassandra</th>
<th>Graph: no</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status=Up/Down</td>
<td></td>
<td>-----------</td>
</tr>
<tr>
<td>/ State=Normal/Leaving/Joining/Moving</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-- Address</td>
<td>Load</td>
<td>Owns</td>
</tr>
<tr>
<td>VN</td>
<td>Rack</td>
<td>Health [0,1]</td>
</tr>
<tr>
<td>UN 10.10.10.111</td>
<td>15.51 MiB</td>
<td>?</td>
</tr>
<tr>
<td>rack1</td>
<td>0.90</td>
<td>8</td>
</tr>
<tr>
<td>UN 10.10.10.113</td>
<td>19.51 MiB</td>
<td>?</td>
</tr>
<tr>
<td>rack1</td>
<td>0.90</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DC: Search</th>
<th>Workload: Search</th>
<th>Graph: no</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status=Up/Down</td>
<td></td>
<td>-----------</td>
</tr>
<tr>
<td>/ State=Normal/Leaving/Joining/Moving</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-- Address</td>
<td>Load</td>
<td>Owns</td>
</tr>
<tr>
<td>VN</td>
<td>Rack</td>
<td>Health [0,1]</td>
</tr>
<tr>
<td>UN 10.10.10.108</td>
<td>18.13 MiB</td>
<td>?</td>
</tr>
<tr>
<td>rack1</td>
<td>0.90</td>
<td>8</td>
</tr>
<tr>
<td>UN 10.10.10.110</td>
<td>17.4 MiB</td>
<td>?</td>
</tr>
<tr>
<td>rack1</td>
<td>0.90</td>
<td>8</td>
</tr>
</tbody>
</table>

 b. Launch a cqlsh session on a search node from the directory that contains the health_data.csv:

   ```
   $ cd ~ && cqlsh -k healthcare
   ```

 A CQL sessions starts using the demo keyspace (page 531).

 Connected to cluster1 at 10.10.10.108:9042.
 [cqlsh 5.0.1 | Cassandra 3.11.0.1805 | DSE 5.1.3 | CQL spec 3.4.4 | Native protocol v4]
 Use HELP for help.
 cqlsh:healthcare>
Tip: The active keyspace name appears in the cqlsh prompt.

2. Set up the `health_data` table with data:

 a. Create the table:

   ```sql
   USE healthcare;
   
   // START-create-table
   CREATE TABLE IF NOT EXISTS healthcare.health_data (  
   "id" INT,
   "num_smokers" INT,
   "age" INT,
   "age_unit" VARCHAR,
   "age_months" INT,
   "major_medical_coverage" VARCHAR,
   "dental_coverage" VARCHAR,
   "routine_medical_coverage" VARCHAR,
   "employer_paid_plan" VARCHAR,
   "secondary_smoke" VARCHAR,
   "county" VARCHAR,
   "screening_month" VARCHAR,
   "pets" VARCHAR,
   "asthma" VARCHAR,
   "bronchitis" VARCHAR,
   "goiter" VARCHAR,
   "hay_fever" VARCHAR,
   "thyroid_disease" VARCHAR,
   "chronic_bronchitis" VARCHAR,
   "diagnosed_asthma" VARCHAR,
   "diagnosed_cataracts" VARCHAR,
   "diagnosed_emphysema" VARCHAR,
   "diagnosed_goiter" VARCHAR,
   "diagnosed_gout" VARCHAR,
   "diagnosed_hay_fever" VARCHAR,
   "diagnosed_lupus" VARCHAR,
   "diagnosed_other_cancer" VARCHAR,
   "diagnosed_skin_cancer" VARCHAR,
   "diagnosed_stroke" VARCHAR,
   "diagnosed_thyroid_disease" VARCHAR,
   "diagnosed_congestive_heart_failure" VARCHAR,
   "ethnicity" VARCHAR,
   "exam_status" VARCHAR,
   "family_sequence" INT,
   "family_size" INT,
   "fips" VARCHAR,
   "grade_completed" VARCHAR,
   "household_size" INT,
   "health_status" VARCHAR,
   "marital_status" VARCHAR,
   "bird" VARCHAR,
   );
   ```
"cat" VARCHAR,
"dog" VARCHAR,
"fish" VARCHAR,
"other_pet" VARCHAR,
"race" VARCHAR,
"race_ethnicity" VARCHAR,
"gender" VARCHAR,
"birthplace" VARCHAR,
"annual_income_20000" VARCHAR,
"income_group" INT,
"monthly_income_total" INT,
PRIMARY KEY ("id", "age")
WITH gc_grace_seconds = 0;

Tip: After loading data that contains null values, temporarily set the grace period to zero to clean up tombstones.

b. Use DataStax Bulk Loader to load data from the health_data.csv file:

$ dsbulk load -f dsbulkConfigFile.conf -url health_data.csv -k healthcare -t health_data \ -header false --schema.allowExtraFields true --schema.allowMissingFields true

Note: If the health_data.csv is not in the directory where you launch cqlsh, specify the full path to the file. Also, the dsbulkConfigFile.conf file referenced in the dsbulk command includes the schema.mapping definition for the health_data table. For example:

```
schema.mapping = "0=id, 1=num_smokers, 2=age, 3=age_unit, 4=age_months, 5=major_medical_coverage, 6=dental_coverage, 7=routine_medical_coverage, 8=employer_paid_plan, 9=secondary_smoke, 10=county, 11=screening_month, 12=pets, ... 50=income_group, 51=monthly_income_total"
```

The script loads 20050 rows.

<table>
<thead>
<tr>
<th>total</th>
<th>failed</th>
<th>rows/s</th>
<th>mb/s</th>
<th>kb/row</th>
<th>p50ms</th>
<th>p99ms</th>
<th>p999ms</th>
<th>batches</th>
</tr>
</thead>
<tbody>
<tr>
<td>20,050</td>
<td>0</td>
<td>2,295</td>
<td>0.62</td>
<td>0.28</td>
<td>83.97</td>
<td>274.73</td>
<td>333.45</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Operation LOAD_20190308-194845-563653 completed successfully in 8 seconds.

Last processed positions can be found in positions.txt
Using DataStax Enterprise advanced functionality

c. Verify the number of records:

```sql
SELECT COUNT(*) FROM healthcare.health_data;
```

```
<table>
<thead>
<tr>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>20050</td>
</tr>
</tbody>
</table>

(1 rows)

Warnings:
Aggregation query used without partition key

3. Create the search index:

```sql
CREATE SEARCH INDEX ON healthcare.health_data
WITH COLUMNS * {excluded:false}, age_months, monthly_income_total {excluded: true} ;
```

- Only columns identified in the COLUMNS options are included. All columns are included when this option is omitted.

4. Display the schema:

```xml
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<schema name="autoSolrSchema" version="1.5">
 <types>
 <fieldType class="org.apache.solr.schema.StrField" name="StrField"/>
 <fieldType class="org.apache.solr.schema.TrieIntField" name="TrieIntField"/>
 </types>
 <fields>
 <field indexed="true" multiValued="false" name="grade_completed" stored="true" type="StrField"/>
 <field indexed="true" multiValued="false" name="diagnosed_thyroid_disease" stored="true" type="StrField"/>
 <field indexed="true" multiValued="false" name="pets" stored="true" type="StrField"/>
 <field indexed="true" multiValued="false" name="secondary_smoke" stored="true" type="StrField"/>
 <field indexed="true" multiValued="false" name="diagnosed_lupus" stored="true" type="StrField"/>
 <field indexed="true" multiValued="false" name="gender" stored="true" type="StrField"/>
 <field indexed="true" multiValued="false" name="birthplace" stored="true" type="StrField"/>
 <field indexed="true" multiValued="false" name="income_group" stored="true" type="TrieIntField"/>
 </fields>
</schema>
```
Using DataStax Enterprise advanced functionality
Quick Start for CQL index management

This quick start example provides an overview of creating and altering search indexes using CQL index management commands.

Creating a search index

1. Launch cqlsh and create a tutorial keyspace on a solr node:

   ```bash
 cqlsh
   ```

2. Set up the table schema and create a default index:
3. Create the keyspace, create the table, and create the search index on the users table from the KillrVideo application:

```cql
CREATE KEYSPACE demo WITH
 replication = {
 'class': 'SimpleStrategy',
 'replication_factor': 1};

CREATE TABLE demo.users (
 userid uuid,
 firstname text,
 lastname text,
 email text,
 created_date timestamp,
 PRIMARY KEY (userid));

CREATE SEARCH INDEX ON demo.users;
```

A new search index is generated on the table. Existing data is reindexed.

4. Use the CQL shell DESCRIBE SEARCH INDEX SCHEMA View the pending search index schema

The generated schema looks like this:

```xml
<schema name="autoSolrSchema" version="1.5">
 <types>
 <fieldType class="org.apache.solr.schema.TextField" name="TextField">
 <analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 </analyzer>
 </fieldType>
 <fieldType class="org.apache.solr.schema.UUIDField" name="UUIDField"/>
 <fieldType class="org.apache.solr.schema.TrieDateField" name="TrieDateField"/>
 </types>
 <fields>
 <field indexed="true" multiValued="false" name="firstname" stored="true" type="TextField"/>
 <field docValues="true" indexed="true" multiValued="false" name="userid" stored="true" type="UUIDField"/>
 <field indexed="true" multiValued="false" name="email" stored="true" type="TextField"/>
 <field indexed="true" multiValued="false" name="lastname" stored="true" type="TextField"/>
 <field indexed="true" multiValued="false" name="created_date" stored="true" type="TrieDateField"/>
 </fields>
 <uniqueKey>userid</uniqueKey>
</schema>
```
Using DataStax Enterprise advanced functionality

5. To increase tolerance of non-ASCII characters in the name field, add a new fieldType to the schema with this `ALTER SEARCH INDEX SCHEMA` statement:

```sql
ALTER SEARCH INDEX SCHEMA ON demo.users
ADD types.fieldType [
 @name='TextField_intl' ,
 @class='org.apache.solr.schema.TextField'
] WITH $$
 "analyzer": [{
 "type": "index",
 "tokenizer": { "class": "solr.StandardTokenizerFactory" },
 "filter": [{ "class": "solr.LowerCaseFilterFactory" },
 { "class": "solr.ASCIIFoldingFilterFactory" }
]
 },
 { "type": "search",
 "tokenizer": { "class": "solr.StandardTokenizerFactory" },
 "filter": [{ "class": "solr.LowerCaseFilterFactory" },
 { "class": "solr.ASCIIFoldingFilterFactory" }
]
 }
]$$;
```

The dollar signs ($$) syntax in the `ALTER SEARCH INDEX SCHEMA` example are dollar quotes to escape a single quotation mark, see Escaping single quotation marks (page 504). This new fieldType has separate index and search analysis phases:

```xml
<fieldType class="org.apache.solr.schema.TextField"
 name="TextField_intl">
 <analyzer type="index">
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.ASCIIFoldingFilterFactory"/>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 </analyzer>
 <analyzer type="search">
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.ASCIIFoldingFilterFactory"/>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 </analyzer>
</fieldType>
```

6. Change the type on the firstname and lastname fields:

```sql
ALTER SEARCH INDEX SCHEMA ON demo.users
SET field[@name='firstname']@type = 'TextField_intl';
```
ALTER SEARCH INDEX SCHEMA ON demo.users
   SET field[@name='lastname']@type = 'TextField_intl';

7. In contrast to the dsetool search index management commands, all changes made with ALTER SEARCH INDEX affect only the pending resources for the search index. To use the changes:
   
a. Reload the index.
   
   RELOAD SEARCH INDEX ON demo.users;

   b. If there is existing data in the index, rebuild the index.
   
   REBUILD SEARCH INDEX ON demo.users;

Term and phrase searches using the wikipedia demo

The Wikipedia demo scripts automatically download 3,000+ Wikipedia articles, create a CQL keyspace and table, insert the articles, and create a search index on both the title and body columns.

Prerequisites: The demo scripts connect to the localhost on the Solr port. Ensure that the Solr interface and port 127.0.0.1:8983 are accessible.

1. Start DataStax Enterprise (page 1275) as a search node.

2. Go to installation_directory/demos/wikipedia.

3. Run the script to add the wikipedia schema:

   $ ./1-add-schema.sh

   This script creates the wiki keyspace with a single table solr.

4. To use the demo in a cluster that has more than one node, change the keyspace replication from SimpleStrategy to NetworkTopologyStrategy, and set the factor to 1 in each datacenter:

   $ cqlsh -e 'ALTER KEYSPACE wiki WITH replication = {'class': 'NetworkTopologyStrategy', 'Cassandra' : 1, 'Solr' : 1};

   In this example, the cluster has two datacenters, Cassandra and Solr. Datacenter names are case sensitive.

5. Load the data and index the table using the second script (2-index.sh).
Using DataStax Enterprise advanced functionality

$ ./2-index.sh --wikifile wikipedia-sample.bz2

3,000 articles are loaded into the solr table and then indexed.

Start indexing wikipedia...
------------- config properties:
docs.file = wikipedia-sample.bz2
keep.image.only.docs = false
-------------
Indexed 1000
Indexed 2000
Indexed 3000
Finished
Visit http://localhost:8983/demos/wikipedia/ to see data

6. Verify that the data was successfully loaded into the keyspace/table:

$ cqlsh -e 'DESC KEYSAPER wiki; SELECT count(*) FROM wiki.solr,'

The results show the details of the keyspace, table schema, index settings, and number of articles.

CREATE KEYSPACE wiki WITH replication = {'class': 'SimpleStrategy',
'replication_factor': '1'} AND durable_writes = true;

CREATE TABLE wiki.solr (id text PRIMARY KEY,
body text,
date text,
solr_query text,
title text
) WITH bloom_filter_fp_chance = 0.01
AND caching = {'keys': 'ALL', 'rows_per_partition': 'NONE'}
AND comment = '
AND compaction = {'class':
'org.apache.cassandra.db.compaction.SizeTieredCompactionStrategy',
'max_threshold': '32', 'min_threshold': '4'}
AND compression = {'chunk_length_in_kb': '64', 'class':
'org.apache.cassandra.io.compress.LZ4Compressor'}
AND crc_check_chance = 1.0
AND dcflocal_read_repair_chance = 0.1
AND default_time_to_live = 0
AND gc_grace_seconds = 864000
AND max_index_interval = 2048
AND memtable_flush_period_in_ms = 0
AND min_index_interval = 128
AND read_repair_chance = 0.0
AND speculative_retry = '99PERCENTILE';
CREATE CUSTOM INDEX wiki_solr_solr_query_index ON wiki.solr
(solr_query) USING
'com.datastax.bdp.search.solr.Cql3SolrSecondaryIndex';
7. Start `cqlsh` using the `wiki` keyspace.

```bash
$ cqlsh -k wiki
```

CQL shell session starts on the localhost in the `wiki` keyspace.

```
Connected to pw-search at 127.0.0.1:9042.
[cqlsh 5.0.1 | Cassandra 3.11.0.1805 | DSE 5.1.3 | CQL spec 3.4.4
 | Native protocol v4]
Use HELP for help.
cqlsh:wiki>
```

8. Disable paging, for faster query results on small data sets:

```
PAGING off
```

**Note:** Paging is turned off only for the session. Paging is enabled after a restart. Use a `cqlshrc` file to change the default startup parameters for `cqlsh`.

```
Disabled Query paging.
```

9. Display the solr table search index schema:

```sql
DESCRIBE ACTIVE SEARCH INDEX SCHEMA ON solr;
```

```xml
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<schema name="autoSolrSchema" version="1.5">
 <types>
 <fieldType class="org.apache.solr.schema.TextField" name="TextField">
 <analyzer>
 <tokenizer class="solr.WikipediaTokenizerFactory"/>
 </analyzer>
 </fieldType>
 <fieldType class="org.apache.solr.schema.StrField" name="StrField"/>
 </types>
 <fields>
 <field indexed="true" multiValued="false" name="body" stored="true" type="TextField"/>
 </fields>
</schema>
```
10. Execute queries against the table using the index:
   • Return the titles of articles that contain the word national:

   ```sql
 SELECT title FROM solr WHERE solr_query='title:national';
   ```

   Seven records are returned.

<table>
<thead>
<tr>
<th>title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bolivia national football team 1999</td>
</tr>
<tr>
<td>Bolivia national football team 2000</td>
</tr>
<tr>
<td>Kenya national under-20 football team</td>
</tr>
<tr>
<td>List of French born footballers who have played for other national teams</td>
</tr>
</tbody>
</table>

Using secure cluster

You can run the Term and phrase searches using the wikipedia demo (page 541) on a secure cluster.

Kerberos options

- `-a` enable Kerberos authentication
- `-h hostname` server hostname (not required if server hostname resolution is correctly set up)

HTTP basic authentication

Use with DseAuthenticator:
• -u username
• -p password

You can use this option to run the shell scripts:

```
./1-add-schema.sh -u root -p password && ./2-index.sh -u root -p password
```

SSL options

• -e cert enable HTTPS for client to node encryption, using cert certificate file
• -k disable strict hostname checking for SSL certificates

Indexing and querying polygons

Using United States of America state data, this tutorial demonstrates how to index and query geospatial shapes, such as Polygons and MultiPolygons.

Geospatial data is stored in the database in WKT (Well Known Text) format. To support Polygons and MultiPolygons fields, set the field type in the table index schema to `solr.SpatialRecursivePrefixTreeFieldType`.

**Tip:** `SpatialRecursivePrefixTreeFieldType` supports multiValued spatial data. Most states are describable as Polygons, but others such as Hawaii and Alaska are MultiPolygons.

Polygonal searches use the following geospatial predicates:

• **Intersects**: Matches if the indexed value overlaps the search criteria.
• **IsWithin**: Matches if the indexed value completely encapsulates the search criteria.
• **IsDisjointTo**: Matches if the index value does not overlap or touch the search criteria.


1.

DSE Search operations

You can run DSE Search on one or more nodes. Typical operations including configuration of nodes, policies, query routing, balancing loads, and communications.

DSE Search initial data migration

Best practices and guidelines for loading data into DSE Search.

When you initially load data into DataStax Enterprise (DSE) resource contention requires planning to ensure performance.

• DSE is performant when writing data.
• Apache Solr™ is resource intensive when creating a search index.
These two activities compete for resources, so proper resource allocation is critical to maximize efficiency for initial data load.

Recommendations

- For maximum throughput, store the search index data and DataStax Enterprise (Cassandra) data on separate physical disks.
  
  If you are unable to use separate disks, DataStax recommends that SSDs have a minimum of 500 MB/s read/write speeds (bandwidth).

- Enable OpsCenter 6.1 repair service.

Also see Selecting hardware for DataStax Enterprise implementations.

Initial bulk loading

DataStax recommends following this high-level procedure:

1. Install DSE and configure nodes for search workloads.

2. Use the CQL CREATE SEARCH INDEX command to create search indexes.

3. Tune the index for maximum indexing throughput.

4. Load data into the database with the index in place. For example, load data with the driver with the consistency level at LOCAL_ONE (CL.LOCAL_ONE) and a sufficiently high write timeout. Use best practices for data loading.
   
   **Tip:** Use the DataStax Bulk Loader.

   After data loading is completed, there might be lag time because indexing is asynchronous.

5. Verify the indexing QueueSize with the IndexPool MBean. After the index queue size has receded, run this CQL query to verify that the number of records is as expected:

   ```
 SELECT count(*) FROM ks.table WHERE solr_query = '*:*';
   ```

   **Note:** The COUNT should stabilize within the configured soft-commit period. For example, if the soft-commit is 30 seconds, then it can be up to 30 seconds before the COUNT is correct.

New data is automatically indexed.

Troubleshooting

If the record count does not stabilize:
Using DataStax Enterprise advanced functionality

- If dropped mutations exist in the `nodetool tpstats` (page 1072) output for some nodes, and OpsCenter repair service is not enabled, run `manual repair` (page 1326) on those nodes.
- If dropped mutations do not exist, check the `system.log` and the `Solr validation log` for indexing errors.

**Verifying indexing status**

You can check the indexing status using `dsetool`, the Core Admin, or the logs.

**Examples**

To view the indexing status for the local node:

```bash
dsetool core_indexing_status demo.health_data
```

The local node `wiki.solr` is currently indexing:

```
[demo.health_data]: INDEXING
```

To view the indexing status for a search index on a specified node:

```bash
dsetool -h 200.192.10.11 core_indexing_status demo.health_data
```

To view indexing status of all search indexes in the data center:

```bash
dsetool -h 200.192.10.11 core_indexing_status --all
```

To view the indexing status with the progress and estimated time of completion:

```bash
dsetool core_indexing_status demo.health_data --progress
```

The results are displayed:

```
[demo.health_data]: INDEXING, 38% complete, ETA 452303 milliseconds (7 minutes 32 seconds)
```

Checking the indexing status using the Core Admin

To check the indexing status, open the Solr Admin and click **Core Admin**.
Using DataStax Enterprise advanced functionality

Checking the indexing status using the logs

You can also check the logs to get the indexing status. For example, you can check information about the plugin initializer:

```
INDEXING / REINDEXING -
INFO SolrSecondaryIndex plugin initializer. 2013-08-26 19:25:43,347
SolrSecondaryIndex.java (line 403) Reindexing 439171 keys for core wiki.solr

Or you can check the SecondaryIndexManager.java information:

INFO Thread-38 2013-08-26 19:31:28,498 SecondaryIndexManager.java (line 136) Submitting index build of wiki.solr for data in
SSTableReader(path='/mnt/cassandra/data/wiki/solr/wiki-solr-ic-5-Data.db'), SSTableReader(path='/mnt/cassandra/data/wiki/solr/wiki-solr-ic-6-Data.db')

FINISH INDEXING -
```
INFO Thread-38 2013-08-26 19:38:10,701 SecondaryIndexManager.java (line 156) Index build of wiki.solr complete

Uploading the search index schema and config

After generating or changing the search index schema (page 442) and configuration (page 435), use dsetool to upload to a DSE Search node to create a search index. You can also post additional resource files.

You can configure the maximum resource file size or disable resource upload with the DSE Search resource upload limit (page 248) option in dse.yaml.

**Note:** Using custom resources is not supported by the CQL CREATE SEARCH INDEX command.

Resource files are stored internally in the database, not in the file system. The schema and configuration resources are persisted in the solr_admin.solr_resources database table.

1. Write the schema:

   ```
 $ dsetool write_resource keyspace.table name=schema.xml
 file=schemaFile.xml
   ```

2. Post the configuration file:

   ```
 $ dsetool write_resource keyspace.table name=solrconfig.xml
 file=solrconfigFile.xml
   ```

3. Post any other resources that you might need.

   ```
 $ dsetool write_resource keyspace.table name=ResourceFile.xml
 file=schemaFile.xml
   ```

   You can specify a path for the resource file:

   ```
 $ dsetool write_resource keyspace.table name=ResourceFile.xml
 file=myPath1/myPath2/schemaFile.xml
   ```

4. To verify the resources after they are posted:

   For example:
Using DataStax Enterprise advanced functionality

```bash
$ dsetool read_resource keyspace.table name=ResourceFile.xml
 file=myPath1/myPath2/schemaFile.xml
```

Solr interfaces

Accessing cores from Solr Admin UI (deprecated)

When DataStax Enterprise authorization is enabled, access to cores is restricted from the Solr Admin UI. You must grant permissions to roles of Solr Admin UI users for HTTP operations.

<table>
<thead>
<tr>
<th>Table</th>
<th>Required permissions</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>solr_admin.solr_resources</td>
<td>SELECT</td>
<td>Read a resource</td>
</tr>
<tr>
<td>solr_admin.solr_resources</td>
<td>MODIFY</td>
<td>Write a resource</td>
</tr>
<tr>
<td>all keyspaces</td>
<td>CREATE</td>
<td>Create search index if the keyspace doesn't exist (Thrift only)</td>
</tr>
<tr>
<td>core keyspace</td>
<td>CREATE</td>
<td>Create search index if the table doesn't exist (Thrift only)</td>
</tr>
<tr>
<td>core table</td>
<td>ALTER</td>
<td>Create, reload, and unload search index, and stop core reindex</td>
</tr>
<tr>
<td>core table</td>
<td>SELECT</td>
<td>Query core and all remaining admin query operations on core</td>
</tr>
<tr>
<td>core table</td>
<td>MODIFY</td>
<td>Update core</td>
</tr>
</tbody>
</table>

**Tip:** Permissions are inherited. Granting permissions on a keyspace allows users with that role to access all tables in the keyspace.

Examples

To grant permission to read resources:

```sql
GRANT SELECT ON solr_admin.solr_resources TO role_name;
```

Configuring the Solr library path

The location for library files in DataStax Enterprise is not the same location as open source Apache Solr™. Contrary to the examples shown in the `solrconfig.xml` file that indicate support for relative paths, DSE Search does not support the relative path values that are set for the `<lib>` property and cannot find files in directories that are defined by the `<lib>`
property. The workaround is to place custom code or Solr contrib modules in the Solr library directories.

The default Solr library path location depends on the type of installation:

- **Package installations and Installer-Services:** `/usr/share/dse/solr/lib`
- **Tarball installations and Installer-No Services:** `installation_location/resources/solr/lib`

When the plugin JAR file is not in the directory that is defined by the `<lib>` property, attempts to deploy custom Solr libraries in DataStax Enterprise fail with java.lang.ClassNotFoundException and an error in the system.log like this:

```java
ERROR [http-8983-exec-5] 2015-12-06 16:32:33,992 CoreContainer.java (line 956) Unable to create core: boogle.main
org.apache.solr.common.SolrException: Error loading class 'com.boogle.search.CustomQParserPlugin'
at org.apache.solr.core.SolrCore.(SolrCore.java:851)
at org.apache.solr.core.SolrCore.(SolrCore.java:640)
at com.datastax.bdp.search.solr.core.CassandraCoreContainer.doCreate(CassandraCoreContainer.java:675)
at com.datastax.bdp.search.solr.core.CassandraCoreContainer.create(CassandraCoreContainer.java:234)
at com.datastax.bdp.search.solr.core.SolrCoreResourceManager.createCore(SolrCoreResourceManager.java:256)
at com.datastax.bdp.search.solr.handler.admin.CassandraCoreAdminHandler.handleCreateAction(CassandraCoreAdminHandler.java:117)
...
Caused by: org.apache.solr.common.SolrException: Error loading class 'com.boogle.search.CustomQParserPlugin'
at org.apache.solr.core.SolrResourceLoader.findClass(SolrResourceLoader.java:474)
at org.apache.solr.core.SolrResourceLoader.findClass(SolrResourceLoader.java:405)
at org.apache.solr.core.SolrCore.createInstance(SolrCore.java:541)
...
Caused by: java.lang.ClassNotFoundException:
 com.boogle.search.CustomQParserPlugin
at java.net.URLClassLoader$1.run(Unknown Source)
at java.net.URLClassLoader$1.run(Unknown Source)
...
```

**Workaround**

Using the class in this example with the JAR file name
`com.boogle.search_CUSTOMQParserPlugin-1.0.jar`, follow these steps to get the custom plugin working on all DSE Search nodes.

1. Define the parser in the search index config file:

   ```xml
 <queryParser name="myCustomQP"
 class="com.boogle.search.CustomQParserPlugin"/>
   ```
Using DataStax Enterprise advanced functionality

2. Place custom code or Solr contrib modules in the Solr library directories.

3. Deploy the JAR file on all DSE Search nodes in the cluster in the appropriate lib/directory.

   For example, package installations:/usr/share/dse/solr/lib/com.boogle.search.CustomQParserPlugin-1.0.jar

4. Reload (page 494) the search index with the new configuration.

Using the Solr HTTP API

You can use the Solr HTTP API to query data indexed in DSE Search.

   Note: Solr restrictions (page 433) apply to queries.

HTTP search queries use local/internal reads and do not actuate read repair.

With only the HTTP API, define the default number of rows in the solrconfig.xml file:

```
<requestHandler name="search" class="solr.SearchHandler" default="true">
 <lst name="defaults">
 <int name="rows">10</int>
 </lst>
</requestHandler>
```

Solr HTTP API example

Assuming you performed the example of using a collection set (page 525) to find the titles in the mykeyspace.mysolr table that begin with the letters succ in XML, use this URL:

```
```

The response is:

```
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">2</int>
 <lst name="params">
 <str name="fl">title</str>
 <str name="q">title:Succ*</str>
 </lst>
 </lst>
 <result name="response" numFound="2" start="0">
 <doc>
 <str name="title">Success</str>
 </doc>
 <doc>
 <str name="title">Success</str>
 </doc>
 </result>
</response>
```
Update request processor (URP) and field transformer (FIT)

DataStax Enterprise (DSE) recommends using a field input/output transformer (FIT) API.

A field input/output transformer, an alternative for handling update requests, is executed later than a URP at indexing time. See the DataStax Developer Blog post An Introduction to DSE Field Transformers.

**Note:** The DSE custom URP implementation is discouraged. The DSE custom URP implementation is almost always unnecessary.

DSE custom URP provided similar functionality to the Solr URP chain, but appeared as a plugin to Solr. The classic URP is invoked when updating a document using HTTP and the custom URP is invoked when updating a table using DSE. If both classic and custom URPs are configured, the classic version is executed first. The custom URP chain and the FIT API work with CQL and HTTP updates.

Examples are provided for using the field input/output *(page 553)* transformer API and the custom URP *(page 556)*.

**Field input/output (FIT) transformer API**

Use the field input/output transformer API as an option to the input/output transformer support in Apache Solr™. An Introduction to DSE Field Transformers provides details on the transformer classes.

DSE Search includes the released version of a plugin API for Solr updates and a plugin to the CassandraDocumentReader. The plugin API transforms data from the secondary indexing API before data is submitted. The plugin to the CassandraDocumentReader transforms the results data from the database to DSE Search.

Using the API, applications can tweak a Solr Document before it is mapped and indexed according to the `schema.xml`. The API is a counterpart to the input/output transformer support in Solr.

The field input transformer (FIT) requires:

- `name="dse"`
- A trailing Z for date field values

To use the API:

1. Define the plugin in the top level `<config>` element in the `solrconfig.xml` for a table (search core).

```xml
<config>
 ...
 <fieldInputTransformer name="dse" class="
 com.datastax.bdp.cassandra.index.solr.functional.

```
Using DataStax Enterprise advanced functionality

```xml
BinaryFieldInputTransformer">
</fieldInputTransformer>

<fieldOutputTransformer name="dse" class="
 com.datastax.bdp.cassandra.index.solr.functional.
 BinaryFieldOutputTransformer">
</fieldOutputTransformer>
...
</config>
```

2. Write a transformer class something like this reference implementation (page 554) to tweak the data in some way.

3. Export the class to a JAR file. You must place the JAR file in this location:
   - Tarball and Installer-No Services installations: `install-location/resources/solr/lib`
   - Package and Installer-Services installations: `/usr/share/dse/solr/lib`
   The JAR is added to the CLASSPATH automatically.

4. Test your implementation using something like the reference implementation.

**FIT transformer class examples**

The DataStax Developer Blog provides an introduction to DSE Field Transformers.

Here are examples of field input and output transformer (FIT) classes.

**Input transformer example**

```java
package com.datastax.bdp.search.solr.functional;

import java.io.IOException;

import org.apache.commons.codec.binary.Hex;
import org.apache.commons.lang.StringUtils;
import org.apache.solr.core.SolrCore;
import org.apache.solr.schema.SchemaField;
import com.datastax.bdp.search.solr.FieldOutputTransformer;
import org.apache.solr.schema.IndexSchema;

import com.datastax.bdp.search.solr.FieldOutputTransformer;
import org.apache.solr.schema.IndexSchema;

public class BinaryFieldInputTransformer extends FieldInputTransformer
{
 @Override
 public boolean evaluate(String field)
 {
 return field.equals("binary");
 }
}
```
@Override
public void addFieldToDocument(SolrCore core,
IndexSchema schema,
String key,
Document doc,
SchemaField fieldInfo,
String fieldValue,
DocumentHelper helper)
throws IOException
{
try
{
byte[] raw = Hex.decodeHex(fieldValue.toCharArray());
byte[] decomp = DSP1493Test.decompress(raw);
String str = new String(decomp, "UTF-8");
String[] arr = StringUtils.split(str, ",");
String binary_name = arr[0];
String binary_type = arr[1];
String binary_title = arr[2];

SchemaField binaryNameField =
core.getSchema().getFieldOrNull("binary_name");
SchemaField binaryTypeField =
core.getSchema().getFieldOrNull("binary_type");
SchemaField binaryTitleField =
core.getSchema().getFieldOrNull("binary_title");

helper.addFieldToDocument(core, core.getSchema(), key, doc,
binaryNameField, binary_name);
helper.addFieldToDocument(core, core.getSchema(), key, doc,
binaryTypeField, binary_type);
helper.addFieldToDocument(core, core.getSchema(), key, doc,
binaryTitleField, binary_title);
}
catch (Exception ex)
{
throw new RuntimeException(ex);
}
}

Output transformer example

package com.datastax.bdp.search.solr.functional;

import java.io.IOException;
import org.apache.commons.lang.StringUtils;
import org.apache.lucene.index.FieldInfo;
import com.datastax.bdp.search.solr.FieldOutputTransformer;

public class BinaryFieldOutputTransformer extends
FieldOutputTransformer
Custom URP example

DSE Search includes the released version of a plugin API for Solr updates and a plugin to the CassandraDocumentReader. The plugin API transforms data from the secondary indexing API before data is submitted. The plugin to the CassandraDocumentReader transforms the results data from the database to DSE Search.

**Notice:** The DSE custom URP implementation is almost always unnecessary. Instead, DataStax recommends using the field input/output (FIT) transformer API.

Using the API, applications can tweak a search document before it is mapped and indexed according to the index schema.

The field input transformer (FIT) requires a trailing Z for date field values.

To use the API:

1. **Configure the custom URP in the** `solrconfig.xml`.

   ```xml
 <dseUpdateRequestProcessorChain name="dse">
 <processor
 class="com.datastax.bdp.search.solr.functional.DSEUpdateRequestProcessorFactoryExample">
 </processor>
 </dseUpdateRequestProcessorChain>
   ```

2. **Write a class to use the custom URP that extends the Solr UpdateRequestProcessor.**
   For example:
package com.datastax.bdp.search.solr.functional;

import java.io.IOException;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import com.datastax.bdp.search.solr.handler.update.CassandraAddUpdateCommand;
import com.datastax.bdp.search.solr.handler.update.CassandraCommitUpdateCommand;
import org.apache.solr.update.AddUpdateCommand;
import org.apache.solr.update.CommitUpdateCommand;
import org.apache.solr.update.processor.UpdateRequestProcessor;

public class TestUpdateRequestProcessor extends UpdateRequestProcessor {
    protected final Logger logger = LoggerFactory.getLogger(TestUpdateRequestProcessor.class);

    public TestUpdateRequestProcessor(UpdateRequestProcessor next) {
        super(next);
    }

    public void processAdd(AddUpdateCommand cmd) throws IOException {
        if (cmd instanceof CassandraAddUpdateCommand) {
            logger.info("Processing Cassandra-actuated document update.");
        } else {
            logger.info("Processing HTTP-based document update.");
        }
        super.processAdd(cmd);
    }

    public void processCommit(CommitUpdateCommand cmd) throws IOException {
        if (cmd instanceof CassandraCommitUpdateCommand) {
            logger.info("Processing DSE-actuated commit.");
        } else {
            logger.info("Processing client-actuated commit.");
        }
        super.processCommit(cmd);
    }
}
3. Export the class to a JAR, and place the JAR in this location:
   - Tarball and Installer-No Services installations: `install-location/resources/solr/lib`
   - Package and Installer-Services installations: `/usr/share/dse/solr/lib`
   The JAR is added to the CLASSPATH automatically.

4. Test your implementation. For example:

   ```java
 package com.datastax.bdp.search.solr.functional;

 import com.datastax.bdp.search.solr.handler.update.DSEUpdateProcessorFactory;
 import org.apache.solr.core.SolrCore;
 import org.apache.solr.update.processor.UpdateRequestProcessor;

 public class DSEUpdateRequestProcessorFactoryExample extends DSEUpdateProcessorFactory {
 SolrCore core;

 public DSEUpdateRequestProcessorFactoryExample(SolrCore core) {
 this.core = core;
 }

 public UpdateRequestProcessor getInstance(UpdateRequestProcessor next) {
 return new TestUpdateRequestProcessor(next);
 }
 }
   ```

**Interface for custom field types**

DSE Search implements a CustomFieldType interface that marks Apache Solr™ custom field types and provides their actual stored field type. The custom field type stores an integer trie field as a string representing a comma separated list of integer values. When indexed the string is split into its integer values, each one indexed as a trie integer field. This class effectively implements a multi-valued field based on its string representation.

A CustomFieldType can override this method to provide the FieldType for the binary response writer to look at when it determines whether to call the field's toObject(). This allows the binary response writer, for instance, to return java.util.Date in place of text for a CustomFieldType that extends TrieDateField.

To ensure that custom field types control their serialized value, use:
public Class<? extends FieldType> getKnownType()
{
    return getClass();
}

See the example reference implementation.

To use the CustomFieldType interface:

1. Implement a custom field type class something like the following reference implementation.

2. Export the class to a JAR, and place the JAR in this location:
   • **Package installations**: `usr/share/dse`
   • **Tarball and Installer-No Services installations**: `installation_location/resources/dse/lib`

   The JAR is added to the CLASSPATH automatically.

**Reference implementation**

Here is an example of a custom field type class:

```java
package com.datastax.bdp.search.solr.functional;

import com.datastax.bdp.search.solr.CustomFieldType;
import java.util.ArrayList;
import java.util.List;
import org.apache.lucene.index.IndexableField;
import org.apache.solr.schema.FieldType;
import org.apache.solr.schema.SchemaField;
import org.apache.solr.schema.StrField;
import org.apache.solr.schema.TrieField;

public class CustomTestField extends TrieField implements CustomFieldType
{
 public CustomTestField()
 {
 this.type = TrieField.TrieTypes.INTEGER;
 }

 @Override
 public FieldType getStoredFieldType()
 {
 return new StrField();
 }

 @Override
 public boolean multiValuedFieldCache()
 {
 return true;
 }
}
```
Using DataStax Enterprise advanced functionality

```java
{
 return true;
}

@Override
public ListIndexableField createFields(SchemaField sf, Object value)
{
 String[] values = ((String) value).split(" ");
 ListIndexableField fields = new ArrayListIndexableField();
 for (String v : values)
 {
 fields.add(createField(sf, v));
 }
 return fields;
}

@Override
public String toInternal(String value)
{
 return value;
}

@Override
public String toExternal(IndexableField f)
{
 return f.stringValue();
}

public Class<? extends FieldType> getKnownType()
{
 return TrieField.class;
}
}
```

**Deleting by query**

Delete by query supports deleting data based on search criteria. After you issue a delete by query, documents start getting deleted immediately and deletions continue until all documents are removed. For example, you can delete the data that you inserted using this command:

```
 '<delete><query>color:red</query></delete>' -H 'Content-type:text/xml; charset=utf-8'
```

Using `&allowPartialDeletes` parameter set to false (default) prevents deletes if a node is down. Using `&allowPartialDeletes` set to true causes the delete to fail if a node is down and the delete does not meet a consistency level of quorum. Delete by queries using `*:` are
an exception to these rules. These queries issue a truncate, which requires all nodes to be up in order to succeed.

Best practices

DataStax recommends that queries for delete-by-query operations touch columns that are not updated. For example, a column that is not updated is one of the elements of a compound primary key.

Delete by query problem example

The following workflow demonstrates that not following this best practice is problematic:

- When a search coordinator receives a delete-by-query request, the request is forwarded to every node in the search datacenter.
- At each search node, the query is run locally to identify the candidates for deletion, and then the LOCAL_ONE consistency level deletes the queries for each of those candidates.
- When those database deletes are perceived at the appropriate nodes across the cluster, the records are deleted from the search index.

For example, in a certificates table, each certificate has a date of issue that is a timestamp. When a certificate is renewed, the new issue date is written to the row, and that write is propagated to all replicas. In this example, let's assume that one replica misses it. If you run a periodic delete-by-query that removes all of the certificates with issue dates older than a specified date, unintended consequences occur when the replica that just missed the write with the "certificate renewal" matches the delete query. The certificate is deleted across the entire cluster, on all datacenters making that delete unrecoverable.

HTTP API SolrJ and other Solr clients

Apache Solr™ clients work with DataStax Enterprise. If you have an existing Solr application, you can create a schema, then import your data and query using your existing Solr tools. The Wikipedia demo (page 541) is built and queried using SolrJ. The query is done using pure Ajax. No DataStax Enterprise API is used for the demo.

You can also use any Thrift API, such as Pycassa or Hector, to access DSE Search. Pycassa supports indexes. You can use indexes in Pycassa just as you use the solr_query expression in DSE Search.

DataStax has extended SolrJ to protect internal Solr communication and HTTP access using SSL. You can also use SolrJ to change the consistency level of the write in the database on the client side.

DSE Graph

DataStax Enterprise Graph is the first graph database fast enough to power customer facing applications. It is capable of scaling to massive datasets and executing both transactional and analytical workloads. DSE Graph incorporates all of the enterprise-class functionality found in DataStax Enterprise, including advanced security protection, built-in analytics (page 293)
and enterprise search (page 431) functionality, and visual management, monitoring, and
development tools (page 1361).

About DSE Graph

DataStax Enterprise Graph is the first graph database fast enough to power customer facing applications. It is capable of scaling to massive datasets and executing both transactional and analytical workloads. DSE Graph incorporates all of the enterprise-class functionality found in DataStax Enterprise, including advanced security protection, built-in analytics (page 293) and enterprise search (page 431) functionality, and visual management, monitoring, and development tools (page 1361).

What is a graph database?

A graph database is a database that uses graph structures to store data along with the data's relationships. Graph databases use a data model that is as simple as a whiteboard drawing. Graph databases employ vertices, edges, and properties as described in Data modeling (page 610).

What is DSE Graph?

The built-for-scale architecture of the DSE database means that it is capable of handling petabytes of information and thousands of concurrent users and operations per second. DSE Graph is built on top of the DSE database, a component of DataStax Enterprise. DSE Graph provides the following benefits:

<table>
<thead>
<tr>
<th>Support for large graphs</th>
<th>Graphs stored in DSE Graph scale with the number of machines in the cluster because the DSE database provides the distributed storage layer. Graphs can contain hundreds of millions (10^8) of vertices and billions (10^9) of edges.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support for very many concurrent transactions and operational graph processing (OLTP)</td>
<td>The transactional capacity of DSE Graph scales with the number of machines in the cluster and answers complex traversal queries on huge graphs in milliseconds.</td>
</tr>
<tr>
<td>Support for global graph analytics and batch graph processing (OLAP)</td>
<td>Support for global graph analytics and batch graph processing (OLAP) through the Spark framework.</td>
</tr>
<tr>
<td>Integration with DSE Search</td>
<td>Integrates with DSE Search for efficient indexing.</td>
</tr>
</tbody>
</table>
Using DataStax Enterprise advanced functionality

<table>
<thead>
<tr>
<th>Support for geographic, numeric range, and full text search</th>
<th>Support for geographic, numeric range, and full text search for vertices and edges on large graphs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Native support for Apache TinkerPop</td>
<td>Native support for the popular property graph data model exposed by Apache TinkerPop.</td>
</tr>
<tr>
<td>Native support for the Gremlin query language</td>
<td>Native support for the graph traversal language Gremlin.</td>
</tr>
<tr>
<td>Integration of the Gremlin Server</td>
<td>Integration with the Gremlin graph server.</td>
</tr>
<tr>
<td>Performance tuning options</td>
<td>Numerous graph-level configurations provide options for tuning performance.</td>
</tr>
<tr>
<td>Vertex-centric indexes provide optimal querying</td>
<td>Vertex-centric indexes provide vertex-level querying to alleviate issues with the super node problem.</td>
</tr>
<tr>
<td>Optimized disk representation</td>
<td>Provides an optimized disk representation to allow for efficient use of storage and speed of access.</td>
</tr>
</tbody>
</table>

How does DSE Graph differ from Titan?

DSE Graph has higher performance than Titan for the following reasons:

- Specifically engineered for the DSE database. DSE Graph is designed to take advantage of the DSE database’s features.
- Optimized storage for graph data. DSE Graph partitions the adjacency list of high-degree vertices, storing and efficient querying of graph data with highly-skewed degree distributions.
- Dedicated index structures that make queries faster.
- Optimized distributed queries. DSE Graph intelligently routes queries to the cluster nodes most suitable for handling each query. This routing achieves higher degrees of data locality and requires moving less data around the cluster. In Titan, all query executions are local on the coordinator, which pull in all data from other cluster instances.

In addition, DSE Graph takes advantage of features of DSE:

- Certified for production environments
Using DataStax Enterprise advanced functionality

- Advanced security features
- Integrated with Enterprise Search and Analytics
- Visual management and monitoring with OpsCenter
- Visual development with DataStax Studio
- Graph support in certified DataStax drivers
- No ETL or synchronization

How is DSE Graph different from other graph databases?

DSE Graph utilizes the DSE database as a storage backend, so the graph database is distributed, always available, and has a scale-out architecture. The data in a DSE Graph is automatically partitioned across all the nodes in a cluster. Additionally, DSE Graph has built-in support for analytics for OLAP analysis and search on graph data. Finally, all DSE components use advanced security options, so DSE Graph can be secured for sensitive data.

What is Apache TinkerPop?

Apache TinkerPop is an open source project that provides an abstraction framework used to interact with DSE Graph as well as other graph databases.

What is Gremlin?

Gremlin is the primary interface into DSE Graph. Gremlin is a graph traversal language and virtual machine developed by Apache TinkerPop. Gremlin is a functional language that enables Gremlin to naturally support imperative and declarative querying.

How do I interact with DSE Graph?

The most basic way to interact with DSE Graph is using the Gremlin console dse gremlin-console. Using the Gremlin console (page 686), you can create graph database schemas, insert and query data, plus query the database for metadata using graph traversals. Complex traversals are simple to define with Gremlin compared to SQL. If you prefer a graphical tool, use DataStax Studio (page 1361). For production, DataStax supplies a number of drivers in various programming languages, which pass Gremlin statements to DSE Graph: Java, Python, C#, C/C++, Node.js, and Ruby.

DSE OpsCenter provides monitoring capability.

How can I move data to and from DSE Graph?

Use a variety of methods to insert data:

- The DSE Graph Loader (page 744) provides a command line utility that loads data from CSV, JSON, text files, Gryo files, and queries from JDBC-compatible databases.
- Gremlin scripts and commands in DataStax Studio (page 566) and the Gremlin console (page 667).
- GraphSON (page 701) files are JSON files that can exchange graph data and metadata.
• **GraphML (page 703)** is a standard for exchanging graph data. It can exchange vertex and edge information, but metadata is limited.

• **Gryo (page 706)** is a Kryo variation, enabling the exchange of binary data.

**Important:** Best practices start with data modeling before inserting data. The paradigm shift between relational and graph databases requires careful analysis of data and data modeling before importing and querying data in a graph database. **DSE Graph data modeling (page 610)** provides information and examples.

**What tools come with DSE Graph?**

DSE Graph comes bundled with a number of tools:

• **DataStax Studio (page 1361),** a web-based notebook for running Gremlin commands and visualizing graphs

• Gremlin Console, a shell for exploring DSE Graph

• Gremlin Server to serve remote queries

• DSE OpsCenter, a monitoring and administrative tool

• Integration with **DataStax Enterprise (DSE) Search (page 431)** and **DSE Analytics (page 293)**

**What kind of hardware or cloud environment do I need to run DSE Graph?**

DSE Graph runs on commodity hardware with common specifications like other DataStax Enterprise offerings. See **Planning a cluster deployment.**

**DSE Graph Terminology**

This terminology is specific to DSE Graph.

- **adjacency list**
  A collection of unordered lists used to represent a finite graph. Each list describes the set of neighbors of a vertex in the graph.

- **adjacent vertex**
  A vertex directly attached to another vertex by an edge.

- **directed graph**
  A set of vertices and a set of arcs (ordered pairs of vertices). In DSE Graph, the terminology "arcs" is not used, and edges are directional.

- **edge**
  A connection between vertices. Edges can be unordered (no directional orientation) or ordered (directional). An edge can also be described as an object that has a vertex at its tail and head.

- **element**
  An element is a vertex, edge, or property.

- **global index**
  An index structure over the entire graph.

- **graph**
  A collection of vertices and edges.

- **graph degree**
The largest vertex degree of the graph.

**graph partitioning**
A process that consists of dividing a graph into components, such that the components are of about the same size and there are few connections between the components.

**graph traversal**
An algorithmic walk across the elements of a graph according to the referential structure explicit within the graph data structure.

**incident edge**
An edge incident to a particular vertex, meaning that the edge and vertex touch.

**index**
An index is a data structure that allows for the fast retrieval of elements by a particular key-value pair.

**meta-property**
A property that describes some attribute of another property.

**partitioned vertex**
Used for vertices that have a very large number of edges, a partitioned vertex consists of a portion of a vertex's data that results from dividing the vertex into smaller components for graph database storage. *Experimental*

**property**
A key-value pair that describes some attribute of either a vertex or an edge. Property key is used to describe the key in the key-value pair. All properties are global in DSE Graph, meaning that a property can be used for any vertices. For example, "name" can be used for all vertices in a graph.

**traversal source**
A domain specific language (DSL) that specifies the traversal methods used by a traversal.

**undirected graph**
A set of vertices and a set of edges (unordered pairs of vertices).

**vertex-centric index**
A local index structure built per vertex.

**vertex**
A vertex is the fundamental unit of which graphs are formed. A vertex can also be described as an object that has incoming and outgoing edges.

**vertex degree**
The number of edges incident to a vertex.

---

**Getting started - quick start with DataStax Studio**

Graph databases are useful for discovering simple and complex relationships between objects. Relationships are fundamental to how objects interact with one another and their environment. Graph databases perfectly represent the relationships between objects.

Graph databases consist of three elements:

**vertex**
A vertex is an object, such as a person, location, automobile, recipe, or anything else you can think of as nouns.

**edge**
An edge defines the relationship between two vertices. A person can create software, or an author can write a book. Think verbs when defining edges.

**property**

A key-value pair that describes some attribute of either a vertex or an edge. Property key is used to describe the key in the key-value pair. All properties are global in DSE Graph, meaning that a property can be used for any vertices. For example, "name" can be used for all vertices in a graph.

Vertices, edges and properties can have properties; for this reason, DSE Graph is classified as a **property graph**. The properties for elements are an important element of storing and querying information in a property graph.

Property graphs are typically quite large, although the nature of querying the graph varies depending on whether the graph has large numbers of vertices, edges, or both vertices and edges. To get started with graph database concepts, a **toy graph** is used for simplicity. The example used here explores the world of food.
Elements are labeled to distinguish the type of vertices and edges in a graph database using **vertex labels** and **edge labels**. A vertex labeled *author* holds information about an author. An edge between an *author* and a *book* is labeled *authored*. Specifying appropriate labels is an important step in graph data modeling (page 610).

Vertices and edges generally have properties. For instance, an *author* vertex can have properties *name* and *gender*. Edges can also have properties. A *created* edge can have a *year* property that identifies when the adjoining *recipe* vertex was created.

Information in a graph database is retrieved using **graph traversals**. Graph traversals walk a graph with a single or series of **traversal steps** from a defined starting point and filter each step until returning a result.
To retrieve information using graph traversals, you must first insert data. The steps listed in this section allow you to gain a rudimentary understanding of DSE Graph with a minimum amount of configuration and schema creation.

1. Install DataStax Enterprise (page 145).

2. Start DataStax Enterprise with DSE Graph enabled (page 1275).

3. Installing and running DataStax Studio 2.0 (page 1362). Also create a Studio notebook, if needed. This tutorial exists as a Studio notebook, DSE QuickStart in Studio 1.0 and DSE QuickStart v2 in Studio 2.0.

4. In DataStax Studio, create a new connection (page 1367). Choose a graph name; any graph previously unused will work.

   A connection in Studio defines the graph and assigns a graph traversal \( g \) for that graph. A graph traversal is the mechanism for visiting each vertex in a graph, based on the filters defined in the graph traversal. To query DSE Graph, the graph traversal \( g \) must be assigned to a particular graph; Studio manages this assignment with connections.

5. In DataStax Studio, create a new notebook (page 1365). Select the connection created in the last step. Each notebook is connected to a particular graph. Multiple notebooks can be connected to the same graph.

   A blank notebook opens with a single cell. DSE Graph runs a Gremlin Server tinkerpop.server on each DataStax Enterprise node. DataStax Studio automatically connects to the Gremlin Server, and if it doesn't exist, it creates a graph using the connection information. The graph is stored as one graph instance per DSE database keyspace. Once a graph exists, a graph traversal \( g \) is configured that allows graph traversals to be executed to query the graph. A graph traversal is bound to a specific traversal source, which by default is the standard OLTP traversal engine. The graph commands can add vertices and edges to the database, or get other graph information. The \( g \) commands can query or add vertices and edges.

6. First, set the schema mode to Development. Development is a more lenient mode that allows schema to be added at any time during testing. Also allow full scans for testing purposes to inspect the data with broad graph traversals. For production, Production schema mode should be set to prevent interactive schema changes that can lead to anomalous behavior, and full scans should be turned off.

   ```
schema.config().option('graph.schema_mode').set('Development')
schema.config().option('graph.allow_scan').set('true')
```

7. To check the number of vertices that exist in the graph, use the traversal step count(). There should currently be none, because we have not added data yet. A graph traversal
Using DataStax Enterprise advanced functionality

\[ g \] is chained with \( V() \) to retrieve all vertices and \( count() \) to compute the number of vertices. Chaining executes sequential traversal steps in the most efficient order.

\[ g.V().count() \]

**Caution:** Be aware that queries doing full graph scans with \( g.V().count() \) should not be run on large graphs! If multiple DSE nodes are configured, this traversal step intensively walks all partitions on all nodes in the cluster that have graph data.

**Simple example**

Let’s start with a simple example from the recipe data model. The data is composed of two vertices, one author (Julia Child) and one book (*The Art of French Cooking, Vol. 1*) with an edge between them to identify that Julia Child authored that book. Without creating any schema, the three elements can be created as shown below. However, DSE Graph makes a best guess at the schema, as we’ll talk about below.

8. First, make a vertex for Julia Child. The vertex label is *author* and two property key-value pairs are created for *name* and *gender*. Note that a label designates the key for a key-value pair that sets the vertex label. Run the command below and look at the results using the buttons to display the Raw, Table, and Graph views.

\[
juliaChild = graph.addVertex(label,'author', 'name','Julia Child', 'gender','F')
\]

```
juliaChild = graph.addVertex('author', 'name','Julia Child', 'gender','F')
```

Each view displays the same information:

- auto-generated id, consisting of a member_id, a community_id and a label
Using DataStax Enterprise advanced functionality

The member_id and the community_id group vertices within the graph storage structure (see Anatomy of a Graph Traversal (page 711))

- vertex label
- properties, name and gender, and their values

**Notice:** Standard auto-generated ids are deprecated with DSE 6.0. Custom ids (page 638) will undergo changes, and specifying vertex ids with partitionKey and clusteringKey will likely become the normal method.

As illustrated in the next command, a property key can be reused for different types of information. Properties are global in the sense that they can be used with multiple vertex labels. However, it is important to understand that you must specify a vertex label in conjunction with a property in a graph traversal.

Run the next command to create a book vertex. Be careful not to run any command twice, or you'll create a duplicate in the graph!

9. Create a book in the graph:

```java
```

As with the author vertex, you can see all the information about the book vertex created. In **Graph view**, use the **Settings button** (the gear) to change the display label for author by entering `Chef {name}`. Change the book display label with `{label}:{name}`).
10. Run the next two commands. The first command creates the edge between the author and book vertices. The second command is a graph traversal that retrieves the two vertices and the edge that connects them. Use **Graph view** to see the relationship. Scroll over elements to display additional information.

```
juliaChild.addEdge('authored', artOfFrenchCookingVolOne)
g.V()
```
We now have data!

11. Ensure that the data inserted for the author is correct by checking with a `has()` step using the vertex label `author` and the property `name = Julia Child`. This graph traversal is a basic starting point for more complex traversals, because it narrows the search of the graph with specific information.

```java
g.V().has('author', 'name', 'Julia Child')
```

Use the **Table view** to look at the results, as it is much more readable than the **Raw view**.

<table>
<thead>
<tr>
<th>Index</th>
<th>id</th>
<th>label</th>
<th>gender</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>author:1897630080.512</td>
<td>author</td>
<td>F</td>
<td>Julia Child</td>
</tr>
</tbody>
</table>

The vertex information is displayed for the **author** vertex for Julia Child. A **vertex label** specifies the type of vertex, and the key-value pairs identify the **property key**
and its value for name and gender. The automatically generated id consists of a vertex label and two components associated with the location of the vertex within the graph. Anatomy of a Graph Traversal (page 711) explains the id components.

12. Another useful traversal is `valueMap()`, which prints the key-value listing of each property value for specified vertices.

```g.V().hasLabel('author').valueMap()
```

Caution: Using `valueMap()` without specifying properties can result in slow query latencies, if a large number of property keys exist for the queried vertex or edge. Specific properties can be specified, such as `valueMap('name')`.

13. If only the value for a particular property key is desired, use the `values()` traversal step. This example gets the name of all vertices.

```g.V().values('name')
```

Only two vertices exist, so two results are written. If multiple vertices exist, the traversal step returns results for all vertices that have a name.
14. Edge information can also be retrieved. This command filters all edges to find those with an edge label `authored`. The edge information displays details about the incoming and outgoing vertices as well as edge parameters `id`, `label`, and `type`.

```g.e().hasLabel('authored')
{
 "id": "(out_vertex={member_id=0, community_id=1372852736, ~label=author},
 local_id=ca2f3ad30-0e55-11e6-b5e4-0febe4822aa4,
 in_vertex={member_id=0, community_id=14617472,
 ~label=book}, ~type=authored),
 "label": "authored",
 "type": "edge",
 "inVLabel": "book",
 "outVLabel": "author",
 "inV": "book:14617472:0",
 "outV": "author:1372852736:0"
}
```

15. The traversal step `count()` is useful for counting both the number of vertices and edges. To count edges, substitute `E()` for `V()`. You should have one edge.

```g.e().count()```
16. Re-running the vertex count traversal done at the beginning of this tutorial should now yield two vertices.

```
1
```

Creating schema

Before adding more data to the graph, let's stop and talk about schema. Schema defines the possible properties and their data types for the graph. These properties are then used in the definitions of vertex labels and edge labels. The last critical step in schema creation is index creation. Indexes play an important role in making graph traversals efficient and fast. See creating schema (page 621) and creating indexes (page 645) for more information.

First, let's create schema for the property keys. In the next two cells, the first command clears the schema for the previously created vertices and edge. After the schema creation is completed, the next step is to enter data for those elements again in a longer script.

Note: DSE Graph has two schema modes, Production and Development. In Production mode, all schema must be identified before data is entered. In Development mode, schema can be created after data is entered.

17. Create the new schema:

 a. Clear the schema:
Using DataStax Enterprise advanced functionality

```java
// Property Keys
// Check for previous creation of property key with ifNotExists()
ifNotExists()

// single() is optional, as it is the default
```

```java
// Example of a multiple property that can have several values
// schema.propertyKey('nickname').Text().multiple().create() //
```

```java
Next 2 lines define two properties, then create a meta-
```

```java
// A meta-property is a property of a property
// EX: 'livedIn': '1999-2005' 'country': 'Belgium'
```

```java
schema.propertyKey('livedIn').Text().create()
```

```java
schema.propertyKey('country').Text().multiple().properties('livedIn').create()
```
Using DataStax Enterprise advanced functionality

Each property must be defined with a **data type** (page 869). DSE Graph data types are aligned with the DSE database data types. The data types used here are Text, Int, and Timestamp. By default, properties have single cardinality, but can be defined with **multiple cardinality** (page 634). Multiple cardinality allows more than one value to be assigned to a property.

In addition, properties can have their own properties, or **meta-properties**. Meta-properties can only be nested one deep, and are useful for keying information to an individual property. Notice that property keys can be created with an additional method `ifNotExists()`. This method prevents overwriting a definition that can already exist. After property keys are created, vertex labels and edge labels can be defined.

18. Create the schema for vertex labels and edge labels:

```plaintext
// Vertex Labels
schema.vertexLabel('author').ifNotExists().create()
schema.vertexLabel('recipe').create()
// Example of creating vertex label with properties
//
// schema.vertexLabel('recipe').properties('name','instructions').create()
// Example of adding properties to a previously created vertex label
//
// schema.vertexLabel('recipe').properties('name','instructions').add()

// Edge Labels
schema.vertexLabel('ingredient').create()
schema.vertexLabel('book').create()
schema.vertexLabel('meal').create()
```
Using DataStax Enterprise advanced functionality

```java
// Example of custom vertex id:
// schema.propertyKey('city_id').Int().create()
// schema.propertyKey('sensor_id').Uuid().create()

// Edge Labels
// After vertex label creation

CQL

```

The schema for vertex labels defines the label type, and optionally defines the properties associated with the vertex label. Two methods exist for defining the association of the properties with vertex labels, either during creation or by adding them after vertex label addition. You can use the `ifNotExists()` for any schema creation.

Vertex ids are automatically generated, but custom vertex ids (page 638) can be created if necessary. The custom vertex id example shown here defines a partition key and a clustering key.

DSE Graph limits the number of vertex labels to 200 per graph.

The schema for edge labels defines the label type, and optionally defines the two vertex labels that are connected by the edge label with `connection()`. The rated edge label defines edges between adjacent vertices with the outgoing vertex label reviewer and the incoming vertex label recipe. By default, edges have multiple
cardinality (page 635), but can be defined with single cardinality. Multiple cardinality allows more than one edge with differing property values but the same edge label to be assigned.

19. Create the index schema:

```java
// Vertex Indexes
// Secondary
schema.vertexLabel('author').index('byName').secondary().by('name').add()
// Materialized
schema.vertexLabel('recipe').index('byRecipe').materialized().by('name').add()
schema.vertexLabel('meal').index('byMeal').materialized().by('name').add()
schema.vertexLabel('ingredient').index('byIngredient').materialized().by('name').add()
schema.vertexLabel('reviewer').index('byReviewer').materialized().by('name').add()
// Search
//
// schema.vertexLabel('recipe').index('search').search().by('instructions').asText().add()
//
// schema.vertexLabel('recipe').index('search').search().by('instructions').asString().add()
// If more than one property key is search indexed
//
// schema.vertexLabel('recipe').index('search').search().by('instructions').asText().by('category').asString().add()

// Property index using meta-property 'livedIn':
schema.vertexLabel('author').index('byLocation').property('country').by('livedIn').add()

// Edge Index
schema.vertexLabel('reviewer').index('ratedByStars').outE('rated').by('stars').add()
```

Indexing (page 645) is a complex and highly important subject. Here, several types of indexes are created. Briefly, secondary and materialized indexes are two types of indexes that use the DSE database built-in indexing. Search indexes use DSE Search which is Solr-based. Only one search index per vertex label is allowed, but multiple properties can be included. Property indexes allow meta-properties indexed.
Using DataStax Enterprise advanced functionality

Edge indexes allow properties on edges to be indexed. Note that indexes are added with `add()` to previously created vertex labels.

20. Examine the schema:

```
schema.describe()
```

The `schema.describe()` command displays schema you can use to recreate the schema entered. If you enter data without creating schema, you can use this command verify the data types set for each property.

Currently, in DSE Graph, schema once created cannot be modified. Additional properties, vertex labels, edge labels, and indexes can be created, but the data type of a property, for instance, cannot be changed. While entering data without schema creation is useful while developing and learning, it is strongly recommended against for actual applications. As a reminder, Production mode disallows schema creation once data is loaded.

21. To find only the schema for a particular type of item in the `describe()` listing, use the following command:

```
schema.describe().split('
').grep(~/.*index.*/)
```
Using DataStax Enterprise advanced functionality

Additional steps can split the output per newline and grep for a string as shown for index. The Gremlin variant used here is based on Apache Groovy, so any Groovy commands can be used to manipulate graph traversals. Apache Groovy is a language that smoothly integrates with Java to provide scripting capabilities.

Adding more data

22. Now that schema is created, add more vertices and edges using the following script o explore more connections in the recipe data model. Enter the following lines in a single DataStax Studio cell and execute. Notice that the first command, `g.V().drop().iterate()` drop all vertex and edge data before reading in new data. Be sure to select the Graph view after running the script.

```groovy
// generateRecipe.groovy

// Add all vertices and edges for Recipe
g.V().drop().iterate()

// author vertices
juliaChild = graph.addVertex(label, 'author', 'name', 'Julia Child', 'gender', 'F')
simoneBeck = graph.addVertex(label, 'author', 'name', 'Simone Beck', 'gender', 'F')
louiseBertholie = graph.addVertex(label, 'author', 'name', 'Louise Bertholie', 'gender', 'F')
patriciaSimon = graph.addVertex(label, 'author', 'name', 'Patricia Simon', 'gender', 'F')
aliceWaters = graph.addVertex(label, 'author', 'name', 'Alice Waters', 'gender', 'F')```
patriciaCurtan = graph.addVertex(label, 'author', 'name', 'Patricia Curtan', 'gender', 'F')
kelsieKerr = graph.addVertex(label, 'author', 'name', 'Kelsie Kerr', 'gender', 'F')
fritzStreiff = graph.addVertex(label, 'author', 'name', 'Fritz Streiff', 'gender', 'M')
ememilLagasse = graph.addVertex(label, 'author', 'name', 'Emeril Lagasse', 'gender', 'M')
jamesBeard = graph.addVertex(label, 'author', 'name', 'James Beard', 'gender', 'M')

// book vertices

// recipe vertices
beefBourguignon = graph.addVertex(label, 'recipe', 'name', 'Beef Bourguignon', 'instructions', 'Braise the beef. Saute the onions and carrots. Add wine and cook in a dutch oven at 425 degrees for 1 hour.')
ratatouille = graph.addVertex(label, 'recipe', 'name', 'Rataouille', 'instructions', 'Peel and cut the eggplant. Make sure you cut eggplant into lengthwise slices that are about 1-inch wide, 3-inches long, and 3/8-inch thick')
saladeNicoise = graph.addVertex(label, 'recipe', 'name', 'Salade Nicoise', 'instructions', 'Take a salad bowl or platter and line it with lettuce leaves, shortly before serving. Drizzle some olive oil on the leaves and dust them with salt.')
wildMushroomStroganoff = graph.addVertex(label, 'recipe', 'name', 'Wild Mushroom Stroganoff', 'instructions', 'Cook the egg noodles according to the package directions and keep warm. Heat 1 1/2 tablespoons of the olive oil in a large saute pan over medium-high heat.')
spicyMeatloaf = graph.addVertex(label, 'recipe', 'name', 'Spicy Meatloaf', 'instructions', 'Preheat the oven to 375 degrees F. Cook bacon in a large skillet over medium heat until very crisp and fat has rendered, 8-10 minutes.')
oystersRockefeller = graph.addVertex(label, 'recipe', 'name', 'Oysters Rockefeller', 'instructions', 'Saute the shallots, celery, herbs, and seasonings in 3 tablespoons of the butter for 3 minutes. Add the watercress and let it wilt.')
carrotSoup = graph.addVertex(label, 'recipe', 'name', 'Carrot Soup', 'instructions', 'In a heavy-bottomed pot, melt the butter. When it starts to foam, add the onions and thyme and cook over medium-low heat until tender, about 10 minutes.')
roastPorkLoin = graph.addVertex(label, 'recipe', 'name', 'Roast Pork Loin', 'instructions', 'The day before, separate the meat from the ribs, stopping about 1 inch before the end of the bones. Season the pork liberally inside and out with salt and pepper and refrigerate overnight."

// ingredients vertices
beef = graph.addVertex(label, 'ingredient', 'name', 'beef')
onion = graph.addVertex(label, 'ingredient', 'name', 'onion')
mashedGarlic = graph.addVertex(label, 'ingredient', 'name', 'mashed garlic')
butter = graph.addVertex(label, 'ingredient', 'name', 'butter')
tomatoPaste = graph.addVertex(label, 'ingredient', 'name', 'tomato paste')
egGPL = graph.addVertex(label, 'ingredient', 'name', 'eggplant')
zucchini = graph.addVertex(label, 'ingredient', 'name', 'zucchini')
oliveOil = graph.addVertex(label, 'ingredient', 'name', 'olive oil')
yellowOnion = graph.addVertex(label, 'ingredient', 'name', 'yellow onion')
greenBean = graph.addVertex(label, 'ingredient', 'name', 'green beans')
tuna = graph.addVertex(label, 'ingredient', 'name', 'tuna')
tomato = graph.addVertex(label, 'ingredient', 'name', 'tomato')
hardBoiledEgg = graph.addVertex(label, 'ingredient', 'name', 'hard-boiled egg')
eggNoodles = graph.addVertex(label, 'ingredient', 'name', 'egg noodles')
mushroom = graph.addVertex(label, 'ingredient', 'name', 'mushrooms')
bacon = graph.addVertex(label, 'ingredient', 'name', 'bacon')
celery = graph.addVertex(label, 'ingredient', 'name', 'celery')
greenBellPepper = graph.addVertex(label, 'ingredient', 'name', 'green bell pepper')
groundBeef = graph.addVertex(label, 'ingredient', 'name', 'ground beef')
porkSausage = graph.addVertex(label, 'ingredient', 'name', 'pork sausage')
shallot = graph.addVertex(label, 'ingredient', 'name', 'shallots')
chervil = graph.addVertex(label, 'ingredient', 'name', 'chervil')
fennel = graph.addVertex(label, 'ingredient', 'name', 'fennel')
parsley = graph.addVertex(label, 'ingredient', 'name', 'parsley')
oyster = graph.addVertex(label, 'ingredient', 'name', 'oyster')
pernod = graph.addVertex(label, 'ingredient', 'name', 'Pernod')
thyme = graph.addVertex(label, 'ingredient', 'name', 'thyme')
carrot = graph.addVertex(label, 'ingredient', 'name', 'carrots')
chickenBroth = graph.addVertex(label, 'ingredient', 'name', 'chicken broth')
porkLoin = graph.addVertex(label, 'ingredient', 'name', 'pork loin')
redWine = graph.addVertex(label, 'ingredient', 'name', 'red wine')

// meal vertices
// timestamp can also be entered as '2015-01-01' without
// Instant.parse()
SaturdayFeast = graph.addVertex(label, 'meal', 'name', 'Saturday Feast', 'timestamp', '2015-11-30', 'calories', 1000)
EverydayDinner = graph.addVertex(label, 'meal', 'name', 'EverydayDinner', 'timestamp', '2016-01-14', 'calories', 600)
JuliaDinner = graph.addVertex(label, 'meal', 'name', 'JuliaDinner', 'timestamp', '2016-01-14', 'calories', 900)

// author-book edges
juliaChild.addEdge('authored', artOfFrenchCookingVolOne)
simoneBeck.addEdge('authored', artOfFrenchCookingVolOne)
louisetteBertholie.addEdge('authored', artOfFrenchCookingVolOne)
simoneBeck.addEdge('authored', simcasCuisine)
patriciaSimon.addEdge('authored', simcasCuisine)
juliaChild.addEdge('authored', frenchChefCookbook)
aliceWaters.addEdge('authored', artOfSimpleFood)
patriciaCurtan.addEdge('authored', artOfSimpleFood)
kelsieKerr.addEdge('authored', artOfSimpleFood)
fritzStreiff.addEdge('authored', artOfSimpleFood)

// author - recipe edges
juliaChild.addEdge('created', beefBourguignon, 'year', 1961)
juliaChild.addEdge('created', ratatouille, 'year', 1965)
juliaChild.addEdge('created', saladeNicoise, 'year', 1962)
emerilLagasse.addEdge('created', wildMushroomStroganoff, 'year', 2003)
emerilLagasse.addEdge('created', spicyMeatloaf, 'year', 2000)
aliceWaters.addEdge('created', carrotSoup, 'year', 1995)
aliceWaters.addEdge('created', roastPorkLoin, 'year', 1996)
jamesBeard.addEdge('created', oystersRockefeller, 'year', 1970)

// recipe - ingredient edges
beefBourguignon.addEdge('includes', beef, 'amount', '2 lbs')
beefBourguignon.addEdge('includes', onion, 'amount', '1 sliced')
beefBourguignon.addEdge('includes', mashedGarlic, 'amount', '2 cloves')
beefBourguignon.addEdge('includes', butter, 'amount', '3.5 Tbsp')
beefBourguignon.addEdge('includes', tomatoPaste, 'amount', '1 Tbsp')
ratatouille.addEdge('includes', eggplant, 'amount', '1 lb')
ratatouille.addEdge('includes', zucchini, 'amount', '1 lb')
ratatouille.addEdge('includes', mashedGarlic, 'amount', '2 cloves')
ratatouille.addEdge('includes', oliveOil, 'amount', '4-6 Tbsp')
ratatouille.addEdge('includes', yellowOnion, 'amount', '1 1/2 cups or 1/2 lb thinly sliced')
saladeNicoise.addEdge('includes', oliveOil, 'amount', '2-3 Tbsp')
saladeNicoise.addEdge('includes', greenBean, 'amount', '1 1/2 lbs blanched, trimmed')
saladeNicoise.addEdge('includes', tuna, 'amount', '8-10 ozs oil-packed, drained and flaked')
saladeNicoise.addEdge('includes', tomato, 'amount', '3 or 4 red, peeled, quartered, cored, and seasoned')
saladeNicoise.addEdge('includes', hardBoiledEgg, 'amount', '8 halved lengthwise')
wildMushroomStroganoff.addEdge('includes', eggNoodles, 'amount', '16 ozs wmyIde')
wildMushroomStroganoff.addEdge('includes', mushroom, 'amount', '2 lbs wild or exotic, cleaned, stemmed, and sliced')
wildMushroomStroganoff.addEdge('includes', yellowOnion, 'amount', '1 cup thinly sliced')
spicyMeatloaf.addEdge('includes', bacon, 'amount', '3 ozs diced')
spicyMeatloaf.addEdge('includes', onion, 'amount', '2 cups finely chopped')
spicyMeatloaf.addEdge('includes', celery, 'amount', '2 cups finely chopped')
spicyMeatloaf.addEdge('includes', greenBellPepper, 'amount', '1/4 cup finely chopped')
spicyMeatloaf.addEdge('includes', porkSausage, 'amount', '3/4 lbs hot')
spicyMeatloaf.addEdge('includes', groundBeef, 'amount', '1 1/2 lbs chuck')
oystersRockefeller.addEdge('includes', shallot, 'amount', '1/4 cup chopped')
oystersRockefeller.addEdge('includes', celery, 'amount', '1/4 cup chopped')
oystersRockefeller.addEdge('includes', chervil, 'amount', '1 tsp')
oystersRockefeller.addEdge('includes', fennel, 'amount', '1/3 cup chopped')
oystersRockefeller.addEdge('includes', parsley, 'amount', '1/3 cup chopped')
oystersRockefeller.addEdge('includes', oyster, 'amount', '2 dozen on the half shell')
oystersRockefeller.addEdge('includes', pernod, 'amount', '1/3 cup')
carrotSoup.addEdge('includes', butter, 'amount', '4 Tbsp')
carrotSoup.addEdge('includes', onion, 'amount', '2 medium sliced')
carrotSoup.addEdge('includes', thyme, 'amount', '1 sprig')
carrotSoup.addEdge('includes', carrot, 'amount', '2 1/2 lbs, peeled and sliced')
carrotSoup.addEdge('includes', chickenBroth, 'amount', '6 cups')
roastPorkLoin.addEdge('includes', porkLoin, 'amount', '1 bone-in, 4-rib')
roastPorkLoin.addEdge('includes', redWine, 'amount', '1/2 cup')
roastPorkLoin.addEdge('includes', chickenBroth, 'amount', '1 cup')
Figure 20: Data for the Recipe Toy Graph

```groovy
// meal - book edges
EverydayDinner.addEdge('includedIn', artOfSimpleFood)
SaturdayFeast.addEdge('includedIn', simcasCuisine)
JuliaDinner.addEdge('includedIn', artOfFrenchCookingVolume)

g.V()
```

The property `timestamp` is a `Timestamp` data type that corresponds to a valid DSE database `timestamp` data type.

The `g.V()` command at the end of the script displays all the vertices created.

23. If a vertex count is run, there is now a higher count of 56 vertices. Run the vertex count again:

```groovy
g.V().count()
```

The DSE Graph Loader (page 744) is available for scripting data loading. It is the recommended method for data loading.
Using DataStax Enterprise advanced functionality

Exploring the graph with graph traversals can lead to interesting conclusions.

24. With several author vertices in the graph, to find a particular vertex, provide a specific name. This traversal gets the stored vertex information for the vertex that has the name of Julia Child. Note that the traversal is also constrained by an author vertex in the has clause.

\[ g.V().has('author', 'name', 'Julia Child') \]

25. In this next traversal, has() gets the vertex information filtered by name = Julia Child. The traversal step outE() discovers the outgoing edges from that vertex with the authored label.

\[ g.V().has('name', 'Julia Child').outE('authored') \]

In DataStax Studio, either the listing of the Raw view edge information:

or the Graph view graph visualization where scrolling over a vertex provides additional information.
26. If instead, you want to query for the books that all authors have written, the query must be modified. The previous example retrieved edges, but not the adjacent book vertices. Add a traversal step `inV()` to find all the vertices that connect to the outgoing edges, then print the book titles of those vertices. Notice how the chained traversal steps go from the vertices along outgoing edges to the adjacent vertices with `V().outE().inV()`.

The outgoing edges are given a particular filter value, `authored`.

```
g.V().outE('authored').inV().values('name')
```

27. Notice that the book titles are duplicated in the resulting list, because a listing is returned for each author. If a book has three authors, three listings are returned. The traversal step `dedup()` can eliminate the duplication.

```
g.V().outE('authored').inV().values('name').dedup()
```
28. Refine the traversal by reinserting the `has()` step for a particular author. Find all the books authored by Julia Child.

\[ g.V().has('name','Julia Child').outE('authored').inV().values('name') \]

<table>
<thead>
<tr>
<th>Index</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The Art of French Cooking, Vol. 1</td>
</tr>
<tr>
<td>1</td>
<td>The French Chef Cookbook</td>
</tr>
</tbody>
</table>

29. The previous example and this example accomplish the same result. However, the number of traversal steps and the type of traversal steps can affect performance. The traversal step `outE()` should be only used if the edges are explicitly required. In this example, the edges are traversed to get information about connected vertices, but the edge information is not important to the query.

\[ g.V().has('name','Julia Child').out('authored').values('name') \]

<table>
<thead>
<tr>
<th>Index</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The Art of French Cooking, Vol. 1</td>
</tr>
<tr>
<td>1</td>
<td>The French Chef Cookbook</td>
</tr>
</tbody>
</table>

The traversal step `out()` retrieves the connected book vertices based on the edge label `authored` without retrieving the edge information. In a larger graph traversal, this subtle difference in the traversal can become a latency issue.

30. Additional traversal steps continue to fine-tune the results. Adding another chained `has` traversal step finds only books authored by Julia Child published after 1967. This example also displays the use of the `gt`, or `greater than` function.

\[ g.V().has('name','Julia Child').out('authored').has('year','gt(1967)').values('name') \]
31. When developing or testing, often checking the number of vertices with each vertex label can confirm that data was read. To find the number of vertices by vertex label, use the traversal step \texttt{label()} followed by the traversal step \texttt{groupCount()}. The step \texttt{groupCount()} is useful for aggregating results from a previous step.

\begin{verbatim}
g.V().label().groupCount()
\end{verbatim}

\begin{table}[h]
\centering
\begin{tabular}{|c|c|}
\hline
index & value \\
\hline
0 & The French Chef Cookbook \\
\hline
\end{tabular}
\end{table}

32. Write your data to an output file to save or exchange information. A Gryo file is a binary format file that can reload data to DSE Graph. In this next command, graph I/O writes the entire graph to a file. Other file formats can be written by substituting \texttt{gryo()} with \texttt{graphml()} or \texttt{graphson()}.

\begin{verbatim}
graph.io(gryo()).writeGraph("/tmp/recipe.gryo")
\end{verbatim}

\textbf{Note:} \texttt{graph.io()} is disabled in sandbox mode.

\begin{verbatim}
null
\end{verbatim}

1 element returned. Duration: 0.192s.
33. To load a Gryo file, use the `graphloader`, after creating a mapping script:

   ```bash
 $ graphloader mappingGRYO.groovy -graph recipe -address localhost
   ```

   Details about loading Gryo data are found in [Loading Gryo Data (page 778)](#), in [Using DSE Graph Loader (page 744)](#).

34. If you wish to use the gremlin console after working in Studio, two commands are useful: `system.graphs()` ([page 670](#)) to get a list of all graphs and `remote config alias g some_graph.g` ([page 670](#)) to switch to a different graph.

What's next:

**Congratulations!** You are well on your way to using DSE Graph for data discovery.

Further adventures in traversing can be found in [Creating queries using traversals (page 711)](#). If you want to explore various loading options, check out the [DSE Graph Loader (page 744)](#) or [Using DSE Graph (page 618)](#).

**DSE Graph, OLTP, and OLAP**

Online transactional processing (OLTP) is characterized by a large number of short, online transactions for very fast query processing. OLTP is typically used for data entry and retrieval with transaction-oriented applications. Online analytical processing (OLAP) is typically used to perform multidimensional analysis of data, doing complex calculations on aggregated historical data.

OLTP applications require sub-second response times, whereas OLAP applications take much longer to finish queries. Graph databases are a random access data system. In these databases, OLAP traversals do a linear scan of all vertices in the graph. Conversely, OLTP traversals are localized to a particular subgraph of the global graph. OLTP traversals leverage indexes to "jump" in to a particular vertex in the graph before starting a scan on the subgraph.

**OLTP queries**

OLTP queries are best for questions that require access to a limited subset of the entire graph. OLTP queries use filters to limit the number of vertices that will be walked to find answers. DSE Graph co-locates vertices with their edges and adjacent neighbors. When a subgraph is specified in a traversal using indexes, the number of requests to disk are reduced to locate and write the requested subgraph to memory. Once in memory, the traversal performs a link walk from vertex to vertex along the edges.

**OLAP queries**

OLAP queries are best for questions that must access a significant portion of the data stored in a graph. Using the previous method to evaluate OLAP queries will not be efficient, so a different process is used. When OLAP queries are processed, the entire graph is interpreted as a sequence of star graphs, each composed of a single vertex, along with its properties, incident edges, and the edges' properties. The star graphs are linearly processed, jumping...
from one star graph to the next until all star graphs are processed and an aggregation of the discovered data is completed.

**Principles for writing graph traversals**

Understanding these underlying principles can lead to writing better graph traversals to query the graph data. A simple example illustrates the differences. Using the food graph, the query is “How many recipes has Julia Child created?”

Consider the following graph traversal:

```
g.V().in().has('name','Julia Child').count()
```

This traversal completes the following processing:

1. Looks at all vertices.
2. Walks the incoming edges.
3. Finds the adjacent vertices that have the property key of `name` and property value of `Julia Child`.
4. Counts the number of vertices.

This graph traversal is a classic OLAP traversal, which must touch all vertices and does not use indexing. The count returned includes all vertices with edges to Julia Child, and not just the recipes, so as shown later, the count is incorrect and too high.

Consider the number of elements that must be traversed to complete this query. DSE Graph has profiling that aids in analyzing the traversal:

```
gremlin> g.V().in().has('name','Julia Child').count().profile()
```

```
Traversal Metrics
Step Traversers Time (ms) % Dur
DsegGraphStep(vertex,[]) 61 28.932 18.71
query-optimizer 0.563
_condition=((label = FridgeSensor | label = author | label = book | label = ingredient | label = meal | label = recipe | label = reviewer) & (true))
query-setup 0.048
_isFitted=true
_isSorted=false
_isScan=true
index-query 0.979
_usesCache=false
```

DSE 5.1 Developer Guide Earlier version, latest patch 5.1.15
Using DataStax Enterprise advanced functionality

```java
_statement=SELECT "city_id", "sensor_id" FROM "DSEQuickStart"."FridgeSensor_p" WHERE "~~vertex_exists" = ? LIMIT ? ALLOW FILTERING; with params (java.lang.Boolean) true, (java.lang.Integer) 50000
_options=Options{consistency=Optional[ONE], serialConsistency=Optional.empty, fallbackConsistency=Optional.empty, pagingState=null, pageSize=-1, user=Optional.empty, waitForSchemaAgreement=true, async=true}
index-query 0.862
_usesCache=false
_statement=SELECT "community_id", "member_id" FROM "DSEQuickStart"."author_p" WHERE "~~vertex_exists" = ? LIMIT ? ALLOW FILTERING; with params (java.lang.Boolean) true, (java.lang.Integer) 50000
_options=Options{consistency=Optional[ONE], serialConsistency=Optional.empty, fallbackConsistency=Optional.empty, pagingState=null, pageSize=-1, user=Optional.empty, waitForSchemaAgreement=true, async=true}
index-query 0.679
_usesCache=false
_options=Options{consistency=Optional[ONE], serialConsistency=Optional.empty, fallbackConsistency=Optional.empty, pagingState=null, pageSize=-1, user=Optional.empty, waitForSchemaAgreement=true, async=true}
index-query 1.344
_usesCache=false
_statement=SELECT "community_id", "member_id" FROM "DSEQuickStart"."ingredient_p" WHERE "~~vertex_exists" = ? LIMIT ? ALLOW FILTERING; with params (java.lang.Boolean) true, (java.lang.Integer) 50000
_options=Options{consistency=Optional[ONE], serialConsistency=Optional.empty, fallbackConsistency=Optional.empty, pagingState=null, pageSize=-1, user=Optional.empty, waitForSchemaAgreement=true, async=true}
index-query 1.053
_usesCache=false
_statement=SELECT "community_id", "member_id" FROM "DSEQuickStart"."meal_p" WHERE "~~vertex_exists" = ? LIMIT ? ALLOW FILTERING; with params (java.lang.Boolean) true, (java.lang.Integer) 50000
```
```java
_OPTIONS=Options{consistency=Optional[ONE],
serialConsistency=Optional.empty, fallbackConsistency=Optional.empty, pagingState=null, pageSize=-1,
user=Optional.empty, waitForSchemaAgreement=true, async=true}

index-query
4.173

_usesCache=false

_statement=SELECT "community_id", "member_id" FROM "DSEQuickStart"."recipe_p" WHERE "~~vertex_exists" = ? LIMIT ? ALLOW FILTERING; with params
(java.lang.Boolean) true, (java.lang.Integer) 50000

_options=Options{consistency=Optional[ONE],
serialConsistency=Optional.empty, fallbackConsistency=Optional.empty, pagingState=null, pageSize=-1,
user=Optional.empty, waitForSchemaAgreement=true, async=true}

index-query
1.291

_usesCache=false

_statement=SELECT "community_id", "member_id" FROM "DSEQuickStart"."reviewer_p" WHERE "~~vertex_exists" = ? LIMIT ? ALLOW FILTERING; with params
(java.lang.Boolean) true, (java.lang.Integer) 50000

_options=Options{consistency=Optional[ONE],
serialConsistency=Optional.empty, fallbackConsistency=Optional.empty, pagingState=null, pageSize=-1,
user=Optional.empty, waitForSchemaAgreement=true, async=true}

DsegVertexStep(IN,vertex) 78
query-optimizer 95.721 61.90
_condition=((true) & direction = IN)
vertex-query 4.136

_usesCache=false

_statement=SELECT * FROM "DSEQuickStart"."author_e" WHERE "community_id" = ? AND "member_id" = ? LIMIT ?
ALLOW FILTERING; with params (java.lang.Integer) 588941056, (java.lang.Long) 0, (java.lang.Integer) 50000

_options=Options{consistency=Optional[ONE],
serialConsistency=Optional.empty, fallbackConsistency=Optional.empty, pagingState=null, pageSize=-1,
user=Optional.empty, waitForSchemaAgreement=true, async=true}
_isPartitioned=false
_usesIndex=false

vertex-query 0.558

_usesCache=false

_statement=SELECT * FROM "DSEQuickStart"."author_e" WHERE "community_id" = ? AND "member_id" = ? LIMIT ?
```
Using DataStax Enterprise advanced functionality
Note: The time each step takes depends on caching and other factors. For the purposes of this discussion, ignore the times reported. The `profile()` method now includes CQL commands that are executed due to Gremlin commands.

Figure 32: Studio profile output for Traversal 1

Looking at the first step, all vertices in the graph are traversed. This graph is very small, so the number of vertices is negligible compared to production graphs. In the next step, the traversal must find all incoming edges to the vertices. Again, for a small graph, the number of edges is negligible, but in production graphs, edges can number in the millions to billions. Now, the adjacent vertices are filtered for the property key information specified, narrowing the number of vertices to 6. The last two steps accomplish the count and profiling metrics.
Specifying an edge label

Now consider a modification to the original traversal that specifies the edge label for the incoming edges:

```java
g.V().in('created').has('name', 'Julia Child').count()
```

This modified traversal still looks at all vertices, but in walking the incoming edges, it is limited to those that are labeled as `created`. The following profile shows an improved picture:

```
gremlin> g.V().in('created').has('name', 'Julia Child').count().profile()
```

<table>
<thead>
<tr>
<th>Step</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>DsegGraphStep(vertex, [])</td>
<td>61</td>
</tr>
<tr>
<td>1.760</td>
<td></td>
</tr>
<tr>
<td>_condition=((label = FridgeSensor</td>
<td>label = author</td>
</tr>
<tr>
<td>query-set-up</td>
<td>0.071</td>
</tr>
<tr>
<td>_isFitted=true</td>
<td></td>
</tr>
<tr>
<td>_isSorted=false</td>
<td></td>
</tr>
<tr>
<td>_isScan=true</td>
<td></td>
</tr>
<tr>
<td>index-query</td>
<td>1.139</td>
</tr>
<tr>
<td>_usesCache=false</td>
<td></td>
</tr>
<tr>
<td>_statement=SELECT &quot;city_id&quot;, &quot;sensor_id&quot; FROM &quot;DSEQuickStart&quot;.&quot;FridgeSensor_p&quot; WHERE &quot;~~vertex_exists&quot; = ? LIMIT ? ALLOW FILTERING; with params (java.lang.Boolean) true, (java.lang.Integer) 50000 _options=Options{consistency=Optional[ONE], serialConsistency=Optional.empty, fallbackConsistency=Optional.empty, pagingState=null, pageSize=-1, user=Optional.empty, waitForSchemaAgreement=true, async=true}</td>
<td></td>
</tr>
</tbody>
</table>
Using DataStax Enterprise advanced functionality

```java
index-query
_usesCache=false
_statement=SELECT "community_id", "member_id" FROM "DSEQuickStart"."book_p" WHERE "~~vertex_exists" = ?
 LIMIT ? ALLOW FILTERING; with params (java.lang.Boolean) true, (java.lang.Integer) 50000
_options=Options{consistency=Optional[ONE],
 serialConsistency=Optional.empty, fallbackConsistency=Optional.empty, pagingState=null, pageSize=-1,
 user=Optional.empty, waitForSchemaAgreement=true, asynchronous=true}
```
Using DataStax Enterprise advanced functionality

```java
= ? LIMIT ? ALLOW FILTERING; with params
(java.lang.Boolean) true, (java.lang.Integer) 50000
_options=Options{consistency=Optional[ONE],
serialConsistency=Optional.empty, fallbackConsistency=Option
al.empty, pagingState=null, pageSize=-1,
user=Optional.empty, waitForSchemaAgreement=true, asyn
c=true}
DsegVertexStep(IN,[created],vertex) 8
 8 103.458 78.62
query-optimizer
 0.618
_condition=(((label = created) & (true)) & direction = IN)
vertex-query
 0.261
_usesCache=false
_statement=SELECT * FROM "DSEQuickStart"."author_e" WHERE
"community_id" = ? AND "member_id" = ? AND "~~
 edge_label_id" = ? LIMIT ? ALLOW FILTERING; with params
(java.lang.Integer) 1432048000, (java
.lang.Long) 1, (java.lang.Integer) 65577,
(java.lang.Integer) 50000
_options=Options{consistency=Optional[ONE],
serialConsistency=Optional.empty, fallbackConsistency=Option
al.empty, pagingState=null, pageSize=-1,
user=Optional.empty, waitForSchemaAgreement=true, asyn
c=true}
_isPartitioned=false
_usesIndex=false
vertex-query
 0.200
_usesCache=false
_statement=SELECT * FROM "DSEQuickStart"."author_e" WHERE
"community_id" = ? AND "member_id" = ? AND "~~
 edge_label_id" = ? LIMIT ? ALLOW FILTERING; with params
(java.lang.Integer) 153541376, (java.
lang.Long) 1, (java.lang.Integer) 65577,
(java.lang.Integer) 50000
_options=Options{consistency=Optional[ONE],
serialConsistency=Optional.empty, fallbackConsistency=Option
al.empty, pagingState=null, pageSize=-1,
user=Optional.empty, waitForSchemaAgreement=true, asyn
c=true}
_isPartitioned=false
_usesIndex=false
query-setup
 0.017
_isFitted=true
_isSorted=true
_isScan=false
vertex-query
 6.140
_usesCache=false
_statement=SELECT * FROM "DSEQuickStart"."author_e" WHERE
"community_id" = ? AND "member_id" = ? AND "~~
```
Using DataStax Enterprise advanced functionality

```java
edge_label_id" = ? LIMIT ? ALLOW FILTERING; with params
(java.lang.Integer) 588941056, (java.
 lang.Long) 0, (java.lang.Integer) 65577,
(java.lang.Integer) 50000
 _options=Options{consistency=Optional[ONE],
 serialConsistency=Optional.empty, fallbackConsistency=Option
 al.empty, pagingState=null, pageSize=-1,
 user=Optional.empty, waitForSchemaAgreement=true, async
c=true}
 _isPartitioned=false
 _usesIndex=false
query-setup
 0.017
 _isFitted=true
 _isSorted=true
 _isScan=false
vertex-query
 0.201
 _usesCache=false
 _statement=SELECT * FROM "DSEQuickStart"."author_e" WHERE
 "community_id" = ? AND "member_id" = ? AND "--
 edge_label_id" = ? LIMIT ? ALLOW FILTERING; with params
 (java.lang.Integer) 771301632, (java.
 lang.Long) 0, (java.lang.Integer) 65577,
 (java.lang.Integer) 50000
 _options=Options{consistency=Optional[ONE],
 serialConsistency=Optional.empty, fallbackConsistency=Option
 al.empty, pagingState=null, pageSize=-1,
 user=Optional.empty, waitForSchemaAgreement=true, async
c=true}
 _isPartitioned=false
 _usesIndex=false
query-setup
 0.012
 _isFitted=true
 _isSorted=true
 _isScan=false
vertex-query
 0.173
 _usesCache=false
 _statement=SELECT * FROM "DSEQuickStart"."author_e" WHERE
 "community_id" = ? AND "member_id" = ? AND "--
 edge_label_id" = ? LIMIT ? ALLOW FILTERING; with params
 (java.lang.Integer) 994194304, (java.
 lang.Long) 0, (java.lang.Integer) 65577,
 (java.lang.Integer) 50000
 _options=Options{consistency=Optional[ONE],
 serialConsistency=Optional.empty, fallbackConsistency=Option
 al.empty, pagingState=null, pageSize=-1,
 user=Optional.empty, waitForSchemaAgreement=true, async
c=true}
 _isPartitioned=false
 _usesIndex=false
```
As with the original traversal, the first step still finds all the vertices. In the next step, however, the number of edges walked is significantly decreased. However, in a production graph, finding all the vertices in the entire graph will take a long time. The third step now reflects the true answer for how many recipes Julia Child has created; in the first traversal, other incoming edges for Julia Child's books were included in the count.

This graph traversal is still an OLAP traversal that touch all vertices and does not use indexes.

Specifying the vertex label

What effect does specifying the vertex label have on improving the traversal?

```
g.V().hasLabel('recipe').in().has('name','Julia Child').count()
```

This modified traversal now is limited to the `recipe` vertices, but walks all incoming edges. The profile shows a somewhat better picture:

```
gremlin> g.V().hasLabel('recipe').in().has('name','Julia Child').count().profile()
```
## Traversal Metrics

<table>
<thead>
<tr>
<th>Step</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>DsegGraphStep(~label.=(recipe))</td>
<td>8</td>
</tr>
<tr>
<td>query-optimizer</td>
<td>0.241</td>
</tr>
<tr>
<td>_condition=((label = recipe) &amp; (true))</td>
<td></td>
</tr>
<tr>
<td>query-setup</td>
<td>0.187</td>
</tr>
<tr>
<td>_isFitted=true</td>
<td></td>
</tr>
<tr>
<td>_isSorted=false</td>
<td></td>
</tr>
<tr>
<td>_isScan=true</td>
<td></td>
</tr>
<tr>
<td>index-query</td>
<td>1.225</td>
</tr>
<tr>
<td>_usesCache=false</td>
<td></td>
</tr>
<tr>
<td>_statement=SELECT &quot;community_id&quot;, &quot;member_id&quot; FROM &quot;DSEQuickStart&quot;.&quot;recipe_p&quot; WHERE &quot;~~vertex_exists&quot; = ? LIMIT ? ALLOW FILTERING; with params (java.lang.Boolean) true, (java.lang.Integer) 50000 _options=Options(consistency=Optional[ONE], serialConsistency=Optional.empty, fallbackConsistency=Optional.empty, pagingState=null, pageSize=-1, user=Optional.empty, waitForSchemaAgreement=true, async=true)</td>
<td></td>
</tr>
<tr>
<td>DsegVertexStep(IN,vertex)</td>
<td>15</td>
</tr>
<tr>
<td>query-optimizer</td>
<td>0.150</td>
</tr>
<tr>
<td>_condition=((true) &amp; direction = IN)</td>
<td></td>
</tr>
<tr>
<td>query-setup</td>
<td>0.047</td>
</tr>
<tr>
<td>_isFitted=false</td>
<td></td>
</tr>
<tr>
<td>_isSorted=true</td>
<td></td>
</tr>
<tr>
<td>_isScan=false</td>
<td></td>
</tr>
<tr>
<td>vertex-query</td>
<td>0.896</td>
</tr>
<tr>
<td>_usesCache=false</td>
<td></td>
</tr>
<tr>
<td>_statement=SELECT * FROM &quot;DSEQuickStart&quot;.&quot;recipe_e&quot; WHERE &quot;community_id&quot; = ? AND &quot;member_id&quot; = ? LIMIT ? ALLOW FILTERING; with params (java.lang.Long) 1315507840, (java.lang.Long) 1, (java.lang.Integer) 50000 _options=Options(consistency=Optional[ONE], serialConsistency=Optional.empty, fallbackConsistency=Optional.empty, pagingState=null, pageSize=-1, user=Optional.empty, waitForSchemaAgreement=true, async=true)</td>
<td></td>
</tr>
<tr>
<td>_isPartitioned=false</td>
<td></td>
</tr>
<tr>
<td>_usesIndex=false</td>
<td></td>
</tr>
<tr>
<td>vertex-query</td>
<td>1.415</td>
</tr>
<tr>
<td>_usesCache=false</td>
<td></td>
</tr>
</tbody>
</table>
Using DataStax Enterprise advanced functionality

```java
_statement=SELECT * FROM "DSEQuickStart"."recipe_e" WHERE "community_id" = ? AND "member_id" = ? LIMIT ?
 ALLOW FILTERING; with params (java.lang.Integer) 96517120, (java.lang.Long) 1, (java.lang.Integer) 50000
_options=Options{consistency=Optional[ONE], serialConsistency=Optional.empty, fallbackConsistency=Optional.empty, pagingState=null, pageSize=-1, user=Optional.empty, waitForSchemaAgreement=true, async=true}
_isPartitioned=false
_usesIndex=false
vertex-query 2.846
_usesCache=false
_statement=SELECT * FROM "DSEQuickStart"."recipe_e" WHERE "community_id" = ? AND "member_id" = ? LIMIT ?
 ALLOW FILTERING; with params (java.lang.Integer) 1598713728, (java.lang.Long) 1, (java.lang.Integer) 50000
_options=Options{consistency=Optional[ONE], serialConsistency=Optional.empty, fallbackConsistency=Optional.empty, pagingState=null, pageSize=-1, user=Optional.empty, waitForSchemaAgreement=true, async=true}
_isPartitioned=false
_usesIndex=false
query-setup 0.038
_isFitted=false
_isSorted=true
_isScan=false
vertex-query 0.364
_usesCache=false
_statement=SELECT * FROM "DSEQuickStart"."recipe_e" WHERE "community_id" = ? AND "member_id" = ? LIMIT ?
 ALLOW FILTERING; with params (java.lang.Integer) 1146421632, (java.lang.Long) 1, (java.lang.Integer) 50000
_options=Options{consistency=Optional[ONE], serialConsistency=Optional.empty, fallbackConsistency=Optional.empty, pagingState=null, pageSize=-1, user=Optional.empty, waitForSchemaAgreement=true, async=true}
_isPartitioned=false
_usesIndex=false
query-setup 0.014
_isFitted=false
_isSorted=true
_isScan=false
vertex-query 0.431
```
A limited number of vertices are found in the first step. A number of edges are walked. However, in a production graph, finding even a limited number of vertices will take some time without indexing, and the number of edges walked could be quite large.

This graph traversal is still an OLAP traversal that does not use indexes. Although this traversal narrows the query by limiting the vertex label initially, an index is not used to find the starting point for the traversal.

Using an edge label plus a vertex label

Indexes are identified by vertex label and property key. The following graph traversal twists the direction of the query:

```sql
_usesCache=false
_statement=SELECT * FROM "DSEQuickStart"."recipe_e" WHERE "community_id" = ? AND "member_id" = ? LIMIT ?
 ALLOW FILTERING; with params (java.lang.Integer) 384373760, (java.lang.Long) 2, (java.lang.Integer) 50000
_options=Options{consistency=Optional[ONE],
 serialConsistency=Optional.empty, fallbackConsistency=Optional.empty, pagingState=null, pageSize=-1,
 user=Optional.empty, waitForSchemaAgreement=true, async=true}
_isPartitioned=false
_usesIndex=false
query-setup 0.014
_isFitted=false
_isSorted=true
_isScan=false
HasStep{[name.=(Julia Child)]} 3
 3 15.765 56.10
CountGlobalStep 1
 1 0.068 0.24
>TOTAL - 28.100 -
```

Figure 34: Studio profile output for Traversal 3
g.V().has('author', 'name', 'Julia Child').outE('created').count()

```java
===>3
```

This traversal starts at a single vertex by specifying both vertex label `author` and a specific property key and value `Julia Child`, and walks only the outgoing edges that have an edge label `created`.

```java
gremlin> g.V().has('author','name','Julia Child').outE('created').count().profile()

Traversal Metrics

<table>
<thead>
<tr>
<th>Step</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traversers</td>
<td>Time (ms)</td>
</tr>
<tr>
<td>query-optimizer</td>
<td>29.049</td>
</tr>
<tr>
<td>_condition=(((label = author) & (true)) & name = Julia Child)</td>
<td>84.45</td>
</tr>
<tr>
<td>query-setup</td>
<td>0.033</td>
</tr>
<tr>
<td>_isFitted=true</td>
<td>0.200</td>
</tr>
<tr>
<td>_isSorted=false</td>
<td>0.586</td>
</tr>
<tr>
<td>_isScan=false</td>
<td>17.694</td>
</tr>
<tr>
<td>index-query</td>
<td>15.31</td>
</tr>
<tr>
<td>_indexType=Secondary</td>
<td>5.265</td>
</tr>
<tr>
<td>_usesCache=false</td>
<td>0.586</td>
</tr>
<tr>
<td>_statement=SELECT "community_id", "member_id" FROM "DSEQuickStart"."author_p" WHERE "name" = ? LIMIT ?; with params (java.lang.String) Julia Child, (java.lang.Integer) 50000</td>
<td>15.31</td>
</tr>
<tr>
<td>_options=Options{consistency=Optional[ONE], serialConsistency=Optional.empty, fallbackConsistency=Optional.empty, pagingState=null, pageSize=-1, user=Optional.empty, waitForSchemaAgreement=true, async=true}</td>
<td>15.31</td>
</tr>
<tr>
<td>DsegVertexStep(OUT,[created],edge)</td>
<td>3</td>
</tr>
</tbody>
</table>

```java
```
A single vertex starts the traversal. An edge label filters the edges.

This graph traversal is an OLTP traversal. An index on the vertex label `author` and property key `name` can be used to start the traversal directly at an indexed vertex. This example results in a single vertex, but queries that use indexing to limit the starting point to even several vertices will be more efficient than a linear scan that must check all vertices in the graph. Thus, a subgraph, or portion of the graph is traversed.

The key to creating OLTP graph traversals is considering how the graph will be traversed. Use of indexing is critical to the success of fast transactional processing. The profiling tool included with DSE Graph is valuable to analyzing how the traversal performs.

For information on running OLAP queries using Spark, see DSE Graph and Graph Analytics (page 829).

Graph anti-patterns

Some common mistakes are made with DSE Graph. Examining best practices can ease the learning curve and improve graph application performance.

Not using indexing

Indexing is a key feature in decreasing the latency of queries in a distributed database. DSE Graph relies on indexing to speed up OLTP read latency for complex graph traversals. What is key to understand is that global indexing in DSE Graph involves both a vertex label and a property key. The vertex label narrows the search in the underlying DSE datastore to a
partition, which in turn narrows the search to one or a small number of DSE database nodes in the cluster. Indexing a property key that is used for more than one vertex label and not supplying the vertex label in the query amounts to an almost full scan of the cluster. Thus, using this query:

```java
g.V().has('name','James Beard')...
```

requires the traversal to check all vertices that use the property key `name`. Changing this query to:

```java
g.V().has('author', 'name', 'James Beard')...
```

allows the query to consult an index that can be built for all names in author records, and retrieve just one vertex to start the traversal. The index would be added during `schema creation (page 621):

```java
schema.vertexLabel('author').index('byName').secondary().by('name').add()
```

In fact, this one change in the traversal will change the query from an OLAP query into an OLTP query.

Property key creation

Property key creation can affect the performance of DSE Graph. Using unique property key names can seem beneficial at first, but reusing property keys for different vertex labels can improve the storage of property keys for the graphs. For example, consider the following:

```java
schema.propertyKey('recipeCreationDate').Timestamp().create()
schema.propertyKey('mealCreationDate').Timestamp().create()
schema.propertyKey('reviewCreationDate').Timestamp().create()
```

While these property key names make code readable and ease tracking in graph traversals, each additional property key stored requires resources. Use one property key instead, such as:

```java
schema.propertyKey('timestamp').Timestamp().create()
```

to decrease overhead. Since property keys are mostly used in graph traversals along with vertex labels, `timestamp` will be uniquely identified by the combination of vertex label and property key.

Vertex label creation

Vertex label creation can affect the performance of DSE Graph. Using many unique vertex labels can seem useful, but like property keys, the fewest vertex labels created can improve the storage requirements. For example, consider the following:

```java
schema.vertexLabel('recipeAuthor').create()
schema.vertexLabel('bookAuthor').create()
schema.vertexLabel('mealAuthor').create()
schema.vertexLabel('reviewAuthor').create()
```
While these vertex labels again have the advantage of readability, unless a vertex label will be uniquely queried, it is best to roll the functionality into a single vertex label. For instance, in the above code, it is likely that recipes, meals, and books will have the same authors, whereas reviews are likely to have a different set of writers and types of queries. Use two vertex labels instead of four:

```java
schema.vertexLabel('author').create()
schema.vertexLabel('reviewer').create()
```

In fact, this case may even be better suited to using only one vertex label `person`, if the overlap in authors and reviewers is great enough. In some cases, a property key that identifies whether a `person` is an author or a reviewer is a viable option.

```java
schema.propertyKey('type').Text().create()
schema.vertexLabel('person').create()
graph.addVertex(label, 'person', 'type', 'author', 'name', 'Jamie Oliver')
```

Mixing schema creation or configuration setting with traversal queries

Consider the following statements. The first statement configures a graph setting for read consistency. The second statement executes a count on a field `name` with a value `read vertex` for all vertices.

```java
schema.config().option('graph.tx_groups.default.read_consistency').set('ALL');
g.V().has('name', 'read vertex').count()
```

In Gremlin Server, both statements are run in one transaction. Any changes made during this transaction are applied when it successfully commits both actions. The change in read consistency is not actually applied until the end of a transaction and thereby only affects the next transaction. The statements are not processed sequentially as individual requests.

To avoid such errors in processing, avoid mixing schema creation or configuration setting with traversal queries in applications. Best practice is to create schema and set configurations before querying the graph database with graph traversals.

InterruptedException indicates OLTP query running too long

In general, seeing logs with this exception are indicative that an OLTP query is running too long. The typical cause is that indexes have not been created for elements used in graph traversal queries. Create the indexes (page 648) and retry the queries.

```java
g.V().count() and g.E().count() can cause long delays
```

Running a count on a large graph can cause serious issues. The command basically must iterate through all the vertices, taking hours if the graph is large. Any table scan (iterating all vertices) is simply not an OLTP process. Doing the same process on edges is essentially the same, a full table scan, as well. Using Spark commands are currently the recommended method to get these counts.
Using DataStax Enterprise advanced functionality

Setting replication factor too low for graph_name_system

Each graph created in turn creates three DSE database keyspaces, graph_name, graph_name_system and graph_name_pvt. The graph_name_system stores the graph schema, and loss of this data renders the entire graph inoperable. Be sure to set the replication factor appropriately (page 866) based on cluster configuration.

Using string concatenation in application instead of parameterized queries

String concatenation in graph applications will critically impair performance. Each unique query string creates an object that is cached on a node, using up node resources. Use parameterized queries (DSE Java Driver, DSE Python Driver, DSE Ruby Driver, DSE Node.js Driver, DSE C# Driver, DSE C/C++ Driver) to prevent problems due to resource allocation.

DSE Graph data modeling

Graph data modeling introduction

Data modeling for graph databases is generally a simple process. Imagine information written on a whiteboard as vertices and lines connecting them, and you are 90% done with a graph database data model.

Figure 36: Julia Child creates beef bourguignon

Julia Child was a famous chef who created many recipes. One of the recipes she created for an American audience in 1961 was beef bourguignon. In the diagram above, a person, Julia Child, is linked to a recipe, beef bourguignon. Person and recipe are two types of vertex, and the line adjoining the vertices, or edge, identifies the relationship as "created". Vertices and edges have associated properties, such as a person's name, a recipe name, and the date associated with the edge. Properties are a basic element that are used in a query about the graph, and consist of a property key and property value. In graph databases, a vertex is incident to an edge, and an edge is incident to a vertex. A vertex is adjacent to another vertex. A generalized view of this data model is shown below:

Figure 37: Generalized data model for author and recipe
Each vertex is assigned a **vertex label** to identify a specific type of vertex. The vertex labels shown here are author and recipe. Each edge must also have an **edge label** specifying its type. The edge label shown is created. The **properties** shown are name and year.

DSE Graph limits the number of vertex labels to 200 per graph.

For more complex graphs, multiple edges (*page 635*) can connect vertices, and multiple properties can be assigned to vertices and edges. Both properties and edges can have **multiple cardinality** (*page 634*). Vertex properties can have **meta-properties**, a property on a property (*page 636*).

An important concept to be aware of is the nature of vertices and edges as addressable elements. **Indexes** (*page 645*) play a critical role in querying graphs, and vertex labels must be a part of every index. Only vertices are globally addressable, whereas edges are only locally addressable. In practice, what this situation means is that edges can only be indexed locally for a particular vertex label. Edges are about the relationship of vertices, and are classified as second-class citizens; vertices are entities and are **first-class citizens** for which all graph operations are available. To illustrate the nature of the second-class citizenry of edges, meta-properties of edges cannot be indexed and used to narrow queries, making those edges better modeled as vertices if the data stored in the meta-properties must be used to narrow down a query.

For the remaining 10% of your effort, optimization of whether an aspect of your whiteboard graph should be a vertex or an edge is the most pressing factor. If an aspect used as an edge begins to be used more than a few times, it should become a vertex instead. For instance, we could add a vertex property to the author to add their country of origin. However, since many authors will come from the same country, such as the China or France, creating a location vertex type can be more advantageous to later querying operations.

Graph data modeling example

Let's consider the example of recipes further to create a more complex data model. This example will go through some of the thinking behind creating a graph database data model.

1. Obviously, we will need vertices that are connected by edges. What is a possible additional type of vertex besides author and recipe?

 Not surprisingly, we can add an **ingredient** vertex label. This vertex will have some properties. Can you think of the possibilities for vertex properties?

 The most likely property for an ingredient vertex is the **name** of the ingredient. While we could use **ingredientName** to identify the name of the ingredient, keeping the schema small has advantages in DSE Graph. We'll reuse **name** for every vertex label in our example.
Using DataStax Enterprise advanced functionality

2. There are other possibilities that might be important for the ingredient vertex properties. Think about it and write down some more possibilities. We will add them later. Let's move on to considering the edges that will connect authors, recipes, and ingredients.

What are the edge labels we can use to identify different types of edges? Previously, you've seen that authors and recipe are connected by an edge created.

An ingredient must be included in a recipe, so an edge includes can connect the two vertices.

3. Edges also have attached properties that can be used later in narrowing queries.

What edge property is appropriate for includes?

The amount of ingredient included in a recipe is important! One cup of salt instead of one teaspoon of salt will make a big difference in the results.

4. Today, people publish their recipes online and in cookbooks. Restaurants create fixed price meals from recipes. Consumers review the recipes they try. The results are an intertwined graph of data.
5. The additional vertices and edges that can be added to this graph are numerous. For instance, the gender of the recipe authors and reviewers can be included. Nutritional information for the ingredients can be derived from the calories for a recipe. The number of servings that a recipe makes is useful to cooks. The resulting web of data can grow quickly.
Using DataStax Enterprise advanced functionality

Add a hundred authors, a thousand recipes, ten thousand reviews, and the enormity of the graph becomes obvious. However, as you will see in later sections, DSE Graph can transform complex searches and pattern matching into simple and powerful solutions.

What's next:

The data model is the first step in creating a graph. Using the data model, a schema can be created (page 621) that defines how DSE Graph will store the data.

Further data modeling concepts

Graph data models can be expanded to encompass complex relationships. The whole graph can be digested better if subgraphs are considered. The recipe data model can be modified to include new layers of data.
Consider an ingredient. Many additional properties can be added to an ingredient:

- **category**
 - vegetable, fruit, pasta, meat
- **nutritional value**
 - % of vitamins, protein, carbohydrate, fat
- **calories**
 - number of kcals
Using DataStax Enterprise advanced functionality

While it may seem simple to choose the property values for an ingredient, there can be more to consider. For instance, consider **category**. Depending on the number of categories used to describe the ingredients, it can be more advantageous to create a vertex label or a property for **category**. Vertices can be the starting point for a graph traversal, but vertex properties cannot. In order to ask the question "what ingredients are dairy products?", a starting point at the dairy vertex requires one edge hop per ingredient to find all the ingredients categorized as dairy.

However, if too many ingredients are dairy, a super node, or node that is a hotspot with too many edges attached, can slow down queries that are searching for dairy ingredients. Using property indexing, an ingredient category can be better modeled as a property rather than a vertex label.

Nutrients are a set number of items, such as vitamin C, vitamin D, calcium, and sodium. Creating a vertex label for **nutrient** and weighting the edges between ingredient and nutrient with the percentage adds another dimension to the graph.
Using DataStax Enterprise advanced functionality

Look at the relationships that result for just one ingredient:

- **sodium**
 - percentage: 15%

- **vitamin A**
 - percentage: 10%

- **vitamin C**
 - percentage: 4%

- **calcium**
 - percentage: 45%

and imagine the graph resulting for even one hundred ingredients, let alone thousands of ingredients. Examine whether it is better to create a nutrient vertex label or nutrient vertex properties.
Imagine the possibilities for applications built using the ingredient properties. Look in the refrigerator and discover that you have mushrooms and beef, and query the graph database to find a recipe to cook, such as Beef Stroganoff. With the coming possibility of tagged food in your refrigerator, you could even have your fridge tell you what's for dinner tonight, given the items stored.

Using DSE Graph

Getting started with graph databases

Graph databases are useful for discovering simple and complex relationships between objects. These things can be people, software, locations, automobiles, or anything else you can think of. Relationships are fundamental to how objects interact with one another and their environment. Graph databases are the perfect representation of the relationships between objects.

Graph databases consist of three elements: **vertices**, **edges** and **properties** Vertices are objects, such as people or artifacts. Edges define the relationships between nodes. Vertices, edges and properties can have properties; for this reason, DSE Graph is classified as a **property graph**. The properties for all elements are an important element of storing and querying information from a property graph.

Property graphs are typically quite large, although the nature of querying the graph will vary depending on whether the graph has large numbers of vertices, edges, or both vertices and edges. To get started with graph database concepts, a "toy" graph is used for simplicity. The example used here explores the world of food.
Elements are labeled to distinguish the type of vertices and edges in a graph database. A vertex that will hold information about an author is labeled *author*. An edge in the graph is labeled *authored*. Labels specify the types of vertices and edges that make up the graph. Specifying appropriate labels is an important step in graph data modeling (page 610).

Vertices and edges generally have properties. For instance, an *author* vertex can have a *name*. Gender and current job are examples of additional properties for a *author* vertex. Edges also have properties. A *created* edge can have a *timestamp* property that identifies when the adjoining *recipe* vertex was created.

Properties can also have properties. Consider the locations that an author may have lived in while authoring books. While knowing the writing location may be interesting by itself, generally an inquirer is interested in the dates that a person lived in a particular location.
Would it be interesting to know if Julia Child lived in France or the United States while writing her first cookbook? It could be relevant if the cookbook is on French cuisine.

There are a variety of methods for ingesting data into DSE Graph.

DSE Graph Loader
Data can be loaded using the DSE Graph Loader (page 744). CSV, JSON, text parsed with regular expressions, and data selected from a JDBC compliant database can be loaded using a command line tool.

Gremlin commands
Data can be added using Gremlin commands (page 667). This is a useful method for toy (small graphs) used for development and test. An API exists for adding data using Gremlin commands as well, so Gremlin is common in scripts. The Quick Start (page 667) shows some of the common Gremlin commands for creating a graph and running traversals.

Gryo
Data can be loaded using Gryo (page 778), a binary format, if the data was previously stored in Titan or TinkerGraph. Gryo files can be transferred directly using the schema from the original database.

GraphSON
Data can be entered with GraphSON (page 780), a JSON format that is useful for transferring human-readable data. GraphSON files can lose data type information in transfer unless lossless data is generated (page 702).

GraphML
Data can be entered using GraphML (page 781), an XML format that is useful for transferring graph data. However, data type information is lost with GraphML data transfer.

After loading data, *graph traversals* are executed to retrieve filtered information. In relational databases, *queries* are retrieved that combine and filter information. In graph databases, the vertex properties, edge connections, and edge properties all play a role in picking a starting point in the graph and traversing the connections to provide a particular answer to a query. Several *TraversalSources*, that supply a traversal strategy and traversal engine to use in executing traversals, can be generated for any *Graph*. Queries in graph databases can consist of several traversals if a complex question is asked, or trivially include no traversals, if a mathematical calculation like 1 + 1 is submitted.

Creating a graph in Studio

Depending on the DSE Graph schema mode, DataStax Studio will have differing behavior. In Production mode, DataStax Studio will not auto-create a graph, and the graph must be created in the Gremlin console (page 689). In Development mode, DataStax Studio creates a graph and aliases the graph to a graph traversal automatically for each connection that is created.

1. **Start DSE Graph (page 1275).**

2. **Install and start DataStax Studio (page 1362).** Also create a Studio notebook, if needed.
3. In DataStax Studio, create a new connection (page 1367). Choose a graph name; any graph previously unused will work.

4. In DataStax Studio, create a new notebook (page 1367). Select the connection created in the last step.

A blank notebook will open with a single cell. DSE Graph runs a Gremlin Server `tinkerpop.server` on each DSE node. DataStax Studio automatically connects to the Gremlin Server, and if it doesn't exist, creates a graph using the connection information. The graph is stored as one graph instance per DSE database keyspace with a replication factor of 1 and a strategy of `SimpleStrategy`. Once a graph exists, a graph traversal g is configured that will allow graph traversals to be executed. Graph traversals are used to query the graph data and return results. A graph traversal is bound to a specific traversal source which is the standard OLTP traversal engine.

Creating graph schema using Studio

Creating a data model (page 611) for a graph database is the critical first step towards creating a schema. Once the data model is designed and a graph is created, defining the schema for the vertices and edges and their properties is the next step in creating a graph database. Use Gremlin-Groovy to enter scripts into the cells of DataStax Studio.

Prerequisites:

Create a graph using Studio (page 620).

1. Optional. If you are reusing a graph that you previously created, drop the graph schema and data (page 697).

2. Optional. If running large scripts, set the `timeout` value to `max` to prevent client-side timeouts. Use this setting to ensure that script processing will complete. This step cannot be completed in Studio.

   ```
gremlin> :remote config timeout max
   ```

3. Optional. If running large scripts, set the `evaluation_timeout` value to `max` to prevent server-side timeouts. Use this setting to ensure that script processing will complete.

   ```
graph.schema().config().option("graph.traversal_sources.g.evaluation_timeout").set("PT10M")
   ```

Important: Setting a timeout value of greater than 1095 days (maximum integer) can exceed the limit of a graph session. Starting a new session and setting the timeout to a lower value can recover access to a hung session. This caution is applicable for all timeouts: `evaluation_timeout`, `timeout`,
Using DataStax Enterprise advanced functionality

4. Copy and paste the Recipe Schema listed in the Example below in a single cell in DataStax Studio. Once the entire script is entered, run the cell. Studio submits the commands to the Gremlin server.

NOTE: Each command submitted is within a single session, so from cell to cell, the Gremlin server is not aware of any variables set on the previous line. If any of the lines in the Recipe Schema are entered separately in cells, an error will occur on the edge creation commands.

5. The following steps show the details of the full script broken down into sections.

6. Define the properties for the vertices and the edges. The data type of the property is specified in addition to a key name. All properties created in this example are Text, Integers, or Timestamps. Other data types (page 869) are available. Properties will be used to retrieve selective subsets of the graph and to retrieve stored values. Properties are global in nature, and the pairing of a vertex label and a property will uniquely identify a property for use in traversals. Edge properties are expensive to update, as because the whole edge with all its properties are deleted and recreeted to update edge properties. Use edge properties only in situations that warrant their use.

```java
// Property Keys
// Check for previous creation of property key with ifNotExists()
schema.propertyKey('name').Text().ifNotExists().create()

schema.propertyKey('gender').Text().create()

schema.propertyKey('instructions').Text().create()

schema.propertyKey('category').Text().create()

schema.propertyKey('year').Int().create()

schema.propertyKey('timestamp').Timestamp().create()

schema.propertyKey('ISBN').Text().create()

schema.propertyKey('calories').Int().create()

schema.propertyKey('amount').Text().create()

schema.propertyKey('stars').Int().create()

schema.propertyKey('comment').Text().single().create() // single()

is optional - default

// Example of multiple property
// schema.propertyKey('nickname').Text().multiple().create();

// Example meta-property added to property:
// schema.propertyKey('livedIn').Text().create()

//
// schema.propertyKey('country').Text().multiple().properties('livedIn').create()
```

Property keys can be checked for prior existence with ifNotExists(). Property keys can be created with either single or multiple cardinality with single() or multiple(). The default is single cardinality which does not have to be specified, but it can be explicitly stated as in the example.
Meta-properties, or properties of properties, can be created using `propertyKey()` followed by `properties()`. The property key must exist prior to the creation of a meta-property. Meta-properties cannot be nested, i.e., a meta-property cannot have a meta-property. In this example, `country` is the property that has a meta-property `livedIn`. This property and meta-property are used to represent the countries that an author has lived in at various times in their life.

```json
{
  "name":"Julia Child",
  "gender":"F",
  [ {"country": "United States", "livedIn": "1929-1949" },
  {"country": "France", "livedIn": "1949-1952" } ],
  "authored": [{
    "book":{
      "label":"book",
      "bookTitle":"Art of French Cooking Volume One",
      "publishDate":1968
    },
    "book":{
      "label":"book",
      "bookTitle":"The French Chef Cookbook",
      "publishDate":1968,
      "ISBN": "0-394-40135-2"
    }
  }],
  "created": [{
    "type": "recipe",
    "recipeTitle": "Beef Bourguignon",
    "instructions": "Braise the beef.",
    "createDate":1967
  },
  {"type": "recipe",
   "recipeTitle": "Salade Nicoise",
   "instructions": "Break the lettuce into pieces.",
   "createDate": 1970
  }
  ]
}
```

7. Define the vertex labels. The vertex labels identify the type of vertices that can be created.

```java
// Vertex Labels
schema.vertexLabel('author').ifNotExists().create()
schema.vertexLabel('recipe').create()
// Example of creating vertex label with properties
//
schema.vertexLabel('recipe').properties('name','instructions').create()
schema.vertexLabel('ingredient').create()
schema.vertexLabel('book').create()
```
Using DataStax Enterprise advanced functionality

```
// Example of custom vertex id:
// schema.propertyKey('city_id').Int().create()
// schema.propertyKey('sensor_id').Uuid().create()
//
// schema().vertexLabel('FridgeSensor').partitionKey('city_id').clusteringKey('sensor_id').create()
```

Vertex labels can be checked for prior existence using `ifNotExists()`. Vertex labels can be created along with properties. Vertex labels can be created with custom vertex ids ([page 638](#)), rather than the standard autogenerate vertex ids ([page 711](#)).

Notice: Standard auto-generated ids are deprecated with DSE 6.0. Custom ids ([page 638](#)) will undergo changes, and specifying vertex ids with `partitionKey` and `clusteringKey` will likely become the normal method.

DSE Graph limits the number of vertex labels to 200 per graph.

8. Define the edge labels. The edge labels identify the type of edges that can be created.

```
// Edge Labels
schema.edgeLabel('authored').ifNotExists().create()
schema.edgeLabel('created').create()
schema.edgeLabel('includes').create()
schema.edgeLabel('includedIn').create()
schema.edgeLabel('rated').properties('rating').connection('reviewer','recipe').create()
```

Edge labels can be checked for prior existence using `ifNotExists()`. Edge labels can be created with adjacent vertex labels identified using `connection()` ([page 848](#)). Edge labels can identify properties that an edge has using `properties()` ([page 859](#)).

9. Define indexes that can speed up the query processing. All types of indexes are presented here. Indexing graph data ([page 645](#)) has more information.

```
// Vertex Indexes
// Secondary
schema.vertexLabel('author').index('byName').secondary().by('name').add()
// Materialized
schema.vertexLabel('recipe').index('byRecipe').materialized().by('name').add()
schema.vertexLabel('meal').index('byMeal').materialized().by('name').add()
schema.vertexLabel('ingredient').index('byIngredient').materialized().by('name').add()
schema.vertexLabel('reviewer').index('byReviewer').materialized().by('name').add()
// Search
//
// schema.vertexLabel('recipe').index('search').search().by('instructions').asText().add()
// schema.vertexLabel('recipe').index('search').search().by('instructions').asString().add()
// If more than one property key is search indexed
// schema.vertexLabel('recipe').index('search').search().by('instructions').asText().by('instructions').asString().add()
```
Using DataStax Enterprise advanced functionality

```java
// Edge Index
schema.vertexLabel('reviewer').index('ratedByStars').outE('rated').by('stars').add()

// Example of property index using meta-property 'livedIn':
// schema.vertexLabel('author').index('byLocation').property('country').by('livedIn').add()
```

These indexes are included to make the schema for the food example more efficient for data loading.

Note: The difference between `create()` and `add()` is subtle but important. If an entity (vertex label or edge label) has been created and already exists, if an index or property keys are associated with the entity, then an `add()` command is used. For example, a vertex label and property keys can be created, and then the property keys can be added to the vertex label.

10. After creating the graph schema, examine the schema to verify. A portion of the output is shown.

```java
schema.describe()
```

```
// RECIPE SCHEMA
// To run in Studio, copy and paste all lines to a cell and run.
// To run in Gremlin console, use the next two lines:
// script = new File('/tmp/RecipeSchema.groovy').text; []
// :> @script
// Property Keys
// Check for previous creation of property key with ifNotExists()
// schema.propertyKey('name').Text().ifNotExists().create()
// schema.propertyKey('gender').Text().create()
// schema.propertyKey('instructions').Text().create()
// schema.propertyKey('category').Text().create()
```
Using DataStax Enterprise advanced functionality

```java
// Example of multiple property keys
// schema.propertyKey('year').Int().create()
// schema.propertyKey('timestamp').Timestamp().create()
// schema.propertyKey('ISBN').Text().create()
// schema.propertyKey('calories').Int().create()
// schema.propertyKey('amount').Text().create()
// schema.propertyKey('stars').Int().create()
// schema.propertyKey('comment').Text().create() // single() is optional - default
// Example of multiple property
// schema.propertyKey('nickname').Text().create();
// Example meta-property added to property:
// schema.propertyKey('livedIn').Text().create()
// schema.propertyKey('country').Text().create().properties('livedIn').create()

// Vertex Labels
// Example of creating vertex label with properties
// schema.vertexLabel('author').ifNotExists().create()
// schema.vertexLabel('recipe').create()
// schema.vertexLabel('book').create()
// schema.vertexLabel('reviewer').create()
// Example of custom vertex id:
// schema.propertyKey('city_id').Int().create()
// schema.propertyKey('sensor_id').Uuid().create()
// schema().vertexLabel('FridgeSensor').partitionKey('city_id').clusteringKey('sensor_id').create()

// Edge Labels
// schema.edgeLabel('authored').ifNotExists().create()
// schema.edgeLabel('created').create()
// schema.edgeLabel('includes').create()
// schema.edgeLabel('includedIn').create()
// schema.edgeLabel('rated').properties('stars').connection('reviewer', 'recipe').create()

// Vertex Indexes
// Secondary
// schema.vertexLabel('author').index('byName').secondary().by('name').add()
// Materialized
// schema.vertexLabel('recipe').index('byRecipe').materialized().by('name').add()
// schema.vertexLabel('meal').index('byMeal').materialized().by('name').add()
// schema.vertexLabel('ingredient').index('byIngredient').materialized().by('name').add()
// Search
// schema.vertexLabel('recipe').index('search').search().by('instructions').asText().add()
// schema.vertexLabel('recipe').index('search').search().by('instructions').asString().add()
// If more than one property key is search indexed
// schema.vertexLabel('recipe').index('search').search().by('instructions').asText().by('category').asString().add()
```
Advanced schema

There are advanced schema that can be created in DSE Graph.

Date and time schema

Date and time are two data types that are commonly used for both vertex and edge properties.

Create schema and load data

1. Create the following properties in a graph:

```java
// SCHEMA FOR DATE AND TIME PROPERTIES
schema.propertyKey('year').Date().ifNotExists().create()
schema.propertyKey('time').Time().ifNotExists().create()
```

2. Some additional schema is required for the example queries below:

```java
// OTHER PROPERTIES
schema.propertyKey('name').Text().ifNotExists().create()
schema.propertyKey('gender').Text().ifNotExists().create() // VERTEX LABELS
schema.vertexLabel('person').properties('name', 'gender').ifNotExists().create()
// EDGE LABELS
schema.edgeLabel('born').multiple().connection('person','person').ifNotExists().create()
schema.edgeLabel('born').properties('year','time').add()
// INDEXES
schema.vertexLabel('person').index('byName').materialized().by('name').add()
```

This example uses the date and time properties on the edge label born that identifies the birthdate and birth time for a person.

3. The following data is inserted using DSE Graph Loader (page 749):

A CSV file of each person:

<table>
<thead>
<tr>
<th>name</th>
<th>gender</th>
</tr>
</thead>
</table>

Using DataStax Enterprise advanced functionality
Using DataStax Enterprise advanced functionality

and a CSV file for the edges:

<table>
<thead>
<tr>
<th>pname1</th>
<th>pname2</th>
<th>year</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Julia Child</td>
<td>JCMom</td>
<td>1930-01-01</td>
<td>10:00:00.000</td>
</tr>
<tr>
<td>Simone Beck</td>
<td>SBMom</td>
<td>1940-01-01</td>
<td>12:00:00.000</td>
</tr>
<tr>
<td>Louise Bertholie</td>
<td>LBMom</td>
<td>1950-01-01</td>
<td>13:00:00.000</td>
</tr>
</tbody>
</table>

The mapping script loads each file after the schema has been created in a graph:

```java
// SAMPLE INPUT
person: Julia Child|F
personEdges: Julia Child|JCMom|1930-01-01|10:00

// CONFIGURATION
// Configures the data loader to create the schema
config dryrun: false, preparation: true, create_schema: false,
    load_new: true, schema_output: 'loader_output.txt'

// DATA INPUT
// Define the data input source (a file which can be specified via
// command line arguments)
// inputfiledir is the directory for the input files
inputfiledir = '/tmp/dateTime/
personInput = File.csv(inputfiledir + "person.csv").delimiter('|')
personEdgeInput = File.csv(inputfiledir +
    "personEdges.csv").delimiter('|')

// Specifies what data source to load using which mapper (as defined
// inline)
load(personInput).asVertices {
    label "person"
    key "name"
}
load(personEdgeInput).asEdges {
    label "born"
    outV "pname1", {
        label "person"
        key "name"
    }
    inV "pname2", {
        label "person"
        key "name"
    }
```
Using DataStax Enterprise advanced functionality

Querying date and time data

4. Find all born edges that have a birthdate earlier than 1940-01-01:

```
// Find all edges that have a birthdate earlier than 1940-01-01
g.V().hasLabel('person').outE('born').has('year',lt('1940-01-01')).valueMap()
```

This query finds all vertices with a label person, then traverses the outgoing edges labelled born, and filters out all edges found to meet the limitation of lt('1940-01-01').

```
{year=1930-01-01, time=10:00}
```

5. List the name of each child and their parent based on having a birthdate earlier than 1940-01-01:

```
g.V().hasLabel('person').as('child').outE('born').has('year',lt('1940-01-01')).inV().as('parent').select('child','parent').by('name').by('name')
```

This query finds all vertices with a label person and saves it temporarily as child, then traverses the outgoing edges labelled born, and filters out all edges found to meet the limitation of lt('1940-01-01') as the last query did. It continues by finding all the incoming vertices and saves them temporarily as parent, before selecting the two saved items with a select() method, by name in each case.

```
{child=Julia Child, parent=JCMom}
```

Geospatial schema

Three geospatial data types (page 869), point, linestring, and polygon, store data that can be searched with geospatial shapes. After creating schema for these data types, geospatial queries can be constructed (page 728) using them. For most geospatial queries that look for geospatial points, points or linestrings within circles or polygons, DSE Search indexes (page 649) must also be created.

The examples below load geospatial data with graph.addVertex(...) commands, but the DSE Graph Loader can be used to load geospatial data (page 796) starting with DSE 5.0.9 and DSE 5.1.2.

Point schema
- Create schema for a point and add a vertex with a property value for a point:

```java
schema.propertyKey('name').Text().create()
schema.propertyKey('point').Point().withGeoBounds().create()
schema.vertexLabel('location').properties('name','point').create()
```
Using DataStax Enterprise advanced functionality

```java
graph.addVertex(label, 'location', 'name', 'Paris', 'point', Geo.point(2.352222, 48.856614))
```

A vertex label is created for `location` that has a `point` property.

Note: For geospatial linestrings, as with geospatial points, the `withGeoBounds()` method limit searches to a default valid range of latitude in degrees from -90 to +90 (South Pole to North Pole) and a valid range of longitude in degrees from -180 to +180 (east to west from the Greenwich Meridian). The point is specified using `Geo.point(longitude, latitude)` when adding the point, using WellKnownText (WKT) format. Note that it specifies `longitude` first, then `latitude`.

Check that the point exists:

```java
g.V().has('location', 'name', 'Paris').valueMap()
```

```
{name=[Paris], point=[POINT (2.352222 48.856614)]}
```

Linestring schema

- Create schema for a `linestring` and add a vertex with a property value for a linestring:

  ```java
  schema.propertyKey('name').Text().create()
  schema.propertyKey('line').Linestring().withGeoBounds().create()
  schema.vertexLabel('lineLocation').properties('name','line').create()
  graph.addVertex(label, 'lineLocation', 'name', 'ParisLondon', 'line', "LINESTRING(2.352222 48.856614, -0.127758 51.507351)"
  ```

 A vertex label is created for `lineLocation` that has a `LineString` property. The same boundary limits (page 630) imposed on points are imposed on linestrings.

 Check that the linestring exists:

  ```java
g.V().has('lineLocation','name','ParisLondon').valueMap()
```

```
{name=[ParisLondon], line=[LINESTRING (2.352222 48.856614, -0.127758 51.507351)]}
```

Polygon schema

- Create schema for a `polygon` and add a vertex with a property value for a polygon:

  ```java
  schema.propertyKey('name').Text().create()
  schema.propertyKey('polygon').Polygon().withGeoBounds().create()
  schema.vertexLabel('polyLocation').properties('name','polygon').create()
  graph.addVertex(label, 'polyLocation', 'name', 'ParisLondonDublin', 'polygon', Geo.polygon(2.352222, 48.856614, -0.127758, 51.507351, -6.26031, 53.349805))
  ```

 A vertex label is created for `polyLocation` that has a `Polygon` property. The same boundary limits (page 630) imposed on points are imposed on polygons.

 Check that the polygon exists:

  ```java
g.V().has('polyLocation','name','ParisLondonDublin').valueMap()
```
DSE Search indexes

- While DSE Graph natively supports geospatial searches, performing them without a Search index does not scale as the number of vertices in the graph increases. Doing such queries without a search index results in very inefficient query performance because full scans are required. DSE Search indexes can index points and linestrings, but not polygons.

```java
//SEARCH INDEX ONLY WORKS FOR POINT AND LINestring
schema.vertexLabel('location').index('search').search().by('point').add()
schema.vertexLabel('lineLocation').index('search').search().by('line').add()
```

Without a search index, spatial queries always return exact results. DSE Search indexes, however, can trade off performance for accuracy.

Note: A point of confusion can occur if the same geospatial query is run with or without a DSE Search index. Without a search index, geospatial queries always return exact results. DSE Search indexes, however, trade off write performance and index size for query accuracy with two tunable parameters, `maxDistErr` (default: 0.000009) and `distErrPct` (default: 0.025). Inconsistent results in these two cases are due to the distance calculation algorithm variation of the default values of these parameters. DSE Graph can pass values for these two parameters when creating the search index. Change `maxDistErr` in `withError(maxDistErr, distErrPct)` to 0.0 to force both index-backed and non-index-backed queries to yield the same value:

```java
schema.vertexLabel('location').index('search').search().by('point').withError(0.000009, 0.0).add()
```

What's next: Geospatial queries *(page 728)* can be created once schema exists.

Cartesian spatial schema

Three cartesian spatial data types *(page 869)*, *point*, *linestring*, and *polygon* store data that can be searched with spatial shapes. After creating schema for these data types, Cartesian spatial queries can be constructed *(page 735)* using them. For Cartesian queries that look for Cartesian points, points or linestrings within circles or polygons, DSE Search indexes *(page 649)* must be created.

The examples below load Cartesian data with `graph.addVertex(…)` commands, but the DSE Graph Loader can be used to load Cartesian data *(page 796)* starting with DSE 5.0.9 and DSE 5.1.2.

Point schema

- Create schema for a *point* and add a vertex with a property value for a point:

```java
schema.propertyKey('name').Text().create()
```
Using DataStax Enterprise advanced functionality

```java
schema.propertyKey('point').Point().withBounds(-3, -3, 3, 3).create()
schema.vertexLabel('location').properties('name', 'point').create()
graph.addVertex(label, 'location', 'name', 'p0', 'point', Geo.point(0.5, 0.5))
```

A vertex label is created for location that has a point property. For Cartesian spatial points, the withBounds(x1, y1, x2, y2) method limit searches to a default valid range of values in the x-y grid.

Check that the point exists:

```java
g.V().has('location', 'name', 'p0').valueMap()
==> {name=[p0], point=[POINT (0.5 0.5)]}
```

Linestring schema

- Create schema for a linestring and add a vertex with a property value for a linestring:

```java
schema.propertyKey('name').Text().create()
schema.propertyKey('line').Linestring().withBounds(-3, -3, 3, 3).create()
schema.vertexLabel('lineLocation').properties('name', 'line').create()
graph.addVertex(label, 'lineLocation', 'name', 'l1', 'line', "LINESTRING(0 0, 1 1)")
```

A vertex label is created for lineLocation that has a LineString property. For Cartesian spatial linestrings, as with Cartesian spatial points, the withBounds(x1, y1, x2, y2) method limit searches to a default valid range of values in the x-y grid.

Check that the linestring exists:

```java
g.V().has('lineLocation', 'name', 'l1').valueMap()
==> {line=[LINESTRING (0 0, 1 1)], name=[l1]}
```

Polygon schema

- Create schema for a polygon and add a vertex with a property value for a polygon:

```java
schema.propertyKey('name').Text().create()
schema.propertyKey('polygon').Polygon().withBounds(-3, -3, 3, 3).create()
schema.vertexLabel('polyLocation').properties('name', 'polygon').create()
graph.addVertex(label, 'polyLocation', 'name', 'g1', 'polygon', Geo.polygon(0,0,1,1,0,1,0,0))
```

A vertex label is created for polyLocation that has a Polygon property. For Cartesian spatial polygons, as with Cartesian spatial points, the withBounds(x1, y1, x2, y2) method limit searches to a default valid range of values in the x-y grid.

Check that the polygon exists:

```java
g.V().has('polyLocation', 'name', 'g1').valueMap()
```
DSE Search indexes

- While DSE Graph natively supports Cartesian searches, performing them without a Search index does not scale as the number of vertices in the graph increases. Doing such queries without a search index results in very inefficient query performance because full scans are required. DSE Search indexes can index points and linestrings, but not polygons.

Note: DSE Search does not index polygons.

Caching edges and properties

Caching can improve query performance and is configurable. DSE Graph has two types of cache: adjacency list cache and index/property cache. Either edges or properties can be cached using the schema API `vertexLabel() (page 861)` method with the `cache()` option. Caching can be configured for all edges, all properties, or a filtered set of edges. Vertices are not cached directly, but caching properties and edges that define the relationship between vertices essentially accomplishes the same operation.

Property caching is enabled if indexes exist and are used in the course of queries. Full graph scan queries will not be cached. If an index does not exist, then caching does not occur. Adjacency list caching is enabled if caching is configured for edges.

The caches are local to a node and data is loaded into cache when it is read with a query. Both caches are set to a default size of 128 MB in the `dse.yaml` file. The settings are `adjacency_cache_size_in_mb` and `index_cache_size_in_mb`. Both caches utilize off-heap memory implemented as Least Recently Used (LRU) cache.

Caching is intended to help make queries more efficient if the same information is required in a later query. For instance, caching the `calories` property for `meal` vertices will improve the retrieval of a query asking for all meals with a calorie count less than 850 calories.

Graph cache is local to each node in the cluster, so the cached data can be different between nodes. Thus, a query can use cache on one node, but not on another. The caches are updated only when the data is not found. Graph caching does not have any means of eviction. No flushing occurs, and the cache is not updated if an element is deleted or modified. The cache will only evict data based on the time-to-live (TTL) value set when the cache is configured for an element. Set a low TTL value for elements (property keys (page 860), vertex labels (page 861), edge labels (page 855) that change often to avoid stale data.

Graph cache is useful for rarely changed graph data. The queries that will use graph cache effectively are queries that repeatedly run. If the queries run differ even in the sort order, the graph cache will not be used to reduce the query latency. For instance, caching the `calories` property for `meal` vertices will improve the retrieval of a query asking for all
meals with a calorie count less than 850 calories, if this query is repeated. Note that all properties for all meal vertices will be cached along with calories.

dse.yaml
The location of the dse.yaml file depends on the type of installation:

<table>
<thead>
<tr>
<th>Package installations</th>
<th>/etc/dse/dse.yaml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer-Services installations</td>
<td></td>
</tr>
<tr>
<td>Tarball installations</td>
<td>installation_location/resources/dse/conf/dse.yaml</td>
</tr>
<tr>
<td>Installer-No Services installations</td>
<td></td>
</tr>
</tbody>
</table>

- Cache all properties for author vertices up to an hour (3600 seconds):

```
schema.vertexLabel('author').cache().properties().ttl(3600).add()
```

Enabling property cache causes index queries to use IndexCache for the specified vertex label.

- Cache both incoming and outgoing created edges for author vertices up to a minute (60 seconds):

```
schema.vertexLabel('author').cache().bothE('created').ttl(60).add()
```

Multiple cardinality property or edge

Multiple cardinality allows a property to stored multiple values within a single key, or multiple edges with the same edge label to connect two vertices.

Multiple cardinality property
- Create schema for a multiple cardinality property item_mult and create two vertices, each of which has two items listed for the defined property:

```
schema.propertyKey('item_mult').Text().multiple().ifNotExists().create()
schema.vertexLabel('fridgeItem_multiple').properties('item_mult').ifNotExists().create
graph.addVertex(label, 'fridgeItem_multiple', 'name', 'item1', 'item_mult', ['cheese', 'cheddar cheese'])
graph.addVertex(label, 'fridgeItem_multiple', 'name', 'item2', 'item_mult', ['yogurt', 'Greek yogurt'], 'item_mult', ['key lime yogurt'])
g.V().hasLabel('fridgeItem_multiple').valueMap()
```

Because item_mult is defined with multiple cardinality, any number of key value insertions can be made, even using two lists to insert the values. Note that all values are stored in a single list.

```
{item_mult=[cheddar cheese, cheese], name=[item1]}
{item_mult=[Greek yogurt, key lime yogurt, yogurt], name=[item2]}
```

- Explore the inserted data further:
Using DataStax Enterprise advanced functionality

```
g.V().has('fridgeItem_multiple', 'name', 'item2').values('item_mult')

==>Greek yogurt
==>key lime yogurt
==>yogurt
```

This output makes it clear that each entry in the list is a separately stored value.

- Check for a single list item, specifying a particular value:

```
g.V().hasLabel('fridgeItem_multiple').has('item_mult', 'Greek yogurt').valueMap()
```

```
==>{'item_mult':[Greek yogurt, key lime yogurt, yogurt],
    'name':[item2]}
```

Multiple cardinality edge

- Create schema for a multiple cardinality edge:

```
// SCHEMA
// PROPERTIES
schema.propertyKey('author').Text().single().create()
schema.propertyKey('city').Text().single().create()

schema.propertyKey('dateStart').Text().single().create()
schema.propertyKey('dateEnd').Text().single().create()

// VERTEX LABELS
schema.vertexLabel('author').properties('author').create()

schema.vertexLabel('city').properties('city').create()

// EDGE LABELS
schema.edgeLabel('livedIn').multiple().connection('author','city').create()

schema.edgeLabel('livedIn').properties('dateStart', 'dateEnd').add()

// INDEXES

schema.vertexLabel('author').index('byAuthor').materialized().by('author').add()

schema.vertexLabel('city').index('byCity').materialized().by('city').add()

schema.vertexLabel('author').index('byStartDate').outE('livedIn').by('dateStart').add()
```

Note that the edge label `livedIn` is defined with multi-cardinality. The sample data loaded with graphloader is:

<table>
<thead>
<tr>
<th>author</th>
<th>city</th>
<th>dateStart</th>
<th>dateEnd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Julia Child</td>
<td>Paris</td>
<td>1961-01-01</td>
<td>1967-02-10</td>
</tr>
<tr>
<td>Julia Child</td>
<td>New York</td>
<td>1970-06-06</td>
<td>1971-09-23</td>
</tr>
<tr>
<td>Julia Child</td>
<td>Chicago</td>
<td>1980-04-05</td>
<td>1981-01-01</td>
</tr>
<tr>
<td>Simone Beck</td>
<td>Paris</td>
<td>1960-01-01</td>
<td>1962-09-23</td>
</tr>
</tbody>
</table>

This data includes two different periods of time in which Julia Child lived in Paris (fictiously), and edges will be multiple because of the multi-cardinality.

With this data loaded, the resulting graph shows the multi-cardinal edges exist:
Using DataStax Enterprise advanced functionality

Meta-property of properties

A meta-property allows a property to store another property.

Meta-property

- Create schema for a meta-properties start_date and end_date and create an author vertex label with the property country:

```
schema.propertyKey("name").Text().single().create()
schema.propertyKey('start_date').Date().create()
schema.propertyKey('end_date').Date().create()
schema.propertyKey('country').Text().multiple().properties('start_date', 'end_date').create()
schema.vertexLabel("author").properties("name", 'country').create()
```

The meta-properties start_date and end_date are first created as propertyKeys. Then the meta-properties are assigned to the property country using the properties() method.

```
==>{item_mult=[cheddar cheese, cheese], name=[item1]}
==>{item_mult=[Greek yogurt, key lime yogurt, yogurt], name=[item2]}
```

- Now create a vertex:

```
julia=graph.addVertex(label, 'author', 'name', 'Julia Child')
props=julia.property(list, 'country', 'France')
props.property('start_date', '1950-01-01')
props.property('end_date', '1960-12-31')
props2 = julia.property(list, 'country', 'USA')
props2.property('start_date', '1961-01-01')
props2.property('end_date', '1984-06-23')
```

This vertex for Julia Child has two values for the property country, each of which has values for the two meta-properties.

An alternative vertex creation statement is:
g.addV('author').
 property('name', 'Emeril Lagasse').
 property('country', 'France', 'start_date', '1973-10-01',
 'end_date', '1973-09-09').
 property('country', 'USA', 'start_date', '1973-10-01', 'end_date',
 '2017-03-10')

Either method is acceptable.

- Explore the inserted properties:
 First, find the listed countries that any author has lived in:

```java
g.V().properties()
  ==> vp[name->Julia Child]
  ==> vp[country->France]
  ==> vp[country->USA]
  ==> vp[name->Emeril]
  ==> vp[country->France]
  ==> vp[country->USA]
```

Next, list all the meta-properties of any listed `country`:

```java
g.V().properties().properties()
  ==> p[start_date->1950-01-01]
  ==> p[end_date->1960-12-31]
  ==> p[start_date->1961-01-01]
  ==> p[end_date->1984-06-23]
  ==> p[start_date->1970-04-05]
  ==> p[end_date->1973-09-09]
  ==> p[start_date->1973-02-02]
  ==> p[end_date->2017-03-01]
```

Find specific meta-property values for a given country by adding the `hasValue()` method:

```java
g.V().properties('country').hasValue('France').properties()
  ==> p[start_date->1950-01-01]
  ==> p[end_date->1960-12-31]
  ==> p[start_date->1970-04-05]
  ==> p[end_date->1973-09-09]
```

Find just the values of the meta-properties:

```java
g.V().properties('country').hasValue('France').properties().value()
  ==> 1950-01-01
  ==> 1960-12-31
  ==> 1970-04-05
  ==> 1973-09-09
```

Find the starting date in which an author moved to each country:

```java
g.V().as('author').
  properties('country').as('country').
```

DSE 5.1 Developer Guide Earlier version, latest patch 5.1.15 Page 637
Using DataStax Enterprise advanced functionality

This query uses the designator author to store the author’s name, then traverses the country property for each country lived in, designated country. From each country, the start date is found by an additional traversal and designated as started_living_in. Finally, all three values are selected for each full path traversal and the results are printed, using the designators to map the values. Entering this query into DSE Studio yields the following results:

```
{
  "author": "Julia Child",
  "country": "France",
  "start_living_in": "1950-01-01"
},
{
  "author": "Julia Child",
  "country": "USA",
  "start_living_in": "1961-01-01"
},
{
  "author": "Emeril",
  "country": "France",
  "start_living_in": "1970-04-05"
},
{
  "author": "Emeril",
  "country": "USA",
  "start_living_in": "1973-02-02"
}
```

Creating a custom vertex id

A custom vertex id can be created to replace the standard auto-generated vertex id that is normally generated for vertices. The use cases for creating a custom vertex id are:

- When the data stored in DSE Graph is aligned with other data sources, such as other DSE database keyspaces or another database.
- When custom graph partitioning (page 565) is desired.

Notice: Standard auto-generated ids are deprecated with DSE 6.0. Custom ids (page 638) will undergo changes, and specifying vertex ids with `partitionKey` and `clusteringKey` will likely become the normal method.

For example, sensor time series data is stored in the DSE database. In addition to the time series queries to the DSE database, relationship information about the sensors is desired, such as how the sensors are networked and where the sensors are located. To load the data into a graph to explore the relationships, but retain the ability to write an application...
Using DataStax Enterprise advanced functionality

that accesses both the time series data and the graph data, custom vertex ids are created that span across both database models.

Caution: Keep in mind that if custom vertex ids are used, they must be globally unique within the graph, or duplicate vertices can potentially be loaded into a graph. DSE Graph does not verify the custom vertex ids. Standard auto-generated vertex ids are guaranteed to be unique.

1. Create a vertex label with a custom partitioning key `sensor_id`. The property key `sensor_id` must exist prior to use in creating the vertex label and cannot be a multiple cardinality property.

   ```java
   schema.vertexLabel('FridgeSensor').partitionKey('sensor_id').create()
   ```

2. Add a vertex using the vertex label `FridgeSensor`.

   ```java
   graph.addVertex(label, 'FridgeSensor','sensor_id', '60bcae02-f6e5-11e5-9ce9-5e5517507c66')
   ```

3. Create a vertex label with a custom partitioning key `city_id` and clustering key `sensor_id`.

   ```java
   schema.vertexLabel('FridgeSensor').partitionKey('city_id').clusteringKey('sensor_id').create()
   ```

4. Add a vertex using the vertex label `FridgeSensor` with both a partition key and clustering key.

   ```java
   graph.addVertex(label, 'FridgeSensor','sensor_id', '60bcae02-f6e5-11e5-9ce9-5e5517507c66', 'city_id', 100)
   ```

5. Create a vertex label with a custom composite partition, using both `city_id` and `sensor_id` as part of the partitioning key.

   ```java
   schema.vertexLabel('FridgeSensor').partitionKey('city_id', 'sensor_id').create()
   ```

Modifying schema using Studio

Schema creation is an important part of creating a graph database. It may be necessary to add or modify the schema after initial creation. In Development mode, the schema can be modified after data creation. In Production mode, schema creation and data loading cannot be mixed. Property keys can be added. Adjacencies can be identified.

One important distinction about schema is the difference between `create()` and `add()`. The `create()` command is used to create a property key, vertex label or edge label if it does not already exist. When creating vertex labels and edge labels, `create()` is used along with identification of associated property keys. If a vertex label or edge label is
created without property key identification, then the `add()` command is used to identify associated property keys.

Examine the current schema
- Before making modifications to the schema, examine the current settings.

```java
schema.describe()
```

The schema displayed can be copied and used to reproduce the schema for a graph.

Add property keys to a vertex label
- Add a property key after schema creation. The property key must already exist. In the example, the first command builds the property key for the graph, and the second command adds the property key to the vertex label `author`.

```java
schema.propertyKey('nationality').Text().create()
schema.vertexLabel('author').properties('nationality').add()
```

- Verify that the property key is built for the vertex label `author`. Look for the property key named `nationality`.

```java
schema.vertexLabel('author').describe()
```

 | Index | value |
 |-------|-------|
 | 0 | `schema.vertexLabel("author")INDEX("name", secondary), by="name")create()` |

Displaying 1 of 1

1 ELEMENT RETURNED. DURATION: 0.329S.
The properties `name` existed prior to the addition of `nationality`. Any indexes on the vertex label are also displayed.

- Add a value for the newly added property key to a vertex.

  ```
g.V().has('author','name','Julia Child').property('nationality','American')
  ```

 ![Image](image1)

Add property keys to an edge label

- Add a property key after schema creation. The property key must already exist. In the example, the first command builds the property key for the graph, and the second command adds the property key to the edge label `created`.

  ```
schema.edgeLabel('created').properties('timestamp').add()
  ```

 ![Image](image2)

- Verify that the property key is built for the edge label `created`. Look for the property key named `timestamp`.

  ```
schema.edgeLabel('created').describe()
  ```

 ![Image](image3)

The properties `year` existed prior to the addition of `timestamp`. Any indexes on the vertex label are also displayed.
Using DataStax Enterprise advanced functionality

Creating an edge between two vertices (connection)

- Create a vertex label with properties. All the properties must exist prior to creating the vertex label. Add an edge label that identifies the connection (page 848) outgoing vertex and incoming vertex.

```java
schema.vertexLabel('FridgeItem').properties('name','expiration_date','amount').add()
schema.edgeLabel('isA').connection('ingredient','FridgeItem').create()
```

Dropping data, schema, and graphs

Data, schema, and graphs can be dropped (deleted) in DataStax Studio as follows:

Drop data

- To drop all data without dropping a graph and schema, drop all vertices.

```java
g.V().drop().iterate()
```

- To drop specific data, such as all author vertices, identify the vertices along with a drop traversal step.

```java
g.V().hasLabel('author').drop()
```

Warning: Dropping vertices with this command will also drop all edges associated with the vertices. Any vertex at the other end of an edge will remain, but the edges and edge properties will be dropped from the data.

Note: If a very large number of vertices will be dropped with the command shown above, DSE Graph may complain. In that case, modify the drop() command in the following manner:

```java
g.V().hasLabel('author').limit(100).drop()
```
and repeat until all vertices are dropped.

- To drop a specific value, such as `author` vertices, identify the vertices along with a drop traversal step.

```java
g.V().hasLabel('author').properties('gender').hasValue('M').drop()
```

This query will drop the gender value for all vertices that have a `gender` value of `M`.

```java
gremlin> g.V().hasLabel('author').valueMap()
==>{gender=[F], name=[Julia Child]}
==>{gender=[F], name=[Patricia Curtan]}
==>{gender=[F], name=[Kelsie Kerr]}
==>{gender=[F], name=[Simone Beck]}
==>{gender=[F], name=[Alice Waters]}
==>{gender=[F], name=[Patricia Simon]}
==>{name=[James Beard]}
==>{name=[Fritz Streiff]}
==>{name=[Emeril Lagasse]}
```

- To drop a property key from an edge, such as `rated` edges, identify the edges, the property key `stars` along with a drop traversal step.

```java
g.E().hasLabel('rated').properties('stars').drop()
```

This query will drop the property key `stars` for all edges that have a `rated` edge label.

```java
g.E().hasLabel('rated').properties('stars').valueMap()
returns no values.
```

Warning: For data created earlier than DSE 5.0.5, conditions exist that will drop all edges as well as the edge property during a property key drop. See Dropping edge property drops edges.

Drop schema

- To drop the schema and all data without dropping the graph, use a `clear()` step. Running `describe()` after will verify that the schema is dropped. After the schema is dropped, new schema and data can be loaded to the graph.

```java
schema.clear()
```
Using DataStax Enterprise advanced functionality

Important: Currently, certain schema elements such as a vertex label cannot be individually modified or removed. If a change to the schema is necessary, drop the whole schema as detailed above and recreate.

Dropping a graph

- Dropping a graph will clear all schema and data as well as deleting the graph. A system command is required to drop a graph. In order to use system commands, the graph traversal alias must be cleared. A configuration reset clears the alias.

 gremlin> :remote config alias reset

 Note: System commands are not accessible when a graph is aliased.

 ==>Aliases cleared

- Optional: If unsure of the graph name, examine what graphs exist. Note that system commands do not work in Studio, and must be run in Gremlin console.

 gremlin> system.graphs()

 ==>food

- Drop the desired graph by running the drop() command in Gremlin console.

 gremlin> system.graph('food').drop()

 Note: Graphs use many tables in the storage system. If a graph is no longer in use, drop it to ensure that you stay within the acceptable limit of the number of tables.

 ==>null

Dropping an index

- Dropping indexes (page 665) is described in Indexing.

Adding property data

To change the value of property data for a particular vertex, use the property() step. Each property changed must have its own property() step.

- If a property value has been dropped (page 642) in order to change the value, a new value can be written. This example illustrates adding the value M to the author vertex with the name James Beard.

 g.V().has('author','name','James Beard').property('gender', 'M')

 gremlin> g.V().hasLabel('author').valueMap()
Indexing graph data

How to index DSE Graph data.

Indexing graph overview

DSE Graph implements two types of indexes, vertex-centric indexes and global indexes. Vertex-centric indexes are local and specific to a single vertex. Global indexes are specific to a vertex label and property and are graph-wide. All indexes contribute to the performance of graph traversals on large distributed graphs. The type of index lookup will affect performance, and each has pros and cons.

Vertex-centric indexing (VCI) overview

Vertex-centric indexes (VCI) are created locally for a specific vertex, unlike global indexes which are global to the graph and index elements for fast global lookups. VCIs are used once a query has been filtered down to a specific instance of a vertex label, meaning specific vertices. VCIs sort and index the incident edges and adjacent vertices of a vertex according to the incident edge labels or properties. When a vertex is queried, its index is consulted to avoid linear scans of all incident edges. Traversals can be reduced to $O(1)$ or $O(\log n)$ from $O(n)$. A typical graph traversal touches numerous vertices, compounding the cost of each incident edge scan if indexes are not consulted.

In DSE Graph, vertex-centric indexing is maintained as materialized views (MVs). Materialized views are tables generated from a base table to provide a query based on a different primary key than the base table. This type of index is best used for values of high cardinality of nearly unique values, or high selectivity. Selectivity is derived from cardinality, using the following formula:

\[
\text{selectivity} = \left(\frac{\text{cardinality}}{\text{number of rows}}\right) \times 100\%
\]

In general, low cardinality results in low selectivity, and high cardinality results in high selectivity.

Searching materialized views yields similar response times to searching base tables, although writing the data incurs a small time penalty. When data is written or updated in the graph, the index information is updated in the MV table along with the graph tables. A consequence of using a MV table is higher write latencies, but results in lower read
latencies for graph traversals. **Edge indexes (page 857)** and **property indexes (page 857)** are vertex-centric indexes.

Vertex-centric indexing also plays a role in solving the super-node issue. A super-node is a vertex that has an exponentially larger number of incident edges. The example generally given is to compare the number of followers that a reader has to those of a celebrity - hundreds or thousands of followers, compared to millions of followers. A graph traversal checking the index of a super-node will take an outsized amount of time just to read the index table. Using vertex-centric indexing in conjunction with a partitioned vertex table (PVT), the index can be stored on multiple partitions and distributed across the DSE cluster. For vertices that have in excess of one million edges, graph partitioning is necessary due to the storage limitations of a single DSE database table. Distributing the index tables also enables better response to graph traversals.

Note: Partitioned vertex tables are an experimental feature for handling supernodes that are deprecated in DSE 5.1 and will be removed in DSE 6.0. However, data modeling techniques are currently a better avenue for mitigating supernode issues.

Global indexing overview

Indexes can affect traversal query performance. Decreasing the number of starting points for a graph traversal can greatly reduce the latency for a query result. If a traversal must start by checking all the vertices in a graph, time is lost finding the right starting point. If a starting vertex can be identified, that time is not required. Global indexing improves the performance of queries by identifying the starting location of a query using the vertex label and property.

Global indexing in DSE Graph uses DSE **secondary indexing** or DSE **Search indexing** (page 431). Global indexes can be applied across all vertices with a specified vertex label, as opposed to VCIs which apply to a filtered set of vertices.

Secondary indexing in DSE Graph follows the same rule of thumb as DSE **secondary indexing**. This type of index is meant for lower cardinality values, or alternatively, for low selectivity values. The number of values for indexing should number in the tens to hundreds at most; for instance, searching by country is a good candidate for secondary indexing. In addition, only equality conditions can be used to match values, and no ordering or range queries on values can be used. If more complex value matching is required, search indexes are the superior choice.

Search indexes are used when textual, numeric or geospatial indexing are required and rely on DSE **Search** (page 431). Since graph data is stored in DSE database tables, one search core is available per vertex label. For each vertex label that will be indexed with search, all properties must be added to a single search index named *search*. Because search is implemented with DSE Search, all data types can be indexed. For two indexing options, full text and string, the property key must be defined, as different indexing results. Full text indexing performs tokenization and secondary processing such as case normalization. Full text indexing is useful for queries where partial match of text is required, and lends itself to regular expressing (regEx) searching. String indexing is useful for queries where an exact string is sought and no tokenization is required, similar to Solr.
faceting (page 501). This type of index is best for low selectivity, but lends itself to fuzzy matching. DSE 5.1 adds fuzzy search for both tokenized and non-tokenized indexing.

Composite index keys are not currently supported in DSE Graph.

Indexing best practices

The most important fact to remember is that a search index is the only choice for indexing two or more properties that define the starting point for a query. Multiple materialized view or secondary indexes cannot be used for global indexing. For instance, `g.V().has('author', 'gender', 'F').has('author', 'country', 'France')` will only use one index, not both, if the indexes are materialized view or secondary indexes. If a search index is defined, both properties `country` and `gender`, are used. Once the starting point is defined, a vertex-centric index can be used to narrow the query.

More than one index can be created on the same property, such as creating both a materialized index and a search index on the property `amount`. The DSE Graph query optimizer will automatically use the appropriate index when processing a query; designation of an index type to use is not a feature. The order of preference that DSE Graph uses is MV index > secondary index > DSE Search index to ensure best performance. Different index types may be created on different properties as appropriate, based on the selectivity. A special case exists for indexing vertices created with composite keys (page 638); a search index is the only choice for indexing two or more properties, especially for graph loading with the DSE Graph Loader (page 744). Separate materialized view indexes will not be used for the property keys that make up the composite key (custom vertex id) and the DSE Graph Loader will fail to create the vertices.

In general, secondary indexes in DSE Graph are limited in usefulness, for the same reasons that constrict their general use in DSE. Materialized view indexing should be considered.

If a search index is created, be aware that building the index can take time, and that until the index is available, queries that depend on the index can fail (page 505). Applications that create schema, immediately followed by data insertion that require search indexes will likely experience errors. Also, queries that use search indexes should be run on DSE Search-enabled nodes in the cluster.

Search indexes do require resources. Each index allocates a minimum of 256MB by default, and each index will require two physical cores. For a typical 32GB node, 16 search indexes would be a reasonable number to create.

Queries that use textual predicates (regex, tokenRegx, prefix, tokenPrefix, token, and eq/neq) can be accomplished without DSE search indexes. However, such queries will not make use of secondary or materialized indexes and will instead use full graph scans to return results. By default, Production mode does not allow full graph scans, so such queries will fail. If such matching search methods are required, search indexes are strongly suggested.
Caution: `tokenRegex` will display case insensitivity in queries, whether a search index is used or not.

In DSE 5.1 and later, textual search indexes are by default indexed in both tokenized (TextField) and non-tokenized (StrField) forms. This means that all textual predicates (token, tokenPrefix, tokenRegex, eq, neq, regex, prefix) will be usable with all textual vertex properties created. Practically, search indexes should be created using the `asString()` method only in cases where there is absolutely no use for tokenization and text analysis, such as for inventory categories (silverware, shoes, clothing). The `asText()` method is used if searching tokenized text, such as long multi-sentence descriptions. The query optimizer will choose whether to use analyzed or non-analyzed indexing based on the textual predicate used.

Note: Prior to DSE 5.1, search indexes defaulted to `asText()` for textual property data, if not specified as `asString()`.

It is possible to modify the search index schema (page 442) to change search characteristics. Although DSE Graph will not overwrite these out-of-band changes, it is recommended that you do not add or remove fields in this manner - only DSE Graph commands should be used. The general use of this feature is mainly to change the behavior of a search, such as adding case sensitivity to a type of search.

Creating graph indexes

Creating indexes for a graph can be accomplished with many different characteristics. All indexing identifies a vertex label and a property to index. Edge indexes additionally identify an edge label.

Note: A property key can be used in more than one vertex label, as shown with the property key `name` below. Graph traversals will only use indexes if both the vertex label and property key are specified, as shown in Using indexes (page 652). Indexing that spans all vertex labels in a graph is not supported (page 652) in DSE Graph if full graph scans are disabled.

Secondary index

- Create a secondary index.

```java
schema.vertexLabel('recipe').index('byRecipe').secondary().by('name').add()
```

Identify the vertex label and property key for the index, in the `vertexLabel()` and `by()` steps, respectively. In the `index()` step, name the index. The `secondary()` step identifies the index as a secondary index.
Materialized index

- Create a materialized view index.

```java
schema.vertexLabel('author').index('byAuthor').materialized().by('name').add()
```

Identify the vertex label and property key for the index, in the `vertexLabel()` and `by()` steps, respectively. In the `index()` step, name the index. The `materialized()` step identifies the index as a materialized view index.

```java
schema.vertexLabel('author').index('byAuthor').materialized().by('name').add()
```

Search index

- Create a search index. This search index has one property key indexed. If multiple property keys are indexed, chain additional `by()` steps.

```java
schema.vertexLabel('recipe').index('search').search().by('instructions').asText().add()
```

Identify the vertex label and property keys for the index, in the `vertexLabel()` and `by()` steps, respectively. In the `index()` step, name the index `search`; only this naming convention can be used. The `search()` step identifies the index as a search index. This index is searched using full text index.

Note: Only one search index can be created per vertex label.

- A search index can also specify string indexing option. This example identifies a string index.

```java
schema.vertexLabel('recipe').index('search').search().by('instructions').asString().add()
```

`asString()` is also an available search index option.

- More commonly, a search index will specify multiple columns:
Using DataStax Enterprise advanced functionality

In DSE 5.1 and later, textual search indexes are by default indexed in both tokenized (TextField) and non-tokenized (StrField) forms. This means that all textual predicates (token, tokenPrefix, tokenRegex, eq, neq, regex, prefix) will be usable with all textual vertex properties created. Practically, search indexes should be created using the asString() method only in cases where there is absolutely no use for tokenization and text analysis, such as for inventory categories (silverware, shoes, clothing). The asText() method is used if searching tokenized text, such as long multi-sentence descriptions. The query optimizer will choose whether to use analyzed or non-analyzed indexing based on the textual predicate used.

Note: Prior to DSE 5.1, search indexes defaulted to asText() for textual property data, if not specified as asString().

- Search indexes can also include non-text data types:

  ```java
  schema.vertexLabel('recipe').index('search').search().by('year').by('name').asString().add()
  ```

 Data types other than text are inferred from the schema and DSE Search uses a comparable Solr data type. In this example, year is indexed as an integer.

 Caution: The Decimal data type will index as a SolrDecimalStrField. Use Int, Long, Float, or Double to ensure that the Solr data types (page 472) are used for sorting and range querying.

- Create a search index for geospatial data:

  ```java
  schema.propertyKey("coordinates").Point().single().create()
  schema.propertyKey("name").Text().single().create()

  schema.vertexLabel("place").properties("coordinates", "name").create()
  schema.vertexLabel("place").index("search").search().by("name").asText().by("coordinates").add()
  ```

 In this example, the property coordinates is a point defining a longitude and latitude. The search index includes coordinates without a qualifying asText() or asString() method. See Geospatial Schema (page 629) for additional information.

- Create a search index for timestamp data:

  ```java
  schema.propertyKey('review_ts').Timestamp().create()
  schema.propertyKey('name').Text().create()
  schema.vertexLabel('rating').properties('name', 'review_ts').create()
  schema.vertexLabel('rating').index('search').search().by('name', 'review_ts').add()
  ```

Edge index

- Create an edge index. Edges indexes are vertex-centric to a particular vertex label. For instance, the example below indexes anything that a reviewer rates.

  ```java
  ```
Identify the vertex label and property keys for the index, in the `vertexLabel()` and `by()` steps, respectively. In the `index()` step, name the index. The `outE()` step is used to define the direction of the edge.

- Create an edge index that indexes both incoming and outgoing edges:

```
schema.vertexLabel('reviewer').index('ratedByStars').bothE(rated).by('stars').add()
```

Identify the vertex label and property keys for the index, in the `vertexLabel()` and `by()` steps, respectively. In the `index()` step, name the index. The `bothE()` step is used to define the direction of the edge.

Property index

- Create a property index. Property indexes are vertex-centric to a particular vertex label.

```
schema().vertexLabel('author').index('byLocation').property('country').by('livedIn').add()
```

Identify the vertex label and property keys for the index, in the `vertexLabel()` and `property()` steps, respectively. In the `index()` step, name the index. The `by()` step is used to define the meta-property of the property.

Verifying and identifying index schema

- Verify the index creation.

```
schema.describe()
```

- Display more information about the indexes by specifying the vertex label and using the `describe()` step. Schema that can be used to create the indexes will be displayed.

```
schema().vertexLabel('author').describe()
```
Using DataStax Enterprise advanced functionality

```java
==>schema.vertexLabel("author").properties("name", "gender", "nationality").create()
```

```java
schema.vertexLabel("author").index("byName").secondary().by("name").add()
```

```java
schema.vertexLabel("author").index("byAuthor").materialized().by("name").add()
```

- Display information about all of the indexes using a schema traversal that filters for all `vertexIndex`.

```java
schema.traversal().V().hasLabel('vertexIndex').valueMap()
```

```java
==>{name=[byName], type=[Secondary]}
==>{unique=[false], name=[byIngredient], type=[Materialized]}
==>{unique=[false], name=[byReviewer], type=[Materialized]}
==>{unique=[false], name=[byRecipe], type=[Materialized]}
==>{unique=[false], name=[byMeal], type=[Materialized]}
```

- Get a count of the number of indexes using a schema traversal that filters for all `vertexIndex`.

```java
schema.traversal().V().hasLabel('vertexIndex').count()
```

```java
==>5
```

Using indexes

Global indexes can be used in graph traversal queries for the first traversal step reached after the `V()` step, and are used to trim down the number of vertices that are initially fetched. Remember that a search index must be used if two or more properties are used for global indexing. In general, the traversal step involves a vertex label and can include a property key and a particular property value. In a traversal, the step following `g.V()` is generally the step in which an index will be consulted. If a mid-traversal `V()` step is called, then an additional indexed step can be consulted to narrow the list of vertices that will be traversed.

Note: Graph traversals will only use indexes if the both the vertex label and property key are specified. If both are not specified, indexing will not be used and a full graph scan for the property key can result. If full graph scan is disabled, a query will fail, as shown in this example where a property is specified, but a vertex label is not specified:

```java
g.V().has('name','Julia Child')
```

Could not find an index to answer query clause and `graph.allow_scan` is disabled:

```
(label = FridgeSensor & name WITHIN [Julia Child]) | (label = author & name WITHIN [Julia Child]) |
(label = book & name WITHIN [Julia Child]) | (label = ingredient & name WITHIN [Julia Child]) |
(label = meal & name WITHIN [Julia Child]) | (label = recipe & name WITHIN [Julia Child]) |
```
Edge indexes and property indexes (vertex-centric indexes) can be used to narrow the query after a global index has found the starting vertex. They allow definition of the edges that will be followed or the meta-properties that will be used to further restrict the query.

Global index
- The graph traversal shown uses an index to discover certain person vertices to start the query.

```java
g.V().has('author', 'name', 'Emeril Lagasse').out('created').values('name')
```

This graph traversal uses an index, if the index exists, because the traversal step `has('author', 'name', 'Emeril Lagasse')` identifies the vertex label and the property key indexed. After finding the initial vertex to traverse from, the outgoing `created` edges are walked and the adjacent vertices are listed by `name`. This graph traversal shows the importance of using the vertex label in combination with the property key, as two different elements, authors and recipes, use the same property key `name`.

Checking for the use of indexing can be accomplished with the `profile()` method:

```java
gremlin> g.V().has('author', 'name', 'Emeril Lagasse').out('created').values('name').profile()
```

```
===>Traversal Metrics
Step Count Traversers Time (ms) % Dur
============================================================================================================= 
DsegGraphStep([~label.=(author), name.=(Emeril ... 1 1 2.196 51.37 
query-optimizer 1 1 0.199 51.37 
query-setup 1 1 0.004 0.004 
```

Displaying 1-2 of 2

2 ELEMENTS RETURNED. DURATION: 0.0335.
Using DataStax Enterprise advanced functionality

<table>
<thead>
<tr>
<th>Step Description</th>
<th>Latency (ms)</th>
<th>Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>index-query</td>
<td>0.946</td>
<td></td>
</tr>
<tr>
<td>DsegVertexStep(OUT,[created],vertex)</td>
<td>0.935</td>
<td>21.88</td>
</tr>
<tr>
<td>query-optimizer</td>
<td>0.101</td>
<td></td>
</tr>
<tr>
<td>query-setup</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>vertex-query</td>
<td>0.282</td>
<td></td>
</tr>
<tr>
<td>DsegPropertiesStep([name],value)</td>
<td>1.030</td>
<td>24.11</td>
</tr>
<tr>
<td>query-optimizer</td>
<td>0.044</td>
<td></td>
</tr>
<tr>
<td>query-setup</td>
<td>0.005</td>
<td></td>
</tr>
<tr>
<td>vertex-query</td>
<td>0.347</td>
<td></td>
</tr>
<tr>
<td>vertex-query</td>
<td>0.639</td>
<td></td>
</tr>
<tr>
<td>query-setup</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>NoOpBarrierStep(2500)</td>
<td>0.113</td>
<td>2.64</td>
</tr>
<tr>
<td></td>
<td>4.276</td>
<td></td>
</tr>
</tbody>
</table>

Note the `index-query` used in the first step. `DsegGraphStep` identifies the index type as `materialized`. If an index was not used, `index-query` would be missing from the profile output.

Edge index

- An edge index can narrow the query, such as this one that finds all the outgoing edges for reviews that **John Doe** wrote that have a rating of greater or equal to 3 stars:

  ```
g.V().has('person','name','John Doe').outE().has('stars', gte(3))
  ```

Using `profile()` on the query shows that a global index query was used in the initial step, and the output shown here shows that in the second step, the `ratedByStars` edge index was used to cut the latency of the query.
Tip: The local() step can be used to affect how an edge index narrows a query.

Property index

- A property index can narrow the query, such as this one that finds the countries that Julia Child lived in, starting in the year 1961 (in this case, only one country):

```java
g.V().has('author', 'name','Julia Child').as('author').
local(properties('country').has('startYear', 1961)).value().as('country').
select('author','country').
by('name').by().profile()
```

gremlin> g.V().has('author', 'name','Julia Child').as('author').
......1> local(properties('country').has('startYear', 1961)).value().as('country').
......2> select('author','country').
......3> by('name').by().profile()
```

==>
Traversal Metrics
Step
Count Traversers Time (ms) % Dur
=================================================================================
DsegGraphStep(vertex,[]),(label = author & name ...
1 1 1.274 37.35
query-optimizer
0.253
\_condition=((label = author & name = Julia Child) & (true))
query-setup
0.008
\_isFitted=true
\_isSorted=false
\_isScan=false
index-query
0.557
\_indexType=Materialized
\_usesCache=false
\_statement=SELECT "authorId" FROM
"newComp"."author_p_byName" WHERE "name" = ? LIMIT ?; with
params (java.lang.String) Julia Child, (java.lang.Integer) 50000
\_options=Options{consistency=Optional[ONE],
serialConsistency=Optional.empty, fallbackConsistency=Optional.empty,
pagingState=null, pageSize=-1,
user=Optional.empty, waitForSchemaAgreement=true, async=true}
DsegHasStep@[person]
1 1 0.060 1.76
LocalStep([DsegPropertiesStep([country],propert...
1 1 1.300 38.12
DsegPropertiesStep([country],property,(label ... 1 1 1.149
Using profile() on the query shows that a global index query was used in the initial step, and the output shown here shows that in the second SELECT step, the byStartYear property index was used to cut the latency of the query.

**Tip:** The local() step can also be handy for use with property indexes.

### Using search indexes

DSE Graph leverages DSE Search indexes (page 646) to efficiently filter vertices by properties, and reducing query latency. DSE Search uses a modified Apache Solr (page 432) to create the search indexes. Graph search indexes can be created using textual, numeric and geospatial data.

It is important to note that traversal queries with search predicates can be completed whether a search index exists or not. However, full graph scans will occur without a search index and performance will degrade severely as the graph grows, an unacceptable
solution in a production environment. Create search indexes during schema creation before inserting data and querying the graph. Search indexes will only be created if DSE Search is started in conjunction with DSE Graph. If search indexes are used, the queries must be run on DSE Search nodes in the cluster.

In general, the traversal step will involve a vertex label and can include a property key and a particular property value. In a traversal, the step following \( g.V() \) is generally the step in which an index will be consulted. If a mid-traversal \( V() \) step is called, then an additional indexed step can be consulted to narrow the list of vertices that will be traversed.

In DSE 5.1 and later, textual search indexes are by default indexed in both tokenized (TextField) and non-tokenized (StrField) forms. This means that all textual predicates (token, tokenPrefix, tokenRegex, eq, neq, regex, prefix) will be usable with all textual vertex properties created. Practically, search indexes should be created using the asString() method only in cases where there is absolutely no use for tokenization and text analysis, such as for inventory categories (silverware, shoes, clothing). The asText() method is used if searching tokenized text, such as long multi-sentence descriptions. The query optimizer will choose whether to use analyzed or non-analyzed indexing based on the textual predicate used.

**Note:** Prior to DSE 5.1, search indexes defaulted to asText() for textual property data, if not specified as asString().

Property key indexes defined with asText() or undefined (since this is the default) can use the following options for search:

- token (page 658)
- tokenPrefix (page 658)
- tokenRegex (page 659)

Property key indexes defined with asString() can use the following options for search:

- eq/neq (page 659)
- prefix (page 660)
- regex (page 661)

**Note:** The eq() search cannot be used with property key indexes created with asText() because they contain tokenized data and are therefore not suitable for exact text matches.

In addition, in DSE 5.1 and later, fuzzy search predicates have been added:

- phrase (page 661)
- fuzzy (page 662)
- tokenFuzzy (page 663)

Two of the predicates, fuzzy and tokenFuzzy, can be used with TextField and StrField, respectively, while phrase can be used only with TextField.

**Creating a textual search index**
- An example search index from Creating indexes (page 648) for vertex label recipe that will be used for all examples below:

```
schema.vertexLabel('recipe').index('search').search().
 by('instructions').asText().
 by('name').asString().add()
```

This search index uses DSE Search to index instructions as full text using tokenization, and name as a string. Note that, as of DSE 5.1, only those properties that specifically should be indexed as non-tokenized data must specify asString(). If there are properties that specifically should be indexed only as tokenized data, specify asText().

**Search using token() methods on full text**
- In a traversal query, use a token search to find list the names of all recipes that have the word *Saute* in the instructions. The method token() is used with a supplied word.

```
g.V().has('recipe','instructions', token('Saute')).values('name')
```

Why does this search find these three recipes? Because the instructions for each meet the search requirements:

```
g.V().has('recipe','instructions', token('Saute')).values('instructions')
```

<table>
<thead>
<tr>
<th>index</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Wild Mushroom Stroganoff</td>
</tr>
<tr>
<td>1</td>
<td>Beef Bourguignon</td>
</tr>
<tr>
<td>2</td>
<td>Oysters Rockefeller</td>
</tr>
</tbody>
</table>

Displaying 1-3 of 3

**Search using tokenPrefix() methods on full text**
- In a traversal query, use a token prefix search to list the names of all recipes that have a word that includes a prefix of *Sea* in the instructions. The method tokenPrefix() is used with a supplied prefix (a set of alphanumeric characters).

```
g.V().hasLabel('recipe').has('instructions',
 tokenPrefix('Sea')).values('name', 'instructions')
```
Using DataStax Enterprise advanced functionality

Two recipes are returned, one with the word **Season** in the instructions, and one with the word **seasonings** in the instructions. Case is insensitive in `tokenPrefix()` indexing.

Search using `tokenRegex()` methods on full text

- In a traversal query, use a token regular expression (regex) search to find all recipes that have a word that includes the regular expression specified. The regex, `.*sea.*in.*`, looks for the letters `sea` preceded by any number of other characters and followed by any number of other characters until the letters `in` are found and also followed by any number of other characters in the instructions and list the recipe names. The method `tokenRegex()` is used with a supplied regex.

```
g.V().hasLabel('recipe').has('instructions', tokenRegex('.*sea.*in.*')).values('name','instructions')
```

Note that in this query, only the Oysters Rockefeller recipe is returned because the word **Season** in the Roast Pork Loin recipe does not meet the requirements for the regular expression.

Search using `eq()` on non-token methods on strings

- In a traversal query, use a non-token search to list all recipes that have **Carrot Soup** in the recipe name. Note that this search is case-sensitive, so using **carrot soup** would not find a vertex. The method `eq()` is used with a supplied name.

```
g.V().hasLabel('recipe').has('instructions', Search.tokenPrefix('Sea')).values('name','instructions')
```

<table>
<thead>
<tr>
<th>index</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Roast Pork Loin</td>
</tr>
<tr>
<td>1</td>
<td>The day before, separate</td>
</tr>
<tr>
<td></td>
<td>the meat from the ribs,</td>
</tr>
<tr>
<td></td>
<td>stopping about 1 inch</td>
</tr>
<tr>
<td></td>
<td>before the end of the</td>
</tr>
<tr>
<td></td>
<td>bones. Season the pork</td>
</tr>
<tr>
<td></td>
<td>liberally inside and out</td>
</tr>
<tr>
<td></td>
<td>with salt and pepper</td>
</tr>
<tr>
<td></td>
<td>and refrigerate overnight.</td>
</tr>
<tr>
<td>2</td>
<td>Oysters Rockefeller</td>
</tr>
<tr>
<td>3</td>
<td>Saute the shallots, celery,</td>
</tr>
<tr>
<td></td>
<td>herbs, and seasonings in</td>
</tr>
<tr>
<td></td>
<td>3 tablespoons of the</td>
</tr>
<tr>
<td></td>
<td>butter for 3 minutes.</td>
</tr>
<tr>
<td></td>
<td>Add the watercress and</td>
</tr>
<tr>
<td></td>
<td>let it wilt.</td>
</tr>
</tbody>
</table>

DSE 5.1 Developer Guide Earlier version, latest patch 5.1.15
Using DataStax Enterprise advanced functionality

```
using DataStax Enterprise advanced functionality

g.V().hasLabel('recipe').has('name', eq('Carrot Soup')).values('name')
```

The match is found for the full author name listed. Note that neq() can also be used to find all strings that do not match the specified string.

- In a traversal query, use a non-token search to list all recipes that have Carrot in the recipe name. The method eq() is used with a supplied name.

```
g.V().hasLabel('recipe').has('name', eq('Carrot')).valueMap()
```

No match is found, because only a partial name was specified. For asString() indexes, the string must match.

Search using prefix() on non-token methods on strings

- In a traversal query, use a non-token search to find all authors that have a name beginning with the letter R. The method prefix() is used with a supplied string.

```
g.V().hasLabel('recipe').has('name', prefix('R')).values('name')
```

<table>
<thead>
<tr>
<th>index</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Roast Pork Loin</td>
</tr>
<tr>
<td>1</td>
<td>Ratatouille</td>
</tr>
</tbody>
</table>
Matches are found for each author name that begins with R, provided the recipe name was designated with `asString()` in the search index.

**Search using regex() on non-token methods on strings**
- In a traversal query, use a non-token search to find all recipes that have a name that includes a specified regular expression. The method `regex()` is used with a supplied regex.

```grel
g.V().hasLabel('recipe').has('name', regex('.*ee.*')).values('name')
```

Matches are found for each author name that include the regex `.*ee.*` to find all strings that include `ee` preceded and followed by any number of other characters, provided the recipe name was designated with `asString()` in the search index.

**Search using phrase()**
- The `phrase()` predicate is used with properties designated as TextFields.

Find the exact phrase `Wild Mushroom Stroganoff` in a recipe name:

```grel
g.V().hasLabel('recipe').has('name', phrase('Wild Mushroom Stroganoff',0))
```

The value of `0` designates that the result must be an exact phrase.

The vertex for the correct recipe is returned.

- The `phrase()` predicate can be used for proximity searches, to discover phrases that have terms that are within a certain distance of one another in the tokenized text.

```grel
g.V().hasLabel('recipe').has('name', phrase('Wild Stroganoff',1))
```

The value of `1` designates that the result must only have words in the recipe name that are one term away from one another. In this example, the variation is the addition of the word `Mushroom`.

The vertex for the correct recipe is returned.
The vertex for the correct recipe is returned. A match for
\( g.V().hasLabel('recipe').has('name', \text{phrase}('\text{Wild Mushroom}',1)) \) will
also return the correct vertex, but \( g.V().hasLabel('recipe').has('name', \text{phrase}('\text{Mushroom Wild}',1)) \) will not.

Search using `fuzzy()`

- The `fuzzy()` predicate uses optimal string alignment distance calculations to match properties designated as StrFields. Variations in the letters used in words, such as misspellings, are the focus of this predicate. The edit distance specified refers to the number of transpositions of letters, with a single transposition of letters constituting one edit.

Find the exact name of *James Beard* in an author name:

```mermaid
g.V().hasLabel('author').has('name', fuzzy('James Beard', 0)).values('name')
```

The 0 designates that the result must be an exact match.

```
James Beard
```

- Changing the last value in a `fuzzy()` predicate will find misspellings:

```mermaid
g.V().hasLabel('author').has('name', fuzzy('James Beard', 1)).values('name')
```

The 1 designates that the result matches with an edit distance of at most one.

```
James Beard, Jmaes Beard
```

If an author vertex exists with the misspelling *Jmaes Beard*, the query shown will find both vertices. The value of 1 finds this misspelling because of the single transposition of the letters *a* and *m*.

- Note that searching for a misspelling will find the records with the correct spelling, as well as the misspelled name

```mermaid
g.V().hasLabel('author').has('name', fuzzy('Jmase Beard', 2)).values('name')
```

The 2 designates that the result must match with at most two transpositions.

```
James Beard, Jmaes Beard
```

If an author vertex exists with the misspelling *Jmaes Beard*, the query shown will find both vertices. The value of 2 finds both the misspelling because of the single transposition of letters, *e* and *s* in *Jmaes Beard*, as well as the correct spelling with a second transposition of letters from *Jmase Beard* to *James Beard*.

**Caution:** Specifying an edit distance of 3 or greater matches too many terms for useful results. The resulting search index will be too large to efficiently filter queries.
Search using tokenFuzzy()

- The `tokenFuzzy()` predicate similar to `fuzzy()`, but searches for variation across individual tokens in analyzed textual data (TextFields).

Find the recipe name that includes the word *Wild* while searching for the word with a one-letter misspelling:

```sql
g.V().hasLabel('recipe').has('name',
 tokenFuzzy('Wlid',1)).values('name')
```

The 1 designates that one letter misspelling (one transposition) is acceptable.

Wild Beef Stroganoff

Using two search indexes for a single traversal query

- Create a second search index like an example search index from *Creating indexes* (page 648) for vertex label `author`.

```java
schema.vertexLabel('author').index('search').search().
 by('name').asString().
 by('nickname').ifNotExists().add()
```

This search index will use DSE Search to index `nickname` as full text using tokenization, and `name` as a string.

- This traversal query demonstrates a mid-traversal `V()` that allows a search index for author as well as a search index for recipe to be used to execute the query. The first index uses a `tokenRegex()` to find recipe instructions that start with the word *Braise*; this part of the query is labeled as `r` for use later in the query. Then the search index for author is searched for an author name that starts with the letter *J*, and traversed through an outgoing edge to a vertex where the search found in the first part of the query is found with `where(eq('r'))`.

```java
g.V().has('recipe', 'instructions',
 tokenRegex('Braise.*')).as('r').
V().has('author', 'name',
 prefix('J')).out().where(eq('r')).values('name')
```

Beef Bourguignon
This query traversal finds the recipe Beef Bourguignon authored by Julia Child, and illustrates some of the complexity that can be successfully used with search indexes.

Search using geospatial values

- Geospatial search is used to discover geospatial relationships. Search indexes are used to make such searches possible. First, a search index must be created.

  ```grin
 schema.vertexLabel('FridgeSensor').index('search').search().by('location').ifNotExists().add()
  ```

- Some sample data will be helpful for understanding the search results. Two vertices are entered for fridge sensor:

  ```grin
 graph.addVertex(label, 'FridgeSensor', 'name', 'jones1', 'city_id', 100, 'sensor_id', '60bcae02-f6e5-11e5-9ce9-5e5517507c66',
 'location', Geo.point(-118.359770, 34.171221))
 graph.addVertex(label, 'FridgeSensor', 'name', 'smith1', 'city_id', 100, 'sensor_id', '61deada0-3bb2-4d6d-a606-a44d963f03b5',
 'location', Geo.point(-115.655068, 35.163427))
  ```

  The sensors are named and given a city ID and sensor ID in addition to the location with data type `Point`.

- A query can find all sensors that meet the requirement of being inside the described polygon *Distance* that is designated as a circle with a center at (-110, 30) and a radius of 20 degrees with the method `Geo.inside()`.

  ```grin
 Distance d = Geo.point(-110, 30), 20, Geo.Unit.DEGREES
 g.V().hasLabel('FridgeSensor').has('location', Geo.inside(d)).values('name')
  ```

  More information on geospatial queries can be found in Geospatial traversals (page 728).
Search using numerical values

- Search indexes can also be used for non-textual values:

```java
schema.propertyKey('name').Text().create()
schema.propertyKey('age').Int().create()
schema.vertexLabel('person').properties('name','age').create()
schema.vertexLabel('person').index('search').search().by('name').by('age').add()
```

This example includes a search index by the integer property `age`. Here is data to query:

```java
graph.addVertex(label, 'person','name','Julia','age',56)
graph.addVertex(label, 'person','name','Emeril','age',48)
graph.addVertex(label, 'person','name','Simone','age',50)
graph.addVertex(label, 'person','name','James','age',52)
```

and the query itself:

```java
g.V().has('person','age', gt(50)).values()
```

to find all persons over the age of 50.

```java
==>Julia
==>56
==>James
==>52
```

- To sort the previous search, add additional methods:

```java

g.V().hasLabel("person").has("age", gt(50)).order().by("age", incr).values()
```

to get:

```java
==>James
==>52
==>Julia
==>56
```

Dropping indexes

Dropping indexes from a graph is accomplished with `schema` calls.

**Drop secondary or materialized index**

- To drop an index from the schema, such as the `byMeal` index, identify the index by name. Use `describe()` to examine all indexes for the desired vertex label and find the index name.

```java
schema.vertexLabel('meal').describe()
```
Using DataStax Enterprise advanced functionality

Using the vertex label and index name, remove the index. Run `describe()` again to verify that the index is removed.

```java
schema.vertexLabel('meal').index('byMeal').remove()
schema.vertexLabel('meal').describe()
```

---

**Drop single property in search index**

- To drop a property from a search index in the schema, such as the `nick_name` property, identify the property name. Use `describe()` to examine the search index for the desired vertex label and find the property name.

```java
schema.vertexLabel('author').describe()
```

- Using the vertex label, property name, and index name, remove the index. Run `describe()` again to verify that the index is removed.

```java
schema.vertexLabel('author').index('search').search().properties('nick_name').remove()
```
Using the Gremlin console

Inserting data with Gremlin commands in the Gremlin console.

Getting started - quick start with Gremlin console

Graph databases are useful for discovering simple and complex relationships between objects. Relationships are fundamental to how objects interact with one another and their environment. Graph databases are the perfect representation of the relationships between objects.

Graph databases consist of two elements:

**vertex**

A vertex is an object, such as a person, location, automobile, recipe, or anything else you can think of as nouns.

**edge**

An edge defines the relationship between two vertices. A person can create software, or an author can write a book. Think verbs when you are defining edges.

Both vertices and edges can have properties; for this reason, DSE Graph is classified as a property graph. The properties for both vertices and edges are an important element of storing and querying information from a property graph.

Property graphs are typically quite large, although the nature of querying the graph will vary depending on whether the graph has large numbers of vertices, edges, or both vertices and edges. To get started with graph database concepts, a "toy" graph is used for simplicity. The example used here explores the world of food.
Elements are labeled to distinguish the type of vertices and edges in a graph database. A vertex that will hold information about an author is labeled author. An edge in the graph is labeled authored. Labels specify the types of vertices and edges that make up the graph. Specifying appropriate labels is an important step in graph data modeling (page 610).

Vertices and edges generally have properties. For instance, an author vertex can have a name. Gender and current job are examples of additional properties for an author vertex. Edges also have properties. A created edge can have a timestamp property that identifies when the adjoining recipe vertex was created.

Information in a graph database can be retrieved using graph traversals. Graph traversals "walk" a graph with a single or series of traversal steps that can define a starting point for a traversal and filter the results to find the answers to queries about the graph data.
In order to run graph traversals to retrieve information, data must first be inserted. The steps listed in this section will allow you to gain a rudimentary understanding of DSE Graph with a minimum amount of configuration and schema creation.

1. **Install DSE** *(page 145).*

2. **Start DSE Graph** *(page 1275).*

3. **Start the Gremlin Console.**

   ```
 $ bin/dse gremlin-console

 \,,/
 (o o)
 ----o00o-(3)-o00o-----plugin activated: tinkerpop.tinkergraph
 plugin activated: tinkerpop.server
 plugin activated: tinkerpop.utilities
 ==>Connected - localhost/127.0.0.1:8182-[4edf75f9-ed27-4add-a350-172abe37f701]
 ==>Set remote timeout to 2147483647ms
 ==>All scripts will now be sent to Gremlin Server
 - [localhost/127.0.0.1:8182]-[4edf75f9-ed27-4add-a350-172abe37f701] - type ':remote console' to return to local
 mode
 gremlin>

 Gremlin console sends all commands typed at the prompt to the Gremlin Server that will process the commands. DSE Graph runs a Gremlin Server *tinkerpop.server* on each DSE node. Gremlin console automatically connects to the Gremlin Server. A *graph* must be created that is stored as one graph instance per DSE database keyspace.

 The Gremlin console runs in *remote* mode automatically, processing commands on the Gremlin server. The Gremlin console by default opens a session to run commands on the remote server. The Gremlin console can be switched to run commands locally using:

   ```
   :remote console
   ```

 All commands will need to be submitted remotely once this command is run. Using the command again will switch the context back to the Gremlin server.

4. **Create a graph to hold the data.** The *system* commands are used to run commands that affect graphs in DSE Graph.

   ```
   gremlin> system.graph('test').create()
   
   ==>null
   ```
Once a graph exists, a graph traversal \(g \) is configured that will allow graph traversals to be executed. Graph traversals are used to query the graph data and return results. A graph traversal is bound to a specific traversal source which is the standard OLTP traversal engine.

5. To list all graphs previously created, use:

```plaintext
system.graphs()
```

```plaintext
==>test
==>anotherTest
```

6. Configure a graph traversal \(g \) to use the default graph traversal setting, which is test.g. This step will also create an implicit graph object.

```plaintext
gremlin> :remote config alias g test.g
```

```plaintext
==>g=test.g
```

Note: This command is not available if a graph traversal is aliased with the :remote config alias g some_graph.g command. In order to access the system command, reset the alias with :remote config alias reset

The graph commands usually add vertices or edges to the database, or get other graph information. The \(g \) commands generally do queries to obtain results.

7. First, set the schema mode to Development. Development is a more lenient mode that allows schema to be added at any time during testing. Also allow full scans for testing purposes to inspect the data with broad graph traversals. For production, Production schema mode should be set to prevent interactive schema changes that can lead to anomalous behavior, and full scans should be turned off.

```plaintext
schema.config().option('graph.schema_mode').set('Development')
schema.config().option('graph.allow_scan').set('true')
```

8. Check the number of vertices that exist in the graph using the traversal step count(). There should currently be none, because we have not added data yet. A graph traversal \(g \) is chained with \(V() \) to get all vertices and count() to get the number of vertices.

```plaintext
gremlin> g.V().count()
```

```plaintext
==>0
```

Note:
Note: Be aware that queries doing full graph scans with `g.V().count()` should not be run on large graphs! If multiple DSE nodes are configured, this traversal step intensively walks all partitions on all nodes in the cluster that have graph data.

A simple example is composed of two vertices, one author (Julia Child) and one book (The Art of French Cooking, Vol. 1) with an edge between them to identify that Julia Child authored that book. Without creating any schema, the three elements can be created as shown below. However, DSE Graph makes a best guess at the schema, as we’ll talk about below.

9. First, let’s make a vertex for Julia Child. The vertex label is `author`, and two property key-value pairs are created for `name` and `gender`. Note the use of label to designate the key for a key-value pair that sets the vertex label. Run the command and look at the results using the buttons to display the Raw, Table, and Graph views.

```gremlin
gremlin> juliaChild = graph.addVertex(label,'author', 'name','Julia Child', 'gender','F')
==>{~label=author, member_id=0, community_id=1080937600}
```

Each view displays the same information:
- an auto-generated id, consisting of a member_id, community_id and label

 # The member_id and community_id are used for grouping vertices within the graph (more information (page 711))

Notice: Standard auto-generated ids are deprecated with DSE 6.0. Custom ids (page 638) will undergo changes, and specifying vertex ids with `partitionKey` and `clusteringKey` will likely become the normal method.

As you will see in the next command, a property key can be reused for different types of information. While properties are “global” in the sense that they are used with multiple vertex labels, it is important to understand that when specifying a property in a graph traversal, it is always used in conjunction with a vertex label.

Run the next command to create a book vertex. Don't run any command twice, or you'll create a duplicate in the graph!

10. Create a book in the graph.

```gremlin
==>{~label=book, member_id=1, community_id=1080937600}]
```
As with the author vertex, you can see the id information about the book vertex created.

Run the next two commands. The first command creates the edge between the author and book vertices. The second command is a graph traversal that retrieves the two vertices using `valueMap()`. Use `valueMap()` to check author vertex property key information. The traversal `g` checks all vertices with the traversal step `V()`, and prints out a key-value listing of the property values for each vertex using the traversal step `valueMap()`.

11. Create an edge and display the vertex data.

```
gremlin> juliaChild.addEdge('authored', artOfFrenchCookingVolOne)
gremlin> g.V().valueMap()
gremlin> juliaChild.addEdge('authored', artOfFrenchCookingVolOne)
```

```
==>
ed{
    out_vertex={~label=author, member_id=0,
                 community_id=1080937600},
    local_id=6bd73210-0e70-11e6-b5e4-0febe4822aa4,
    in_vertex={~label=book, member_id=1,
               community_id=1080937600},
    ~type=authored}
    {
      ~label=author,
      member_id=0,
      community_id=1080937600}-authored->
    {
      ~label=book,
      member_id=1,
      community_id=1080937600}

gremlin> g.V().valueMap()
```

```
==>
    {gender=[F],
     name=[Julia Child]}
    {name=[The Art of French Cooking, Vol. 1],
     timestamp=[1961]}
```

Caution: Using `valueMap()` without specifying properties can result in slow query latencies, if a large number of property keys exist for the queried vertex or edge. Specific properties can be specified, such as `valueMap('name')`.

We now have data! The key-value pairs identify the property key and its value for name and gender for the author vertex created, as well as the name and timestamp for the book vertex created.

12. A graph traversal that is a basic starting point for more complex traversal use the `has()` step along with the vertex label author and the property name = Julia Child to identify a particular vertex. This common graph traversal is used because it narrows the search of the graph with specific information.

```
gremlin> g.V().has('author', 'name', 'Julia Child')
```

```
==>v{
    ~label=author,
    member_id=0,
    community_id=1080937600}
```
The id is automatically generated and consists of a vertex label and two components associated with the location of the vertex within the graph. The Anatomy of a Graph Traversal (page 711) explains the id components.

13. If only the value for a particular property key is desired, the traversal step values() step is used. This example below gets the name of all vertices.

```
gremlin> g.V().values('name')
```

Only two vertices exists, so two results are written. If multiple vertices exist, the traversal step returns results for all vertices with a name.

```
==>Julia Child
==>The Art of French Cooking, Vol. 1
```

14. Edge information can also be retrieved. The next command filters all edges to find those with an edge label authored. The edge information displays details about the incoming and outgoing vertices as well as edge parameters id, label, and type.

```
gremlin> g.E().hasLabel('authored')
```

```
==>[out_vertex={~label=author, member_id=0, community_id=1080937600},
    local_id=6bd73210-0e70-11e6-b5e4-0febe4822aa4,
    in_vertex={~label=book, member_id=1, community_id=1080937600},
    ~type=authored}]
```

15. The traversal step count() is useful for counting both the number of vertices and the number of edges. To count edges, use E() rather than V(). You should have one edge.

```
gremlin> g.E().count()
```

```
==>1
```

16. Re-running the vertex count traversal done at the beginning of this tutorial should now yield two vertices.

```
gremlin> g.V().count()
```

```
==>2
```

Before adding more data to the graph, let's stop and talk about schema. Schema is used to define the possible properties and their data types that will be used in the graph. These
Using DataStax Enterprise advanced functionality

properties are then used in the definitions of vertex labels and edge labels. The last critical step in schema creation is index creation. Indexes play an important role in making graph traversals efficient and fast.

More information can be found in the documents about creating schema (page 621) and creating indexes (page 645).

First, let's create schema for the property keys. In the next two cells, the first command clears the schema that was set when we created the first two vertices and edge. After the schema creation is completed, you enter data for those elements again in a longer script.

Note: DSE Graph has two schema modes, Production and Development. In Production mode, all schema must be identified before data is entered. In Development mode, schema can be created after data is entered.

17. Clear the previous schema. A return value of null means that the command is successful.

```
> schema.clear()

null
```

18. Create the property keys.

```
// Property Keys
// Check for previous creation of property key with ifNotExists()
schema.propertyKey('name').Text().ifNotExists().create()
schema.propertyKey('gender').Text().create()
schema.propertyKey('instructions').Text().create()
schema.propertyKey('category').Text().create()
schema.propertyKey('year').Int().create()
schema.propertyKey('timestamp').Timestamp().create()
schema.propertyKey('ISBN').Text().create()
schema.propertyKey('calories').Int().create()
schema.propertyKey('amount').Text().create()
schema.propertyKey('stars').Int().create()
// single() is optional, as it is the default
schema.propertyKey('comment').Text().single().create()
// Example of a multiple property that can have several values
// schema.propertyKey('nickname').Text().multiple().create() //
Next 2 lines define two properties, then create a meta-property 'livedIn' on 'country'
// A meta-property is a property of a property
// EX: 'livedIn': '1999-2005' 'country': 'Belgium'
schema.propertyKey('livedIn').Text().create()
schema.propertyKey('country').Text().multiple().properties('livedIn').create()

// A series of null returns will mark the successful completion of all property key creation
```
Each property must be defined with a data type (page 869). DSE Graph data types are aligned with the DSE database data types. The data types used here are Text, Int, and Timestamp. By default, properties have single cardinality, but can be defined with multiple cardinality. Multiple cardinality allows more than one value to be assigned to a property.

In addition, properties can have their own properties, or meta-properties. Meta-properties can only be nested one deep, and are useful for keying information to an individual property. Notice that property keys can be created with an additional method `ifNotExists()` to prevent overwriting a definition that may already exist. After property keys are created, vertex labels and edge labels can be defined.

19. Create vertex labels and edge labels.

```java
// Vertex Labels
schema.vertexLabel('author').ifNotExists().create()
schema.vertexLabel('recipe').create()
// Example of creating vertex label with properties
//
// schema.vertexLabel('recipe').properties('name','instructions').create()
// Example of adding properties to a previously created vertex label
//
// schema.vertexLabel('recipe').properties('name','instructions').add()

schema.vertexLabel('ingredient').create()
schema.vertexLabel('book').create()
schema.vertexLabel('meal').create()
schema.vertexLabel('reviewer').create()
// Example of custom vertex id:
// schema.propertyKey('city_id').Int().create()
// schema.propertyKey('sensor_id').Uuid().create()
//
// schema().vertexLabel('FridgeSensor').partitionKey('city_id').clusteringKey('sensor_id').create()

// Edge Labels
schema.edgeLabel('authored').ifNotExists().create()
schema.edgeLabel('created').create()
schema.edgeLabel('includes').create()
schema.edgeLabel('includedIn').create()
schema.edgeLabel('rated').connection('reviewer','recipe').create()
```

// A series of null returns will mark the successful completion of all vertex label and edge label creation

```java
null
```

The schema for vertex labels defines the label type, and optionally defines the properties associated with the vertex label. There are two different methods for defining the association of the properties with vertex labels, either during creation,
or by adding them after vertex label addition. The `ifNotExists()` method can be used for any schema creation.

DSE Graph limits the number of vertex labels to 200 per graph.

Vertex ids are automatically generated, but custom vertex ids (page 638) can be created if necessary. This custom vertex id example is explained in further detail in the documentation, but note that `partition keys` and `clustering keys` can be defined.

The schema for edge labels defines the label `type`, and optionally defines the two vertex labels that are connected by the edge label with `connection()`. The `rated` edge label defines edges between adjacent vertices with the outgoing vertex label `reviewer` and the incoming vertex label `recipe`. By default, edges have multiple cardinality, but can be defined with single cardinality. Multiple cardinality allows more than one edge with differing property values but the same edge label to be assigned.

20. Create the indexes.

```java
// Vertex Indexes
// Secondary
schema.vertexLabel('author').index('byName').secondary().by('name').add()
// Materialized
schema.vertexLabel('recipe').index('byRecipe').materialized().by('name').add()
schema.vertexLabel('meal').index('byMeal').materialized().by('name').add()
schema.vertexLabel('ingredient').index('byIngredient').materialized().by('name').add()
schema.vertexLabel('reviewer').index('byReviewer').materialized().by('name').add()
// Search
//
// schema.vertexLabel('recipe').index('search').search().by('instructions').asText().add()
//
// If more than one property key is search indexed
//
// schema.vertexLabel('recipe').index('search').search().by('instructions').asString().add()
// Property index using meta-property 'livedIn':
// schema.vertexLabel('author').index('byLocation').property('country').by('livedIn').add()
// Edge Index
schema.vertexLabel('reviewer').index('ratedByStars').outE('rated').by('stars').add()
```

Indexing (page 645) is a complex and highly important topic. Here, several types of indexes are created. Briefly, secondary and materialized indexes are two types of indexes that use DSE database built-in indexing. Search indexes use DSE Search which is Solr-based. Only one search index per vertex label is allowed,
but multiple properties can be included. Property indexes allow meta-properties indexed. Edge indexes allow properties on edges to be indexed. Note that indexes are added with add() to previously created vertex labels. After running all the cells to create the schema, examine the schema with the following command.

21. Examine the schema.

```
gremlin> schema.describe()
```

The `schema.describe()` command will display schema that can be used to recreate the schema entered. If you enter data without creating schema, this command verifies the data types set for each property.

Currently, in DSE Graph, schema once created cannot be modified. Additional properties, vertex labels, edge labels, and indexes can be created, but the data type of a property, for instance, cannot be changed. While entering data
Using DataStax Enterprise advanced functionality

without schema creation is handy while developing and learning, it is strongly recommended against for actual applications. As a reminder, Production mode disallows schema creation once data is loaded.

22. Should you wish to find only the schema for a particular type of item in the describe() listing, additional steps can split the output per newline and grep for a string as shown for the index. Gremlin as shown in this notebook uses Groovy, so any Groovy commands manipulate graph traversals.

```groovy
gremlin> schema.describe().split('
').grep(~/.*index.*/)  
```

23. Now that schema is created, add more vertices and edges using the following script. To explore more connections in the recipe data model, more vertices and edges are input into the graph. Create a script file, generateRecipe.groovy, with the information shown below. Note the first command, g.V().drop().iterate(); this command drop all vertex and edge data from the graph before reading in new data.

```groovy
// Add all vertices and edges for Recipe
g.V().drop().iterate()
// author vertices
juliaChild = graph.addVertex(label, 'author', 'name', 'Julia Child', 'gender', 'F')
simoneBeck = graph.addVertex(label, 'author', 'name', 'Simone Beck', 'gender', 'F')
louissetteBertholie = graph.addVertex(label, 'author', 'name', 'Louisette Bertholie', 'gender', 'F')
patriciaSimon = graph.addVertex(label, 'author', 'name', 'Patricia Simon', 'gender', 'F')
aliceWaters = graph.addVertex(label, 'author', 'name', 'Alice Waters', 'gender', 'F')
patriciaCurtan = graph.addVertex(label, 'author', 'name', 'Patricia Curtan', 'gender', 'F')
kelsieKerr = graph.addVertex(label, 'author', 'name', 'Kelsie Kerr', 'gender', 'F')
fritzStreiff = graph.addVertex(label, 'author', 'name', 'Fritz Streiff', 'gender', 'M')
emerilLagasse = graph.addVertex(label, 'author', 'name', 'Emeril Lagasse', 'gender', 'M')
jamesBeard = graph.addVertex(label, 'author', 'name', 'James Beard', 'gender', 'M')

// book vertices
Using DataStax Enterprise advanced functionality

```java

// recipe vertices
beefBourguignon = graph.addVertex(label, 'recipe', 'name', 'Beef Bourguignon', 'instructions', 'Braise the beef. Saute the onions and carrots. Add wine and cook in a dutch oven at 425 degrees for 1 hour.')
ratatouille = graph.addVertex(label, 'recipe', 'name', 'Ratatouille', 'instructions', 'Peel and cut the eggplant. Make sure you cut eggplant into lengthwise slices that are about 1-inch wide, 3-inches long, and 3/8-inch thick')
saladeNicoise = graph.addVertex(label, 'recipe', 'name', 'Salade Nicoise', 'instructions', 'Take a salad bowl or platter and line it with lettuce leaves, shortly before serving. Drizzle some olive oil on the leaves and dust them with salt.')
wildMushroomStroganoff = graph.addVertex(label, 'recipe', 'name', 'Wild Mushroom Stroganoff', 'instructions', 'Cook the egg noodles according to the package directions and keep warm. Heat 1 1/2 tablespoons of the olive oil in a large saute pan over medium-high heat.')
spicyMeatloaf = graph.addVertex(label, 'recipe', 'name', 'Spicy Meatloaf', 'instructions', 'Preheat the oven to 375 degrees F. Cook bacon in a large skillet over medium heat until very crisp and fat has rendered, 8-10 minutes.')
oystersRockefeller = graph.addVertex(label, 'recipe', 'name', 'Oysters Rockefeller', 'instructions', 'Saute the shallots, celery, herbs, and seasonings in 3 tablespoons of the butter for 3 minutes. Add the watercress and let it wilt.')
carrotSoup = graph.addVertex(label, 'recipe', 'name', 'Carrot Soup', 'instructions', 'In a heavy-bottomed pot, melt the butter. When it starts to foam, add the onions and thyme and cook over medium-low heat until tender, about 10 minutes.')
roastPorkLoin = graph.addVertex(label, 'recipe', 'name', 'Roast Pork Loin', 'instructions', 'The day before, separate the meat from the ribs, stopping about 1 inch before the end of the bones. Season the pork liberally inside and out with salt and pepper and refrigerate overnight.')

// ingredients vertices
beef = graph.addVertex(label, 'ingredient', 'name', 'beef')
onion = graph.addVertex(label, 'ingredient', 'name', 'onion')
mashedGarlic = graph.addVertex(label, 'ingredient', 'name', 'mashed garlic')
butter = graph.addVertex(label, 'ingredient', 'name', 'butter')
```
tomatoPaste = graph.addVertex(label, 'ingredient', 'name', 'tomato paste')
eggplant = graph.addVertex(label, 'ingredient', 'name', 'eggplant')
zucchini = graph.addVertex(label, 'ingredient', 'name', 'zucchini')
oliveOil = graph.addVertex(label, 'ingredient', 'name', 'olive oil')
yellowOnion = graph.addVertex(label, 'ingredient', 'name', 'yellow onion')
greenBean = graph.addVertex(label, 'ingredient', 'name', 'green beans')
tuna = graph.addVertex(label, 'ingredient', 'name', 'tuna')
tomato = graph.addVertex(label, 'ingredient', 'name', 'tomato')
hardBoiledEgg = graph.addVertex(label, 'ingredient', 'name', 'hard-boiled egg')
eggNoodles = graph.addVertex(label, 'ingredient', 'name', 'egg noodles')
mushroom = graph.addVertex(label, 'ingredient', 'name', 'mushrooms')
bacon = graph.addVertex(label, 'ingredient', 'name', 'bacon')
celery = graph.addVertex(label, 'ingredient', 'name', 'celery')
greenBellPepper = graph.addVertex(label, 'ingredient', 'name', 'green bell pepper')
groundBeef = graph.addVertex(label, 'ingredient', 'name', 'ground beef')
porkSausage = graph.addVertex(label, 'ingredient', 'name', 'pork sausage')
shallot = graph.addVertex(label, 'ingredient', 'name', 'shallots')
chervil = graph.addVertex(label, 'ingredient', 'name', 'chervil')
fennel = graph.addVertex(label, 'ingredient', 'name', 'fennel')
parsley = graph.addVertex(label, 'ingredient', 'name', 'parsley')
oyster = graph.addVertex(label, 'ingredient', 'name', 'oyster')
pernod = graph.addVertex(label, 'ingredient', 'name', 'Pernod')
thyme = graph.addVertex(label, 'ingredient', 'name', 'thyme')
carrot = graph.addVertex(label, 'ingredient', 'name', 'carrots')
chickenBroth = graph.addVertex(label, 'ingredient', 'name', 'chicken broth')
porkLoin = graph.addVertex(label, 'ingredient', 'name', 'pork loin')
redWine = graph.addVertex(label, 'ingredient', 'name', 'red wine')

// meal vertices
SaturdayFeast = graph.addVertex(label, 'meal', 'name', 'Saturday Feast', 'timestamp', '2015-11-30', 'calories', 1000)
EverydayDinner = graph.addVertex(label, 'meal', 'name', 'EverydayDinner', 'timestamp', '2016-01-14', 'calories', 600)
JuliaDinner = graph.addVertex(label, 'meal', 'name', 'JuliaDinner', 'timestamp', '2016-01-14', 'calories', 900)

// author-book edges
juliaChild.addEdge('authored', artOfFrenchCookingVolOne)
simoneBeck.addEdge('authored', artOfFrenchCookingVolOne)
louisetteBertholie.addEdge('authored', artOfFrenchCookingVolOne)
simoneBeck.addEdge('authored', simcasCuisine)
patriciaSimon.addEdge('authored', simcasCuisine)
Using DataStax Enterprise advanced functionality

```
// author - recipe edges
juliaChild.addEdge('created', beefBourguignon, 'year', 1961)
juliaChild.addEdge('created', ratatouille, 'year', 1965)
juliaChild.addEdge('created', saladeNicoise, 'year', 1962)
emerilLagasse.addEdge('created', wildMushroomStroganoff, 'year', 2003)
emerilLagasse.addEdge('created', spicyMeatloaf, 'year', 2000)
aliceWaters.addEdge('created', carrotSoup, 'year', 1995)
aliceWaters.addEdge('created', roastPorkLoin, 'year', 1996)
jamesBeard.addEdge('created', oystersRockefeller, 'year', 1970)

// recipe - ingredient edges
beefBourguignon.addEdge('includes', beef, 'amount', '2 lbs')
beefBourguignon.addEdge('includes', onion, 'amount', '1 sliced')
beefBourguignon.addEdge('includes', mashedGarlic, 'amount', '2 cloves')
beefBourguignon.addEdge('includes', butter, 'amount', '3.5 Tbsp')
beefBourguignon.addEdge('includes', tomatoPaste, 'amount', '1 Tbsp')
ratatouille.addEdge('includes', eggplant, 'amount', '1 lb')
ratatouille.addEdge('includes', zucchini, 'amount', '1 lb')
ratatouille.addEdge('includes', mashedGarlic, 'amount', '2 cloves')
ratatouille.addEdge('includes', oliveOil, 'amount', '4-6 Tbsp')
ratatouille.addEdge('includes', yellowOnion, 'amount', '1 1/2 cups or 1/2 lb thinly sliced')
saladeNicoise.addEdge('includes', oliveOil, 'amount', '2-3 Tbsp')
saladeNicoise.addEdge('includes', greenBean, 'amount', '1 1/2 lbs blanched, trimmed')
saladeNicoise.addEdge('includes', tuna, 'amount', '8-10 ozs oil-packed, drained and flaked')
saladeNicoise.addEdge('includes', tomato, 'amount', '3 or 4 red, peeled, quartered, cored, and seasoned')
saladeNicoise.addEdge('includes', hardBoiledEgg, 'amount', '8 halved lengthwise')
wildMushroomStroganoff.addEdge('includes', eggNoodles, 'amount', '16 ozs wmyIde')
wildMushroomStroganoff.addEdge('includes', mushroom, 'amount', '2 lbs wild or exotic, cleaned, stemmed, and sliced')
wildMushroomStroganoff.addEdge('includes', yellowOnion, 'amount', '1 cup thinly sliced')
spicyMeatloaf.addEdge('includes', bacon, 'amount', '3 ozs diced')
spicyMeatloaf.addEdge('includes', onion, 'amount', '2 cups finely chopped')
spicyMeatloaf.addEdge('includes', celery, 'amount', '2 cups finely chopped')
spicyMeatloaf.addEdge('includes', greenBellPepper, 'amount', '1/4 cup finely chopped')
```
spicyMeatloaf.addEdge('includes', porkSausage, 'amount', '3/4 lbs hot')
spicyMeatloaf.addEdge('includes', groundBeef, 'amount', '1 1/2 lbs chuck')
oystersRockefeller.addEdge('includes', shallot, 'amount', '1/4 cup chopped')
oystersRockefeller.addEdge('includes', celery, 'amount', '1/4 cup chopped')
oystersRockefeller.addEdge('includes', chervil, 'amount', '1 tsp')
oystersRockefeller.addEdge('includes', fennel, 'amount', '1/3 cup chopped')
oystersRockefeller.addEdge('includes', parsley, 'amount', '1/3 cup chopped')
oystersRockefeller.addEdge('includes', oyster, 'amount', '2 dozen on the half shell')
carrotSoup.addEdge('includes', pernod, 'amount', '1/3 cup')
carrotSoup.addEdge('includes', onion, 'amount', '2 medium sliced')
carrotSoup.addEdge('includes', thyme, 'amount', '1 sprig')
carrotSoup.addEdge('includes', carrot, 'amount', '2 1/2 lbs, peeled and sliced')
carrotSoup.addEdge('includes', chickenBroth, 'amount', '6 cups')
roastPorkLoin.addEdge('includes', porkLoin, 'amount', '1 bone-in, 4-rib')
roastPorkLoin.addEdge('includes', redWine, 'amount', '1/2 cup')
roastPorkLoin.addEdge('includes', chickenBroth, 'amount', '1 cup')

// book - recipe edges
beefBourguignon.addEdge('includedIn', artOfFrenchCookingVolOne)
saladeNicoise.addEdge('includedIn', artOfFrenchCookingVolOne)
carrotSoup.addEdge('includedIn', artOfSimpleFood)

// meal - recipe edges
beefBourguignon.addEdge('includedIn', SaturdayFeast)
carrotSoup.addEdge('includedIn', SaturdayFeast)
oystersRockefeller.addEdge('includedIn', SaturdayFeast)
carrotSoup.addEdge('includedIn', EverydayDinner)
roastPorkLoin.addEdge('includedIn', EverydayDinner)
beefBourguignon.addEdge('includedIn', JuliaDinner)
saladeNicoise.addEdge('includedIn', JuliaDinner)

// meal - book edges
EverydayDinner.addEdge('includedIn', artOfSimpleFood)
SaturdayFeast.addEdge('includedIn', simcasCuisine)
JuliaDinner.addEdge('includedIn', artOfFrenchCookingVolOne)
g.V()

Run the script by loading it in Gremlin console:

gremlin> :load /tmp/generateRecipe.groovy
replacing "/tmp" with the directory where you write the script.
Using DataStax Enterprise advanced functionality

// A series of returns for vertices and edges will mark the successful completion of the script

// Sample vertex

===>v[{
  ~label=author, member_id=0,
  community_id=1878171264}
]

// Sample edge

===>e[{
  out_vertex={
    ~label=meal, member_id=27,
    community_id=1989847424},
  local_id=545b88b0-0e7b-11e6-b5e4-0febe4822aa4,
  in_vertex={
    ~label=book, member_id=10,
    community_id=1878171264},
  ~type=includedIn}
]

The property timestamp is a Timestamp data type that corresponds to a valid DSE database timestamp data type.

24. Run the vertex count again.

```
gremlin> g.V().count()
```

===>56

A tool, graphloader, is also available for scripting data loading. See the graphloader (page 744) documentation for information.

Exploring the graph with graph traversals can lead to interesting conclusions.

25. With several author vertices in the graph, a specific name must be given to find a particular vertex. This traversal gets the stored vertex information for the vertex that has the name of Julia Child. Note that the constraint that the vertex is an author is also included in the has clause.

```
gremlin> g.V().has('author','name','Julia Child')
```

===>v[{
  ~label=author, member_id=0,
  community_id=1878171264}]

26. In this next traversal, has() gets the vertex information filtered with name = Julia Child. The traversal step outE() discovers the outgoing edges from that vertex with the authored label.

```
gremlin> g.V().has('name','Julia Child').outE('authored')
```

The edge information is returned:

```
===>e[{
 out_vertex={
 ~label=author, member_id=0,
 community_id=1878171264},
 local_id=521f5450-0e7b-11e6-b5e4-0febe4822aa4,
 in_vertex={
 ~label=book, member_id=10,
 community_id=1878171264},
```
27. If instead, the query is seeking the books that all authors have written, the last example gets edges, but not the adjacent book vertices. Add a traversal step `inV()` to find all the vertices that connect to the outgoing edges, then print the book titles of those vertices. Note how the chained traversal steps go from the vertices along outgoing edges to the adjacent vertices with `V().outE().inV()`. The outgoing edges are given a particular filter value, `authored`.

```plaintext
gremlin> g.V().outE('authored').inV().values('name')
```

```plaintext
The Art of French Cooking, Vol. 1
Simca's Cuisine: 100 Classic French Recipes for Every Occasion
The Art of French Cooking, Vol. 1
The French Chef Cookbook
Simca's Cuisine: 100 Classic French Recipes for Every Occasion
The Art of French Cooking, Vol. 1
The Art of Simple Food: Notes, Lessons, and Recipes from a Delicious Revolution
The Art of Simple Food: Notes, Lessons, and Recipes from a Delicious Revolution
The Art of Simple Food: Notes, Lessons, and Recipes from a Delicious Revolution
The Art of Simple Food: Notes, Lessons, and Recipes from a Delicious Revolution
```

28. Notice that the book titles are duplicated in the resulting list, because a listing is returned for each author. If a book has three authors, three listings are returned. The traversal step `dedup()` can eliminate the duplication.

```plaintext
gremlin> g.V().outE('authored').inV().values('name').dedup()
```

```plaintext
The Art of French Cooking, Vol. 1
Simca's Cuisine: 100 Classic French Recipes for Every Occasion
The French Chef Cookbook
The Art of Simple Food: Notes, Lessons, and Recipes from a Delicious Revolution
```
29. Notice that the book titles are duplicated in the resulting list, because a listing is returned for each author. If a book has three authors, three listings are returned. The traversal step `dedup()` can eliminate the duplication.

```plaintext
gremlin> g.V().outE('authored').inV().values('name').dedup()
```

```plaintext
==>
Simca's Cuisine: 100 Classic French Recipes for Every Occasion
==>
The Art of French Cooking, Vol. 1
==>
The Art of Simple Food: Notes, Lessons, and Recipes from a Delicious Revolution
==>
The French Chef Cookbook
```

30. Refine the traversal by reinserting the `has()` step for a particular author. Find all the books authored by Julia Child.

```plaintext
gremlin> g.V().has('name','Julia Child').outE('authored').inV().values('name')
```

```plaintext
==>
The Art of French Cooking, Vol. 1
==>
The French Chef Cookbook
```

31. The last example and this example accomplish the same result. However, the number of traversal steps and the type of traversal steps can affect performance. The traversal step `outE()` should be used if the edges are explicitly required. In this example, the edges are traversed to get information about connected vertices, but the edge information is not important to the query.

```plaintext
gremlin> g.V().has('name','Julia Child').out('authored').values('name')
```

```plaintext
==>
The Art of French Cooking, Vol. 1
==>
The French Chef Cookbook
```

The traversal step `out()` retrieves the connected book vertices based on the edge label `authored` without retrieving the edge information. In a larger graph traversal, this subtle difference in the traversal can become a latency issue.

32. Additional traversal steps continue to fine-tune the results. Adding another chained `has` traversal step finds only books authored by Julia Child that are published after 1967. This example also displays the use of the `gt`, or greater than function.

```plaintext
gremlin> g.V().has('name','Julia Child').out('authored').has('year', gt(1967)).values('name')
```

```plaintext
==>
The French Chef Cookbook
```
33. When developing or testing, oftentimes a check of the number of vertices with each vertex label can confirm that data has been read. To find the number of vertices by vertex label, use the traversal step `label()` followed by the traversal step `groupCount()`. The `groupCount()` step is useful for aggregating results from a previous step.

```gremlin
gremlin> g.V().label().groupCount()
```

```java
==>{meal=3, ingredient=31, author=10, book=4, recipe=8}
```

34. Write your data to an output file to save or exchange information. A Gryo file is a binary format file that can be used to reload data to DSE Graph. In this next command, graph I/O is used to write the entire graph to a file. Other file formats can be written by substituting `gryo()` with `graphml()` or `graphson()`.

```bash
gremlin> graph.io(gryo()).writeGraph("/tmp/recipe.gryo")
```

**Note:** `graph.io()` is disabled in sandbox mode.

```java
==>null
```

35. To load a Gryo file, use the `graphloader`, after creating a mapping script:

```bash
$ graphloader mappingGRYO.groovy -graph recipe -address localhost
```

Details about loading Gryo data are found in Loading Gryo Data (page 778), in Using DSE Graph Loader (page 744).

**What’s next:**

Further adventures in traversing can be found in Creating queries using traversals (page 711). If you want to explore various loading options, check out the DSE Graph Loader (page 744) or Using DSE Graph (page 618).

**Starting the Gremlin console**

Gremlin is the query language used to interact with DSE Graph. One method of inputting Gremlin code is to use the Gremlin console. The Gremlin console is a useful interactive environment for directly inputting Gremlin to create graph schema, load data, administer graph, and retrieve traversal results. The Gremlin Console is an interface to the Gremlin Server that can interact with DSE Graph.

- Start the Gremlin console using the `dse` command and passing the additional command `gremlin-console`:

```bash
$ bin/dse gremlin-console
```
Three plugins are activated by default, as shown. The Gremlin Server, `tinkerpop.server`, is started so that commands can be issued to DSE Graph. The utilities plugin, `tinkerpop.utilities`, provides various functions, helper methods and imports of external classes that are useful in Gremlin console. TinkerGraph, an in-memory graph that is used as an intermediary for some graph operations is started with `tinkerpop.tinkergraph`. The Gremlin console automatically connects to the remote Gremlin Server.

**Note:** The Gremlin console packaged with DataStax Enterprise does not allow plugin installation like the Gremlin console packaged with Apache TinkerPop.

- Gremlin console help can be displayed with the `-h` flag:

  ```
 $ bin/dse gremlin-console -h
  ```

  usage: gremlin.sh [options] [...]
  
  -C, --color
  colors
  Disable use of ANSI colors
  
  -D, --debug
  output
  Enabled debug Console output
  
  -Q, --quiet
  Console
  Suppress superfluous Console output
  
  -V, --verbose
  Enable verbose Console output
  
  -e, --execute=SCRIPT ARG1 ARG2 ...
  script
  Execute the specified script (SCRIPT ARG1 ARG2 ...) and close the console on completion

  -h, --help
  message
  Display this help message

  -i, --interactive=SCRIPT ARG1 ARG2 ...
  script
  Execute the specified script and leave the console open on completion

  -l
  of
  Set the logging level of components that use standard
Using DataStax Enterprise advanced functionality

<table>
<thead>
<tr>
<th>independent of</th>
<th>logging output</th>
</tr>
</thead>
<tbody>
<tr>
<td>-v, --version</td>
<td>the Console</td>
</tr>
<tr>
<td></td>
<td>Display the version</td>
</tr>
</tbody>
</table>

**Tip:** Use -v to display all lines when loading a file, to discover which line of code causes an error.

- Run the Gremlin console with the `host:port` option to specify a specific host and port:

```
$ bin/dse gremlin-console 127.0.0.1:8182
```

Any hostname or IP address will work to specify the host.

- Run Gremlin console with the `-e` flag to execute one or more scripts:

```
$ bin/dse gremlin-console -e test1.groovy -e test2.groovy
```

If the scripts run successfully, the command will return with the prompt after execution. If errors occur, the standard output will show the errors.

- If you prefer to have Gremlin console open at the script completion, run Gremlin console with the `-i` flag instead of the `-e` flag:

```
$ bin/dse gremlin-console -i test1.groovy -i test2.groovy
```

If the scripts run successfully, the command will return with the Gremlin console prompt after execution. If errors occur, the console will show the errors.

- Discover all Gremlin console commands with help. Console commands are not Gremlin language commands, but rather commands issued to the Gremlin console for shell functionality. The Gremlin console is based on the Groovy shell.

```
:help
```

For information about Groovy, visit:
http://groovy-lang.org

Available commands:

```
:help (:h) Display this help message
? (:?) Alias to: :help
:exit (:x) Exit the shell
:quit (:q) Alias to: :exit
import (:i) Import a class into the namespace
;display (:d) Display the current buffer
:clear (:c) Clear the buffer and reset the prompt counter.
:show (:S) Show variables, classes or imports
:inspect (:n) Inspect a variable or the last result with the GUI object browser
:purge (:p) Purge variables, classes, imports or preferences
```
Creating a graph in the Gremlin console

DataStax Studio creates a graph automatically for each connection that is created. In Gremlin console, a graph must be manually created. In addition to creating the graph, a graph traversal must be aliased to the graph in order to run queries.

1. **Start the Gremlin console** (page 686).

2. **Create a simple graph with default settings to hold the data.**

   ```
 gremlin> system.graph('food').create()
 ==>null
   ```

   **Note:** This command is not available if a graph traversal is aliased with the :remote config alias g some_graph.g command. In order to access the system command, reset the alias with :remote config alias reset

3. **Create a graph with non-default replication (page 866), systemReplication (page 868), and configuration settings (page 865):**

   ```
 system.graph('food2').
   ```
Using DataStax Enterprise advanced functionality

Caution: For graphs created in multi-datacenter clusters, the DSE database settings must use NetworkTopologyStrategy and a replication factor greater than one. If the graph is created with a replication setting of SimpleStrategy and a replication factor of 1, the graph data will be stored across the multiple datacenters rather than localizing the data in the graph datacenter.

The default replication strategy for a multi-datacenter graph is NetworkTopologyStrategy, whereas for a single datacenter, the replication strategy will default to SimpleStrategy. The number of nodes will determine the default replication factor:

<table>
<thead>
<tr>
<th>number of nodes per datacenter</th>
<th>graph_name replication factor</th>
<th>graph_name_system replication factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3</td>
<td>number of nodes per datacenter</td>
<td>number of nodes per datacenter</td>
</tr>
<tr>
<td>greater than 3</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

4. On the remote Gremlin Server, set the alias for the graph traversal g to the graph traversal specified in food. To run traversals, the graph traversal must be aliased to a graph.

```
gremlin> :remote config alias g food.g
=>g=food.g
```

5. A list of all graphs can be retrieved with the following command:

```
gremlin> system.graphs()
=> food
=> test
```

Creating schema in the Gremlin console

Creating a data model (page 611) for a graph database is the critical first step towards creating a schema. Once the data model is designed and a graph is created, defining the
schema for the vertices and edges and their properties is the next step in creating a graph
database. Gremlin-Groovy is packaged with the Apache TinkerPop Gremlin console. Use
either Gremlin-Groovy to create a script that contains the Gremlin commands, or enter the
commands directly into the Gremlin console.

1. Start the Gremlin console (page 686).

2. Create a new graph (page 689) to store the data and alias a graph traversal to run
queries. If you are reusing a graph that you previously created, drop the graph schema
and data (page 697).

3. Optional. If running large scripts, set the timeout value to max to prevent client-side
timeouts. Use this setting to ensure that script processing will complete. This step
cannot be completed in Studio.

   gremlin> :remote config timeout max

4. Optional. If running large scripts, set the evaluation_timeout value to max to prevent
server-side timeouts. Use this setting to ensure that script processing will complete.

   graph.schema().config().option("graph.traversal_sources.g.evaluation_timeout").set("PT10M")

5. A script that creates schema is shown in the Example at the bottom of this page. The
script file is loaded and run on the remote Gremlin Server. This script will not work if
you have previously run scripts from the Quick Start (page 667) unless the schema
and any data has been cleared (page 697) from the graph.

   gremlin> :load /tmp/RecipeSchema.groovy

6. The following steps show the details of the full script broken down into sections.

7. Define the properties for the vertices and the edges. The data type of the property is
specified in addition to a key name. All properties created in this example are Text,
Integers, or Timestamps. Other data types (page 869) are available. Properties
will be used to retrieve selective subsets of the graph and to retrieve stored values.
Properties are global in nature, and the pairing of a vertex label and a property will
uniquely identify a property for use in traversals. Edge properties are expensive to
update, as they are deleted and recreated, so use edge properties in situations that
warrant their use.

   // Property Keys
   // Check for previous creation of property key with ifNotExists()
   schema.propertyKey('name').Text().ifNotExists().create()
   schema.propertyKey('gender').Text().create()
   schema.propertyKey('instructions').Text().create()
   schema.propertyKey('category').Text().create()
   schema.propertyKey('year').Int().create()
   schema.propertyKey('timestamp').Timestamp().create()
   schema.propertyKey('ISBN').Text().create()
Using DataStax Enterprise advanced functionality

```java
// Example of a multiple property that can have several values
// Next 4 lines define two properties, then create a meta-property
'livingIn' on 'country'
// A meta-property is a property of a property
// EX: 'livingIn': '1999-2005' 'country': 'Belgium'
// schema.propertyKey('nickname').Text().multiple().create()
// schema.propertyKey('country').Text().create()
// schema.propertyKey('livingIn').Text().create()

// schema.propertyKey('country').Text().properties('livingIn').create()
```

Property keys can be checked for prior existence with `ifNotExists()`. Property keys can be created with either single or multiple cardinality with `single()` or `multiple()`. The default is single cardinality which does not have to be specified, but it can be explicitly stated as in the example.

Meta-properties, or properties of properties, can be created using `propertyKey()` followed by `properties()`. The property key must exist prior to the creation of a meta-property.

8. Define the vertex labels. The vertex labels identify the type of vertices that can be created.

```java
// Vertex Labels
schema.vertexLabel('author').ifNotExists().create()
schema.vertexLabel('recipe').create()
// Example of creating vertex label with properties
//
// schema.vertexLabel('recipe').properties('name', 'instructions').create()
// schema.vertexLabel('ingredient').create()
// schema.vertexLabel('book').create()
// schema.vertexLabel('meal').create()
// schema.vertexLabel('reviewer').create()
// Example of custom vertex id:
// schema.propertyKey('city_id').Int().create()
// schema.propertyKey('sensor_id').Uuid().create()
//
// schema().vertexLabel('FridgeSensor').partitionKey('city_id').clusteringKey('sensor_id')
```

Vertex labels can be checked for prior existence using `ifNotExists()`. Vertex labels can be created along with properties. Vertex labels can be created with custom vertex ids (page 638), rather than the standard vertex ids (page 711).
Notice: Standard auto-generated ids are deprecated with DSE 6.0. Custom ids (page 638) will undergo changes, and specifying vertex ids with partitionKey and clusteringKey will likely become the normal method.

DSE Graph limits the number of vertex labels to 200 per graph.

9. Define the edge labels. The edge labels identify the type of edges that can be created.

```java
// Edge Labels
schema.edgeLabel('authored').ifNotExists().create()
schema.edgeLabel('created').create()
schema.edgeLabel('includes').create()
schema.edgeLabel('includedIn').create()
schema.edgeLabel('rated').properties('stars').connection('reviewer', 'recipe').create()
```

Edge labels can be checked for prior existence using ifNotExists(). Edge labels can be created with adjacent vertex labels identified using connection() (page 848).

10. Define indexes (page 645) that can speed up the query processing. All types of indexes are presented here.

```java
// Vertex Indexes
// Secondary
schema.vertexLabel('author').index('byName').secondary().by('name').add()
// Materialized
schema.vertexLabel('recipe').index('byRecipe').materialized().by('name').add()
schema.vertexLabel('meal').index('byMeal').materialized().by('name').add()
schema.vertexLabel('ingredient').index('byIngredient').materialized().by('name').add()
schema.vertexLabel('reviewer').index('byReviewer').materialized().by('name').add()
// Search
//
// schema.vertexLabel('recipe').index('search').search().by('instructions').asText().add()
// schema.vertexLabel('recipe').index('search').search().by('instructions').asString().add()
// If more than one property key is search indexed
//
// schema.vertexLabel('recipe').index('search').search().by('instructions').asText().by(''

// Edge Index
schema.vertexLabel('reviewer').index('ratedByStars').outE('rated').by('stars').add()

// Example of property index using meta-property 'livedIn':
//
// schema().vertexLabel('author').index('byLocation').property('country').by('livedIn').a
```

11. After creating the graph schema, examine the schema to verify. This command is included as the last command of the full script.

```java
schema.describe()
```
// RECIPE SCHEMA

// To run in Studio, copy and paste all lines to a cell and run.

// To run in Gremlin console, use the load command
// :load /tmp/RecipeSchema.groovy

// Property Keys
// Check for previous creation of property key with ifNotExists()
schema.propertyKey('name').Text().ifNotExists().create()
schema.propertyKey('gender').Text().create()
schema.propertyKey('instructions').Text().create()
schema.propertyKey('category').Text().create()
schema.propertyKey('year').Int().create()
schema.propertyKey('timestamp').Timestamp().create()
schema.propertyKey('ISBN').Text().create()
schema.propertyKey('book').create()
schema.propertyKey('reviewer').index('byReviewer').materialized().by('name').add()
schema.propertyKey('reviewer').index('ratedByStars').outE('rated').by('stars').add()

// RECIPE SCHEMA

// To run in Studio, copy and paste all lines to a cell and run.

// To run in Gremlin console, use the load command
// :load /tmp/RecipeSchema.groovy

// Property Keys
// Check for previous creation of property key with ifNotExists()
schema.propertyKey('name').Text().ifNotExists().create()
schema.propertyKey('gender').Text().create()
schema.propertyKey('instructions').Text().create()
schema.propertyKey('category').Text().create()
schema.propertyKey('year').Int().create()
schema.propertyKey('timestamp').Timestamp().create()
Using DataStax Enterprise advanced functionality

```
schema.propertyKey('calories').Int().create()
schema.propertyKey('amount').Text().create()
schema.propertyKey('stars').Int().create()
// single() is optional, as it is the default
schema.propertyKey('comment').Text().single().create()
// Example of a multiple property that can have several values
// Next 4 lines define two properties, then create a meta-property
'livedIn' on 'country'
// A meta-property is a property of a property
// EX: 'livedIn': '1999-2005' 'country': 'Belgium'
schema.propertyKey('nickname').Text().multiple().create()
schema.propertyKey('country').Text().create()
// Example of a multiple property that can have several values
// Next 4 lines define two properties, then create a meta-property
'livedIn' on 'country'
// A meta-property is a property of a property
// EX: 'livedIn': '1999-2005' 'country': 'Belgium'
schema.propertyKey('nickname').Text().multiple().create()
schema.propertyKey('country').Text().create()

// Vertex Labels
schema.vertexLabel('author').ifNotExists().create()
schema.vertexLabel('recipe').create()
// Example of creating vertex label with properties
//
schema.vertexLabel('recipe').properties('name','instructions').create()
schema.vertexLabel('ingredient').create()
schema.vertexLabel('book').create()
schema.vertexLabel('meal').create()
schema.vertexLabel('reviewer').create()
// Example of custom vertex id:
// schema.propertyKey('city_id').Int().create()
// schema.propertyKey('sensor_id').Uuid().create()
//
schema().vertexLabel('FridgeSensor').partitionKey('city_id').clusteringKey('sensor_id').create()

// Edge Labels
schema.edgeLabel('authored').ifNotExists().create()
schema.edgeLabel('created').create()
schema.edgeLabel('includes').create()
schema.edgeLabel('includedIn').create()
schema.edgeLabel('rated').properties('stars').connection('reviewer','recipe').create()

// Vertex Indexes
// Secondary
// schema.vertexLabel('author').index('byName').secondary().by('name').add()
// Materialized
schema.vertexLabel('recipe').index('byRecipe').materialized().by('name').add()
schema.vertexLabel('meal').index('byMeal').materialized().by('name').add()
schema.vertexLabel('ingredient').index('byIngredient').materialized().by('name').add()
schema.vertexLabel('reviewer').index('byReviewer').materialized().by('name').add()
// Search
//
schema.vertexLabel('recipe').index('search').search().by('instructions').asText().add()
```
Using DataStax Enterprise advanced functionality

```java
//
// schema.vertexLabel('recipe').index('search').search().by('instructions').asString().add()
// If more than one property key is search indexed
//
// schema.vertexLabel('recipe').index('search').search().by('instructions').asText().by('category').asString().add()

// Edge Index
schema.vertexLabel('reviewer').index('ratedByStars').outE('rated').by('stars').add()

// Property index using meta-property 'livedIn':
// Note: This index is a secondary index on the 'author' vertex label.
// Schema description
// Use to check that the schema is built as desired
//
schema.describe()
```

## Modifying schema

Schema creation is an important part of creating a graph database. It can be necessary to add or modify the schema after initial creation. In **Development mode**, the schema can be modified after data creation. In **Production mode**, schema creation and data loading cannot be mixed. Property keys can be added. Adjacencies can be identified.

### Add property keys to a vertex label

- **Add a property key after schema creation.** The property key must already exist. In the example, the first command builds the property key for the graph, and the second command adds the property key to the vertex label `author`.

  ```java
gremlin> schema.propertyKey('nationality').Text().create()
// Set the property key for the graph

// Add the property key to the vertex label `author`

// The result of adding the property key to the vertex label `author`
```

- **Verify that the property key is built for the vertex label `author`**. Look for the property key named `nationality`.

  ```java
gremlin> schema.vertexLabel('author').describe()
// Display the properties of the `author` vertex label
```

- **The properties `name` and `gender` existed prior to the addition of `nationality`. Any indexes on the vertex label are also displayed.**

- **Add a value for the newly added property key to a vertex.**

  ```java
gremlin> schema.vertexLabel('author').index('byName').secondary().by('name').add()
// Add a value for the `nationality` property key to a vertex
```
Using DataStax Enterprise advanced functionality

Identify the adjacency for two vertices

- Create a vertex label with properties. All the properties must exist prior to creating the vertex label. Add an edge label that identifies the connection (page 848) outgoing vertex and incoming vertex.

```gremlin
schema.vertexLabel('FridgeItem').properties('name','expiration_date','amount').add()
gremlin>
```

```gremlin
schema.edgeLabel('isA').connection('ingredient','FridgeItem').create()
schema.edgeLabel('isA').describe()
schema.edgeLabel("isA").multiple().create()
schema.edgeLabel("isA").connection("ingredient", "FridgeItem").connection("FridgeItem", "ingredient").add()
```

Dropping data, schema, and graphs

Data, schema, and graphs can be dropped in the Gremlin console as follows:

Drop data

- To drop all data without dropping a graph and schema, drop all vertices.

```gremlin
gremlin> g.V().drop().iterate()
```

- To drop specific data, such as all `author` vertices, identify the vertices along with a `drop` traversal step.

```gremlin
gremlin> g.V().hasLabel('author').drop()
```

**Note:** If a very large number of vertices will be dropped with the command shown above, DSE Graph may complain. In that case, modify the `drop()` command in the following manner:

```gremlin
g.V().hasLabel('author').limit(100).drop()
```

and repeat until all vertices are dropped.

- To drop a property key from an edge, such as `rated` edges, identify the edges, the property key `stars` along with a `drop` traversal step.
Using DataStax Enterprise advanced functionality

```plaintext
gremlin> g.E().hasLabel('rated').properties('stars').drop()
```

This query will drop the property key `stars` for all edges that have a `rated` edge label.

```plaintext
gremlin> g.E().hasLabel('rated').properties('stars').valueMap()
```

returns no values.

**Warning:** For data created earlier than DSE 5.0.5, conditions exist that will drop all edges as well as the edge property during a property key drop. See [Dropping edge property drops edges](#).

### Drop schema

- To drop the schema and all data without dropping the graph, use a `clear()` step. Running `describe()` after will verify that the schema is dropped. After the schema is dropped, new schema and data can be loaded to the graph.

```plaintext
gremlin> schema.clear()
```  

```plaintext
equal
```  

**Important:** Currently, certain schema elements such as a vertex label cannot be individually modified or removed. If a change to the schema is necessary, drop the whole schema as detailed above and recreate.

### Drop index

- To drop an index from the schema, such as the `byMeal` index, identify the index by name. Use `describe()` to examine all indexes for the desired vertex label.

```plaintext
gremlin> schema.vertexLabel('meal').describe()
```  

```plaintext
equal
```  

Using the vertex label and index name, remove the index. Running `describe()` again will verify that the index is removed.

```plaintext
gremlin> schema.vertexLabel('meal').index('byMeal').remove()
```  

```plaintext
equal
```  

### Dropping a graph

- Dropping a graph will clear all schema and data as well as deleting the graph. A system command is required to drop a graph. In order to use system commands, the graph traversal alias must be cleared. A configuration reset clears the alias.

```plaintext
gremlin> :remote config alias reset
```
**Note:** System commands are not accessible when a graph is aliased.

```text
==>Aliases cleared
```

- Optional: If unsure of the graph name, examine what graphs exist.

```text
gremlin> system.graphs()

==>food
```

- Drop the desired graph.

```text
gremlin> system.graph('food').drop()

Note: Graphs use many tables in the storage system. If a graph is no longer
in use, drop it to ensure that you stay within the acceptable limit of the number
of tables.

==>null
```

**Inserting data using Gremlin**

The discussion below describes the detailed view of submitting individual commands
to create vertices and edges. However, due to the sessionless nature of the interaction
between the Gremlin console and the remote Gremlin server, all steps must be
submitted in a single script. To load the data shown in the steps below, run the
`generateRecipe.groovy script (page 582)`.

Two methods are shown below, using graph methods and using graph traversal methods.
The graph methods have been benchmarked as several times faster for insertions in
informal testing. The graph traversal methods are useful for on-the-fly insertions during
development.

Although DSE Graph will insert data without previously creating schema, it is best practice
to create schema *(page 690)* prior to data insertion. If inserted without schema, the data
type will often be incorrect. For instance, in the examples below, ISBN is a UUID. However,
if inserted as shown, the data type assigned to ISBN will be Text.

**Using the graph methods addVertex() and addEdge()**

1. Add an author vertex using addVertex().

```text
juliaChild = graph.addVertex(label,'author', 'name','Julia Child',
'gender','F')
```
The vertex is given a descriptive name `juliaChild`, and is given a vertex label of `author`. The name and gender key-value pairs for the property keys are listed.


```java
```

A `book` vertex includes a book name, publishing year, and an ISBN code, if available.

3. Add an edge between an `author` and a `book` using `addEdge()`.

```java
juliaChild.addEdge('authored', frenchChefCookbook)
```

The vertex for Julia Child has an authored edge to the book The French Chef Cookbook.

4. Edges can also have properties, as this example of an edge between a `recipe` and an `ingredient` demonstrates.

```java
beefBourguignon.addEdge('includes', beef, 'amount', '2 lbs')
```

The recipe Beef Bourguignon includes 2 pounds of beef. The `amount` is stored as an edge property. The `recipe` and the `ingredient` vertices must be inserted prior to the edge.

Using the graph traversal methods `addV()` and `add()`

5. Add an `author` vertex using `addV()` and `property()`. Note the use of multiple `property()` steps, one for each property set.

```java
g.addV('author').property('name', 'Julia Child').property('gender', 'F')
```

A vertex label of `author` is defined in the `addV()` step. The name and gender key-value pairs for the property keys are created using two `property()` steps.


```java
```

A `book` vertex includes a book name, publishing year, and an ISBN code, if available.

7. Add an edge between an `author` and a `book` using `addE()`.
Using DataStax Enterprise advanced functionality

```java
g.V().has('author','name','Julia Child').as('a').V().has('book','name','The French Chef Cookbook').addE('authored').to('a')
```

The vertex for Julia Child has an authored edge to the book The French Chef Cookbook. Each vertex is identified by its vertex label and property name. The author vertex is labeled as a and used in the to() step.

8. Edges can also have properties, as this example of an edge between a recipe and an ingredient demonstrates.

```java
g.V().has('recipe','name','Beef Bourguignon').as('a')
 .V().has('ingredient','name','beef').
 addE('includes').from('a').property('amount','2 lbs')
```

The recipe Beef Bourguignon includes 2 pounds of beef. The amount is stored as an edge property. The recipe and the ingredient vertices must be inserted prior to the edge.

**Using GraphSON**

Inserting data with GraphSON, a JSON style file format.

**Inserting data using GraphSON**

GraphSON is JSON data that defines a vertex with its ID and label, outgoing and incoming edges, and properties.

1. Identify the vertex ID and label.

```json
{
 "id":
 {"~label":"author","member_id":35,"community_id":1733329920},
 label":"author",
```

Each vertex must have an identifier. Generally, a label is defined to denote the type of vertex. In this example, the vertex shown is an author vertex.

2. Identify the vertex properties.

```json
"properties":{"gender":[]
 "id":{
 "~label":"author","member_id":35,"community_id":1733329920},
 label":"author",

```DSE 5.1 Developer Guide Earlier version, latest patch 5.1.15

Page 701
Using DataStax Enterprise advanced functionality

Each property is identified with a name, ID, and value. The example shows the author name `Simone Beck`, which has a value of `F`.

3. Add outgoing edges.

```json
"outE": {
 "authored": [{
 "id": {
 "out_vertex": {
 "label": "author", "member_id": 35, "community_id": 1733329920,
 "local_id": "72086b3c-0e6c-11e6-b5e4-0febe4822aa4",
 "in_vertex": {
 "label": "book", "member_id": 52, "community_id": 1733329920,
 "-type": "authored"
 },
 "inV": {
 "label": "book", "member_id": 52, "community_id": 1733329920},
 },
 "id": {
 "out_vertex": {
 "label": "author", "member_id": 35, "community_id": 1733329920,
 "local_id": "72086b32-0e6c-11e6-b5e4-0febe4822aa4",
 "in_vertex": {
 "label": "book", "member_id": 54, "community_id": 1733329920,
 "-type": "authored"
 },
 "inV": {
 "label": "book", "member_id": 54, "community_id": 1733329920}}
 }
 }
}
```

Each edge must have a label and ID. The example shows an `authored` edge. For an outgoing edge as shown in the example, an incoming vertex, `inV`, must be identified by vertex identification.

4. Close and name the GraphSON file, using a suffix of ".json".

**Loading and writing data using GraphSON**

The Tinkerpop GraphSON Reader can be used to load and write data.

1. Start the Gremlin console *(page 686)*.

2. Start a graph instance and create the schema *(page 690)*.
3. Use the DSE Graph Loader to load the GraphSON file (page 780).

4. Writing data out of the graph into a GraphSON file while capturing the original data types of the inserted data can be accomplished with a short script:

```java
gremlin> f = new FileOutputStream("/tmp/recipe_lossless.json");
mapper = graph.io(graphson()).mapper().embedTypes(true).create();
graph.io(graphson()).writer().mapper(mapper).create().writeVertex(f,g.V().next(),BOTH)
=>null
```

A sample of the output shows the class information and data types:

```json
{
 "@class":"java.util.HashMap",
 "id":{
 "@class":"java.util.HashMap",

 "member_id":["java.lang.Long",25],
 "community_id":1989847424
 },
 "label":"meal",
}
```

**Using GraphML**

Inserting data with GraphML, an XML file format.

**Identifying graph schema in GraphML**

Defining the vertices and edges along with their properties is a critical first step in creating a graph database in GraphML. GraphML is an XML format that identifies vertices and edges. The first step in defining a graph in GraphML involves defining the vertex and edge properties. Note that a drawback of using GraphML is that indexes cannot be defined.

1. The GraphML header in the file identifies XML information:

   ```xml
 <?xml version='1.0' encoding='UTF-8'?>
 <graphml xmlns="http://graphml.graphdrawing.org/xmlns"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns
 http://graphml.graphdrawing.org/xmlns/1.1/graphml.xsd">

 2. Create a graph instance to identify schema in a new file.

   ```xml
   <graph id="graph" edgedefault="directed">
   
   3. Define the vertex properties.
Using DataStax Enterprise advanced functionality

4. Define the edge properties.

- The property with id labelE is always defined, as each edge has a edge identifier denoted by the label. Additional edge properties are defined with an ID, attribute name, and attribute type. Note that the for="edge" statement defines each property as an edge property.

Inserting data using GraphML

After the vertex and edge properties are defined, the graph data can be defined. Because GraphML is XML data, the node element <node ...> is used to define a vertex, and the edge element <edge ...> is used to define an edge.

In general, GraphML files have been written from graphs that have previously been created. In DSE Graph, the vertex and edge identification is composed of three parts plus
a label value that are created when a vertex is added with another method like a Gremlin command. These instruction dissect a GraphML file to explain the features.

1. Add vertex data by appending to the GraphML file started in Identifying graph schema (page 703), add vertex data. Each vertex is given a vertex label and some properties. Each vertex property is a key-value pair, using the previously created property keys.

   ```xml
 <node id="{~label=meal, member_id=21, community_id=1579328896}">
 <data key="labelV">meal</data>
 <data key="name">Saturday Feast</data>
 <data key="calories">1000</data>
 <data key="timestamp">2015-11-30T00:00:00Z</data>
 </node>
   ```

Each vertex must have an identifier. Generally, a label is defined to denote the type of vertex. In this example, the vertex shown is a `meal` vertex. Subsequent properties are defined in this example, such as `name` and `calories`.

2. Add an edge.

   ```xml
 <edge id="{
 out_vertex={~label=meal, member_id=22, community_id=1579328896},
 local_id=62b12e83-0e6a-11e6-b5e4-0febe4822aa4,
 in_vertex={~label=book, member_id=27, community_id=1579328896},
 ~type=includedIn"
 source="{~label=meal, member_id=22, community_id=1579328896}"
 target="{~label=book, member_id=27, community_id=1579328896}"
 }
 <data key="labelE">includedIn</data>
 </edge>
   ```

Each edge must have an identifier. In addition, the source and target vertices must be identified to define the starting vertex and the ending vertex of an edge. As with the vertices, a label is defined to denote the type of edge.

3. A GraphML file has ending tags to close the XML statements.

   ```xml
 </graph></graphml>
   ```

4. Close and name the GraphML file, using a `graphml` file extension.

**Loading data using GraphML**

The Apache TinkerPop GraphML Reader can be used to load data.

1. Start the Gremlin console (page 686).

2. Start a graph instance and create the schema (page 690).
3. Use the DSE Graph Loader to load the GraphML file (*page 781*).

**Using Gryo**

Inserting data from a Gryo file.

**Loading data using Gryo**

One file format for importing and exporting data to and from DSE Graph is Gryo, a binary file format.

1. **Start the Gremlin console** (*page 686*).
2. **Start a graph instance and create the schema** (*page 690*).
3. **Use the DSE Graph Loader** to load the Gryo file (*page 778*).

**Discovering properties about graphs and traversals**

After schema and data are inserted into a graph, it is important to verify that the information is correct. Checking simple information about inserted data is a good way to get started with traversals. The `graph.schema()` calls can be used to check how the graph is storing data.

- Use the graph traversal instance `g` to check if data is loaded by checking the count of vertices. Note that the command is a remote command to Gremlin Server, as are all commands of discovery shown below.

  ```
 g.V().count()
  ```

  ```
 ==>56
  ```

- Check the properties of a loaded vertex. Find all the information for the vertex with a name value of *Julia Child*.

  ```
 g.V().has('name','Julia Child').valueMap()
  ```

  ```
 ==(gender=[F], name=[Julia Child])
  ```

- Check the properties of a loaded edge. Find all the information for the edges with a label of *rated*.

  ```
 g.E().hasLabel('rated').values()
  ```

  ```
 ==(5
 ==>Pretty tasty!
 ==>2014-01-01T00:00:00Z
  ```

- Find the id information for vertices:
Using DataStax Enterprise advanced functionality

```
g.V().hasLabel('FridgeSensor').id()

==>{~label=FridgeSensor,
 sensor_id=93c4ec9b-68ff-455e-8668-1056ebc3689f,
 city_id=santaCruz}
==>{~label=FridgeSensor, sensor_id=9c23b683-1de2-4c97-a26a-277b3733732a, city_id=sacramento}
==>{~label=FridgeSensor, sensor_id=eff4a8af-2b0d-4ba9-a063-c170130e2d84, city_id=sacramento}
```

- Discover schema information using a `describe()` step. This traversal step provides a sorted list of the same information as the next alternative below.

```
schema.describe()

==schema.propertyKey("member_id").Smallint().single().create()
schema.propertyKey("instructions").Text().single().create()
schema.propertyKey("amount").Text().single().create()
schema.propertyKey("gender").Text().single().create()
schema.propertyKey("year").Int().single().create()
schema.propertyKey("calories").Int().single().create()
schema.propertyKey("stars").Int().single().create()
schema.propertyKey("community_id").Int().single().create()
schema.propertyKey("ISBN").Text().single().create()
schema.propertyKey("name").Text().single().create()
schema.propertyKey("comment").Text().single().create()
schema.propertyKey("timestamp").Timestamp().single().create()
schema.edgeLabel("authored").multiple().create()
schema.edgeLabel("rated").multiple().properties("timestamp",
 "stars", "comment").create()
schema.edgeLabel("includedIn").multiple().create()
schema.edgeLabel("created").multiple().properties("year").create()
schema.edgeLabel("includes").multiple().properties("amount").create()
schema.vertexLabel("meal").properties("name", "timestamp",
 "calories").create()
schema.vertexLabel("ingredient").properties("name").create()
schema.vertexLabel("author").properties("name", "gender").create()
schema.vertexLabel("book").properties("name", "year",
 "ISBN").create()
schema.vertexLabel("recipe").properties("name",
 "instructions").create()
schema.edgeLabel("authored").connection("author",
 "book").connection("book", "author").add()
schema.edgeLabel("rated").connection("recipe",
 "reviewer").connection("reviewer", "recipe").add()
schema.edgeLabel("includedIn").connection("meal",
 "recipe").connection("book", "meal").connection("recipe",
 "meal").connection("recipe", "meal").add()
schema.edgeLabel("created").connection("author",
 "recipe").connection("recipe", "author").add()
```
Using DataStax Enterprise advanced functionality

```java
schema.edgeLabel("includes").connection("ingredient", "recipe").connection("recipe", "ingredient").add()
gremlin> schema.edgeLabel('includes').describe()
==>

gremlin> schema.edgeLabel("includes").multiple().properties("amount").create()

schema.edgeLabel("includes").connection("ingredient", "recipe").connection("recipe", "ingredient").add()
gremlin> schema.vertexLabel('author').describe()
==>

• An alternative to discover schema information uses a `valueMap()` step on the traversal.

```java
schema.traversal().V().valueMap()

```java
==>{mode=[Development]}
==>{[name=[author]]}
==>{[name=[recipe]]}
==>{[name=[ingredient]]}
==>{[name=[book]]}
==>{[name=[meal]]}
==>{[name=[reviewer]]}
==>{[name=[byName], type=[Secondary]]}
==>{[name=[includedIn], directionality=[Bidirectional], cardinality=[Multiple]]}
==>{[name=[fridgeItem_single]]}
==>{[name=[rated], directionality=[Bidirectional], cardinality=[Multiple]]}
==>{[name=[fridgeItem_multiple]]}
==>{[dataType=[Timestamp], name=[timestamp], cardinality=[Single]]}
==>{[dataType=[Text], name=[ISBN], cardinality=[Single]]}
==>{[dataType=[Text], name=[category], cardinality=[Single]]}
==>{[dataType=[Int], name=[year], cardinality=[Single]]}
==>{[dataType=[ratedByStars], directionality=[OUT]]}
==>{[dataType=[Text], name=[gender], cardinality=[Single]]}
==>{[unique=[false], name=[byIngredient], type=[Materialized]]}
==>{[dataType=[Text], name=[instructions], cardinality=[Single]]}
==>{[unique=[false], name=[byReviewer], type=[Materialized]]}
==>{[unique=[false], name=[byRecipe], type=[Materialized]]}
==>{[unique=[false], name=[byMeal], type=[Materialized]]}
==>{[dataType=[Int], name=[stars], cardinality=[Single]]}
==>{[dataType=[Text], name=[comment], cardinality=[Single]]}
==>{[dataType=[Int], name=[calories], cardinality=[Single]]}
==>{[dataType=[Text], name=[blah], cardinality=[Single]]}
==>{[dataType=[Text], name=[amount], cardinality=[Single]]}
==>{[name=[created], directionality=[Bidirectional], cardinality=[Multiple]]}
==>{[name=[includes], directionality=[Bidirectional], cardinality=[Multiple]]}
==>{[dataType=[Bigint], name=[member_id], cardinality=[Single]]}
==>{[name=[authored], directionality=[Bidirectional], cardinality=[Multiple]]}
```
Caution: Using `valueMap()` without specifying properties can result in slow query latencies, if a large number of property keys exist for the queried vertex or edge. Specific properties can be specified, such as `valueMap('name')`.

- Changing `valueMap()` to `valueMap(true)` adds the id for each field.

```java
graph.schema().traversal().V().valueMap(true)
```
• Running `traversal()` will supply information about the number of schema element exist for vertices and edges, as well as the `TraversalSource` type.

```java
schema.traversal()
```

```java
==>graphtraversalsource[tinkergraph[vertices:58 edges:106],
standard]
```

• A list of all vertex labels using utilities `split()` and `grep()`.

```java
schema.describe().split('
').grep(~/.*vertexLabel.*/)
```

```java
gremlin> schema.describe().split('
').grep(~/.*vertexLabel.*/)
===>schema.vertexLabel("meal").properties("name", "timestamp",
"calories").create()
===>schema.vertexLabel("ingredient").properties("name").create()
===>schema.vertexLabel("ingredient").index("byIngredient").materialized().by("name").add()
===>schema.vertexLabel("test").partitionKey("tester").clusteringKey("foor").create()
===>schema.vertexLabel("FridgeSensor").create()
===>schema.vertexLabel("author").properties("name", "gender",
"nationality").create()
===>schema.vertexLabel("author").index("byName").secondary().by("name").add()
===>schema.vertexLabel("author").index("byAuthor").materialized().by("name").add()
===>schema.vertexLabel("FridgeItem").properties("name",
"expiration_date", "amount").create()
===>schema.vertexLabel("book").properties("name", "year",
"ISBN").create()
===>schema.vertexLabel("recipe").properties("name",
"instructions").create()
===>schema.vertexLabel("recipe").index("byRecipe").materialized().by("name").add()
===>schema.vertexLabel("reviewer").properties("name").create()
===>schema.vertexLabel("reviewer").index("byReviewer").materialized().by("name").add()
```
• Get the name of the current graph.

```java
graph.name()
```

```java
==>quickstart
```

**Creating queries using traversals**

DSE Graph can create complex queries that traverse the relationships of the graph structure. If the complex queries require real-time results, DSE Graph is the best product for discovering answers. Start with the Quick Start (page 667) traversals that increase in complexity in a stepwise fashion. The examples shown here will continue with the Recipe Toy Graph example (page 619).

Additional complex Gremlin recipes can also be found at Apache TinkerPop Recipes.

**Anatomy of a graph traversal**

**Structure of a graph traversal**

Simple traversals can be complex, but generally do not employ specialized techniques such as recursion or branching.

Break down the chain of a graph traversal into traversal steps:

```java
g.V().hasLabel('recipe').count()
```

This graph traversal to find the number of recipes in the graph has four parts:

**The graph traversal `g`**

`g` will return an error if run alone

**All vertices are gathered with `v()`**

All the vertices will be returned. A sample of the result:

```java
gremlin> g.V()
```
Using DataStax Enterprise advanced functionality

Filter out the vertices labeled as a recipe with `hasLabel('recipe')`

Only the vertices that are recipes will be returned:

```
gremlin> g.V().hasLabel('recipe')
```

```
===>v[{~label=recipe, member_id=14, community_id=1878171264}]
===>v[{~label=recipe, member_id=21, community_id=1878171264}]
===>v[{~label=recipe, member_id=19, community_id=1878171264}]
===>v[{~label=recipe, member_id=20, community_id=1878171264}]
===>v[{~label=recipe, member_id=17, community_id=1878171264}]
===>v[{~label=recipe, member_id=18, community_id=1878171264}]
===>v[{~label=recipe, member_id=15, community_id=1878171264}]
===>v[{~label=recipe, member_id=16, community_id=1878171264}]
```

Count the number of vertices with `count()`

The number of vertices returned from the last traversal step is totalled:

```
gremlin> g.V().hasLabel('recipe').count()
```

```
===>8
```

Standard vertex ids are auto-generated, and are guaranteed to be unique. The standard vertex id consists of three parts:

- **member_id**
  - vertex ID within a group
- **community_id**
  - community ID within a graph
- **label**
  - The specified vertex label

Standard vertex ids are synthetic and have a small footprint. The composition is not tied to a domain and are more flexible. Graph partitioning is an important aspect for retrieving graph objects. DSE Graph uses an optimizing algorithm to set the `member_id` and `community_id` for each vertex. The relationship is:

- A graph is a collection of disjoint communities
- A community is a collection of disjoint member vertices

Disjoint sets have no element in common. Therefore, a vertex is a member of exactly one community. In the example above, all vertices are in a couple of communities. The `member_id` is set to a value within each community.

Custom vertex ids can also be created using natural, or externally generated keys. However, applications using custom vertex ids must be manually partitioned and the guarantee of unique keys are up to the user.

Graph traversal with edges

Before trying the traversals displayed below, run the following script either in Studio (copy and paste) or Gremlin console (`:load /tmp/generateReviews.groovy`):
Using DataStax Enterprise advanced functionality

// reviewer vertices
johnDoe = graph.addVertex(label, 'reviewer', 'name', 'John Doe')
johnSmith = graph.addVertex(label, 'reviewer', 'name', 'John Smith')
janeDoe = graph.addVertex(label, 'reviewer', 'name', 'Jane Doe')
sharonSmith = graph.addVertex(label, 'reviewer', 'name', 'Sharon Smith')
betsyJones = graph.addVertex(label, 'reviewer', 'name', 'Betsy Jones')

beefBourguignon = g.V().has('recipe', 'name', 'Beef Bourguignon').tryNext().orElseGet {
  graph.addVertex(label, 'recipe', 'name', 'Beef Bourguignon')
}
spicyMeatLoaf = g.V().has('recipe', 'name', 'Spicy Meatloaf').tryNext().orElseGet {
  graph.addVertex(label, 'recipe', 'name', 'Spicy Meatloaf')
}
carrotSoup = g.V().has('recipe', 'name', 'Carrot Soup').tryNext().orElseGet {
  graph.addVertex(label, 'recipe', 'name', 'Carrot Soup')
}

// reviewer - recipe edges
johnDoe.addEdge('rated', beefBourguignon, 'timestamp',
  Instant.parse('2014-01-01T00:00:00.00Z'), 'stars', 5, 'comment',
  'Pretty tasty!')
johnSmith.addEdge('rated', beefBourguignon, 'timestamp',
  Instant.parse('2014-01-23T00:00:00.00Z'), 'stars', 4)
janeDoe.addEdge('rated', beefBourguignon, 'timestamp',
  Instant.parse('2014-02-01T00:00:00.00Z'), 'stars', 5, 'comment',
  'Yummy!')
sharonSmith.addEdge('rated', beefBourguignon, 'timestamp',
  Instant.parse('2015-01-01T00:00:00.00Z'), 'stars', 3, 'comment', 'It was okay.'
)
johnDoe.addEdge('rated', spicyMeatLoaf, 'timestamp',
  Instant.parse('2015-12-31T00:00:00.00Z'), 'stars', 4, 'comment',
  'Really spicy - be careful!')
sharonSmith.addEdge('rated', spicyMeatLoaf, 'timestamp',
  Instant.parse('2015-07-23T00:00:00.00Z'), 'stars', 3, 'comment', 'Too spicy for me. Use less garlic.'
)
janeDoe.addEdge('rated', carrotSoup, 'timestamp',
  Instant.parse('2015-12-30T00:00:00.00Z'), 'stars', 5, 'comment',
  'Loved this soup! Yummy vegetarian!')

Any number of traversal steps can be chained into a traversal, filtering and transforming
the graph data as required. In some cases, edges will be the result, and perhaps unexpected. Consider the following traversal:

\[
g.V().hasLabel('recipe').has('name', 'Beef Bourguignon').inE().values('comment')
\]

This graph traversal begins as the last traversal did with g.V().hasLabel('recipe'). It is then followed by:

**A traversal step to pick only the vertices with the recipe title specified**

The filter should capture one recipe if recipe titles are unique.
Using DataStax Enterprise advanced functionality

```text
gremlin> g.V().hasLabel('recipe').has('name', 'Beef Bourguignon')
==>v[~label=recipe, member_id=14, community_id=1878171264]
```

A traversal step that retrieves incoming edges
Notice from the two edges sampled from the complete result that edges with any label are filtered with this step. Using `inE('rated')` would be more precise if the target result are only ratings.

```text
gremlin> g.V().hasLabel('recipe').has('name', 'Beef Bourguignon').inE()
==>[out_vertex={~label=reviewer, member_id=4, community_id=857859584},
local_id=ca461ec0-0e7e-11e6-b5e4-0febe4822aa4,
in_vertex={~label=recipe, member_id=14, community_id=1878171264},
~type=rated}

```

Parsing out the comment property from the rated edges
Here, the \texttt{inE()} is specified with the edge label \texttt{rated}. The property values are retrieved for the property key \texttt{comment}:

\begin{verbatim}
gremlin> g.V().hasLabel('recipe').has('name', 'Beef Bourguignon').inE('rated').values('comment')
===>Yummy!
===>Pretty tasty!
===>It was okay.
\end{verbatim}

Building graph traversals one step at a time can yield interesting results and insight into how to create traversals.

The path of a graph traversal

A traversal step exists that will show the path taken by a graph traversal. First, find the results for a traversal that answers the question about what recipes that list beef and carrots as ingredients are included in the cookbooks, given the cookbook and recipe title?

\begin{verbatim}
gremlin> g.V().hasLabel('ingredient').has('name',within('beef','carrots')).in().as('Recipe').out().hasLabel('book').as('Book').select('Book','Recipe').by('name').by('name')
==>[Book:The Art of Simple Food: Notes, Lessons, and Recipes from a Delicious Revolution, Recipe:Carrot Soup]
\end{verbatim}

One expects that the traversal path from \texttt{ingredient} to \texttt{recipe} to \texttt{book}. To check if this assumption is correct, add \texttt{path()} to the end of the traversal.

\begin{verbatim}
gremlin> g.V().hasLabel('ingredient').has('name',within('beef','carrots')).in().as('Recipe').out().hasLabel('book').as('Book').select('Book','Recipe').by('name').by('name').path()
==>[v{{~label=ingredient, member_id=22, community_id=1878171264}}],
v{{~label=recipe, member_id=14, community_id=1878171264}},
v{{~label=book, member_id=10, community_id=1878171264}}],
{Book=The Art of French Cooking, Vol. 1, Recipe=Beef Bourguignon}]
==>[v{{~label=ingredient, member_id=21, community_id=1989847424}}],
v{{~label=recipe, member_id=20, community_id=1878171264}},
v{{~label=book, member_id=13, community_id=1878171264}}],
{Book=The Art of Simple Food: Notes, Lessons, and Recipes from a Delicious Revolution, Recipe=Carrot Soup}]
\end{verbatim}

For each case, notice that the traversal does follow the expected path.

Traversals metrics

In addition to tracing the output of each graph traversal step, metrics can produce interesting insights as well. To add metrics to the last traversal shown, use some additional chained steps:
Using DataStax Enterprise advanced functionality

gremlin> g.V().hasLabel('recipe').has('name', 'Beef Bourguignon').inE('rated').values('comment').profile()
===>Traversal Metrics
Step                               Count Traversers Time (ms)  % Dur
-----------------------------------------------------------------------------------------------
DsegGraphStep(~label.eq(recipe), name.eq(Beef Bourguignon), ...)
  query-optimizer                  1  1 0.979 73.00
  retrieve-new                     0  1 0.115
  iterator-setup                   4  4 0.390
DsegVertexStep(IN,[rated],edge)
  query-optimizer                  1  1 0.286 21.37
  retrieve-new                     0  1 0.014
  iterator-setup                   0  1 0.062
DsegPropertiesStep([comment],value)
  3  3 0.075 5.63
>TOTAL                               - - 1.342 -

The type of traversal step is listed, along with the number of traversers and the time to complete the traversal step. If a traversal step can be processed in parallel, multiple traversers will be employed to retrieve data. Some traversal steps are graph-global requiring retrieval from the entire graph; DsegGraphStep is a graph-global retrieval that finds vertices that match certain conditions. Other traversal steps are graph-local walks and can be processed in parallel; DsegVertexStep is a graph-local walk that walks through the graph along constrained paths. DSE Graph uses automatic query optimization to determine the traversal strategies to efficiently use any index structures that exist.

Looking at the metrics, the question of performance comes to mind. For instance, is there any way to optimize the traversal shown above? In fact, a simple modification results in a time savings:

===>Traversal Metrics
Step                               Count Traversers Time (ms)  % Dur
-----------------------------------------------------------------------------------------------
DsegGraphStep(~label.eq(recipe), name.eq(Beef ...)
  query-optimizer                  1  1 0.733 70.62
  retrieve-new                     0  1 0.143
  iterator-setup                   0  1 0.059
  iterator-setup                   0  1 0.289
Using DataStax Enterprise advanced functionality

---

<table>
<thead>
<tr>
<th>Step Description</th>
<th>Count</th>
<th>Duration</th>
<th>Throughput</th>
</tr>
</thead>
<tbody>
<tr>
<td>DsegVertexStep(IN,[rated],edge)</td>
<td>4</td>
<td>0.241</td>
<td>23.29</td>
</tr>
<tr>
<td>query-optimizer</td>
<td></td>
<td>0.083</td>
<td></td>
</tr>
<tr>
<td>retrieve-new</td>
<td></td>
<td>0.006</td>
<td></td>
</tr>
<tr>
<td>iterator-setup</td>
<td></td>
<td>0.049</td>
<td></td>
</tr>
<tr>
<td>DsegPropertiesStep([comment],value)</td>
<td>3</td>
<td>0.063</td>
<td>6.10</td>
</tr>
<tr>
<td><strong>TOTAL</strong></td>
<td></td>
<td>1.038</td>
<td></td>
</tr>
</tbody>
</table>

The change made is subtle. Two traversal steps, `hasLabel('recipe') .has('name', 'Beef Bourguignon')`, have been replaced by one traversal step, `has('recipe', 'name', 'Beef Bourguignon')`. Although each measurement can vary, generally the second traversal will outperform the first traversal.

In DSE 5.1 and later, DSE Studio 2.0 provides more information on metrics such as index-query, showing the type of query used (Search, Materialized, Secondary). The two examples shown here display a materialized view index and a search index in use:

---

**Using a custom vertex id**

Vertices can be filtered using a `hasId()` traversal step and providing a particular custom vertex id.

```java
g.V().hasId(['~label':'FridgeSensor','city_id':100,'sensor_id':'60bcae02-f6e5-11e5-9ce9-5e5517507c66']).valueMap()
```

A vertex can be queried directly using a custom vertex id.
Using DataStax Enterprise advanced functionality

```java
// Generates review vertices and edges for Recipe Toy Graph
// :load /tmp/generateReviews.groovy

// reviewer vertices
johnDoe = graph.addVertex(label, 'reviewer', 'name', 'John Doe')
johnSmith = graph.addVertex(label, 'reviewer', 'name', 'John Smith')
janeDoe = graph.addVertex(label, 'reviewer', 'name', 'Jane Doe')
sharonSmith = graph.addVertex(label, 'reviewer', 'name', 'Sharon Smith')
betsyJones = graph.addVertex(label, 'reviewer', 'name', 'Betsy Jones')

beefBourguignon = g.V().has('recipe', 'name', 'Beef Bourguignon').tryNext().orElseGet {
 graph.addVertex(label, 'recipe', 'name', 'Beef Bourguignon')
}
spicyMeatLoaf = g.V().has('recipe', 'name', 'Spicy Meatloaf').tryNext().orElseGet {
 graph.addVertex(label, 'recipe', 'name', 'Spicy Meatloaf')
}
carrotSoup = g.V().has('recipe', 'name', 'Carrot Soup').tryNext().orElseGet {
 graph.addVertex(label, 'recipe', 'name', 'Carrot Soup')
}

// reviewer - recipe edges
johnDoe.addEdge('rated', beefBourguignon, 'timestamp', '2014-01-01T00:00:00Z', 'stars', 5, 'comment', 'Pretty tasty!')
johnSmith.addEdge('rated', beefBourguignon, 'timestamp', '2014-01-23T00:00:00Z', 'stars', 4)
janeDoe.addEdge('rated', beefBourguignon, 'timestamp', '2014-02-01T00:00:00Z', 'stars', 5, 'comment', 'Yummy!')
sharonSmith.addEdge('rated', beefBourguignon, 'timestamp', '2015-01-01T00:00:00Z', 'stars', 3, 'comment', 'It was okay.')
johnDoe.addEdge('rated', spicyMeatLoaf, 'timestamp', '2015-12-31T10:56:00Z', 'stars', 4, 'comment', 'Really spicy - be careful!')
sharonSmith.addEdge('rated', spicyMeatLoaf, 'timestamp', '2014-07-23T00:00:00Z', 'stars', 3, 'comment', 'Too spicy for me. Use less garlic.')
janeDoe.addEdge('rated', carrotSoup, 'timestamp', '2015-12-30T01:20:00Z', 'stars', 5, 'comment', 'Loved this soup! Yummy vegetarian!')
```

Run the script by first identifying the script, and then remotely executing it.

Simple Traversals

Returning to the Recipe Toy Graph, let's expand the graph to include reviewers and ratings. Load the following script to add the reviewer vertices and recipe-reviewer edges. You must have run the generateRecipe.groovy script (page 582) previously, so that the recipe vertices exist before loading this script:

```java
// Generates review vertices and edges for Recipe Toy Graph
// :load /tmp/generateReviews.groovy

// reviewer vertices
johnDoe = graph.addVertex(label, 'reviewer', 'name', 'John Doe')
johnSmith = graph.addVertex(label, 'reviewer', 'name', 'John Smith')
janeDoe = graph.addVertex(label, 'reviewer', 'name', 'Jane Doe')
sharonSmith = graph.addVertex(label, 'reviewer', 'name', 'Sharon Smith')
betsyJones = graph.addVertex(label, 'reviewer', 'name', 'Betsy Jones')

beefBourguignon = g.V().has('recipe', 'name', 'Beef Bourguignon').tryNext().orElseGet {
 graph.addVertex(label, 'recipe', 'name', 'Beef Bourguignon')
}
spicyMeatLoaf = g.V().has('recipe', 'name', 'Spicy Meatloaf').tryNext().orElseGet {
 graph.addVertex(label, 'recipe', 'name', 'Spicy Meatloaf')
}
carrotSoup = g.V().has('recipe', 'name', 'Carrot Soup').tryNext().orElseGet {
 graph.addVertex(label, 'recipe', 'name', 'Carrot Soup')
}

// reviewer - recipe edges
johnDoe.addEdge('rated', beefBourguignon, 'timestamp', '2014-01-01T00:00:00Z', 'stars', 5, 'comment', 'Pretty tasty!')
johnSmith.addEdge('rated', beefBourguignon, 'timestamp', '2014-01-23T00:00:00Z', 'stars', 4)
janeDoe.addEdge('rated', beefBourguignon, 'timestamp', '2014-02-01T00:00:00Z', 'stars', 5, 'comment', 'Yummy!')
sharonSmith.addEdge('rated', beefBourguignon, 'timestamp', '2015-01-01T00:00:00Z', 'stars', 3, 'comment', 'It was okay.')
johnDoe.addEdge('rated', spicyMeatLoaf, 'timestamp', '2015-12-31T10:56:00Z', 'stars', 4, 'comment', 'Really spicy - be careful!')
sharonSmith.addEdge('rated', spicyMeatLoaf, 'timestamp', '2014-07-23T00:00:00Z', 'stars', 3, 'comment', 'Too spicy for me. Use less garlic.')
janeDoe.addEdge('rated', carrotSoup, 'timestamp', '2015-12-30T01:20:00Z', 'stars', 5, 'comment', 'Loved this soup! Yummy vegetarian!')
```
Using DataStax Enterprise advanced functionality

```java
gremlin> :load /tmp/generateReviews.groovy
```

The recipes that were previously entered are queried to assign the result to recipe variables. The variables are then used to create the reviewer-recipe edges. These queries make use of two Apache Tinkerpop methods, `tryNext()` and `orElseGet()`; see the Apache Tinkerpop Java API for more information.

Exploring recipe ratings

Check if the vertices are created by counting the number of vertices with the `reviewer` label.

```java
gremlin> g.V().hasLabel('reviewer').count()
==>5
```

List all the reviewer using `values`:

```java
// Get the names of all the reviewers
gremlin> g.V().hasLabel('reviewer').values('name')
==>John Smith
==>Sharon Smith
==>Betsy Jones
==>Jane Doe
==>John Doe
```

Verifying that the reviewers are created is useful, but creating traversals that answer queries is more important. For instance, what does John Doe say about recipes?
Use a query that identifies a vertex label as `reviewer` with a `name` value of John Doe.

```java
g.V().has('reviewer', 'name','John Doe').outE('rated').values('comment')
```

The use of the outgoing edges command `outE('rated')` to find all the recipes that John Doe has rated allows the value of the property `comments` to be retrieved:

```java
==>Pretty tasty!
==>Really spicy - be careful!
```

It might be nice to know which recipes John Doe reviewed, so another traversal can be used.
Using DataStax Enterprise advanced functionality

g.\texttt{V().has('reviewer', 'name', 'John Doe').outE('rated').inV().values('name')} resulting in:

<table>
<thead>
<tr>
<th>Beef Bourguignon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spicy Meatloaf</td>
</tr>
</tbody>
</table>

To find all the reviews that give a recipe more than 3 stars is a reasonable question to ask. Try a traversal using `gt(3)`, or \texttt{greater than 3} to filter the \texttt{stars} values:
Using DataStax Enterprise advanced functionality

```gremlin
g.E().hasLabel('rated').has('stars', gt(3)).valueMap()
==>[stars:4, timestamp:2014-01-23T00:00:00Z]
==>[comment:Loved this soup! Yummy vegetarian!, stars:5,
timestamp:2015-12-30T00:00:00Z]
==>[comment:Yummy!, stars:5, timestamp:2014-02-01T00:00:00Z]
==>[comment:Pretty tasty!, stars:5, timestamp:2014-01-01T00:00:00Z]
==>[comment:Really spicy - be careful!, stars:4,
timestamp:2015-12-31T00:00:00Z]
```

The traversal shown finds each edge that is labeled `rated` and filters the edges found to output only those edges with a star rating of 4 or 5. But this traversal doesn't output the answer to the original question. The traversal needs modification to get the incoming vertices with `inV()`, and to list those incoming vertices by name with `values('name')`

```gremlin
g.E().hasLabel('rated').has('stars', gt(3)).inV().values('name')
==>Beef Bourguignon
==>Spicy Meatloaf
==>Beef Bourguignon
==>Carrot Soup
==>Beef Bourguignon
```

The results indicate that Beef Bourguignon has been rated three times, although we don't have any reviewer information, just duplication of the recipe title in the list.

Returning to the previous query, let's look for more recent reviews. Adding an additional traversal step to filter by the `timestamp` can find the 4 and 5 star ratings using `gte(4)` or `greater than or equal to 4`, with a review date of Jan 1, 2015 or later.

```gremlin
g.E().hasLabel('rated').has('stars', gte(4)).has('timestamp',
gte(Instant.parse('2015-01-01T00:00:00.00Z'))).valueMap()
==>[comment:Loved this soup! Yummy vegetarian!,
timestamp:2015-12-30T00:00:00Z, stars:5]
==>[comment:Really spicy - be careful!, timestamp:2015-12-31T00:00:00Z,
stars:4]
```

Chaining traversal steps together can yield very exacting results. For instance, if we added the `inV().values('name')` to the last query, we'd now refine the results to find all 4-5 star reviews since the beginning of the year 2015.

Manipulating the ratings with statistical functions yields interesting answers. For instance, what is the `mean` value of all the recipe ratings?

```gremlin
g.E().hasLabel('rated').values('stars').mean()
==>4.142857142857143
```

The results show that the reviewers like the recipes they reviewed, and establishes that reviewers in this sample did not write reviews for recipes that they did not like.

Perhaps a prolific reviewer would have a wider range of reviews. Find the maximum number of reviews that a single reviewer has written.
This traversal maps all the outgoing edges using `outE('rated')` of each reviewer and counts them, then determines which count has the highest value using `max()`.

Another measure that can be investigated is the mean rating of each reviewer. This traversal query uses a number of Apache TinkerPop traversal steps.

The `as()` step allows display labels to be created for the two items that will be lists, the reviewer’s name and the mean stars value for each reviewer. These display labels, `reviewer` and `starCount` are then used in a `select()` step that gets each value, first the reviewer’s name using `by('name')` and then the `starCount` using `by(outE('rated').values('stars').mean())`. The `select()` step checks each `reviewer` vertex and then traverses to discover the associated `starCount` value.
Using DataStax Enterprise advanced functionality

by('name').
  by(outE('rated').values('stars').mean())
==>[reviewer: Jane Doe, starCount: 5.0]
==>[reviewer: Betsy Jones, starCount: NaN]
==>[reviewer: John Doe, starCount: 4.5]
==>[reviewer: John Smith, starCount: 4.0]
==>[reviewer: Sharon Smith, starCount: 3.0]

Notice that Betsy Jones is listed as a reviewer, but has not reviewed any recipes. Her starCount lists NaN (not a number). It is clear from the results that Jane Doe really likes at least one recipe, while Sharon Smith does not.

Ordering the results by the starCount, or mean star rating, can allow the highest rater and the lowest rater to be discovered. Here, the traversal steps order().by(select('starCount').decr()) use the output of the select('starCount') step to order the display in decremental order.

gremlin> g.V().hasLabel('reviewer').as('reviewer','starCount').
  select('reviewer','starCount').
  by('name').
  by(outE('rated').values('stars').mean()).
  order().by(select('starCount'), decr)
==>[reviewer: Betsy Jones, starCount: NaN]
==>[reviewer: Jane Doe, starCount: 5.0]
==>[reviewer: John Doe, starCount: 4.5]
==>[reviewer: John Smith, starCount: 4.0]
==>[reviewer: Sharon Smith, starCount: 3.0]

Betsy Jones and her lack of ratings still cause the listing to be incorrect. We could add a traversal step limit(1) to the traversal and get the highest rater, Jane Doe, if Betsy were not listed.

A tricky traversal step, coalesce(), is used to change NaN to a zero value.

gremlin> g.V().hasLabel('reviewer').as('reviewer','starCount').
  select('reviewer','starCount').
  by('name').
  by(coalesce(outE('rated').values('stars'),constant(0)).mean()).
  order().by(select('starCount'), decr)
==>[reviewer: Jane Doe, starCount: 5.0]
==>[reviewer: John Doe, starCount: 4.5]
==>[reviewer: John Smith, starCount: 4.0]
==>[reviewer: Sharon Smith, starCount: 3.0]
==>[reviewer: Betsy Jones, starCount: 0.0]

Note that now Betsy Jones has a starCount of 0.0, the true value.

Find the star rating each reviewer has given to recipes:

g.V().hasLabel('reviewer').as('reviewer','rating').out().as('recipe').
  select('reviewer','rating','recipe').
  by('name').
  by(outE('rated').values('stars')).
by(values('name'))

Note how the recipe name is traversed and named with the step modulator as('recipe') after the reviewer and rating are labeled from the reviewer vertices with as('reviewer', 'rating'). The first two items in the output listing are retrieved starting at the reviewer vertex while the third item is retrieved from the adjacent recipe vertex.

==>{reviewer=John Doe, rating=5, recipe=Beef Bourguignon}
==>{reviewer=John Doe, rating=5, recipe=Spicy Meatloaf}
==>{reviewer=John Smith, rating=4, recipe=Beef Bourguignon}
==>{reviewer=Jane Doe, rating=5, recipe=Beef Bourguignon}
==>{reviewer=Sharon Doe, rating=5, recipe=Beef Bourguignon}
==>{reviewer=Sharon Smith, rating=3, recipe=Beef Bourguignon}

In general, the most interesting statistic from the reviews answers the question about how many people rated a particular recipe, and what the mean rating is for that particular recipe. The graph traversal starts from a recipe vertex this time, and retrieves the recipe name, the number of reviews by counting the incoming edges with inE('rated').count(), and the mean value of the incoming edges with inE('rated').values('stars').mean(). The coalesce() step shown earlier could be used to change all NaN values for meanRating into zeroes.

g.V().hasLabel('recipe').as('recipe','numberOfReviews','meanRating').
  select('recipe','numberOfReviews','meanRating').
  by('name').
  by(inE('rated').count()).
  by(inE('rated').values('stars').mean())

==>{recipe=Beef Bourguignon, numberOfReviews=4, meanRating=4.25}
==>{recipe=Wild Mushroom Stroganoff, numberOfReviews=0, meanRating=NaN}
==>{recipe=Spicy Meatloaf, numberOfReviews=2, meanRating=3.5}
==>{recipe=Ratatouille, numberOfReviews=0, meanRating=NaN}
==>{recipe=Salade Nicoise, numberOfReviews=0, meanRating=NaN}
==>{recipe=Roast Pork Loin, numberOfReviews=0, meanRating=NaN}
==>{recipe=Oysters Rockefeller, numberOfReviews=0, meanRating=NaN}
==>{recipe=Carrot Soup, numberOfReviews=1, meanRating=5.0}

Searching recipes

A common query for recipes is finding recipes that contain a certain ingredient.

g.V().hasLabel('recipe').out().has('name', 'beef').in().hasLabel('recipe').values('name')

==> Beef Bourguignon

A modification allows a query that includes either one ingredient or another.

g.V().hasLabel('recipe').out().has('name', within('beef', 'carrots')).in().hasLabel('recipe')

==> Beef Bourguignon
Using DataStax Enterprise advanced functionality

===>Carrot Soup

Finding all the ingredients for a particular recipe is a common query.

```
g.V().match(
 __.as('a').hasLabel('ingredient'),
 __.as('a').in('includes').has('name','Beef Bourguignon')).
select('a').by('name')
```

This query uses a `match()` step to find a match for the ingredients used to make Beef Bourguignon. The traversal starts by filtering all vertices to find the ingredients, then traverses to the recipe vertices along the `includes` edges using `in('includes')`. This query also uses a Groovy double underscore variable as a private variable for the match method. The results are:

```
==>tomato paste
==>beef
==>onion
==>mashed garlic
==>butter
```

Although `inside()` is most commonly used for geospatial searches, the method can be used to find anything that falls within a particular range of values. An example is finding books that have a publishing date between 1960 and 1970:

```
g.V().has('book', 'year', inside(1960,1970)).valueMap()
```

The results are:

```
==>{'ISBN=[0-394-40135-2], year=[1968], name=[The French Chef Cookbook]}
==>{'year=[1961], name=[The Art of French Cooking, Vol. 1]}
```

Grouping output

Group output from a graph traversal using the `group()` traversal step. For example, display all the vertices by name, grouped by label:

```
g.V().group().by(label).by('name')
```

Note that the meals, ingredients, authors, books, recipes, and reviewers are all grouped in the results:

```
==>{'meal:[JuliaDinner, Saturday Feast, EverydayDinner], ingredient:
 [olive oil, chicken broth, eggplant, pork sausage, green bell pepper, yellow onion, celery, hard-boiled egg, shallots, zucchini, butter, green beans, mashed garlic, onion, mushrooms, bacon, parsley, oyster, tomato, thyme, pork loin, tuna, tomato paste, ground beef, red wine, fennel, Pernod, chervil, egg noodles, carrots, beef], author:[Louisette Bertholie, Kelsie Kerr]}
```

Another example groups all books by year and displays a listing of each year books were published followed by the book titles:

g.V().hasLabel('book').group().by('year').by('name')

and lists:


Grouping for processing using local()

Oftentimes, it is critical to do local processing for a particular step in the graph traversal. The next two examples use the limit() command to show how local() can change the processing from the whole stream entering the query to a portion of the query. First, find just two authors and the year that they have published books:

```
g.V().hasLabel('author').as('author').out().properties('year').as('year').
 select('author','year').
 by('name').
 by().
 limit(2)
```

This query results in returning the first two records in the database:

```plaintext
==>{author=Julia Child, year=vp[year->1961]}
==>{author=Julia Child, year=vp[year->1968]}
```

Using local(), change this query to find the first two books that each author in the graph has published:
Using DataStax Enterprise advanced functionality

g.V().hasLabel('author').as('author').
  local(out()).properties('year').as('year').limit(2)).
  select('author','year').
  by('name').
  by()

Note that up to two books are displayed for each author:

==>{author=Julia Child, year=vp[year->1961]}
==>{author=Julia Child, year=vp[year->1968]}
==>{author=Simone Beck, year=vp[year->1961]}
==>{author=Simone Beck, year=vp[year->1972]}
==>{author=Louise Bertholie, year=vp[year->1961]}
==>{author=Patricia Simon, year=vp[year->1972]}
==>{author=Alice Waters, year=vp[year->2007]}
==>{author=Patricia Curtan, year=vp[year->2007]}
==>{author=Kelsie Kerr, year=vp[year->2007]}
==>{author=Fritz Streiff, year=vp[year->2007]}

The traversal step local() has many applications for processing a subsection of a graph
within a graph traversal to return results before moving on to further processing.

Geospatial traversals

Geospatial queries are used to discover geospatial information. All geospatial data types
(points, linestrings, and polygons) can be searched for specified values with simple
queries. More interesting traversal queries discover points or linestrings within a radius
from a specified point or within a specified geospatial polygon.

   Important: All points must be specified in (longitude, latitude) following WKT
   format.

Distance calculations are crucial to proper results. DSE Search indexes can be created for
geospatial data in DSE Graph, and DSE Search uses the Haversine formula to determine
the great-circle distance between two points. DSE Search indexes cannot be created for
polygons, but are essential to making geospatial point and linestring queries performant.

   Note: A point of confusion can occur if the same geospatial query is run with or
   without a DSE Search index. Without a search index, geospatial queries always
   return exact results. DSE Search indexes, however, trade off write performance
   and index size for query accuracy with two tunable parameters, maxDistErr
   (default: 0.000009) and distErrPct (default: 0.025). Inconsistent
   results in these two cases are due to the distance calculation algorithm variation
   of the default values of these parameters. DSE Graph can pass values for
   these two parameters when creating the search index. Change maxDistErr in
   withError(maxDistErr, distErrPct) to 0.0 to force both index-backed and
   non-index-backed queries to yield the same value:

   schema.vertexLabel('location').index('search').search().by('point').withError(0.000009,0.0)
Schema and data

The examples here use the following schema:

```
// SCHEMA
// POINT
schema.propertyKey('name').Text().create()
schema.propertyKey('point').Point().withGeoBounds().create()
schema.vertexLabel('location').properties('name','point').create()
// LINESTRING
schema.propertyKey('line').Linestring().withGeoBounds().create()
schema.vertexLabel('lineLocation').properties('name','line').create()
// POLYGON
schema.propertyKey('polygon').Polygon().withGeoBounds().create()
schema.vertexLabel('polyLocation').properties('name','polygon').create()
// MATERIALIZED VIEW INDEXES
schema.vertexLabel('location').index('byname').materialized().by('name').add()
schema.vertexLabel('lineLocation').index('byname').materialized().by('name').add()
schema.vertexLabel('polyLocation').index('byname').materialized().by('name').add()
// SEARCH INDEX - ONLY WORKS FOR POINT AND LINESTRING
schema.vertexLabel('location').index('search').search().by('point').add()
schema.vertexLabel('lineLocation').index('search').search().by('line').add()
```

The example use the following data:

```
// Create a point
graph.addVertex(label, 'location', 'name', 'Paris', 'point', Geo.point(2.352222, 48.856614))
graph.addVertex(label, 'location', 'name', 'London', 'point', Geo.point(-0.127758, 51.507351))
graph.addVertex(label, 'location', 'name', 'Dublin', 'point', Geo.point(-6.26031, 53.349805))
graph.addVertex(label, 'location', 'name', 'Aachen', 'point', Geo.point(6.083887, 50.775346))
graph.addVertex(label, 'location', 'name', 'Tokyo', 'point', Geo.point(139.691706, 35.689487))

// Create a linestring
graph.addVertex(label, 'lineLocation', 'name', 'ParisLondon', 'line',
 "LINESTRING(2.352222 48.856614, -0.127758 51.507351)")
graph.addVertex(label, 'lineLocation', 'name', 'LondonDublin', 'line',
 "LINESTRING(-0.127758 51.507351, -6.26031 53.349805)")
graph.addVertex(label, 'lineLocation', 'name', 'ParisAachen', 'line',
 "LINESTRING(2.352222 48.856614, 6.083887 50.775346)")
graph.addVertex(label, 'lineLocation', 'name', 'AachenTokyo', 'line',
 "LINESTRING(6.083887 50.775346, 139.691706 35.689487)")

// Create a polygon
graph.addVertex(label, 'polyLocation', 'name', 'ParisLondonDublin',
 'polygon', Geo.polygon(2.352222, 48.856614, -0.127758, 51.507351,
 -6.26031, 53.349805))
graph.addVertex(label, 'polyLocation', 'name', 'LondonDublinAachen',
 'polygon', Geo.polygon(-0.127758, 51.507351, -6.26031, 53.349805,
 6.083887, 50.775346))
```
Using DataStax Enterprise advanced functionality

```java
graph.addVertex(label, 'polyLocation', 'name', 'DublinAachenTokyo', 'polygon', Geo.polygon(-6.26031, 53.349805, 6.083887, 50.775346, 139.691706, 35.689487))
```

The example data has the following approximate distances:

```javascript
// PARIS TO LONDON: 3.08 DEGREES; 344 KM; 214 MI; 344,000 M
// PARIS TO AACHEN: 3.07 DEGREES; 343 KM; 213 MI; 343,000 M
// PARIS TO DUBLIN: 7.02 DEGREES; 781 KM; 485 MI; 781,000 M
// PARIS TO TOYKO: 86.3 DEGREES; 9713 KM; 6035 MI; 9,713,000 M
```

Find stored geospatial data that matches specified information

Find the stored data that matches a point mapped to the specified (longitude, latitude):

```java
g.V().
has('location','point', Geo.point(2.352222, 48.856614)).
valueMap()
```

results in:

```javascript
{name=[Paris], point=[POINT (2.352222 48.856614)]}
```

Find the stored data that matches a line mapped to the specified points:

```java
g.V().
has('lineLocation','line', Geo.lineString(2.352222, 48.856614, -0.127758, 51.507351)).
valueMap()
```

results in:

```javascript
{line=[LINESTRING (2.352222 48.856614, -0.127758 51.507351)], name=[ParisLondon]}
```

Find the stored data that matches a polygon mapped to the specified points:

```java
g.V().
has('polyLocation', 'polygon', Geo.polygon(2.352222, 48.856614, -0.127758, 51.507351, -6.26031, 53.349805)).
valueMap()
```

results in:

```javascript
{polygon=[POLYGON ((2.352222 48.856614, -0.127758 51.507351, -6.26031 53.349805, 2.352222 48.856614))], name=[ParisLondonDublin]}
```

Find stored geospatial points or linestrings within a specified radius from a specified point

These queries, as well as the queries that use a specified geospatial polygon use a method `Geo.inside()` that specifies a point, a radius, and the units to be used.

Several units are available with use of the `Geo.inside()` method:
DEGREES
Degrees of distance. One degree of latitude is approximately 111.2 kilometers, whereas one degree of longitude depends on the distance from the equator. At the equator, one degree of longitude equals 111.2 kilometers, but at 45 degrees of latitude, one degree of longitude is 78.6 kilometers. While the physical distance over a single degree of longitude changes with latitude, we calculate only great-circle distances in degrees.

KILOMETERS
Kilometers of distance.

MILES
Miles of distance.

METERS
Meters of distance.

Find all the cities (points) within a radius from a particular location (centerpoint):

```java
g.V().
has('location', 'point', Geo.inside(Geo.point(2.352222, 48.856614),
 4.2, Geo.Unit.DEGREES)).
values('name')
```

lists:

- Paris
- London
- Aachen

Centering the query on Paris and searching within 4.2 degrees returns three cities: Paris, London, and Aachen from the dataset.

Find all the linestrings within a radius from a particular location (centerpoint):

```java
g.V().
has('lineLocation', 'line', Geo.inside(Geo.point(2.352222, 48.856614),
 9713, Geo.Unit.KILOMETERS)).
values('name')
```

lists:

- ParisLondon
- LondonDublin
- AachenTokyo
- ParisAachen

Centering the query on Paris and searching within 9713 kilometers returns four stored linestrings: Paris to London, London to Dublin, Aachen to Tokyo, and Paris to Aachen. Note that London to Dublin was not a stored linestring.

Find stored geospatial points or linestrings within a specified geospatial polygon

Polygons may be used in these queries with a search index on point.
Note: If a query is not backed by a search index, the results are consistent with geospatial coordinates, automatically defined using `withGeoBounds()`. This means that queries will return accurate results if the polygon crosses the international dateline. A query not backed by a search index will only use Cartesian coordinates if the underlying graph property keys are declared using `withBounds()`.

Find all cities (points) within a specified geospatial polygon:

```reason
// Query 1
G.V().
 has('location', 'point', Geo.inside(Geo.polygon(-6.26031, 53.349805, 6.083887, 50.775346, 139.691706, 35.689487))).
values('name')
```

lists:

- Dublin
- Aachen
- Tokyo

This result is not surprising, since the three points used to create the polygon represent the three cities discovered.

Find all cities (points) within a specified geospatial polygon generated with a WKT tool:

```reason
// Query 2
G.V().
 has('location', 'point', Geo.inside(Geo.polygon(-7.9541015625, 55.148273231753834, -9.6240234375, 51.47539580264131, 1.0986328125, 50.86924482345238, 0.5712890625, 53.29887631763788, -7.9541015625, 55.148273231753834))).
values('name')
```

lists:

- London
- Dublin

The polygon used encompasses most of the Republic of Ireland as well as the southern half of the United Kingdom, and finds London and Dublin within the polygon.

find linestrings within a polygon

```reason
// Query 3
G.V().
 has('lineLocation', 'line', Geo.inside(Geo.polygon(-6.26031, 53.349805, 6.083887, 50.775346, 139.691706, 35.689487))).
values('name')
```

lists:

- AachenTokyo

Since two of the points in the specified polygon represent Aachen and Tokyo, it is reassuring that the linestring of Aachen to Tokyo is found.
Schema and data

The examples here use the following schema:

```java
//SCHEMA
// PROPERTY KEYS
// Check for previous creation of property key with ifNotExists()
schema.propertyKey('name').Text().ifNotExists().create()
schema.propertyKey('gender').Text().ifNotExists().create()
schema.propertyKey('location').Point().withGeoBounds().ifNotExists().create()

// VERTEX LABELS
schema.vertexLabel('author').properties('name','gender').ifNotExists().create()
schema.vertexLabel('place').properties('name','location').create()

// EDGE LABELS
schema.edgeLabel('livesIn').connection('author','place').ifNotExists().create()

// VERTEX INDEXES
// Secondary
schema.vertexLabel('author').index('byName').secondary().by('name').add()
// Search
schema.vertexLabel('author').index('search').search().by('name').asString().ifNotExists().add()

//PLACE INDEXES

// VERTEX INDEXES
// Secondary
schema.vertexLabel('place').index('search').search().by('location').asString().ifNotExists().add()

//place INDEXES

The examples use the following data:

```java
//VERTICES
// AUTHOR VERTICES
juliaChild = graph.addVertex(label, 'author', 'name','Julia Child',
'gender', 'F')
simoneBeck = graph.addVertex(label, 'author', 'name', 'Simone Beck',
'gender', 'F')
louisetteBertholie = graph.addVertex(label, 'author', 'name',
'Louisette Bertholie', 'gender', 'F')
patriciaSimon = graph.addVertex(label, 'author', 'name', 'Patricia
Simon', 'gender', 'F')
aliceWaters = graph.addVertex(label, 'author', 'name', 'Alice Waters',
'gender', 'F')
patriciaCurtan = graph.addVertex(label, 'author', 'name', 'Patricia
Curtan', 'gender', 'F')
kelsieKerr = graph.addVertex(label, 'author', 'name', 'Kelsie Kerr',
'gender', 'F')
fritzStreiff = graph.addVertex(label, 'author', 'name', 'Fritz
Streiff', 'gender', 'M')
emerilLagasse = graph.addVertex(label, 'author', 'name', 'Emeril
Lagasse', 'gender', 'M')
jamesBeard = graph.addVertex(label, 'author', 'name', 'James Beard',
'gender', 'M')

// PLACE VERTICES
newYork = graph.addVertex(label, 'place', 'name', 'New York',
'location', Geo.point(74.0059,40.7128));
paris = graph.addVertex(label, 'place', 'name', 'Paris', 'location',
Geo.point(2.3522, 48.8566));
```
Using DataStax Enterprise advanced functionality

```java
newOrleans = graph.addVertex(label, 'place', 'name', 'New Orleans', 'location', Geo.point(90.0715, 29.9511));
losAngeles = graph.addVertex(label, 'place', 'name', 'Los Angeles', 'location', Geo.point(118.2437, 34.0522));
london = graph.addVertex(label, 'place', 'name', 'London', 'location', Geo.point(-0.1278, 51.5074));
chicago = graph.addVertex(label, 'place', 'name', 'Chicago', 'location', Geo.point(-87.6298, 41.8781136));
tokyo = graph.addVertex(label, 'place', 'name', 'Tokyo', 'location', Geo.point(139.6917, 35.6895));

// EDGES
juliaChild.addEdge('livesIn', newYork);
simoneBeck.addEdge('livesIn', paris);
louisetteBertholie.addEdge('livesIn', london);
patriciaSimon.addEdge('livesIn', newYork);
aliceWaters.addEdge('livesIn', losAngeles);
patriciaCurtan.addEdge('livesIn', chicago);
kelsieKerr.addEdge('livesIn', tokyo);
fritzStreiff.addEdge('livesIn', tokyo);
emerilLagasse.addEdge('livesIn', newOrleans);
jamesBeard.addEdge('livesIn', london);
```

Of course, this data can be loaded using the DSE Graph Loader (page 744) as well, from CSV or other formatted files.

Find authors who live within a certain distance from a specified city in sorted order

First list the place names for all cities within the given radius (50 degrees) from New York (the approximate centerpoint listed:

```java
g.V().has('place', 'location', Geo.inside(Geo.point(74.0, 40.5), 50, Geo.Unit.DEGREES)).values('name')
```

results in:

```text
==>New York
==>Paris
==>New Orleans
==>Los Angeles
```

Now list the place names and authors who live in those cities for all cities within the given radius (50 degrees) from New York (the approximate centerpoint), sorted in alphabetical order:

```java
// Order by name, not by distance from location point given
g.V().has('place', 'location', Geo.inside(Geo.point(74.0, 40.5), 50, Geo.Unit.DEGREES)).
order().by('name').
as('Location').
in().as('Author').
select('Location', 'Author').
```
This query uses some additional methods such as `order()` and `select()` that are explained in Simple Traversals (page 718).

Now list the place names and authors who live in those cities for all cities within the given radius (50 degrees) from New York (the approximate centerpoint), sorted by the distance from the centerpoint:

```java
// Order by distance from NYC
g.V().has('place', 'location', Geo.inside(Geo.point(74.0,40.5),50,Geo.Unit.DEGREES)).
.order().by{it.value('location').getOgcGeometry().distance(Geo.point(74.0059,40.7128).getOgcGeometry())}.
as('Location').in().as('Author').select('Location', 'Author').by('name').by('name')
```

This query introduces some additional methods that must be imported in order for the query to succeed: `getOgcGeometry()` and `distance()`. Importing the library is accomplished in the original script using:

```java
import com.esri.core.geometry.ogc.OGCGeometry;
```

Cartesian spatial traversals

Cartesian spatial queries are used to discover Cartesian (graphable) information. All Cartesian data types (points, linestrings, and polygons) can be searched for specified values with simple queries. More interesting traversal queries discover points or linestrings within a radius from a specified point or within a specified spatial polygon.

DSE Search indexes can be created to decrease the latency in response time, but are not required. Create schema to use a search index for point and linestring properties in the Cartesian schema (page 631).
Schema and data

The examples here use the following schema:

```java
// SCHEMA
// POINT
schema.propertyKey('name').Text().create()
schema.propertyKey('point').Point().withBounds(-3, -3, 3, 3).create()
schema.vertexLabel('location').properties('name', 'point').create()

// LINESTRING
schema.propertyKey('line').Linestring().withBounds(-3, -3, 3, 3).create()
schema.vertexLabel('lineLocation').properties('name', 'line').create()

// POLYGON
schema.propertyKey('polygon').Polygon().withBounds(-3, -3, 3, 3).create()
schema.vertexLabel('polyLocation').properties('name', 'polygon').create()

// MATERIALIZED VIEW INDEXES
schema.vertexLabel('location').index('byname').materialized().by('name').add()
schema.vertexLabel('lineLocation').index('byname').materialized().by('name').add()
schema.vertexLabel('polyLocation').index('byname').materialized().by('name').add()

// SEARCH INDEX - ONLY WORKS FOR POINT AND LINESTRING
schema.vertexLabel('location').index('search').search().by('point').add()
schema.vertexLabel('lineLocation').index('search').search().by('line').add()
```

The example use the following data:

```java
// Create a point
graph.addVertex(label, 'location', 'name', 'p0', 'point', Geo.point(0.5, 0.5))
graph.addVertex(label, 'location', 'name', 'p1', 'point', Geo.point(1.1))
graph.addVertex(label, 'location', 'name', 'p2', 'point', Geo.point(-1, 1))
graph.addVertex(label, 'location', 'name', 'p3', 'point', Geo.point(-2, -2))
graph.addVertex(label, 'location', 'name', 'p4', 'point', Geo.point(2, 2))

// Create a linestring
graph.addVertex(label, 'lineLocation', 'name', 'l1', 'line',
                "LINESTRING(0 0, 1 1)")
graph.addVertex(label, 'lineLocation', 'name', 'l2', 'line',
                "LINESTRING(0 0, -1 1)")
graph.addVertex(label, 'lineLocation', 'name', 'l3', 'line',
                "LINESTRING(0 0, -2 -2)")
graph.addVertex(label, 'lineLocation', 'name', 'l4', 'line',
                "LINESTRING(0 0, 2 -2)")

// Create a polygon
graph.addVertex(label, 'polyLocation', 'name', 'g1',
                'polygon', Geo.polygon(0, 0, 1, 1, 0, 1, 0, 0))
graph.addVertex(label, 'polyLocation', 'name', 'g2',
                'polygon', Geo.polygon(0, 0, 1, -1, 1, 0, 0))
graph.addVertex(label, 'polyLocation', 'name', 'g3',
                'polygon', Geo.polygon(0, 0, -2, 0, -2, -2, 0, 0))
```
Using DataStax Enterprise advanced functionality

```java
graph.addVertex(label, 'polyLocation', 'name', 'g4', 'polygon', Geo.polygon(0,0,2,0,2,-2,0,0))
```

Find stored Cartesian spatial data that matches specified information

Find the stored data that matches a point mapped to the specified (x, y):

```java
g.V().
has('location','point', Geo.point(0.5, 0.5)).
valueMap()
```

results in:

```java
{name=[p0], point=[POINT (0.5 0.5)]}
```

Find the stored data that matches a line mapped to the specified points:

```java
g.V().
has('lineLocation','line',Geo.lineString(0, 0, 1, 1)).
valueMap()
```

results in:

```java
{line=[LINESTRING (0 0, 1 1)], name=[l1]}
```

Find the stored data that matches a polygon mapped to the specified points:

```java
g.V().
has('polyLocation', 'polygon',Geo.polygon(0,0,1,1,0,1,0,0)).
valueMap()
```

results in:

```java
{polygon=[POLYGON ((0 0, 1 1, 0 1, 0 0))], name=[g1]}
```

Find stored Cartesian spatial points or linestrings within a specified radius from a specified point

These queries, as well as the queries that use a specified Cartesian spatial polygon use a method `Geo.inside()` that specifies a point and a radius.

Find all the points within a radius from a particular point (centerpoint):

```java
g.V().
has('location', 'point', Geo.inside(Geo.point(0, 0), 1)).
values('name')
```

lists:

```java
==> p0
```

Centering the query on (0, 0) and searching within 1 unit returns one point, p0, from the dataset.
Find all the linestrings within a radius from a particular location (centerpoint):

```java
g.V().has('lineLocation', 'line', Geo.inside(Geo.point(0.0, 0.0), 1.415)).valueMap()
```

lists:

```java
==>{line=[LINESTRING (0 0, 1 1)], name=[l1]}
==>{line=[LINESTRING (0 0, -1 1)], name=[l2]}
```

Centering the query on (0,0) and searching within 1.415 units returns two stored linestrings: l1 and l2.

Find stored Cartesian spatial points or linestrings within a specified Cartesian spatial polygon

Polygons may be used in these queries to find points with a polygon.

Find all points within a specified Cartesian spatial polygon:

```java
g.V().has('location', 'point', Geo.inside(Geo.polygon(0, 0, 1, 0, 1, 1, 0, 1, 0, 0))).values('name')
```

lists:

```java
==>p0
```

find linestrings within a polygon

```java
g.V().has('lineLocation', 'line', Geo.inside(Geo.polygon(0, 0, 1, 0, 1, 1, 0, 1, 0, 0))).values('name')
```

lists:

```java
==>l1
```

Schema and data

The examples here use the following schema:

```java
//SCHEMA
// PROPERTY KEYS
// Check for previous creation of property key with ifNotExists()
schema.propertyKey('name').Text().ifNotExists().create()
schema.propertyKey('address').Text().ifNotExists().create()
schema.propertyKey('location').Point().withBounds(-100,-100,100,100).ifNotExists().create()

// VERTEX LABELS
schema.vertexLabel('person').properties('name').ifNotExists().create()
schema.vertexLabel('home').properties('address','location').ifNotExists().create()
schema.vertexLabel('store').properties('name','location').ifNotExists().create()
```
Using DataStax Enterprise advanced functionality

```java
// VERTICES
// PERSON VERTICES
pam = graph.addVertex(label, 'person', 'name', 'Pam')
les = graph.addVertex(label, 'person', 'name', 'Les')
paul = graph.addVertex(label, 'person', 'name', 'Paul')
victoria = graph.addVertex(label, 'person', 'name', 'Victoria')
terri = graph.addVertex(label, 'person', 'name', 'Terri')

// HOME VERTICES
home1 = graph.addVertex(label, 'home', 'address', '555 4th St',
                       'location', Geo.point(7,2));
home2 = graph.addVertex(label, 'home', 'address', '1700 Coyote Rd',
                       'location', Geo.point(-2,1));
home3 = graph.addVertex(label, 'home', 'address', '99 Mountain Pass Hwy',
                       'location', Geo.point(0,0));

// STORE VERTICES
store1 = graph.addVertex(label, 'store', 'name', 'ZippyMart',
                        'location', Geo.point(1,5));
store2 = graph.addVertex(label, 'store', 'name', 'Quik Station',
                        'location', Geo.point(7,-1));
store3 = graph.addVertex(label, 'store', 'name', 'Mamma\'s Grocery',
                        'location', Geo.point(-3,-3));

// INGREDIENT VERTICES
celery = graph.addVertex(label, 'ingredient', 'name', 'celery');
milk = graph.addVertex(label, 'ingredient', 'name', 'milk');
bokChoy = graph.addVertex(label, 'ingredient', 'name', 'bok choy');
stake = graph.addVertex(label, 'ingredient', 'name', 'steak');
carrots = graph.addVertex(label, 'ingredient', 'name', 'carrots');
porkChops = graph.addVertex(label, 'ingredient', 'name', 'pork chops');

// PERSON - HOME EDGES
pam.addEdge('livesIn', home1);
les.addEdge('livesIn', home1);
paul.addEdge('livesIn', home3);
victoria.addEdge('livesIn', home3);
terri.addEdge('livesIn', home2);

// STORE - INGREDIENT EDGES
```

The examples use the following data:
Finding celery

You are a mathematics teacher writing simple Cartesian problem for your students. They are great fans of *ants on a log*, a snack made with celery, cream cheese, and raisins. So, you decide to help them find the nearest store to their house which has celery in stock.

Paul is the student whose home we'll use as the starting point. First, list all stores within the given radius (10 units of distance) from Paul's home (the centerpoint):

```java
g.V().has('store', 'location', Geo.inside(Geo.point(0,0),10)).values('name')
```
results in:

```text
===>ZippyMart
===>Quik Station
===>Mamma's Grocery
```

Note that this exercise is using Cartesian coordinates and distances calculated between Cartesian points, but a similar exercises can use geospatial data (page 734).

Now list the stores within a 10 unit radius from Paul's home that have celery:

```java
g.V().has('store', 'location', Geo.inside(Geo.point(0,0),10)).as('Store').out().has('name','celery').as('Ingred').select('Store', 'Ingred').by('name').by('name')
```
finds:

```text
==>{Store=ZippyMart, Ingred=celery}
==>{Store=Quik Station, Ingred=celery}
==>{Store=Mamma's Grocery, Ingred=celery}
```

This query uses methods that are common, such as `as()`, `out()`, and `select()` that are explained in Simple Traversals (page 718) to narrow the query.

Finally, list the stores within a 10 unit radius of Paul's home that have celery, and sort them by the distance from Paul's home:

```java
// List store name, location, and ingredient in order by distance from the store
```
Using DataStax Enterprise advanced functionality

```
g.V().has('store', 'location', Geo.inside(Geo.point(0,0),25)).as('Store').
order().by(it.value('location').getOgcGeometry().distance(Geo.point(0,0).getOgcGeometry())).
as('Location').
out().has('name','celery').as('Ingred').
select('Store', 'Location', 'Ingred').
by('name').
by('location').
by('name')
==>{Store=Mamma's Grocery, Location=POINT (-3 -3), Ingred=celery}
==>{Store=ZippyMart, Location=POINT (1 5), Ingred=celery}
==>{Store=Quik Station, Location=POINT (7 -1), Ingred=celery}
```

This query adds the method `order()` to sort the results; it is also explained in Simple Traversals (page 718). The query must also use a method that must be imported in order for the query to succeed: `getOgcGeometry()` and `distance()`. Importing the library is accomplished in the original script using:

```
import com.esri.core.geometry.ogc.OGCGeometry;
```

The students working on this problem now know that *Mamma's Grocery* is the place to head to get the celery they need to make their favorite snack!

Branching Traversals

Branching traversals allow decision points to be inserted into the traversal processing. Prior to trying out branching traversals shown here, you must create the data as described in Simple Traversals (page 718).

This branching traversal example chooses between two labels, either `author` or `reviewer` to fork the traversal. If the vertex label is `author`, the edges labeled `created` are counted. If the vertex label is `reviewer`, the edges labeled `rated` are counted.

```
g.V().choose(label()).
    option('author', out('created').count()).
    option('reviewer', out('rated').count())
```

The output for this traversal lists each result, the count returned. This type of traversal is useful as an intermediary step in a query process, but clearly the output is not useful without reference.

```
===>0
===>0
===>2
===>0
===>0
===>0
===>2
===>1
===>0
===>0
===>0
```
Recursive Traversals

Recursive traversals allow iterative processing over traversal paths. Prior to trying out branching traversals shown here, you must create the data as described in Simple Traversals (page 718).

This recursive traversal example returns the names of vertices that are two outgoing steps from the author vertex named Julia Child using the times(2) step. Books, meals, and ingredients are returned by this query.

```g.V().has('name','Julia Child').repeat(out()).times(2).valueMap()```

The output for this traversal lists each result:

```==>{'name':['onion']}  
==>{'name':['beef']}
==>{'name':['mashed garlic']}
==>{'name':['butter']}
==>{'name':['tomato paste']}
==>{'name':['JuliaDinner'], 'calories':[900],
 'timestamp':[2016-01-14T00:00:00Z]}
==>{'year':[1961], 'name':['The Art of French Cooking, Vol. 1']}
==>{'name':['Saturday Feast'], 'calories':[1000],
 'timestamp':[2015-11-30T00:00:00Z]}
==>{'name':['olive oil']}
==>{'name':['green beans']}
==>{'name':['tuna']}
==>{'name':['hard-boiled egg']}
==>{'name':['tomato']}
==>{'name':['JuliaDinner'], 'calories':[900],
 'timestamp':[2016-01-14T00:00:00Z]}
==>{'year':[1961], 'name':['The Art of French Cooking, Vol. 1']}
==>{'name':['olive oil']}
==>{'name':['yellow onion']}
==>{'name':['zucchini']}
==>{'name':['mashed garlic']}
==>{'name':['eggplant']}
```

Path Traversals

Path traversals map traversal steps to a location to use in the event that a previous location must be revisited.

This path traversal starts at an ingredient, traverses to a recipe, and eventually finds a book that contains the recipe with the ingredients specified.
Using DataStax Enterprise advanced functionality

```java
// Using advanced functionality of GraphiQL

g.V().has('ingredient', 'name', within('beef', 'carrots')).in('includes').as('Recipe').out().hasLabel('book').as('Book').
select('Book', 'Recipe').by('name').by('name').path()
```

The output for this traversal lists each result:

```java
[~label=ingredient, member_id=2, community_id=1442590464],
[~label=recipe, member_id=2, community_id=473764096],
(Book=The Art of French Cooking, Vol. 1, Recipe=Beef Bourguignon)]
[~label=ingredient, member_id=1, community_id=684566272],
(Book=The Art of Simple Food: Notes, Lessons, and Recipes from a Delicious Revolution, Recipe=Carrot Soup)]
```

Another path traversal creates a tree that emanates from a vertex label, in this case a book.

```java
// Another path traversal creates a tree that emanates from a vertex label, in this case a book.

g.V().hasLabel('book').in().tree().by('name').next()
```

The output for this traversal lists each result:

```java
Simca's Cuisine: 100 Classic French Recipes for Every Occasion=
(Patricia Simon={}, Simone Beck={})
The Art of French Cooking, Vol. 1=
(Simone Beck={}, Julia Child={}, Beef Bourguignon={}, Louised Bertholie={}, Salade Nicoise={})
The Art of Simple Food: Notes, Lessons, and Recipes from a Delicious Revolution=
(Alice Waters={}, Kelsie Kerr={}, Roast Pork Loin={}, Carrot Soup={}, Fritz Streiff={}, Patricia Curtan={})
The French Chef Cookbook=
(Julia Child={})
```

Each book lists the authors and recipes that are included in the book.

Another tree traversal discovers all the vertices that are on outgoing tree branch from a recipe.

```java
// Another tree traversal discovers all the vertices that are on outgoing tree branch from a recipe.

g.V().hasLabel('recipe').out().tree().by('name').next()
```

The output for this traversal lists each result:

```java
Roast Pork Loin=
(red wine={}, pork loin={}, chicken broth={}, The Art of Simple Food: Notes, Lessons, and Recipes from a Delicious Revolution={})
Spicy Meatloaf=
(bacon={}, celery={}, pork sausage={}, onion={}, ground beef={}, green bell pepper={})
Beef Bourguignon=
```
Using the DSE Graph Loader

How to load schema and data using the DSE Graph Loader.

DSE Graph Loader overview

DSE Graph Loader is a customizable, highly tunable command line utility for loading graph datasets into DSE Graph from various input sources. It is not included as part of DataStax Enterprise installations and must be installed separately (page 745).

DSE Graph Loader is built to load datasets containing hundreds of millions (10^8) of vertices and billions (10^9) of edges. DSE Graph Loader is efficient, using parallel loading and persistent cache to store vertices, provided a sufficient machine (page 745) is used to run the program.

Data can be loaded from CSV files, JSON files, delimited text (CSV with a header line to identify the fields), text parsed by regular expressions, and binary Gryo files. Distributed filesystem support exists to read input files from Hadoop Distributed File Systems (HDFS) and AWS S3 sources. In addition, DSE Graph Loader supports reading input data directly from a JDBC compatible database or a Neo4J database. Input files can be uncompressed or compressed files. All data can be transformed (page 802) upon reading to manipulate the data that is loaded into a graph.

Data from an input source file can be mapped to define vertices or edges, along with properties for both. The mapping script configures loading parameters, defines the input parameters, and identifies the mapping from each input record to graph element. Both vertex and edge properties can be included in the data that is loaded.

DSE Graph Loader processes input data with three stages:

Preparation

Each recipe lists the ingredients for the recipe and the books that include the recipe.

Using DataStax Enterprise advanced functionality

{mashed garlic={}, butter={}, The Art of French Cooking, Vol. 1={}, onion={}, tomato paste={}, beef={}}

==> Carrot Soup=
{butter={}, onion={}, chicken broth={}, carrots={}, The Art of Simple Food: Notes, Lessons, and Recipes from a Delicious Revolution={}, thyme={}}

==> Rataouille=
{mashed garlic={}, yellow onion={}, olive oil={}, zucchini={}, eggplant={}}

==> Salade Nicoise=
{tuna={}, The Art of French Cooking, Vol. 1={}, hard-boiled egg={}, olive oil={}, tomato={}, green beans={}}

==> Wild Mushroom Stroganoff=
{mushrooms={}, yellow onion={}, egg noodles={}}

==> Oysters Rockefeller=
{oyster={}, chervil={}, parsley={}, celery={}, fennel={}, shallots={}, Pernod={}}
Using DataStax Enterprise advanced functionality

Reads entire input data to check for graph schema conformity. Suggests graph schema updates, or if enabled, changes graph schema. Supplies statistics about how much data will be added to graph when loaded. The dryrun configuration option (page 746) can be used to stop the loading process at this stage.

**Vertex loading**
Adds or retrieves all of the vertices in the input data and caches them locally to speed up subsequent edge loading.
Vertex validation is enabled unless the data is identified as new data with load_new. If data is new, validation is not executed, and performance improvement will be seen.

**Edge and property loading**
Adds all edges and properties from the input data to the graph.
Edge validation is enabled unless the data is identified as new data with load_new. If data is new, validation is not executed, and performance improvement will be seen. Another method of handling mixed new and existing data is the use of isNew() (page 821) and exists() (page 820).
If duplicate edges are required, isNew() must be used to designate those edges as additive to the edges that already exist.

**Note:** Multiple cardinality input data must have graph schema created prior to data loading.

A critical feature to keep in mind when using DSE Graph Loader is the upsert nature of the underlying DSE database. If a vertex already exists, DSE Graph Loader updates the stored data with the new property values depending on the configuration choices made. Configuration (page 746) can be used to identify if the data loaded is new or will overwrite data that currently exists. Edges will be duplicated if the same edge is loaded multiple times and the edge label is set to the default of multiple cardinality.

It is **strongly** recommended that graph schema is created (page 621) before loading data using DSE Graph Loader. Without schema, the correct data types for the data are not enforced. Creating indexes (page 648) will greatly speed up the loading process, and are necessary to achieve acceptable performance for loading.

**Installing DSE Graph Loader**

DSE Graph Loader is not included as part of DataStax Enterprise installations. Use these instructions for installing on Linux-based platforms using the binary tarball.

A sufficiently powerful machine should be used to run DSE Graph Loader. The memory requirements must account for caching the serialized vertices during the loading process, up to ten times (10X) the size of the original data. Ensure that enough shared memory (mmap, or buffer cache) is allocated; properties and edges are bound by the speed of the available I/O. The network connection between the DSE Graph Loader machine and the DSE Graph cluster must have sufficient bandwidth.

**Note:** Do not run DSE Graph Loader on a machine that hosts a DSE Graph node for larger scale datasets.

**Prerequisites:**
Using DataStax Enterprise advanced functionality

- DataStax Academy registration email address and password.
- DataStax Enterprise is installed and configured for DSE Graph.

1. Download the DSE Graph Loader tarball using your DataStax Academy account credentials.

2. Unpack the DataStax Enterprise tarball:

   ```
 $ tar -xzvf dse-graph-loader-bin.tar.gz
   ```
   The files are extracted into the dse-graph-loader directory.

What's next: Configuring DSE Graph Loader (page 746)

**Configuring DSE Graph Loader**

Before loading data using any of the methods detailed in the next topics, decide which configuration items to include in the mapping script.

The configuration settings can be applied in the command line using a "-" command, like `--read_threads`, or the settings can be included in the mapping script. All configuration settings are shown in the DSE Graph Loader reference (page 810) including security options (page 816).

- The `dryrun` setting will run the DSE Graph Loader with a mapping script, and output the results, but will not execute the loading process. It is useful for spotting potential errors in the mapping script or graphloader command.

  ```
 config dryrun: true
  ```

  This command may be more useful to use as a command line option, since it is not common to leave in after checking a mapping script:

  ```
 graphloader map.groovy --graph food --address localhost --dryrun true
  ```

  **Notice:** This configuration option discovers schema and suggests missing schema without executing any changes. In DSE 6.0, this option is deprecated and may possibly be removed in a future release.

- The `preparation` setting is a validity checking mechanism. If `preparation` is true, then a sample of the data is analyzed for whether or not the schema is valid. This setting is used in conjunction with `create_schema`. If `create_schema` and `preparation` are both true, then the data is analyzed, compared to the schema, and new schema is created if found missing.

  ```
 /* CONFIGURATION */
 /* Configures the data loader to analyze the schema */
 config preparation: true
  ```

  See the table below (page 747) for all permutations.
**Notice:** This configuration option validates and creates schema if used in conjunction with create_schema. The default will be set to `false`, and this option is deprecated with DSE 6.0. In a future release, it may be removed.

- This example sets create_schema to true, so that schema is created from the data. Setting create_schema to true is a good method of inputting new data, to get feedback on what schema may be required for the data. It is not recommended for Production data loading.

```plaintext
/* CONFIGURATION */
/* Configures the data loader to create the schema */
config create_schema: true
```

**Notice:** It is strongly recommended that schema is created (page 621) prior to data loading, so that the correct data types are enforced and indexes created. Setting create_schema to true is recommended only for testing. In DSE 6.0, this configuration option is deprecated and will be removed in a future release.

- The load_new setting is used if vertex records do not yet exist in the graph at the beginning of the loading process, such as for a new graph. Configuring load_new can significantly speed up the loading process. However, it is important that the user guarantee that the vertex records are indeed new, or duplicate vertices can be created in the graph. Edges that are created in the same script will use the newly created vertices for the outgoing vertex `outV` and incoming vertex `inV`.

```plaintext
config load_new: true
```

**Warning:** Duplicate vertices will be created if load_new is set to `false` and the data being loaded contain any vertex that already exists in the graph.

- Setting the number of threads used for loading vertices or edges uses `load_vertex_threads` and `load_edge_threads`, respectively; the default is 0, which will set `load_vertex_threads` to the number of cores divided by 2, and `load_edge_threads` to the number of nodes in the datacenter multiplied by six.

```plaintext
config load_vertex_threads: 3 load_edge_threads: 0
```

- Multiple configuration settings can be listed together.

```plaintext
config load_new: true, dryrun: true, schema_output: '/tmp/loader_output.txt'
```
**What's next:** Load data. *(page 748)*

## Loading data

DSE Graph Loader can load data from many different input data formats. Pick the option that most resembles your data source:

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSV</td>
<td>Strict format, with the first line of the file identifying the property keys used in the graph.</td>
<td>Loading CSV data <em>(page 749)</em></td>
</tr>
<tr>
<td>Text</td>
<td>Delimited text data of any format.</td>
<td>Loading TEXT data <em>(page 764)</em></td>
</tr>
<tr>
<td>Text with regular expressions</td>
<td>Delimited text data parsed using regular expressions (regex).</td>
<td>Loading TEXT data using regular expressions (regex) <em>(page 768)</em></td>
</tr>
<tr>
<td>JSON</td>
<td>Data stored in JSON (JavaScript Object Notation) format.</td>
<td>Loading JSON data <em>(page 757)</em></td>
</tr>
<tr>
<td>JDBC-compatible database</td>
<td>Data stored in a JDBC-compatible database</td>
<td>Loading data from a JDBC compatible database. <em>(page 770)</em></td>
</tr>
<tr>
<td>HDFS file</td>
<td>Data file stored in a Hadoop Distributed File System (HDFS) of any format.</td>
<td>Loading data from Hadoop (HDFS) <em>(page 773)</em></td>
</tr>
<tr>
<td>AWS S3 file</td>
<td>Data file stored in AWS S3 storage of any format.</td>
<td>Loading data from AWS S3 <em>(page 775)</em></td>
</tr>
<tr>
<td>Gryo</td>
<td>Data stored in a binary Gryo format.</td>
<td>Loading Gryo data <em>(page 778)</em></td>
</tr>
<tr>
<td>GraphSON</td>
<td>Data stored in GraphSON format.</td>
<td>Loading GraphSON data <em>(page 780)</em></td>
</tr>
<tr>
<td>GraphML</td>
<td>Data stored in GraphML format.</td>
<td>Loading GraphML data <em>(page 781)</em></td>
</tr>
</tbody>
</table>

**Note:** Fields that contain NULL, null, or empty fields in text and CSV files will be pruned by DSE Graph Loader. A transform must be used if a different behavior is desired.

**Warning:** When loading custom vertex ids *(page 638)*, the vertex cache that DSE Graph Loaders uses will be bypassed to facilitate faster write throughput. The client must ensure vertices are unique because no logic will validate the existence
of a vertex with custom ids. To ensure the fastest performance, the DSE Graph configuration option `external_vertex_verify` (page 850) should be set to false.

The DSE Graph Loader also supports loading several files of the same format from a single directory. Example mapping scripts are shown for CSV (page 751) and JSON (page 759), but will work for all formats.

**Loading CSV data**

A common file format for loading graph data is CSV (comma-delimited data). An input CSV file generally identifies the property keys in the first line of the file with a header line. However, the mapping script can also identify the property keys to be read with `header()` in the data input line. If more flexibility is desired, such as manipulation of the vertex labels using `labelField` (page 786), use Loading TEXT data (page 764).

**Mapping several different CSV files**

DSE Graph Loader can load several different CSV files that exist in a directory using the following steps. Sample input data:

```
// For the author.csv file:
name|gender
Julia Child|F
// For the book.csv file:
name|year|ISBN
Simca's Cuisine: 100 Classic French Recipes for Every Occasion|1972|0-394-40152-2
// For the authorBook.csv file:
bname|aname
Simca's Cuisine: 100 Classic French Recipes for Every Occasion|Simone Beck
```

Because the property key `name` is used for both vertex labels `author` and `book`, in the `authorBook` file, variables `aname` and `bname` are used for author name and book name, respectively. These variables are used in the mapping logic used to create the edges between `author` and `book` vertices.

1. If desired, add configuration (page 746) to the mapping script.

2. Specify the data input files. The variable `inputfiledir` specifies the directory for the input files. Each of the identified files will be used for loading.

```
// DATA INPUT
// Define the data input source (a file which can be specified via command line arguments)
// inputfiledir is the directory for the input files

inputfiledir = '/tmp/CSV/'
authorInput = File.csv(inputfiledir + 'author.csv').delimiter('|')
bookInput = File.csv(inputfiledir + 'book.csv').delimiter('|')
```
Using DataStax Enterprise advanced functionality

```java
authorBookInput = File.csv(inputfiledir + 'authorBook.csv').delimiter('|')
```

It is important to note that CSV files can have a header line that shows the field names. For example, the `authorInput` will have the following as the first line in the file:

```
name|gender
```

If a `header()` is used in the mapping script and a header line is used in the data file, then both must match. Either a header line in the data file or a `header()` is required.

3. In each line, the file is specified as a `csv` file, the file name is specified, and a delimiter is set. A map, `authorInput`, is created that will be used to process the data. The map can be manipulated before loading using `transforms` (page 802).

```java
authorInput = File.csv(inputfiledir + 'author.csv').delimiter('|')
```

**Tip:** If you need to trim excess whitespace from data, use `trimWhitespace(true)` in the `File.csv()` statement.

4. Create the main body of the mapping script. (page 783) This part of the mapping script is the same regardless of the file format.

5. To run DSE Graph Loader for CSV loading as a dry run, use the following command:

```bash
$ graphloader authorBookMappingCSV.groovy -graph testCSV -address localhost -dryrun true
```

For testing purposes, the graph specified does not have to exist prior to running `graphloader`. However, for production applications, the graph and schema must be created prior to using `graphloader`.

The fullscript is shown:

```java
/* SAMPLE INPUT
author: Julia Child|F
authorBook: Simca's Cuisine: 100 Classic French Recipes for Every Occasion|Simone Beck */

// CONFIGURATION
// Configures the data loader to create the schema
cfg create_schema: true, load_new: true, load_vertex_threads: 3

// DATA INPUT
```
// Define the data input source (a file which can be specified via command line arguments)
// inputfiledir is the directory for the input files

inputfiledir = '/tmp/CSV/
authorInput = File.csv(inputfiledir + "author.csv").delimiter('|')
bookInput = File.csv(inputfiledir + "book.csv").delimiter('|')
authorBookInput = File.csv(inputfiledir + "authorBook.csv").delimiter('|')

// Specifies what data source to load using which mapper (as defined inline)
load(authorInput).asVertices {
  label "author"
  key "name"
}
load(bookInput).asVertices {
  label "book"
  key "name"
}
load(authorBookInput).asEdges {
  label "authored"
  outV "aname", {
    label "author"
    key "name"
  }
  inV "bname", {
    label "book"
    key "name"
  }
}

Mapping several files with same format from a directory

DSE Graph Loader can load several CSV files with same format that exist in a directory using the following steps. Sample input data:

SAMPLE INPUT
  // For the author.csv file:
  name|gender
  Julia Child|F
  Simone Beck|F

  // For the knows.csv file:
  aname|bname
  Julia Child|James Beard
A number of files with the same format exist in a directory. If the files differ, the graphloader will issue an error and stop:

```
java.lang.IllegalArgumentException: /tmp/dirSource/data has more than 1 input type.
```

1. If desired, add configuration *(page 746)* to the mapping script.

2. Specify the data input directory. The variable `inputfiledir` specifies the directory for the input files. Each of the identified files will be used for loading.

   ```
 // DATA INPUT
 // Define the data input source (a file which can be specified via command line arguments)
 // inputfiledir is the directory for the input files
 inputfiledir = '/tmp/dirSource/data'
 personInput = File.directory(inputfiledir).delimiter('|').header('name','gender')
 //Specifies what data source to load using which mapper (as defined inline)
 load(personInput).asVertices {
 label "author"
 key "name"
 }
   ```

   The important element is `File.directory()`; this defines the directory where the files are stored.

   It is important to note that CSV files must have a header line that shows the field names. For example, the `authorInput` will have the following as the first line in the file:

   ```
 name|gender
   ```

3. Note that two directories could be used to load vertices and edges:

   ```
 // DATA INPUT
 // Define the data input source (a file which can be specified via command line arguments)
 // inputfiledir is the directory for the input files
 inputfiledir = '/tmp/dirSource/data'
 vertexfiledir = inputfiledir+ '/vertices'
 edgefiledir = inputfiledir+ '/edges'
 personInput = File.directory(vertexfiledir).delimiter('|').header('name','gender')
 personEdgeInput = File.directory(edgefiledir).delimiter('|').header('aname','bname')
   ```
// Specifies what data source to load using which mapper (as defined inline)

load(personInput).asVertices {
    label "author"
    key "name"
}

load(personEdgeInput).asEdges {
    label "knows"
    outV "aname", {
        label "author"
        key "name"
    }
    inV "bname", {
        label "book"
        key "name"
    }
}

4. To run DSE Graph Loader for CSV loading from a directory, use the following command:

```bash
$ graphloader dirSourceMapping.groovy -graph testdirSource -
address localhost
```

For testing purposes, the graph specified does not have to exist prior to running `graphloader`. However, for production applications, the graph and schema should be created prior to using `graphloader`.

**Mapping files from a directory using a file pattern**

DSE Graph Loader can load several files from a directory using file pattern matching.

Sample input files:

```bash
$ ls data
badOne.csv person1.csv person2.csv
```

A number of files with the same format exist in a directory. If the files differ, DSE Graph Loader will only load the files that match the pattern in the map script.

Several file patterns are defined for use:

**Mapping using ***

- If desired, add configuration (page 746) to the mapping script.
- Sample input file:

```bash
/* SAMPLE CSV INPUT:
id|name|gender
001|Julia Child|F
```
Using DataStax Enterprise advanced functionality

- Specify the data input directory. The variable `inputfiledir` specifies the directory for the input files. Each of the identified files will be used for loading.

```java
// DATA INPUT
// Define the data input source (a file which can be specified via command line arguments)
// inputfiledir is the directory for the input files

inputfiledir = '/tmp/filePattern'
infileCSV = inputfiledir+'/data'
personInput = File.directory(infileCSV).fileMatches("person*.csv").delimiter('|').header('id','name','gender')

// Specifies what data source to load using which mapper (as defined inline)

load(personInput).asVertices {
 label "person"
 key "name"
}

/* RESULT:
 person1.csv and person2.csv will be loaded, but not badOne.csv
*/
```

The important element is `fileMatches("person*.csv")`; this defines the pattern that will be matched for loaded files. The file `badOne.csv` will not be loaded, because the pattern does not match. Note that a file `personExtra.csv` would also be loaded, as it would match the pattern.

This same pattern matching can be used for JSON input files, by substituting `person*.json` for `person*.csv` and using JSON input file parameters.

- To run DSE Graph Loader for CSV loading from a directory, use the following command:

```bash
$ graphloader filePatternCSV.groovy -graph testPattCSV -address localhost
```

For testing purposes, the graph specified does not have to exist prior to running `graphloader`. However, for production applications, the graph and schema should be created prior to using `graphloader`.

**Mapping using [ ]**

- If desired, add configuration (page 746) to the mapping script.
- Sample input file:

```plaintext
/* SAMPLE CSV INPUT:
id|name|gender
001|Julia Child|F
```
• Specify the data input directory. The variable `inputfiledir` specifies the directory for the input files. Each of the identified files will be used for loading.

```java
inputfiledir = '/tmp/filePattern'
inputfileCSV = inputfiledir+'/data'
personInput =
 File.directory(inputfileCSV).fileMatches("person[1-9].csv").delimiter('|').header('id','name','gender')

load(personInput).asVertices {
 label "person"
 key "name"
}

// DATA INPUT
// Define the data input source (a file which can be specified via command line arguments)
// inputfiledir is the directory for the input files

/* RESULT:
 person1.csv and person2.csv will be loaded, but not badOne.csv
*/
```

The important element is `fileMatches("person[1-9].csv")`; this defines the pattern that will be matched for loaded files. All files `person1.csv` through `person9.csv` will be loaded, but `person15.csv` doesn't match the pattern and will not be loaded, as well as `badOne.csv`. Note that `fileMatches("person?.csv")` would achieve the same result.

This same pattern matching can be used for JSON input files, by substituting `person[1-9].json` for `person[1-9].csv` and using JSON input file parameters.

• Run DSE Graph Loader for this example use the following command:

```
$ graphloader filePatternRANGE.groovy -graph testPattRANGE -address localhost
```

For testing purposes, the graph specified does not have to exist prior to running `graphloader`. However, for production applications, the graph and schema should be created prior to using `graphloader`.

**Mapping using { } with multiple patterns**

• If desired, **add configuration (page 746)** to the mapping script.

• Sample input file:

```
/* SAMPLE CSV INPUT:
id|name|gender
```
Using DataStax Enterprise advanced functionality

- Specify the data input directory. The variable `inputfiledir` specifies the directory for the input files. Each of the identified files will be used for loading.

```groovy
inputfiledir = '/tmp/filePattern/data'
personInput = File.directory(inputfiledir).fileMatches("{person*,badOne}.csv").delimiter('|').header('id','name','gender')

load(personInput).asVertices {
 label "person"
 key "name"
}

/* RESULT:
person1.csv, person2.csv and badOne.csv will all be loaded
*/
```

The important element is `fileMatches("{person*,badOne}.csv")`; this defines the pattern that will be matched for loaded files. The files `person1.csv`, `person1.csv`, and `badOne.csv` will be loaded, because the pattern matches all three files. This same pattern matching can be used for JSON input files, by substituting `person*.json` for `person*.csv` and using JSON input file parameters.

- To run DSE Graph Loader for this example using the following command:

```bash
$ graphloader filePatternMULT.groovy -graph testPattMULT -address localhost
```
For testing purposes, the graph specified does not have to exist prior to running graphloader. However, for production applications, the graph and schema should be created prior to using graphloader.

Loading JSON data

A common file format for loading graph data is JSON. An input JSON file holds all key and value information in a nested structure.

Mapping several different JSON files

DSE Graph Loader can load several different CSV files that exist in a directory using the following steps. Sample input data:

```
SAMPLE INPUT
// For the author.json file:
{"author_name":"Julia Child","gender":"F"}
// For the book.json file:
// For the authorBook.json file:
{"name":"The Art of French Cooking, Vol. 1","author":"Julia Child"}
```

Because the property key name is used for both vertex labels author and book, in the authorBook file, variables aname and bname are used for author name and book name, respectively. These variables are used in the mapping logic used to create the edges between author and book vertices.

1. If desired, add configuration (page 746) to the mapping script.

2. Specify the data input files. The variable inputfiledir specifies the directory for the input files. Each of the identified files will be used for loading.

```
// DATA INPUT
// Define the data input source (a file which can be specified via
// command line arguments)
// inputfiledir is the directory for the input files

inputfiledir = '/tmp/JSON/'
authorInput = File.json(inputfiledir + 'author.json')
bookInput = File.json(inputfiledir + 'book.json')
authorBookInput = File.json(inputfiledir + 'authorBook.json')
```

3. In each line, the file is specified as a json file and the file name is specified. The JSON format for File.json is one JSON object per line. A map, authorInput, is created that will be used to process the data. The map can be manipulated before loading using transforms (page 802).

```
authorInput = File.json(inputfiledir + 'author.json')
```
4. **Create the main body of the mapping script.** *(page 783)* This part of the mapping script is the same regardless of the file format.

5. To run DSE Graph Loader for JSON loading as a dry run, use the following command:

```
$ graphloader authorBookMappingJSON.groovy -graph testJSON -
address localhost -dryrun true
```

For testing purposes, the graph specified does not have to exist prior to running `graphloader`. However, for production applications, the graph and schema should be created prior to using `graphloader`.

The fullscript is shown:

```java
/* SAMPLE INPUT
author: {"name":"Julia Child","gender":"F"}
authorBook: {"bname":"The Art of French Cooking, Vol. 1","aname":"Julia Child"}
*/

// CONFIGURATION
// Configures the data loader to create the schema
config create_schema: true, load_new: true, load_vertex_threads: 3

// DATA INPUT
// Define the data input source (a file which can be specified via command line arguments)
// inputfiledir is the directory for the input files that is given in the command line
// as the "-filename" option

inputfiledir = '/tmp/JSON/
authorInput = File.json(inputfiledir + 'author.json')
bookInput = File.json(inputfiledir + 'book.json')
authorBookInput = File.json(inputfiledir + 'authorBook.json')

// Specifies what data source to load using which mapper (as defined inline)

load(authorInput).asVertices {
 label "author"
 key "name"
}

load(bookInput).asVertices {
 label "book"
 key "name"
}
```
Mapping several files with same format from a directory

DSE Graph Loader can load several JSON files with same format that exist in a directory using the following steps. Sample input data:

**SAMPLE INPUT**

// For the author.json file:
"author_name":"Julia Child","gender":"F"

// For the book.json file:
"name":"The Art of French Cooking, Vol. 1","year":"1961","ISBN"="none"

// For the authorBook.json file:
"name":"The Art of French Cooking, Vol. 1","author":"Julia Child"

A number of files with the same format exist in a directory. If the files differ, the graphloader will issue an error and stop:

java.lang.IllegalArgumentException: /tmp/dirSource/data has more than 1 input type.

1. If desired, add configuration (page 746) to the mapping script.

2. Specify the data input directory. The variable `inputfiledir` specifies the directory for the input files. Each of the identified files will be used for loading.

   // DATA INPUT
   // Define the data input source (a file which can be specified via command line arguments)
   // `inputfiledir` is the directory for the input files

   inputfiledir = '/tmp/dirSource/data'
   personInput = File.directory(inputfiledir)

   //Specifies what data source to load using which mapper (as defined inline)

   load(personInput).asVertices {
     label "author"
Using DataStax Enterprise advanced functionality

The important element is `File.directory()`; this defines the directory where the files are stored.

3. Note that two directories could be used to load vertices and edges:

   // DATA INPUT
   // Define the data input source (a file which can be specified via command line arguments)
   // inputfiledir is the directory for the input files
   
   inputfiledir = '/tmp/dirSource/data'
   vertexfiledir = inputfiledir+ '/vertices'
   edgefiledir = inputfiledir+ '/edges'
   personInput = File.directory(vertexfiledir)
   personEdgeInput = File.directory(edgefiledir)

   // Specifies what data source to load using which mapper (as defined inline)
   
   load(personInput).asVertices {
     label "author"
     key "name"
   }

   load(personEdgeInput).asEdges {
     label "knows"
     outV "aname", {
       label "author"
       key "name"
     }
     inV "bname", {
       label "book"
       key "name"
     }
   }

4. To run DSE Graph Loader for JSON loading from a directory, use the following command:

   $ graphloader dirSourceJSONMapping.groovy -graph testdirSource -address localhost
For testing purposes, the graph specified does not have to exist prior to running `graphloader`. However, for production applications, the graph and schema should be created prior to using `graphloader`.

**Mapping files from a directory using a file pattern**

DSE Graph Loader can load several files from a directory using file pattern matching.

**Sample input files:**

```bash
$ ls data
badOne.csv person1.csv person2.csv
```

A number of files with the same format exist in a directory. If the files differ, DSE Graph Loader will only load the files that match the pattern in the map script.

Several file patterns are defined for use:

- **Mapping using *:**
  - If desired, add configuration ([page 746](#)) to the mapping script.
  - Sample input file:
    ```
 /* SAMPLE CSV INPUT:
 id|name|gender
 001|Julia Child|F
 */
    ```
    - Specify the data input directory. The variable `inputfiledir` specifies the directory for the input files. Each of the identified files will be used for loading.

```java
// DATA INPUT
// Define the data input source (a file which can be specified via command line arguments)
// inputfiledir is the directory for the input files

inputfiledir = '/tmp/filePattern'
inputfileCSV = inputfiledir+'/data'
personInput = File.directory(inputfileCSV).fileMatches("person*.csv").delimiter('|').header('id','name','gender')

//Specifies what data source to load using which mapper (as defined inline)
load(personInput).asVertices {
 label "person"
 key "name"
}

/* RESULT:
 person1.csv and person2.csv will be loaded, but not badOne.csv */
```
Using DataStax Enterprise advanced functionality

The important element is `fileMatches("person*.csv");` this defines the pattern that will be matched for loaded files. The file `badOne.csv` will not be loaded, because the pattern does not match. Note that a file `personExtra.csv` would also be loaded, as it would match the pattern.

This same pattern matching can be used for JSON input files, by substituting `person*.json` for `person*.csv` and using JSON input file parameters.

- To run DSE Graph Loader for CSV loading from a directory, use the following command:

  ```bash
 $ graphloader filePatternCSV.groovy -graph testPattCSV -address localhost
  ```

  For testing purposes, the graph specified does not have to exist prior to running `graphloader`. However, for production applications, the graph and schema should be created prior to using `graphloader`.

### Mapping using []

- If desired, add configuration (page 746) to the mapping script.
- Sample input file:

  ```
 /* SAMPLE CSV INPUT:
 id|name|gender
 001|Julia Child|F
 */
  ```

- Specify the data input directory. The variable `inputfiledir` specifies the directory for the input files. Each of the identified files will be used for loading.

  ```
 // DATA INPUT
 // Define the data input source (a file which can be specified via command line arguments)
 // inputfiledir is the directory for the input files

 inputfiledir = '/tmp/filePattern'
 inputfileCSV = inputfiledir+'/data'
 personInput = File.directory(inputfileCSV).fileMatches("person[1-9].csv").delimiter('|').header('id','name','gender')

 //Specifies what data source to load using which mapper (as defined inline)

 load(personInput).asVertices {
 label "person"
 key "name"
 }
  ```

  /* RESULT:
  person1.csv and person2.csv will be loaded, but not badOne.csv */
The important element is `fileMatches("person[1-9].csv")`; this defines the pattern that will be matched for loaded files. All files `person1.csv` through `person9.csv` will be loaded, but `person15.csv` doesn't match the pattern and will not be loaded, as well as `badOne.csv`. Note that `fileMatches("person?.csv")` would achieve the same result.

This same pattern matching can be used for JSON input files, by substituting `person[1-9].json` for `person[1-9].csv` and using JSON input file parameters.

- Run DSE Graph Loader for this example use the following command:

```bash
$ graphloader filePatternRANGE.groovy -graph testPattRANGE -
address localhost
```

For testing purposes, the graph specified does not have to exist prior to running `graphloader`. However, for production applications, the graph and schema should be created prior to using `graphloader`.

**Mapping using { } with multiple patterns**

- If desired, add configuration (page 746) to the mapping script.
- Sample input file:

```plaintext
/* SAMPLE CSV INPUT:
id|name|gender
001|Julia Child|F
*/
```

- Specify the data input directory. The variable `inputfiledir` specifies the directory for the input files. Each of the identified files will be used for loading.

```groovy
// DATA INPUT
// Define the data input source (a file which can be specified via command line arguments)
// inputfiledir is the directory for the input files

inputfiledir = '/tmp/filePattern/data'
personInput = File.directory(inputfiledir).fileMatches("(person*,badOne).csv").delimiter('|').header('id','name','gender')

//Specifies what data source to load using which mapper (as defined inline)

load(personInput).asVertices {
 label "person"
 key "name"
}

/* RESULT:
person1.csv, person2.csv and badOne.csv will all be loaded */
```
The important element is `fileMatches("{person*,badOne}.csv")`; this defines the pattern that will be matched for loaded files. The files `person1.csv`, `person1.csv`, and `badOne.csv` will be loaded, because the pattern matches all three files. This same pattern matching can be used for JSON input files, by substituting `person*.json` for `person*.csv` and using JSON input file parameters.

To run DSE Graph Loader for this example using the following command:

```
$ graphloader filePatternMULT.groovy -graph testPattMULT -address localhost
```

For testing purposes, the graph specified does not have to exist prior to running `graphloader`. However, for production applications, the graph and schema should be created prior to using `graphloader`.

### Loading TEXT data

The data mapping script for delimited text data is shown with explanation. The full script is found at the bottom of the page.

- If desired, add configuration (page 746) to the mapping script.
- A sample of the data for load looks like the following:

```java
// DATA INPUT
// Define the data input source (a file which can be specified via command line arguments)
// inputfiledir is the directory for the input files

inputfiledir = '/tmp/TEXT/
authorInput = File.text(inputfiledir + "author.dat").
delimiter("|")
.header('name', 'gender')
bookInput = File.text(inputfiledir + "book.dat").
delimiter("|")
.header('name', 'year', 'ISBN')
authorBookInput = File.text(inputfiledir + "authorBook.dat").
delimiter("|")
```

Specifying the data input files. The variable `inputfiledir` specifies the directory name for the input files. Each of the identified files will be used for loading.

---

```java
// DATA INPUT
// Define the data input source (a file which can be specified via command line arguments)
// inputfiledir is the directory for the input files

inputfiledir = '/tmp/TEXT/
authorInput = File.text(inputfiledir + "author.dat").
delimiter("|")
.header('name', 'gender')
bookInput = File.text(inputfiledir + "book.dat").
delimiter("|")
.header('name', 'year', 'ISBN')
authorBookInput = File.text(inputfiledir + "authorBook.dat").
delimiter("|")
```
Because the property key name is used for both vertex labels author and book, in the authorBook file, variables aname and bname are used for author name and book name, respectively. These variables are used in the mapping logic used to create the edges between author and book vertices.

- In each line, the file is specified as a text file, the file name is specified, a delimiter is set, and a header can be specified to identify the fields that will be read. The header can alternatively be specified on the first line of the data file. A map, authorInput, is created that will be used to process the data. The map can be manipulated before loading using transforms (page 802).

```java
authorInput = File.text(inputfiledir + "author.dat").delimiter("|").header('name', 'gender')
```

If a header() is used in the mapping script and a header line is used in the data file, then both must match. Either a header line in the data file or a header() is required.

- Create the main body of the mapping script. (page 783) This part of the mapping script is the same regardless of the file format.

- To run DSE Graph Loader for text loading as a dry run, use the following command:

```bash
$ graphloader authorBookMappingTEXT.groovy -graph testTEXT -address localhost -dryrun true
```

For testing purposes, the graph specified does not have to exist prior to running graphloader. However, for production applications, the graph and schema should be created prior to using graphloader.

- The full loading script is shown.

```java
/** SAMPLE INPUT
author: Julia Child|F
authorBook: Simca's Cuisine: 100 Classic French Recipes for Every Occasion|Simone Beck
*/

// CONFIGURATION
// Configures the data loader to create the schema
config create_schema: true, load_new: true, load_vertex_threads: 3

// DATA INPUT
// Define the data input source (a file which can be specified via command line arguments)
// inputfiledir is the directory for the input files that is given in the commandline
// as the "-filename" option

inputfiledir = '/tmp/CSV/
```
Using DataStax Enterprise advanced functionality

```java
authorInput = File.text(inputfiledir + "author.dat").
 delimiter("\|").
 header('name', 'gender')
bookInput = File.text(inputfiledir + "book.dat").
 delimiter("\|").
 header('name', 'year', 'ISBN')
authorBookInput = File.text(inputfiledir + "authorBook.dat").
 delimiter("\|").
 header('bname', 'aname')

//Specifies what data source to load using which mapper (as defined inline)
load(authorInput).asVertices {
 label "author"
 key "name"
}
load(bookInput).asVertices {
 label "book"
 key "name"
}
load(authorBookInput).asEdges {
 label "authored"
 outV "aname", {
 label "author"
 key "name"
 }
 inV "bname", {
 label "book"
 key "name"
 }
}
```

Mapping several files with same format from a directory

- A sample of the data for load looks like the following:

```
SAMPLE INPUT
// For the author.text file:
name|gender
Julia Child|F
Simone Beck|F

// For the knows.text file:
aname|bname
Julia Child|James Beard
```

A number of files with the same format exist in a directory. If the files differ, the graphloader will issue an error and stop:
java.lang.IllegalArgumentException: /tmp/dirSource/data has more than 1 input type.

• Specify the data input directory. The variable inputfiledir specifies the directory for the input files. Each of the identified files will be used for loading.

```java
// DATA INPUT
// Define the data input source (a file which can be specified via command line arguments)
// inputfiledir is the directory for the input files

inputfiledir = '/tmp/dirSource/data'

personInput = File.directory(inputfiledir).delimiter('|').header('name','gender')

//Specifies what data source to load using which mapper (as defined inline)
load(personInput).asVertices {
 label "author"
 key "name"
}
```

The important element is File.directory(); this defines the directory where the files are stored.

• Note that two directories could be used to load vertices and edges:

```java
// DATA INPUT
// Define the data input source (a file which can be specified via command line arguments)
// inputfiledir is the directory for the input files

inputfiledir = '/tmp/dirSource/data'
vertexfiledir = inputfiledir+'/vertices'
edgefiledir = inputfiledir+'/edges'

personInput = File.directory(vertexfiledir).delimiter('|').header('name','gender')

personEdgeInput = File.directory(edgefiledir).delimiter('|').header('aname','bname')

//Specifies what data source to load using which mapper (as defined inline)
load(personInput).asVertices {
 label "author"
 key "name"
}
load(personEdgeInput).asEdges {
 label "knows"
 outV "aname", {
```
Using DataStax Enterprise advanced functionality

To run DSE Graph Loader for text file loading from a directory, use the following command:

```
$ graphloader dirSourceMapping.groovy -graph testdirSource -address localhost
```

For testing purposes, the graph specified does not have to exist prior to running `graphloader`. However, for production applications, the graph and schema should be created prior to using `graphloader`.

### Loading TEXT data using regular expressions (regex)

The data mapping script for text data parsed using regular expressions (regex) is shown with explanation. The full script is found at the bottom of the page.

- If desired, add configuration (page 746) to the mapping script.
- A sample of the data for load looks like the following:

```plaintext
SAMPLE INPUT
// This file uses tabs between fields
// For the authorREGEX.data file:
nname:Julia Child gender:F
// For the bookREGEX.dat file:
nname:Simca's Cuisine: 100 Classic French Recipes for Every Occasion
// For the authorBookREGEX.dat file:
nbname:Simca's Cuisine: 100 Classic French Recipes for Every Occasion
anname:Simone Beck
```

- Specify the data input files. The variable `inputfiledir` specifies the directory name for the input files. Each of the identified files will be used for loading.

```plaintext
// DATA INPUT
// Define the data input source
// inputfiledir is the directory for the input files

inputfiledir = '/tmp/REGEX/
authorInput = File.text(inputfiledir + "authorREGEX.dat").
regex("name:(.*)\ttgender:(\[MF\])").
header('name', 'gender')
bookInput = File.text(inputfiledir + "bookREGEX.dat").
regex("name:(.*)\tyear:(\[0-9\]{4})\tISBN:(\[0-9\]{1}\[-\]{1}\[0-9\]{3}\[-\]{1}\[0-9\]{5}\[-\]{1}\[0-9\]{0,1})").
```

---

### Full script

```groovy
label "author"
key "name"
}
inV "bname", {
label "book"
key "name"
}
}

To run DSE Graph Loader for text file loading from a directory, use the following command:

```
$ graphloader dirSourceMapping.groovy -graph testdirSource -address localhost
```

For testing purposes, the graph specified does not have to exist prior to running `graphloader`. However, for production applications, the graph and schema should be created prior to using `graphloader`.

Loading TEXT data using regular expressions (regex)

The data mapping script for text data parsed using regular expressions (regex) is shown with explanation. The full script is found at the bottom of the page.

- If desired, add configuration (page 746) to the mapping script.
- A sample of the data for load looks like the following:

```plaintext
SAMPLE INPUT
// This file uses tabs between fields
// For the authorREGEX.data file:
nname:Julia Child gender:F
// For the bookREGEX.dat file:
nname:Simca's Cuisine: 100 Classic French Recipes for Every Occasion
// For the authorBookREGEX.dat file:
nbname:Simca's Cuisine: 100 Classic French Recipes for Every Occasion
anname:Simone Beck
```

- Specify the data input files. The variable `inputfiledir` specifies the directory name for the input files. Each of the identified files will be used for loading.

```groovy
inputfiledir = '/tmp/REGEX/
authorInput = File.text(inputfiledir + "authorREGEX.dat").
regex("name:(.*)\ttgender:(\[MF\])").
header('name', 'gender')
bookInput = File.text(inputfiledir + "bookREGEX.dat").
regex("name:(.*)\tyear:(\[0-9\]{4})\tISBN:(\[0-9\]{1}\[-\]{1}\[0-9\]{3}\[-\]{1}\[0-9\]{5}\[-\]{1}\[0-9\]{0,1})").
```
Because the property key `name` is used for both vertex labels `author` and `book`, in the `authorBook` file, variables `aname` and `bname` are used for author name and book name, respectively. These variables are used in the mapping logic used to create the edges between `author` and `book` vertices.

- In each line, the file is specified as a text file, the file name is specified, a delimiter is set, and a header must be specified to identify the fields that will be read. In addition, to parse each line of the text file using regex, the regex logic is included. A map, `authorInput`, is created that will be used to process the data. The map can be manipulated before loading using transforms (page 802).

- Create the main body of the mapping script. (page 783) This part of the mapping script is the same regardless of the file format.

- To run DSE Graph Loader for text loading as a dry run, use the following command:

```
$ graphloader authorBookMappingREGEX.groovy -graph testREGEX -address localhost -dryrun true
```

For testing purposes, the graph specified does not have to exist prior to running `graphloader`. However, for production applications, the graph and schema should be created prior to using `graphloader`.

- The full loading script is shown:

```java
/* SAMPLE INPUT - uses tabs
author:
  name:Julia Child gender:F
book:
  name:Simca's Cuisine: 100 Classic French Recipes for Every Occasion
authorBook:
  bname:Simca's Cuisine: 100 Classic French Recipes for Every Occasion
  aname:Simone Beck
*/

// CONFIGURATION
// Configures the data loader to create the schema
cfg config create_schema: true, load_new: true, load_vertex_threads: 3

// DATA INPUT
// Define the data input source (a file which can be specified via
// command line arguments)
```
// inputfiledir is the directory for the input files that is given in the commandline
// as the "-filename" option
inputfiledir = '/tmp/REGEX/'

authorInput = File.text(inputfiledir + "authorREGEX.dat").
 regex("name:(.*)\tgender:([MF])").
 header('name', 'gender')

bookInput = File.text(inputfiledir + "bookREGEX.dat").
 regex("name:(.*)\tyear:([0-9]{4})\tISBN:([0-9]{1}[{-]{1}[0-9]{3} [-]{1}[0-9]{5}[-]{1}[0-9]{0,1})").
 header('name', 'year', 'ISBN')

authorBookInput = File.text(inputfiledir + "authorBookREGEX.dat").
 regex("bname:(.*)\taname:(.*)").
 header('bname', 'aname')

// Specifies what data source to load using which mapper (as defined inline)

load(authorInput).asVertices {
 label "author"
 key "name"
}

load(bookInput).asVertices {
 label "book"
 key "name"
}

load(authorBookInput).asEdges {
 label "authored"
 outV "aname", {
 label "author"
 key "name"
 }
 inV "bname", {
 label "book"
 key "name"
 }
}

Loading data from a JDBC compatible database.

The data mapping script for loading from a JDBC compatible database is shown with explanation. The full script is found at the bottom of the page.

Note: Using DSE Graph Loader to load directly from a JDBC compatible database is convenient, but very slow for a large database. Test a small dataset first, to see if the time required to move a larger dataset makes this method efficient.

- If desired, add configuration (page 746) to the mapping script.
- A sample of the data for load looks like the following:
SAMPLE INPUT
// For the author data:
name:Julia Child gender:F
// For the book data:
name:Simca's Cuisine: 100 Classic French Recipes for Every Occasion
// For the authorBook data:
bname:Simca's Cuisine: 100 Classic French Recipes for Every Occasion aname:Simone Beck

Because the property key `name` is used for both vertex labels `author` and `book`, in the `authorBook` file, variables `aname` and `bname` are used for author name and book name, respectively. These variables are used in the mapping logic used to create the edges between `author` and `book` vertices.

- Some databases will need a driver installed in the same directory as the `graphloader` script. For the following example using MySQL, the driver can be downloaded. Unzip the file and copy the `mysql-connector-java-5.1.44-bin.jar` file to the correct directory. A similar download would be required for the other databases as well.
- Specify the data input database with JDBC information. The variable `inputDatabase` specifies the data input database. This example uses the `MySQL` database, but any JDBC-compliant database (H2, MySQL, Postgres, Oracle) can be used. The connection to a `localhost` and a `MySQL` database `sample` are specified. In addition, `user` and `password` are defined. The `MySQL()` step denotes the data connection to a `MySQL` database. The connection can alternatively define a remote machine address.

```java
// DATA INPUT
// Define the data input source (a database connection and SQL statements for data selection)
// inputDatabase is the database name
inputDatabase = 'localhost/sample'
db = Database.connection('jdbc:mysql://' + inputDatabase).user('root').password('foo').MySQL()
// Define multiple data inputs from the database source via SQL queries
authorInput = db.query "select * from author";
bookInput = db.query "select * from book";
authorBookInput = db.query "select * from authorbook";
```

Note: To load data from H2, the connection line could be:

```java
inputDatabase = '~/test'
db = Database.connection("jdbc:h2:" + inputDatabase).H2().user("sa")
```

For Postgres, `Postgre()` is used, and for Oracle, `Oracle()`.
In each line, the database query is specified that will be used to retrieve the data. A map, `authorInput`, is created that will be used to process the data. The map can be manipulated before loading using transforms (page 802).

```java
authorInput = db.query "SELECT * FROM AUTHOR";
```

Important: DSE Graph Loader will retrieve all column names from the database with lower-cased names. Create the graph schema with corresponding lower-cased names to avoid read errors.

- Create the main body of the mapping script. (page 783) This part of the mapping script is the same regardless of the file format.
- To run DSE Graph Loader for text loading as a dry run, use the following command:

```bash
$ graphloader authorBookMappingJDBC.groovy -graph testJDBC -address localhost -dryrun true
```

For testing purposes, the graph specified does not have to exist prior to running `graphloader`. However, for production applications, the graph and schema should be created prior to using `graphloader`.

- The full loading script is shown.

```java
/* SAMPLE INPUT
author:
 name: Julia Child gender: F
book:
 name: Simca's Cuisine: 100 Classic French Recipes for Every Occasion
authorBook:
 bname: Simca's Cuisine: 100 Classic French Recipes for Every Occasion
aname: Simone Beck
*/

// CONFIGURATION
// Configures the data loader to create the schema
config create_schema: true, load_new: true, load_vertex_threads: 3

// DATA INPUT
// Define the data input source (a database connection and SQL statements for data selection)
inputDatabase = 'localhost/sample'
db = Database.connection('jdbc:mysql://' + inputDatabase).user('root').password('foo').MySQL()

// Define multiple data inputs from the database source via SQL queries
authorInput = db.query "select * from author";
bookInput = db.query "select * from book";
authorBookInput = db.query "select * from authorbook";
```
// Specifies what data source to load using which mapper (as defined inline)

load(authorInput).asVertices {
 label "author"
 key "name"
}

load(bookInput).asVertices {
 label "book"
 key "name"
}

load(authorBookInput).asEdges {
 label "authored"
 outV "aname", {
 label "author"
 key "name"
 }
 inV "bname", {
 label "book"
 key "name"
 }
}

Loading data from Hadoop (HDFS)

The data mapping script for loading from HDFS is shown with explanation. The full script is found at the bottom of the page.

- If desired, add configuration (page 746) to the mapping script.
- A sample of the CSV data residing on HDFS:

 // SAMPLE INPUT
 // For the author.csv file:
 // name|gender
 // Julia Child|F
 // For the book.csv file:
 // name|year|ISBN
 // Simca's Cuisine: 100 Classic French Recipes for Every Occasion|1972|0-394-40152-2
 // For the authorBook.csv file:
 // bname|aname
 // Simca's Cuisine: 100 Classic French Recipes for Every Occasion|Simone Beck

Because the property key name is used for both vertex labels author and book, in the authorBook file, variables aname and bname are used for author name and book name, respectively. These variables are used in the mapping logic used to create the edges between author and book vertices.

- Specify the data inputs using a HDFS reference dfs_uri and the filenames:
This example uses compressed files and the additional step `gzip()`.

- **Create the main body of the mapping script. (page 783)** This part of the mapping script is the same regardless of the file format.
- **To run DSE Graph Loader for text loading as a dry run**, use the following command:

```
$ graphloader authorBookMappingHDFS.groovy -graph testHDFS -address localhost -dryrun true
```

For testing purposes, the graph specified does not have to exist prior to running `graphloader`. However, for production applications, the graph and schema should be created prior to using `graphloader`. The `-dryrun true` option runs the command without loading data.

- **The full loading script is shown.**

```java
// SAMPLE INPUT
// For the author.csv file:
// name|gender
// Julia Child|F
// For the book.csv file:
// name|year|ISBN
// Simca's Cuisine: 100 Classic French Recipes for Every Occasion| 1972|0-394-40152-2
// For the authorBook.csv file:
// bname|aname
// Simca's Cuisine: 100 Classic French Recipes for Every Occasion| Simone Beck

// CONFIGURATION
// Configures the data loader to create the schema
config create_schema: true, load_new: true, preparation: true

// DATA INPUT
```
Using DataStax Enterprise advanced functionality

// Define the data input sources
// dfs_uri specifies the URI to the HDFS directory in which the
// files are stored
dfs_uri = 'hdfs://hadoopNode:9000/food/
authorInput = File.csv(dfs_uri + 'author.csv.gz').
 gzip().
 delimiter('|')
bookInput = File.csv(dfs_uri + 'book.csv.gz').
 gzip().
 delimiter('|')
authorBookInput = File.csv(dfs_uri + 'authorBook.csv.gz').
 gzip().
 delimiter('|')

// Specifies what data source to load using which mapper (as
// defined inline)
load(authorInput).asVertices {
 label "author"
 key "name"
}
load(bookInput).asVertices {
 label "book"
 key "name"
}
load(authorBookInput).asEdges {
 label "authored"
 outV "aname", {
 label "author"
 key "name"
 }
 inV "bname", {
 label "book"
 key "name"
 }
}

Loading data from AWS S3

The data mapping script for loading from AWS S3 is shown with explanation. The full
script is found at the bottom of the page.

- If desired, add configuration (page 746) to the mapping script.
- A sample of the CSV data residing on AWS S3:

 // SAMPLE INPUT
 // For the author.csv file:
 // name|gender
 // Julia Child|F
Because the property key `name` is used for both vertex labels `author` and `book`, in the `authorBook` file, variables `aname` and `bname` are used for author name and book name, respectively. These variables are used in the mapping logic used to create the edges between `author` and `book` vertices.

- Specify the data inputs using a AWS S3 reference `dfs_uri` that defines `s3://` [bucket] and the filenames:

```groovy
// DATA INPUT
// Define the data input sources /
// dfs_uri specifies the URI to the HDFS directory in which the files are stored

dfs_uri = 's3://food/
authorInput = File.csv(dfs_uri + 'author.csv.gz').gzip().delimiter('|')
bookInput = File.csv(dfs_uri + 'book.csv.gz').gzip().delimiter('|')
authorBookInput = File.csv(dfs_uri + 'authorBook.csv.gz').gzip().delimiter('|')
```

This example uses compressed files and the additional step `gzip()`.

- Create the main body of the mapping script. *(page 783)* This part of the mapping script is the same regardless of the file format.

- To run DSE Graph Loader for text loading as a dry run, use the following command:

```bash
$ graphloader authorBookMappingS3.groovy -graph testS3 -address localhost -dryrun true
```

For testing purposes, the graph specified does not have to exist prior to running `graphloader`. However, for production applications, the graph and schema should be created prior to using `graphloader`. The `-dryrun true` option runs the command without loading data.

- The full loading script is shown.

```groovy
// SAMPLE INPUT
// For the author.csv file:
// name|gender
// Julia Child|F
// For the book.csv file:
// name|year|ISBN
```
Using DataStax Enterprise advanced functionality

// Simca's Cuisine: 100 Classic French Recipes for Every Occasion
1972|0-394-40152-2
// For the authorBook.csv file:
// bname|aname
// Simca's Cuisine: 100 Classic French Recipes for Every Occasion
Simone Beck

// CONFIGURATION
// Configures the data loader to create the schema
config create_schema: true, load_new: true, preparation: true

// DATA INPUT
// Define the data input sources
// dfs_uri specifies the URI to the HDFS directory in which the files are stored
dfs_uri = 's3://food/'
authorInput = File.csv(dfs_uri + 'author.csv.gz').gzip().delimiter('|')
bookInput = File.csv(dfs_uri + 'book.csv.gz').gzip().delimiter('|')
authorBookInput = File.csv(dfs_uri + 'authorBook.csv.gz').gzip().delimiter('|')

// Specifies what data source to load using which mapper (as defined inline)
load(authorInput).asVertices {
 label "author"
 key "name"
}
load(bookInput).asVertices {
 label "book"
 key "name"
}
load(authorBookInput).asEdges {
 label "authored"
 outV "aname", {
 label "author"
 key "name"
 }
inV "bname", {
 label "book"
 key "name"
 }
Using DataStax Enterprise advanced functionality

Loading Gryo data

One file format for importing and exporting data to and from DSE Graph is Gryo, a binary file format. Gryo is a Gremlin variant of Kryo, a fast and efficient object graph serialization framework for Java.

The data mapping script for Gryo data is shown with explanation. The full script is found at the bottom of the page.

Note: DSE Graph Loader can load Gryo files generated with DSE Graph or with TinkerGraph, the in-memory graph database included with Apache TinkerPop. The Gryo files generated with DSE Graph have a different format from TinkerGraph Gryo files, and the mapping script is different (page 799) for loading data from each source.

- If desired, add configuration (page 746) to the mapping script.
- Specify the data input file. The variable inputfiledir specifies the directory for the input file. The identified file will be used for loading.

```java
// DATA INPUT
// Define the data input source
// inputfiledir is the directory for the input files
inputfiledir = '/tmp/Gryo/
recipeInput = Graph.file(inputfiledir + 'recipe.gryo').gryo()
```

If the Gryo input file is generated from DSE Graph, an additional step dse() will allow the input data to be streamed, facilitating large file transfers.

```java
// DATA INPUT
// Define the data input source
// inputfiledir is the directory for the input files
inputfiledir = '/tmp/Gryo/
recipeInput = Graph.file(inputfiledir + 'recipe.gryo').gryo().dse()
```

- The file is specified as a gryo file and an additional step gryo() identifies that the file should be processed as a Gryo file. A map, recipeInput, is created that will be used to process the data.

```java
recipeInput = Graph.file(inputfiledir + 'recipe.gryo')
```

Note that Graph.file is used, in contrast to File.csv or File.json.

Tip: If you wish to access a java.io.File object, fully namespace the first call; otherwise, DSE Graph Loader overrides the File object:

```java
currentDir = new java.io.File('.').getCanonicalPath() + '/'
```
- Create the main body of the mapping script. *(page 783)* This part of the mapping script is the same regardless of the file format, although Gryo files use a slightly modified version *(page 799).*

- To run DSE Graph Loader for Gryo loading as a dry run, use the following command:

```
$ graphloader recipeMappingGRYO.groovy -graph testGRYO -address localhost -dryrun true
```

For testing purposes, the graph specified does not have to exist prior to running `graphloader`. However, for production applications, the graph and schema should be created prior to using `graphloader`.

- The full loading script is shown:

```
/* SAMPLE INPUT
Gryo file is a binary file
*/

// CONFIGURATION
// Configures the data loader to create the schema
config create_schema: true, load_new: true

// DATA INPUT
// Define the data input source
// inputfiledir is the directory for the input files

inputfiledir = '/tmp/GRYO/'
recipeInput = Graph.file(inputfiledir + 'recipe.gryo').gryo()

load(recipeInput.vertices()).asVertices {
    labelField "~label"
    key "~id", "id"
}

load(recipeInput.edges()).asEdges {
    labelField "~label"
    outV "outV", {
        labelField "~label"
        key "~id", "id"
    }
    inV "inV", {
        labelField "~label"
        key "~id", "id"
    }
```
Using DataStax Enterprise advanced functionality

Loading GraphSON data

The data mapping script for GraphSON data (page 701) is shown with explanation. The full script is found at the bottom of the page.

Note: DSE Graph Loader can load GraphSON files generated with DSE Graph or TinkerGraph, the in-memory graph database included with Apache TinkerPop.

- If desired, add configuration (page 746) to the mapping script.
- Specify the data input file. The variable `inputfiledir` specifies the directory for the input file. The identified file will be used for loading.

```java
// DATA INPUT
// Define the data input source
// inputfiledir is the directory for the input files

inputfiledir = '/tmp/GraphSON/
recipeInput = Graph.file(inputfiledir + 'recipe.json').graphson()
```

If the GraphSON input file is generated from DSE Graph, an additional step `dse()` will allow the input data to be streamed, facilitating large file transfers.

```java
// DATA INPUT
// Define the data input source
// inputfiledir is the directory for the input files

inputfiledir = '/tmp/GraphSON/
recipeInput = Graph.file(inputfiledir + 'recipe.json').graphson().dse()
```

- The file is specified as a `json` file and an additional step `graphson()` identifies that the file should be processed as a GraphSON file. A map, `recipeInput`, is created that will be used to process the data.

```java
recipeInput = Graph.file(inputfiledir + 'recipe.json')
```

Note that `Graph.file` is used, in contrast to `File.csv` or `File.json`.

- Create the main body of the mapping script. (page 783) This part of the mapping script is the same regardless of the file format, although GraphSON files use a slightly modified version (page 801).
- To run DSE Graph Loader for GraphSON loading as a dry run, use the following command:

```bash
$ graphloader recipeMappingGraphSON.groovy -graph testGraphSON -address localhost -dryrun true
```
For testing purposes, the graph specified does not have to exist prior to running `graphloader`. However, for production applications, the graph and schema should be created prior to using `graphloader`.

- The full loading script is shown:

```java
/* SAMPLE INPUT
GraphSON file is a JSON-like file */

// CONFIGURATION
// Configures the data loader to create the schema
config create_schema: true, load_new: true

// DATA INPUT
// Define the data input source
// inputfiledir is the directory for the input files
inputfiledir = '/tmp/GraphSON/
recipeInput = Graph.file(inputfiledir + 'recipe.json').graphson()

// Specifies what data source to load using which mapper (as defined inline)
load(recipeInput.vertices()).asVertices {
  labelField "~label"
  key "~id", "id"
}
load(recipeInput.edges()).asEdges {
  labelField "~label"
  outV "outV", {
    labelField "~label"
    key "~id", "id"
  }
  inV "inV", {
    labelField "~label"
    key "~id", "id"
  }
}
```

Loading GraphML data

The data mapping script for GraphML data *(page 703)* is shown with explanation. The full script is found at the bottom of the page.

Note: DSE Graph Loader can load GraphML files generated with TinkerGraph, the in-memory graph database included with Apache TinkerPop. GraphML files generated with DSE Graph cannot be loaded using DSE Graph Loader.

- If desired, add configuration *(page 746)* to the mapping script.
• Specify the data input file. The variable `inputfiledir` specifies the directory for the input file. The identified file will be used for loading.

```java
// DATA INPUT
// Define the data input source
// inputfiledir is the directory for the input files
inputfiledir = '/tmp/GraphML/
recipeInput = Graph.file(inputfiledir + 'recipe.xml').graphml()
```

• The file is specified as a `xml` file and an additional step `graphml()` identifies that the file should be processed as a GraphML file. A map, `recipeInput`, is created that will be used to process the data.

```java
recipeInput = Graph.file(inputfiledir + 'recipe.xml')
```

Note that `Graph.file` is used, in contrast to `File.csv` or `File.json`.

• Create the main body of the mapping script. *(page 783)* This part of the mapping script is the same regardless of the file format, although GraphML files use a slightly modified version *(page 800)*.

• To run DSE Graph Loader for GraphML loading as a dry run, use the following command:

```bash
$ graphloader recipeMappingGraphML.groovy -graph testGraphML -address localhost -dryrun true
```

For testing purposes, the graph specified does not have to exist prior to running `graphloader`. However, for production applications, the graph and schema should be created prior to using `graphloader`.

• The full loading script is shown:

```java
/* SAMPLE INPUT
GraphML file is an XML file
*/

// CONFIGURATION
// Configures the data loader to create the schema
config create_schema: true, load_new: true

// DATA INPUT
// Define the data input source
// inputfiledir is the directory for the input files
inputfiledir = '/tmp/GraphML/
recipeInput = Graph.file(inputfiledir + 'recipe.xml').graphml()

//Specifies what data source to load using which mapper (as defined inline)
load(recipeInput.vertices()).asVertices {
```
Using DataStax Enterprise advanced functionality

Mapping script

Regardless of the file format selected, the main body of the mapping script is the same. After setting configuration and adding a data input source, the mapping commands are specified.

- **Vertices** are loaded from `authorInput`, with the vertex label `author` and the property key `name` which uniquely identifies a vertex listed for the key. Note that, in this example, if `gender` were chosen for the key, it would not be unique enough to load each record from the data file. Using the configuration setting `load_new: true` can significantly speed up the loading process, but a duplicate vertex will be created if the record already exists. All other property keys will be loaded, but do not have to be identified in the loading script. For `author` vertices, `gender` will also be loaded.

```plaintext
load(authorInput).asVertices {
  label "author"
  key "name"
}
```

Note: If more than 256 property key values are present in the input file, see important information (page 271) on the `max_query_params` value in the `dse.yaml` file.

One load statement must be created for each vertex loaded, even if the same file is reused for one or more vertices. When using the same input file for multiple vertices, sometimes a field exists in the input file that should be ignored for a particular vertex. See the instructions for **ignoring a field** (page 785). If an input file includes multiple types of lines, for instance, `authors` and `reviewers`, that should be read into different vertex labels, see the instructions for **labelField** (page 786).

- **Loading the book vertices** follows a similar pattern. Note that both vertex labels `author` and `book` use `name` as the unique key for identifying a vertex. This declares that the vertex record does not yet exist in the graph at the beginning of the loading process.

```plaintext
load(bookInput).asVertices {
  label "book"
  key "name"
}
```
• After vertices are loaded, edges are loaded. Similar to the vertex mapping, an edge label is specified. In addition, the outgoing vertex (outV) and incoming vertex (inV) for the edge must be identified. For each vertex in `outV` or `inV`, the vertex label is specified with `label`, and the unique key is specified with `key`.

```java
load(authorBookInput).asEdges {
  label "authored"
  outV "aname", {
    label "author"
    key "name"
  }
  inV "bname", {
    label "book"
    key "name"
  }
}
```

Note the naming convention used for the `outV` and `inV` designations. Because both the outgoing vertex and the incoming vertex keys are listed as `name`, the designators `aname` and `bname` are used to distinguish between the author name and the book name as the field names in the input file.

• An alternative to the definitions shown above is to specify the mapping logic with variables, and then list the load statements separately.

```java
authorMapper = {
  label "author"
  key "name"
}
bookMapper = {
  label "book"
  key "name"
}
authorBookMapper = {
  label "authored"
  outV "aname", {
    label "author"
    key "name"
  }
  inV "bname", {
    label "book"
    key "name"
  }
}
load(authorInput).asVertices(authorMapper)
load(bookInput).asVertices(bookMapper)
```
Ignoring a field in input file

If the input file includes a field that should be ignored for a particular vertex load, use `ignore`.

1. Create a map script that ignores the field `restaurant`:

   ```plaintext
   // authorInput includes name, gender, and restaurant
   // but restaurant is not loaded
   /* Sample input:
   name|gender|restaurant
   Alice Waters|F|Chez Panisse
   */
   load(authorInput).asVertices {
      label "author"
      key "name"
      ignore "restaurant"
   }
   ``

2. An additional example shows the use of `ignore` where two different types of vertices are created, `book` and `author`, using the same input file.

   ```plaintext
 /* Sample input:
 name|gender|bname
 Julia Child|F|The French Chef Cookbook
 Simone Beck|F|The Art of French Cooking, Vol. 1
 */

 //inputfiledir = '/tmp/TEXT/'
 authorInput = File.text("author.dat").
 delimiter("|").
 header('name', 'gender','bname')

 //Specifies what data source to load using which mapper (as defined inline)
 load(authorInput).asVertices {
 label "book"
 key "bname"
 ignore "name"
 ignore "gender"
 }
 load(authorInput).asVertices {
 label "author"
 key "name"
 outV "book", "authored", {
 label "book"
 key "bname"
 }
 }
   ```
Using DataStax Enterprise advanced functionality

Using labelField to parse input into different vertex labels

Oftentimes, an input file includes a field that is used to identify the vertex label. In order to load the file and create different vertex labels on-the-fly, labelField is used to identify that particular field.

1. Create a map to input both authors and reviewers from the same file using labelField:

```java
/* SAMPLE INPUT
The input personInput includes type of person, name, gender; type can be either author or reviewer.
type::name::gender
author::Julia Child::F
reviewer::Jane Doe::F */

personInput = File.text('people.dat').delimiter("::").header('type','name','gender')

load(personInput).asVertices{
 labelField "type"
 key "name"
}
```

Running this map script using the sample data results in two different vertex labels, with one record for each.

```java
g.V().hasLabel('author').valueMap()
{gender=[F], name=[Julia Child]}
g.V().hasLabel('reviewer').valueMap()
{gender=[F], name=[Jane Doe]}
```

Using compressed files to load data

Compressed files can be loaded using DSE Graph Loader to load both vertices and edges. This example loads vertices and edges, as well as edge properties, using gzipped files.

1. Create a map script that specifies the input files as compressed *.gz files:

```java
/* SAMPLE INPUT
rev_name|recipe_name|timestamp|stars|comment
John Doe|Beef Bourguignon|2014-01-01|5|comment */
```
// CONFIGURATION
// Configures the data loader to create the schema
config create_schema: false, load_new: false

// DATA INPUT
// Define the data input source (a file which can be specified via command line arguments)
// inputfiledir is the directory for the input files that is given in the command line
// as the "-filename" option
inputfiledir = '/tmp/CSV/'
// This next file is not required if the reviewers already exist
reviewerInput = File.csv(inputfiledir + "reviewers.csv.gz").gzip().delimiter('|
')
// This next file is not required if the recipes already exist
recipeInput = File.csv(inputfiledir + "recipes.csv.gz").gzip().delimiter('|
')
// This is the file that is used to create the edges with edge properties
reviewerRatingInput = File.csv(inputfiledir + "reviewerRatings.csv.gz").gzip().delimiter('|
')

// Specifies what data source to load using which mapper (as defined inline)
load(reviewerInput).asVertices {
  label "reviewer"
  key "name"
}
load(recipeInput).asVertices {
  label "recipe"
  key "name"
}
load(reviewerRatingInput).asEdges {
  label "rated"
  outV "rev_name", {
    label "reviewer"
    key "name"
  }
  inV "recipe_name", {
    label "recipe"
    key "name"
  }
  // properties are automatically added from the file, using the header line as property keys
  // from previously created schema
The compressed files are designated as `.gz` files, followed by a `gzip()` step for processing. Edge properties are loaded from one of the input files based on the header identifying the property keys to use for the values listed in each line of the CSV file. The edge properties populate a rated edge between a reviewer vertex and a recipe vertex with the properties `timestamp`, `stars`, and `comment`.

**Mapping data with a composite custom id**

Data with a composite primary key (page 638) requires some additional definition when specifying the key for loading, if the custom id uses multiple keys for definition (either `partitionKeys` and/or `clusteringKeys`).

1. Inserting data for vertices with a composite custom id requires the declaration of two or more keys:

```
/* SAMPLE INPUT
cityId|sensorId|fridgeItem
santaCruz|93c4ec9b-68ff-455e-8668-1056ebc3689f|asparagus
*/
load(fridgeItemInput).asVertices {
 label "fridgeSensor"
 // The vertexLabel schema for fridgeSensor includes two keys:
 // partition key: cityId and clustering key: sensorId
 key cityId: "cityId", sensorId: "sensorId"
}
```

**Tip:** The schema for the composite custom id must be created prior to using DSE Graph Loader, and cannot be inferred from the data. In addition, create a search index (page 648) that includes all properties in the composite key. The search index is required to use DSE Graph Loader for inserting composite custom id data.

Check the vertex id results with `id()` to retrieve the full primary key definition:

```
gremlin> g.V().hasLabel('fridgeSensor').id()
==>{~label=fridgeSensor,
 sensorId=93c4ec9b-68ff-455e-8668-1056ebc3689f, cityId=santaCruz}
==>{~label=fridgeSensor, sensorId=9c23b683-1de2-4c97-a26a-277b3733732a, cityId=sacramento}
==>{~label=fridgeSensor, sensorId=eff4a8af-2b0d-4ba9-a063-c170130e2d84, cityId=sacramento}
```

Each vertex stores `fridgeItem` as data:

```
gremlin> g.V().valueMap()
==>{fridgeItem=[asparagus]}
==>{fridgeItem=[ham]}
```
2. To load edges based on a composite key, a transformation is required:

```java
/* SAMPLE EDGE DATA */
cityId|sensorId|name
santaCruz|93c4ec9b-68ff-455e-8668-1056ebc3689f|asparagus
*/

the_edges = File.csv(inputfiledir + "fridgeItemEdges.csv").delimiter('|')

the_edges = the_edges.transform {
 it['fridgeSensor'] = [
 'cityId' : it['cityId'],
 'sensorId' : it['sensorId']];
 it['ingredient'] = [
 'name' : it['name']];
 it
}

load(the_edges).asEdges {
 label "contains"
 outV "ingredient", {
 label "ingredient"
 key "name"
 }
 inV "fridgeSensor", {
 label "fridgeSensor"
 key cityId:"cityId", sensorId:"sensorId"
 }
}
```

The edge file transforms the partition key and clustering key into a map of `cityId` and `sensorId`. This map can then be used to designate the key for a `fridgeSensor` vertex when the edges are loaded.

The resulting map shows the edges created between ingredient and fridgeSensor vertices.
3. For DSE 5.1.3 and later, an alternative method of loading edge data from CSV files can be used:

```plaintext
/* SAMPLE EDGE DATA
cityId|sensorId|homeId
100|001|9001 */

isLocatedAt_fridgeSensor = File.csv(/tmp/data/edges/" +
"isLocatedAt_fridgeSensor.csv").delimiter('|')

load(isLocatedAt_fridgeSensor).asEdges {
 label "isLocatedAt"
 outV {
 label "fridgeSensor"
 key cityId: "cityId", sensorId: "sensorId"
 exists()
 ignore "homeId"
 }
 inV {
 label "home"
 key "homeId"
 exists()
 ignore "cityId"
 ignore "sensorId"
 }
 ignore "cityId"
 ignore "sensorId"
 ignore "homeId"
}
```

In this example, no transform is required, but `ignore` statements are required in both the `inV` and `outV` declarations, as well as the edge properties section. Removing the
exists() statement in the incoming and outgoing vertex declarations can enable loading the vertices as well as the edges in this mapping script.

**Important:** There is a new subtle change in the inV and outV declarations. An input field name is no longer used, such as inV "home", {, due to the requirement to support multiple-key custom ids.

The resulting map:

Mapping multi-cardinality edges

Multiple cardinality edges are a common type of data that is inserted into graphs. Often, the input file has both vertex and edge information for loading.

1. Inserting vertices and multi-cardinal edges *(page 635)* can be accomplished from one file with judicious use of ignore while loading vertices:

```plaintext
/* SAMPLE INPUT
authorCity:
author|city|dateStart|dateEnd
Julia Child|Paris|1961-01-01|1967-02-10 */

// CONFIGURATION
// Configures the data loader to create the schema
config dryrun: false, preparation: true, create_schema: false,
load_new: true, schema_output: 'loader_output.txt'

// DATA INPUT
// Define the data input source (a file which can be specified via command line arguments)
// inputfiledir is the directory for the input files
inputfiledir = '/tmp/multiCard/
```
using DataStax Enterprise advanced functionality

authorCityInput = File.csv(inputfiledir + "authorCity.csv").delimiter('|')

// Specifies what data source to load using which mapper (as defined inline)

// Ignore city, dateStart, and dateEnd when creating author vertices
load(authorCityInput).asVertices {
  label "author"
  key "author"
  ignore "city"
  ignore "dateStart"
  ignore "dateEnd"
}

// Ignore author, dateStart, and dateEnd when creating city vertices
load(authorCityInput).asVertices {
  label "city"
  key "city"
  ignore "author"
  ignore "dateStart"
  ignore "dateEnd"
}

// Create edges from author -> city and include the edge properties dateStart and dateEnd
load(authorCityInput).asEdges {
  label "livedIn"
  outV "author", {
    label "author"
    key "author"
  }
  inV "city", {
    label "city"
    key "city"
  }
}

Mapping meta-properties

If the input file includes meta-properties, or properties that have properties, use vertexProperty.

The schema for this data load should be created prior to running graphloader

// PROPERTY KEYS
schema.propertyKey('name').Text().single().create()
schema.propertyKey('gender').Text().single().create()
schema.propertyKey('badge').Text().single().create()
schema.propertyKey('since').Int().single().create()
Using DataStax Enterprise advanced functionality

// Create the meta-property since on the property badge
schema.propertyKey('badge').properties('since').add()

// VERTEX LABELS
schema.vertexLabel('reviewer').properties('name','gender','badge').create()

// INDEXES
schema.vertexLabel('reviewer').index('byname').materialized().by('name').add()

1. The mapping script uses `vertexProperty` to identify `badge` as a vertex property. Note the structure of the nested fields for `badge` in the JSON file.

```java
* SAMPLE INPUT
reviewer: { "name":"Jon Doe", "gender":"M", "badge" : { "value": "Gold Badge","since" : 2012 } }
*/

// CONFIGURATION
// Configures the data loader to create the schema
config dryrun: false, preparation: true, create_schema: true, load_new: true, load_vertex_threads: 3, schema_output: 'loader_output.txt'

// DATA INPUT
// Define the data input source (a file which can be specified via command line arguments)
// inputfiledir is the directory for the input files
inputfiledir = '/tmp/
reviewerInput = File.json(inputfiledir + "reviewer.json")

// Specifies what data source to load using which mapper (as defined inline)
load(reviewerInput).asVertices{
 label "reviewer"
 key "name"
 vertexProperty "badge", {
 value "value"
 }
}
```

Running this mapping script using the sample data results in a `reviewer` vertex where the property `badge` has a meta-property `since`.

```
g.V().valueMap()
{badge=[Gold Badge], gender=[M], name=[Jane Doe]}
g.V().properties('badge').valueMap()
{since=2012}
```

Mapping multiple meta-properties

If the input file includes multiple meta-properties, or properties that have multiple properties, use `vertexProperty`.

---

Page 793
The schema for this data load should be created prior to running `graphloader`.

```java
// PROPERTY KEYS
schema.propertyKey('badge').Text().multiple().create()
schema.propertyKey('gender').Text().single().create()
schema.propertyKey('name').Text().single().create()
schema.propertyKey('since').Int().single().create()

// VERTEX LABELS
schema.vertexLabel('reviewer').properties('name', 'gender', 'badge').create()
schema.propertyKey('badge').properties('since').add()

// INDEXES
schema.vertexLabel('reviewer').index('byname').materialized().by('name').add()
```

1. The mapping script uses `vertexProperty` to identify `badge` as a vertex property. Note the structure of the nested fields for `badge` in the JSON file.

```java
/* SAMPLE INPUT
reviewer: { "name":"Jane Doe", "gender":"F",
 "badge" : [{ "value": "Gold Badge", "since" : 2012 },
 { "value": "Silver Badge", "since" : 2005 }] }
*/
```

1. The mapping script uses `vertexProperty` to identify `badge` as a vertex property. Note the structure of the nested fields for `badge` in the JSON file.

```java
// CONFIGURATION
// Configures the data loader to create the schema
config dryrun: false, preparation: true, create_schema:
 false, load_new: true, load_vertex_threads: 3, schema_output:
 'loader_output.txt'
```

1. The mapping script uses `vertexProperty` to identify `badge` as a vertex property. Note the structure of the nested fields for `badge` in the JSON file.

```java
// DATA INPUT
// Define the data input source (a file which can be specified via
// command line arguments)
// inputfiledir is the directory for the input files
inputfiledir = '/tmp/
reviewerInput = File.json(inputfiledir + "reviewerMultiMeta.json")
```

1. The mapping script uses `vertexProperty` to identify `badge` as a vertex property. Note the structure of the nested fields for `badge` in the JSON file.

```java
// Specifies what data source to load using which mapper (as defined inline)
load(reviewerInput).asVertices{
 label "reviewer"
 key "name"
 vertexProperty "badge", {
 value "value"
 }
}
```

1. The mapping script uses `vertexProperty` to identify `badge` as a vertex property. Note the structure of the nested fields for `badge` in the JSON file.

```java
Optionally, the data can be loaded from a CSV file if a transform is used before loading:

/* SAMPLE INPUT
```
Using DataStax Enterprise advanced functionality

<table>
<thead>
<tr>
<th>name</th>
<th>gender</th>
<th>value</th>
<th>since</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jane Doe</td>
<td>F</td>
<td>Gold Badge</td>
<td>2011</td>
</tr>
<tr>
<td>Jane Doe</td>
<td>F</td>
<td>Silver Badge</td>
<td>2005</td>
</tr>
<tr>
<td>Jon Doe</td>
<td>M</td>
<td>Gold Badge</td>
<td>2012</td>
</tr>
</tbody>
</table>

*/

// CONFIGURATION
// Configures the data loader to create the schema
config dryrun: false, preparation: true, create_schema:
  false, load_new: true, load_vertex_threads: 3, schema_output:
  'loader_output.txt'

// DATA INPUT
// Define the data input source (a file which can be specified via
// command line arguments)
// inputfiledir is the directory for the input files
inputfiledir = '/tmp/'
reviewerInput = File.csv(inputfiledir +
  "reviewerMultiMeta.csv").delimiter('|')

// Specifies what data source to load using which mapper (as defined inline)
reviewerInput = reviewerInput.transform {
  badge1 = [
    "value": it.remove("value"),
    "since": it.remove("since")
  ]
  it["badge"] = [badge1]
  it
}

load(reviewerInput).asVertices{
  label "reviewer"
  key "name"
  vertexProperty "badge", {
    value "value"
  }
}

Running this mapping script using the sample data results in a reviewer vertex
where the property badge has multiple values.
Using DataStax Enterprise advanced functionality

Choosing the pop-up link for badge reveals the meta-property values:

Mapping geospatial and Cartesian data

Geospatial and Cartesian data can be loaded with DSE Graph Loader. The DSE Graph Loader is not capable of creating schema for geospatial (page 629) and Cartesian (page 631) data, so schema must be created before loading and the create_schema configuration must be set to false.
An example of geospatial schema for the example:

```schema
//SCHEMA
schema.propertyKey('name').Text().create()
schema.propertyKey('point').Point().withGeoBounds().create()
schema.vertexLabel('location').properties('name','point').create()
schema.propertyKey('line').Linestring().withGeoBounds().create()
schema.vertexLabel('lineLocation').properties('name','line').create()
schema.propertyKey('polygon').Polygon().withGeoBounds().create()
schema.vertexLabel('polyLocation').properties('name','polygon').create()

schema.vertexLabel('location').index('byname').materialized().by('name').add()
schema.vertexLabel('lineLocation').index('byname').materialized().by('name').add()
schema.vertexLabel('polyLocation').index('byname').materialized().by('name').add()
schema.vertexLabel('location').index('search').search().by('point').add()
schema.vertexLabel('lineLocation').index('search').search().by('line').add()
schema.vertexLabel('polyLocation').index('search').search().by('polygon').add()
```

Search indexes (page 649) must be used for geospatial and Cartesian points, linestrings or polygons in graph queries. DSE Graph uses one index per query, and because geospatial data consists of latitude and longitude (two parameters), only search indexes can be used to optimize query performance.

1. If desired, add configuration (page 746) to the mapping script.

2. Specify the data input directory. The variable inputfiledir specifies the directory for the input files. Each of the identified files will be used for loading.

```/* SAMPLE DATA
name|point
New York|POINT(74.0059 40.7128)
Paris|POINT(2.3522 48.8566)
*/

// DATA INPUT
// Define the data input source (a file which can be specified via command line arguments)
// inputfiledir is the directory for the input files

inputfiledir = '/tmp/geo_dgl/data/
ptsInput = File.csv(inputfiledir + "vertices/place.csv").delimiter(' | ')
linesInput = File.csv(inputfiledir + "vertices/place_lines.csv").delimiter(' | ')
polysInput = File.csv(inputfiledir + "vertices/place_polys.csv").delimiter(' | ')

//Specifies what data source to load using which mapper (as defined inline)
load(ptsInput).asVertices {
 label "location"
 key "name"
```

Search indexes (page 649) must be used for geospatial and Cartesian points, linestrings or polygons in graph queries. DSE Graph uses one index per query, and because geospatial data consists of latitude and longitude (two parameters), only search indexes can be used to optimize query performance.

1. If desired, add configuration (page 746) to the mapping script.

2. Specify the data input directory. The variable inputfiledir specifies the directory for the input files. Each of the identified files will be used for loading.

```/* SAMPLE DATA
name|point
New York|POINT(74.0059 40.7128)
Paris|POINT(2.3522 48.8566)
*/

// DATA INPUT
// Define the data input source (a file which can be specified via command line arguments)
// inputfiledir is the directory for the input files

inputfiledir = '/tmp/geo_dgl/data/
ptsInput = File.csv(inputfiledir + "vertices/place.csv").delimiter(' | ')
linesInput = File.csv(inputfiledir + "vertices/place_lines.csv").delimiter(' | ')
polysInput = File.csv(inputfiledir + "vertices/place_polys.csv").delimiter(' | ')

//Specifies what data source to load using which mapper (as defined inline)
load(ptsInput).asVertices {
 label "location"
 key "name"
```

Search indexes (page 649) must be used for geospatial and Cartesian points, linestrings or polygons in graph queries. DSE Graph uses one index per query, and because geospatial data consists of latitude and longitude (two parameters), only search indexes can be used to optimize query performance.

1. If desired, add configuration (page 746) to the mapping script.

2. Specify the data input directory. The variable inputfiledir specifies the directory for the input files. Each of the identified files will be used for loading.

```/* SAMPLE DATA
name|point
New York|POINT(74.0059 40.7128)
Paris|POINT(2.3522 48.8566)
*/

// DATA INPUT
// Define the data input source (a file which can be specified via command line arguments)
// inputfiledir is the directory for the input files

inputfiledir = '/tmp/geo_dgl/data/
ptsInput = File.csv(inputfiledir + "vertices/place.csv").delimiter(' | ')
linesInput = File.csv(inputfiledir + "vertices/place_lines.csv").delimiter(' | ')
polysInput = File.csv(inputfiledir + "vertices/place_polys.csv").delimiter(' | ')

//Specifies what data source to load using which mapper (as defined inline)
load(ptsInput).asVertices {
 label "location"
 key "name"
```

Search indexes (page 649) must be used for geospatial and Cartesian points, linestrings or polygons in graph queries. DSE Graph uses one index per query, and because geospatial data consists of latitude and longitude (two parameters), only search indexes can be used to optimize query performance.

1. If desired, add configuration (page 746) to the mapping script.

2. Specify the data input directory. The variable inputfiledir specifies the directory for the input files. Each of the identified files will be used for loading.

```/* SAMPLE DATA
name|point
New York|POINT(74.0059 40.7128)
Paris|POINT(2.3522 48.8566)
*/

// DATA INPUT
// Define the data input source (a file which can be specified via command line arguments)
// inputfiledir is the directory for the input files

inputfiledir = '/tmp/geo_dgl/data/
ptsInput = File.csv(inputfiledir + "vertices/place.csv").delimiter(' | ')
linesInput = File.csv(inputfiledir + "vertices/place_lines.csv").delimiter(' | ')
polysInput = File.csv(inputfiledir + "vertices/place_polys.csv").delimiter(' | ')

//Specifies what data source to load using which mapper (as defined inline)
load(ptsInput).asVertices {
 label "location"
 key "name"
```
import com.datastax.driver.dse.geometry.Point
ptsInput = ptsInput.transform {
    it['point'] = Point.fromWellKnownText(it['point']);
    return it;
}

load(linesInput).asVertices {
    label "lineLocation"
    key "name"
}
import com.datastax.driver.dse.geometry.LineString
linesInput = linesInput.transform {
    it['line'] = LineString.fromWellKnownText(it['line']);
    return it;
}

load(polysInput).asVertices {
    label "polyLocation"
    key "name"
}
import com.datastax.driver.dse.geometry.Polygon
polysInput = polysInput.transform {
    it['polygon'] = Polygon.fromWellKnownText(it['polygon']);
    return it;
}

A transformation of the input data is required, converting the point from the WKT format into the format DSE Graph stores. For a point, the transformation imports a Point library and uses the fromWellKnownText method:

import com.datastax.driver.dse.geometry.Point
ptsInput = ptsInput.transform {
    it['point'] = Point.fromWellKnownText(it['point']);
    return it;
}

Linestrings and polygons use the same library and method, respectively.

3. To run DSE Graph Loader for CSV loading from a directory, use the following command:
Mapping Gryo data generated from DSE Graph

Inserting Gryo binary data requires a slightly modified map script. To load Gryo data, allow DSE Graph Loader to create schema and load new data. Loading will require a graph `schema_mode` set to Development.

1. Create a map script for DSE Graph generated Gryo input:

   ```groovy
 //Need to specify a keymap to show how to identify vertices
 vertexKeyMap = VertexKeyMap.with('meal','name').with('ingredient','name').with('author','name').with('book','name').with('recipe','name').build();

 inputfiledir = '/tmp/Gryo/
 recipeInput = com.datastax.dsegraphloader.api.Graph.file(inputfiledir + 'recipesDSEG.gryo').gryo().dse()
 load(recipeInput.vertices()).asVertices {
 labelField '~label'
 key 'name'
 }

 load(recipeInput.edges()).asEdges {
 labelField '~label'
 outV 'outV', {
 labelField '~label'
 key 'name' : 'name', 'personId' : 'personId'
 }
 inV 'inV', {
 labelField '~label'
 key 'name' : 'name', 'bookId' : 'bookId'
 }
 }
   ```

   The Gryo data format will include `~label` and `name` field values that must be used to create the vertices. For instance, a record that is an author will have a `~label` of `person` and property `name`. For the edges, notice that a custom vertex ID consisting of both `name` and `bookId` is used to identify the vertex to use as the incoming vertex for the edge.

Mapping Gryo data generated with TinkerGraph

Inserting Gryo binary data requires a slightly modified map script. To load Gryo data, allow DSE Graph Loader to create schema and load new data. Loading will require a graph `schema_mode` set to Development.
1. Create a map script for TinkerGraph generated Gryo input:

```java
//Specifies what data source to load using which mapper (as defined inline)
load(recipeInput.vertices()).asVertices {
 labelField "~label"
 key "~id", "id"
}

load(recipeInput.edges()).asEdges {
 labelField "~label"
 outV "outV", {
 labelField "~label"
 key "~id", "id"
 }
 inV "inV", {
 labelField "~label"
 key "~id", "id"
 }
}
```

The Gryo data format will include ~label and name field values that must be used to create the vertices and edges. For instance, a record that is an author will have a ~label of author and property name. The vertexKeyMap creates a map of each vertex label to a unique property. This map is used to create unique keys used while loading vertices from the binary file.

### Mapping GraphML binary data

Inserting GraphML binary data requires a slightly modified map script. To load GraphML data, allow DSE Graph Loader to create schema and load new data. Loading will require a graph schema_mode set to Development.

1. Create a map script for GraphML data:

```java
//Specifies what data source to load using which mapper (as defined inline)
load(recipeInput.vertices()).asVertices {
 labelField "~label"
 key "~id", "id"
}

load(recipeInput.edges()).asEdges {
 labelField "~label"
 outV "outV", {
 labelField "~label"
 key "~id", "id"
 }
 inV "inV", {
 labelField "~label"
 key "~id", "id"
 }
}```
Using DataStax Enterprise advanced functionality

The GraphML data format will include ~label and ~id field values that must be used to create the label and key for each record loaded. For instance, a record that is an author will have a ~label of author. The ~id will similarly be set in the record, a difference from other data. The difference can be seen by looking at a record and noting the presence of the id field, based on the second item in each key setting in the mapping script:

```java
g.V().hasLabel('author').valueMap()
{gender=[F], name=[Julia Child], id=[0])
{gender=[F], name=[Simone Beck], id=[3])
```

Mapping GraphSON binary data

Inserting GraphSON data requires a slightly modified map script. To load GraphSON data, allow DSE Graph Loader to create schema and load new data. Loading will require a graph schema_mode set to Development.

1. Create a map script for GraphML data:

```java
//Specifies what data source to load using which mapper (as defined inline)
load(recipeInput.vertices()).asVertices {
  labelField "~label"
  key "~id", "id"
}

load(recipeInput.edges()).asEdges {
  labelField "~label"
  outV "outV", {
    labelField "~label"
    key "~id", "id"
  }
  inV "inV", {
    labelField "~label"
    key "~id", "id"
  }
}
```

The GraphSON data format will include ~label and ~id field values that must be used to create the label and key for each record loaded. For instance, a record that is an author will have a ~label of author. The ~id will similarly be set in the record, a difference from other data. The difference can be seen by looking at a record and noting the presence of the id field, based on the second item in each key setting in the mapping script:
Using DataStax Enterprise advanced functionality

Using transforms (filter, flatMap, and map) with DSE Graph Loader

All data inputs support arbitrary user transformations to manipulate or truncate the input data according to a user provided function. The available transforms for DSE Graph Loader are:

- filter (page 802)
- flatMap (page 806)
- map (page 808)

Notice: As of DSE Graph Loader 6.0, transformation functions may be deprecated; be aware that changes may occur.

The data record for each data input is a document structure or nested map defined from an input file. A transformation acts upon the nested map and returns a nested map. Any provided transformation function must be thread-safe or the behavior of the data loader becomes undefined.

The transforms used are Groovy closures, or open anonymous blocks of code that can take arguments, return values and be assigned for a variable. These closures often make use of a Groovy implicit parameter, it. When a closure does not explicitly define a parameter list, it is always a defined parameter that can be used. In the following examples, it is used to get each record in an input file and apply the transformation.

The placement of the transform in the mapping script is arbitrary; as long as the input file is defined before the transform is defined, a transform may be placed anywhere in the mapping script.

Here’s a simple introduction to Groovy for those unfamiliar with it.

filter

The filter function can apply criteria to the input file, selecting only the objects that meet the criteria and loading them. The criteria can match any data type used in a field.

Filter based on inequality operation on integer

The defined input file in this example is chefs. The filter is applied to the input file using the syntax `<input_file_name>.filter { ... }`. Given an integer field for age, all chefs 41 years old and younger can be filtered, and loaded into the graph with vertex label chefYoung:

```java
/** SAMPLE INPUT
name|gender|status|age
Jamie Oliver|M|alive|41
***/
```
inputfiledir = '/tmp/filter_map_flatmap/
chefs = File.csv(inputfiledir + "filterData.csv").delimiter('|')

// filter
def chefsYoung = chefs.filter { it["age"].toInteger() <= 41 }

//Specifies what data source to load using which mapper (as defined inline)
load(chefsYoung).asVertices {
 label "chefYoung"
 key "name"
}

The value for age is converted to an Integer for the function operation, and compared to the value of 41.

Only the records that match the criteria will create vertices, as reflected in the resulting values:

```g.V().hasLabel('chefYoung').valueMap()
==>{gender=[M], name=[Jamie Oliver], age=[41], status=[alive]}
==>{gender=[F], name=[Amanda Cohen], age=[35], status=[alive]}
==>{gender=[M], name=[Patrick Connolly], age=[31], status=[alive]}
```

Filter based on equality match operation on string

Another example of two filters finds all the chefs who are alive and who are deceased:

```/** SAMPLE INPUT
name|gender|status|age
Jamie Oliver|M|alive|41
**/
```

inputfiledir = '/tmp/filter_map_flatmap/
chefs = File.csv(inputfiledir + "filterData.csv").delimiter('|')
def chefsAlive = chefs.filter { it["status"] == "alive" }
def chefsDeceased = chefs.filter { it["status"] == "deceased" }

load(chefsAlive).asVertices {
 label "chefAlive"
 key "name"
}
load(chefsDeceased).asVertices {
 label "chefDeceased"
 key "name"
}
The filter checks the value of the string `status` and creates two new inputs, `chefsAlive` and `chefsDeceased` to use for loading the vertices, with the respective vertex labels `chefAlive` and `chefDeceased`.

The resulting vertices are:

```plaintext
// List all the living chefs
g.V().hasLabel('chefAlive').valueMap()
  => {gender=[F], name=[Alice Waters], age=[73], status=[alive]}
  => {gender=[F], name=[Patricia Curtan], age=[66], status=[alive]}
  => {gender=[M], name=[Kelsie Kerr], age=[57], status=[alive]}
  => {gender=[M], name=[Fritz Streiff], age=[500], status=[alive]}
  => {gender=[M], name=[Emeril Lagasse], age=[57], status=[alive]}
  => {gender=[M], name=[Jamie Oliver], age=[41], status=[alive]}
  => {gender=[F], name=[Amanda Cohen], age=[35], status=[alive]}
  => {gender=[M], name=[Patrick Connolly], age=[31], status=[alive]}

// List all the deceased chefs
g.V().hasLabel('chefDeceased').valueMap()
  => {gender=[F], name=[Julia Child], age=[500], status=[deceased]}
  => {gender=[F], name=[Simone Beck], age=[500], status=[deceased]}
  => {gender=[F], name=[Louisette Bertholie], age=[500], status=[deceased]}
  => {gender=[M], name=[Patricia Simon], age=[500], status=[deceased]}
  => {gender=[M], name=[James Beard], age=[500], status=[deceased]}
```

Full filter data set

The full sample data set used in this example:

<table>
<thead>
<tr>
<th>name</th>
<th>gender</th>
<th>status</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Julia Child</td>
<td>F</td>
<td>deceased</td>
<td>500</td>
</tr>
<tr>
<td>Simone Beck</td>
<td>F</td>
<td>deceased</td>
<td>500</td>
</tr>
<tr>
<td>Louisette Bertholie</td>
<td>F</td>
<td>deceased</td>
<td>500</td>
</tr>
<tr>
<td>Patricia Simon</td>
<td>F</td>
<td>deceased</td>
<td>500</td>
</tr>
<tr>
<td>Alice Waters</td>
<td>F</td>
<td>alive</td>
<td>73</td>
</tr>
<tr>
<td>Patricia Curtan</td>
<td>F</td>
<td>deceased</td>
<td>500</td>
</tr>
<tr>
<td>Kelsie Kerr</td>
<td>F</td>
<td>alive</td>
<td>57</td>
</tr>
<tr>
<td>Fritz Streiff</td>
<td>M</td>
<td>alive</td>
<td>500</td>
</tr>
<tr>
<td>Emeril Lagasse</td>
<td>M</td>
<td>alive</td>
<td>57</td>
</tr>
<tr>
<td>James Beard</td>
<td>M</td>
<td>deceased</td>
<td>500</td>
</tr>
<tr>
<td>Jamie Oliver</td>
<td>M</td>
<td>alive</td>
<td>41</td>
</tr>
<tr>
<td>Amanda Cohen</td>
<td>F</td>
<td>alive</td>
<td>35</td>
</tr>
<tr>
<td>Patrick Connolly</td>
<td>M</td>
<td>alive</td>
<td>31</td>
</tr>
</tbody>
</table>

Note the use of 500 as a placeholder for the age of deceased chefs.

Full filter mapping script

The full map script with all three filters:

```plaintext
/** SAMPLE INPUT
name|gender|status|age
Jamie Oliver|M|alive|41
```
Using DataStax Enterprise advanced functionality

/**

// SCHEMA
schema.propertyKey('name').Text().ifNotExists().create()
schema.propertyKey('gender').Text().ifNotExists().create()
schema.propertyKey('status').Text().ifNotExists().create()
schema.propertyKey('age').Int().ifNotExists().create()

schema.vertexLabel('chefAlive').properties('name','gender','status','age').create()
schema.vertexLabel('chefAlive').index('byname').materialized().by('name').add()
schema.vertexLabel('chefDeceased').properties('name','gender','status','age').create()
schema.vertexLabel('chefDeceased').index('byname').materialized().by('name').add()
schema.vertexLabel('chefYoung').properties('name','gender','status','age').create()
schema.vertexLabel('chefYoung').index('byname').materialized().by('name').add()

// CONFIGURATION
// Configures the data loader to create the schema
config create_schema: false, load_new: true

// DATA INPUT
// Define the data input source (a file which can be specified via
command line arguments)
// inputfiledir is the directory for the input files that is given in
the commandline
// as the "-filename" option

inputfiledir = '/tmp/filter_map_flatmap/
chefs = File.csv(inputfiledir + "filterData.csv").delimiter('|')
def chefsYoung = chefs.filter { it['age'].toInteger() <= 41 }
def chefsAlive = chefs.filter { it['status'] == "alive" }
def chefsDeceased = chefs.filter { it['status'] == "deceased" }

// Specifies what data source to load using which mapper (as defined
inline)
load(chefsYoung).asVertices {
 label "chefYoung"
 key "name"
}
load(chefsAlive).asVertices {
 label "chefAlive"
 key "name"
}
load(chefsDeceased).asVertices {
 label "chefDeceased"
 key "name"
flatMap

The flatMap function (also called expand) can break a single field in the input file into separate objects before loading them. In general, this function is used to convert more compacted data into an expanded form.

FlatMap based on multiple cuisine values for a recipe

The input file for this example is recipes. The flatMap is applied to the input file using the syntax `<input_file_name>.flatMap { ... }`. Given a field for cuisine that identifies all the possible cuisine choices for a recipe, a record for each vertex can be created using the recipe name and the cuisine type as a separate vertex when loading the vertices into the graph:

```groovy
/** SAMPLE INPUT
name|cuisine
Beef Bourguignon|English::French
**/

inputfiledir = '/tmp/filter_map_flatmap/
recipes = File.csv(inputfiledir + "flatmapData.csv").delimiter('|')

def recipesCuisine = recipes.flatMap {
  def name = it['name'];
  it['cuisine'].
    split('::').
    collect {
      it = [ 'name': name, 'cuisine': it ]
    }
}

//Specifies what data source to load using which mapper (as defined inline)
load(recipesCuisine).asVertices {
  label "recipe"
  key name: "name", cuisine: "cuisine"
}
```

The flatMap function gets each record, retrieves the recipe name, splits the cuisine field, and then collects each name/cuisine pair to use as the composite key for identifying each separate vertex. The Groovy split method splits a string (cuisine) using the supplied delimiter (::) and returns an array of strings (each cuisine). The Groovy collect method iterates over a collection and transforms each element of the collection.

The result of the loading reflects all the possible vertices based on cuisine:

```
g.V().valueMap()
==>{name=[Beef Bourguignon], cuisine=[English]}
==>{name=[Beef Bourguignon], cuisine=[French]}
==>{name=[Nicoise Salade], cuisine=[French]}
==>{name=[Wild Mushroom Stroganoff], cuisine=[American]}
```
Full flatMap data set

The full sample data set used in this example:

<table>
<thead>
<tr>
<th>name</th>
<th>cuisine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beef Bourguignon</td>
<td>English::French</td>
</tr>
<tr>
<td>Nicoise Salade</td>
<td>French</td>
</tr>
<tr>
<td>Wild Mushroom Stroganoff</td>
<td>American::English</td>
</tr>
</tbody>
</table>

Full flatMap mapping script

The full map script with flatMap:

```java
/** SAMPLE INPUT
name|cuisine
Beef Bourguignon|English::French
**/

// SCHEMA
schema.propertyKey('name').Text().ifNotExists().create()
schema.propertyKey('cuisine').Text().ifNotExists().create()
schema.vertexLabel('recipe').properties('name','cuisine').create()
schema.vertexLabel('recipe').index('byname').materialized().by('name').add()

// CONFIGURATION
// Configures the data loader to create the schema
config create_schema: false, load_new: true

// DATA INPUT
// Define the data input source (a file which can be specified via
// command line arguments)
// inputfiledir is the directory for the input files that is given in
// the commandline
// as the "-filename" option

inputfiledir = '/tmp/filter_map_flatmap/'
recipes = File.csv(inputfiledir + "flatmapData.csv").delimiter('|')

recipesCuisine = recipes.flatMap {
    def name = it['name'];
    it['cuisine'].
        split('::').
        collect {
            it = [ 'name': name, 'cuisine': it ]
        }
}

//Specifies what data source to load using which mapper (as defined inline)
load(recipesCuisine).asVertices {
    label "recipe"
}
Using DataStax Enterprise advanced functionality

```java
key name: "name", cuisine: "cuisine"
}
```

**map**

The `map()` (also called `transform()`) applies a function to a field's values before loading the data.

**map converts gender field from to lower case from any case**

The input file for this example is `authorInput`. The map is applied to the input file using the syntax `<input_file_name>.map { ... }`. Given a field `gender`, the Groovy `toLowerCase()` method is performed on each `gender` value in the nested map `authorInput`:

```java
inputfiledir = '/tmp/TEXT/
authorInput = File.text(inputfiledir + "author.dat").
 delimiter("|").
 header('name', 'gender')

authorInput = authorInput.map { it['gender'] =
 it['gender'].toLowerCase(); it }
```

This `map()` transformation ensures that the `gender` values in the graph are only lowercase.

The result of the loading reflects the change to the case of `gender`:

```java
g.V().valueMap()

==>{gender=[f], name=[Julia Child], age=[500])
==>{gender=[f], name=[Simone Beck], age=[500])
==>{gender=[f], name=[Louisette Bertholie], age=[500])
==>{gender=[f], name=[Patricia Simon], age=[500])
==>{gender=[f], name=[Alice Waters], age=[73])
==>{gender=[f], name=[Patricia Curtan], age=[66])
==>{gender=[f], name=[Kelsie Kerr], age=[57])
==>{gender=[m], name=[Fritz Streiff], age=[500])
==>{gender=[m], name=[Emeril Lagasse], age=[57])
==>{gender=[m], name=[James Beard], age=[500])
==>{gender=[m], name=[Jamie Oliver], age=[41])
==>{gender=[f], name=[Amanda Cohen], age=[35])
==>{gender=[m], name=[Patrick Connolly], age=[31])
```

**Full map data set**

The full sample data set used in this example:

```
name|gender|age
Julia Child|F|500
Simone Beck|F|500
Louisette Bertholie|F|500
Patricia Simon|F|500
Alice Waters|F|73
```
**SAMPLE INPUT**
name|gender|age
Jamie Oliver|M|41
**/

// SCHEMA
schema.propertyKey('name').Text().ifNotExists().create()
schema.propertyKey('gender').Text().ifNotExists().create()
schema.propertyKey('age').Int().ifNotExists().create()

schema.vertexLabel('chef').properties('name','gender','age').create()
schema.vertexLabel('chef').index('byname').materialized().by('name').add()

// CONFIGURATION
// Configures the data loader to create the schema
config create_schema: false, load_new: true

// DATA INPUT
// Define the data input source (a file which can be specified via
// command line arguments)
// inputfiledir is the directory for the input files that is given in
// the commandline
// as the "-filename" option

inputfiledir = '/tmp/filter_map_flatmap/'
chefs = File.csv(inputfiledir + "mapData.csv").delimiter('|')

chefInput = chefs.map { it['gender'] = it['gender'].toLowerCase(); it }

//Specifies what data source to load using which mapper (as defined
// inline)

load(chefInput).asVertices {
    label "chef"
    key "name"
Using DataStax Enterprise advanced functionality

DSE Graph Loader reference

Synopsis

$ graphloader loadingScript [\[-option value\]...]

Table 50: Legend

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>Italic</em></td>
<td>Variable value. Replace with a user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses (() ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens (--). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
</tbody>
</table>

Options can be invoked in the command line or included in the loading script. Required options are marked.

<table>
<thead>
<tr>
<th>Option</th>
<th>Data type</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-abort_on_num_failures</td>
<td>Integer</td>
<td>100</td>
<td>Number of failures after which loading is aborted.</td>
</tr>
<tr>
<td>-abort_on_prep_errors</td>
<td>Boolean</td>
<td>true</td>
<td>Normally if errors occur in the preparation, or during the vertex insertion phase we abort, setting this to false will force the loader to continue up to the maximum number of allowed failures.</td>
</tr>
<tr>
<td>-address</td>
<td>String</td>
<td></td>
<td>The IP address (and port) of the DSE Graph instance to connect to. REQUIRED</td>
</tr>
<tr>
<td>Option</td>
<td>Data type</td>
<td>Default</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------------</td>
<td>---------</td>
<td>--------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>-allow_remote_hosts_in_quorum</td>
<td>Boolean</td>
<td>false</td>
<td>Allows hosts in a different datacenter to participate in a local consistency level, so that a node from a remote datacenter can be used to reach a consistency level of QUORUM, for instance, for a query. Choices are: true, false.</td>
</tr>
<tr>
<td>-batch-size</td>
<td>Integer</td>
<td>100</td>
<td>Size of loading batches.</td>
</tr>
<tr>
<td>-compress</td>
<td>String</td>
<td>none</td>
<td>The compression of the file. Choices are none, gzip, and xzip.</td>
</tr>
<tr>
<td>-consistency_level</td>
<td>CL</td>
<td>ONE</td>
<td>Choices are: ANY, ONE, TWO, THREE, QUORUM, ALL, LOCAL_QUORUM, EACH_QUORUM, SERIAL, LOCAL_SERIAL, LOCAL_ONE.</td>
</tr>
<tr>
<td>-create_graph</td>
<td>Boolean</td>
<td>true</td>
<td>Check if the target graph exists, and if it doesn't, creates it if true. Note that this option can fail on the default consistency level of QUORUM if a datacenter is unreachable.</td>
</tr>
<tr>
<td>Option</td>
<td>Data type</td>
<td>Default</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------</td>
<td>---------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>-create_schema</td>
<td>Boolean</td>
<td>true</td>
<td>Whether to update or create the schema for missing schema elements.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>Notice:</strong> It is strongly recommended that schema is created (page 621) prior to data loading, so that the correct data types are enforced and indexes created. Setting <code>create_schema</code> to true is recommended only for testing. In DSE 6.0, this configuration option is deprecated and will be removed in a future release.</td>
</tr>
<tr>
<td>-driver_retry_attempts</td>
<td>Integer</td>
<td>3</td>
<td>Number of retry attempts. If greater than zero, requests will be resubmitted after some recoverable failures.</td>
</tr>
<tr>
<td>-driver_retry_delay</td>
<td>milliseconds</td>
<td>1000</td>
<td>Number of milliseconds between driver retries.</td>
</tr>
<tr>
<td>Option</td>
<td>Data type</td>
<td>Default</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------</td>
<td>---------</td>
<td>------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>-dryrun</td>
<td>Boolean</td>
<td>false</td>
<td>Whether to only conduct a trial run to verify data integrity and schema consistency. Does not create a graph if it doesn’t exist.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>Notice:</strong> This configuration option discovers schema and suggests missing schema without executing any changes. In DSE 6.0, this option is deprecated and may possibly be removed in a future release.</td>
</tr>
<tr>
<td>-filename</td>
<td>String</td>
<td></td>
<td>The file to load the vertex data from. REQUIRED if not defined in the mapping script.</td>
</tr>
<tr>
<td>-graph</td>
<td>String</td>
<td></td>
<td>The name of the graph to load into. REQUIRED</td>
</tr>
<tr>
<td>-label</td>
<td>String</td>
<td></td>
<td>The label of the vertex to be populated with data. If left blank, the name of the input file is used as the vertex label name.</td>
</tr>
<tr>
<td>-load_failure_log</td>
<td>String</td>
<td>load_failures.txt</td>
<td>Name and location of the file where failed records will be stored.</td>
</tr>
<tr>
<td>Option</td>
<td>Data type</td>
<td>Default</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>-load_new</td>
<td>Boolean</td>
<td>false</td>
<td>Whether the vertices loaded are new and do not yet exist in the graph.</td>
</tr>
<tr>
<td>-load_edge_threads</td>
<td>Integer</td>
<td>0</td>
<td>Number of threads to use for loading edge and property data into the graph (0 will force the value to be the number of nodes in the DC * 6).</td>
</tr>
<tr>
<td>-load_vertex_threads</td>
<td>Integer</td>
<td>0</td>
<td>Number of threads to use for loading vertices into the graph (0 will force the value to the number of cores/2).</td>
</tr>
<tr>
<td>-preparation</td>
<td>Boolean</td>
<td>true</td>
<td>Whether to do a preparation run to analyze the data and update the schema, if necessary.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Notice: This configuration option validates and creates schema if used in conjunction with create_schema. The default will be set to false, and this option is deprecated with DSE 6.0. In a future release, it may be removed.</td>
</tr>
<tr>
<td>-preparation_limit</td>
<td>Integer</td>
<td>0</td>
<td>The number of records that the preparation phase will use to attempt to determine if the schema should be updated. Zero indicates no limit.</td>
</tr>
<tr>
<td>Option</td>
<td>Data type</td>
<td>Default</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------</td>
<td>---------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>-queue-size</td>
<td>Integer</td>
<td>10000</td>
<td>Data retrieval queue size.</td>
</tr>
<tr>
<td>-read_threads</td>
<td>Integer</td>
<td>1</td>
<td>Number of threads to use for reading data from data input.</td>
</tr>
<tr>
<td>-remote_hosts_in_dc</td>
<td>Integer</td>
<td>2</td>
<td>Number of remote nodes that can participate in the consistency level for a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>query.</td>
</tr>
<tr>
<td>-reporting_interval</td>
<td>Integer</td>
<td>1</td>
<td>Number of seconds between each progress report written to the log.</td>
</tr>
<tr>
<td>-schema_output</td>
<td>String</td>
<td>proposed_schema.txt</td>
<td>The name of the file to save the proposed schema in when executing a dry-run. Leave blank to disable.</td>
</tr>
<tr>
<td>-skip_blank_values</td>
<td>Boolean</td>
<td>true</td>
<td>When false, loader will insert a blank (&quot;&quot;) for all unspecified (empty/blank) property values in a CSV file.</td>
</tr>
<tr>
<td>-timeout</td>
<td>Integer</td>
<td>120000</td>
<td>Number of milliseconds until a connection times out.</td>
</tr>
<tr>
<td>-v</td>
<td>--version</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>-vertex_complete</td>
<td>Boolean</td>
<td>false</td>
<td>The loader assumes that all vertexes referenced by properties and edges in this load are also included as vertexes of this load. No new vertices will be created from edge data or property data files.</td>
</tr>
<tr>
<td>-username</td>
<td>String</td>
<td></td>
<td>Username for DSE authentication.</td>
</tr>
</tbody>
</table>
Using DataStax Enterprise advanced functionality

<table>
<thead>
<tr>
<th>Option</th>
<th>Data type</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-password</td>
<td>String</td>
<td></td>
<td>Password for DSE authentication.</td>
</tr>
<tr>
<td>-ssl</td>
<td>Boolean</td>
<td>false</td>
<td>Enable SSL.</td>
</tr>
<tr>
<td>-kerberos</td>
<td>Boolean</td>
<td>false</td>
<td>Enable kerberos.</td>
</tr>
<tr>
<td>-sasl</td>
<td>String</td>
<td></td>
<td>An optional sasl protocol name used in conjunction with kerberos.</td>
</tr>
</tbody>
</table>

Security options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Data type</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-kerberos</td>
<td>Boolean</td>
<td>false</td>
<td>Enable kerberos.</td>
</tr>
<tr>
<td>-password</td>
<td>String</td>
<td></td>
<td>Password for DSE authentication.</td>
</tr>
<tr>
<td>-sasl</td>
<td>String</td>
<td></td>
<td>An optional sasl protocol name used in conjunction with kerberos.</td>
</tr>
<tr>
<td>-ssl</td>
<td>Boolean</td>
<td>false</td>
<td>Enable SSL.</td>
</tr>
<tr>
<td>-username</td>
<td>String</td>
<td></td>
<td>Username for DSE authentication.</td>
</tr>
</tbody>
</table>

Description

DSE Graph Loader is an utility for loading up to 100 million vertices and 1 billion edges. The utility runs on a sufficiently powerful computer that can cache all vertices in memory and includes enough cores to parallelize the loading process. For larger loads, the utility must be run on a different machine.

DSE Graph Loader is invoked on the command line with a loading script as argument and a variable number of configuration option-value pairs. The loading script specifies what input data is being loaded and how that data maps onto the graph. The loading script can also configure the option-value pairs.

The three stages of load processing are:

**Preparation**

Reads entire input data. This stage either ensures that the data conforms to the graph schema, or the stage updates the graph schema according to the provided
Using DataStax Enterprise advanced functionality

data (if enabled). At the end of this stage, statistical estimates are provided on how much data will be added to the graph but no data is loaded. Set

```
-dryrun true
```

to abort the loading process after the preparation stage and before any changes are made. Inspect the output and verify that it matches your expectations. For large datasets, doing a dry run is important for spotting errors.

**Vertex Loading**

The second stage adds or retrieves all of the vertices in the input data and caches them locally to speed up the subsequent edge loading.

**Edge and Property Loading**

Adds all edges and properties from the input data to the graph.

A loading, or mapping, script is required to specify the particular mapping used to load the data from the input file to the graph. DSE Graph Loader supports four file-based data input types: CSV, JSON, delimited text, and text parsed by regular expressions. All file-based input formats support compression of the input data files.

Logging during the loading process can provide useful information if troubleshooting is required. The three stages of load processing are detailed in the log.

**Examples**

To get the listing of possible options, use `-help`.

```
$ graphloader -help
```

This example will use the loading script `mymapscript.groovy` to read data from a file `/tmp/recipe/all.dat` into the graph `test` that is running on the localhost. Dry run is specified to test the loading without inserting the data.

```
$ graphloader mymapscript.groovy -filename /tmp/recipe/all.dat -graph test -address localhost -dryrun true
```

This example will use the loading script `csv2Vertex.groovy` to read data from a file `MyUsers.csv` into the graph `csvTest` that is running on the localhost. The `-label` option specifies that the vertex label will be `User`, rather than the filename `MyUsers`.

```
$ graphloader ./scripts/csv2Vertex.groovy -filename MyUsers.csv -graph csvTest -label User -address 127.0.0.1
```

The configuration settings can also be specified in the loading script. A fragment of a loading script is shown here that sets `create_schema` to true and `load_vertex_threads` to 3.

```
// CONFIGURATION
// Configures the data loader to create the schema and set
load_vertex_threads to 3
config load_new: true, load_vertex_threads: 3
```
By default, the graphloader logs debug information to the file loader.log in the directory from which graphloader is run. The location of the log can be specified with `-load_failure_log`:

```
$ graphloader mymapsctipt.groovy -graph test -address localhost -load_failure_log /tmp/dgl.log
```

If log4j modifications are desired to log information differently, a configuration file can be created, and used in conjunction with the `-load_failure_log`. Here is a sample configuration file:

```
Set root logger level to the designated level and its appenders to F1 and stdout
log4j.rootLogger=INFO, WARN, A1, stdout
#/dev/stdout
Log INFO messages to A1. A1 is set to be a ConsoleAppender.
log4j.appender.A1.Target=System.out
log4j.appender.A1.Threshold=INFO
A1 uses PatternLayout.
log4j.appender.A1.layout.ConversionPattern=%d{yyyy-MM-dd HH:mm:ss} %-5p %c{1}:%L - %m%n
Direct INFO log messages to stdout
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.Target=System.out
log4j.appender.stdout.Threshold=INFO
stdout uses PatternLayout.
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d{yyyy-MM-dd HH:mm:ss} %-5p %c{1}:%L - %m%n
```

and a sample graphloader command:

```
$ java -Dlog4j.configuration=file:./lib/log4j.properties -jar graphLoaderJar mymapsctipt.groovy -graph test -address localhost -load_failure_log /dev/stdout
```

that will write the log information to stdout.

The preparation stage has additional options. To use the input data to discover the schema, use `-preparation true`. If preparation discovers missing elements in the schema, those elements can be added if `-create_schema true`. If desired, preparation can be performed, but schema creation must be manually created if `-create_schema false`. Setting `-create_schema true` without `-preparation true` will result in a stopped job. Without sampling the data to discover the schema that the data describes, graphloader cannot create schema because the manner of the schema is unknown. To summarize, if you wish to create schema manually, use `-preparation true -create_schema false`. If you wish graphloader to automatically create schema, use `-preparation true -create_schema true`.

To use authentication, configure graphloader with `-user` and `-password`:
Using DataStax Enterprise advanced functionality

To configure `graphloader` with SSL encryption and using Kerberos:

```
$ java -Djavax.net.ssl.trustStore=<TRUSTSTORE_PATH> -Djavax.net.ssl.trustStorePassword=<PASSWORD> -Djavax.net.ssl.keyStore=<KEYSTORE_PATH> -Djavax.net.ssl.keyStorePassword=<PASSWORD> -jar dse-graph-loader-5.0.3-uberjar.jar -kerberos true -sasl dsename -graph new -address localhost mymapscript.groovy
```

If the truststore and keystore java options are set in `cassandra-env.sh`, the command is simplified:

```
$ java -jar dse-graph-loader.jar -kerberos true -sasl dsename -graph new -address localhost mymapscript.groovy
```

Runtime parameters

Some modifications are necessary if certain conditions must be set. For instance, the JAR file can be run directly to use Java modifiers, or the graphloader script may be modified to allow additional parameters to be set.

If a large data set is loaded, configure the heap space to cache all vertices. This command runs Java and calls the jar file for DSE Graph Loader. For example:

```
$ java -Xmx10g -jar dse-graph-loader.jar
```

Vertex caching uses a temporary directory to store data during loading. If the temporary directory is not large enough, loading is blocked. To change the location of the temporary directory, use a runtime variable `LOADER_TMP_DIR`:

```
$ LOADER_TMP_DIR=/home/user ./graphloader -graph new -address localhost mymapscript.groovy
```

Successful loading

When `graphloader` has successfully loaded the data specified, notification of the results are logged to `/var/lib/cassandra/system.log`:

```
2017-02-09 23:27:22 INFO Reporter:97 - Current total additions: 1155735 vertices 1982536 edges 6583940 properties 0 anonymous
```

Tuning `graphloader` JVM options

The DSE Graph Loader is written in Java and has some configurable JVM tuning in the `graphloader` script.

The default maximum heap size is 10G, generally a good heap size for appropriately sized machine used with `graphloader`. Two environment variables, `MAX_HEAP_SIZE`
and **HEAP_NEWSIZE** were added in DSE 5.0.5 and later. *graphloader* now calculates the values of these two environment variables in the same manner as the DSE database (*page 1345*). If a particular value is desired for either variable, the value can be set directly in the *graphloader* script.

**graphloader API**

*graphloader* mapping options are used to designate the manner in which a data file will be parsed for loading.

**exists()**

**Synopsis**

```
exists()
```

**Description**

When loading edges, often the specified vertices for incoming or outgoing endpoints already exist in the database. The `exists()` method will identify that the vertices do not need creation when the edges are created.

The `exists()` method can also be used to specify that edges already exist.

**Examples**

Identify that the vertices for the outgoing vertices identified in the field `aname` in `outV` already exist in the database and do not need to be created:

```
load(authorBookInput).asEdges {
 label "authored"
 outV "aname", {
 label "author"
 key "name"
 exists()
 }
 inV "bname", {
 label "book"
 key "name"
 }
}
```

**ignore**

**Synopsis**

```
ignore "fieldName"
```

**Description**

Each record read from an input data file will insert every field included unless `ignore` is used.
Examples

Ignore the field *gender* in the input data file:

```csharp
ignore "gender"
```

### inE

**Synopsis**

```csharp
inE "edgeLabel" {
 labelField "fieldName"
 vertex "vertexLabel" {
 label "labelName"
 key "fieldName"
 }
}
```

**Description**

Sets the information for an incoming edge to the given edge label and vertex. The edge label must already exist. *labelField* is optional.

**Examples**

Set the incoming edge in a mapping script to *FridgeSensor*.

```csharp
inE "authored", {
 vertex "author", {
 label "author"
 key "name"
 }
}
```

The vertex with its *label* (page 824) and *key* (page 823) must be set along with *inE*.

### isNew()

**Synopsis**

```csharp
isNew()
```

**Description**

The *isNew()* method will identify that vertices or edges need creation during the loading process. This method is used instead of the graphloader parameter *load_new* when only a portion of the loading needs identification. *load_new* requires either the entire creation of all vertices and edges during loading to be true or false.

**Examples**

Identify that the edges between existing author vertices and existing book vertices will be created as new edges during the loading into the database:
Using DataStax Enterprise advanced functionality

```java
load(authorBookInput).asEdges {
 isNew()
 label "authored"
 outV "aname", {
 label "author"
 key "name"
 exists()
 }
 inV "bname", {
 label "book"
 key "name"
 exists()
 }
}
```

**Synopsis**

**DSE5.1.2 and earlier:**
```java
inV "field_name", {
 label "field_name"
 [key "key_name" | key key1_name: "key1_name", key2_name: "key2_name"]
}
```

**DSE5.1.3 and later:**
```java
inV {
 label "field_name"
 [key "key_name" | key key1_name: "key1_name", key2_name: "key2_name"]
 ignore "field_name"
}
```

**Description**

In DSE versions 5.1.2 and earlier, sets the field name in the input file that will define the incoming vertex of an edge. Both `inV` and `outV` (page 825) must be defined in an edge mapping statement. In DSE 5.1.3 and later, the `field_name` is deleted from between the `inV` keyword and the `{`.

**Examples**

DSE 5.1.2 and earlier: Sets the field name for the incoming vertex in a mapping script to `fridgeSensor`.

```java
//Sample line read:
// cityId|sensorId|name
// santaCruz|93c4ec9b-68ff-455e-8668-1056ebc3689f|asparagus
// or JSON
// {"sensor": {"cityId": "santaCruz", "sensorId":
// "93c4ec9b-68ff-455e-8668-1056ebc3689f"}, "name": "asparagus"}
```
The incoming vertex has a vertex label of `fridgeSensor`, the particular vertex is defined as the one with the cityId of `santaCruz` and a sensorId of `93c4ec9b-68ff-455e-8668-1056ebc3689f`:

```plaintext
inV "fridgeSensor", {
 label "fridgeSensor"
 key cityId:"cityId", sensorId:"sensorId"
}
```

The field name in the input file that defines the outgoing vertex is `fridgeSensor`, the vertex has a vertex label of `fridgeSensor`, and the composite key value `cityId, sensorId` is supplied in the input file field set in this statement. The label (page 824) and key (page 823) must be set along with `inV`.

### DSE5.1.3 and later:

```plaintext
//Sample line read:
// cityId|sensorId|homeId|name
// santaCruz|93c4ec9b-68ff-455e-8668-1056ebc3689f|asparagus
// or JSON
// {"sensor": {"cityId": "santaCruz", "sensorId": "93c4ec9b-68ff-455e-8668-1056ebc3689f"}, "name": "asparagus"}

// The incoming vertex has a vertex label of `fridgeSensor`, the particular vertex is defined as the one with the cityId of `santaCruz` and a sensorId of `93c4ec9b-68ff-455e-8668-1056ebc3689f`:
inV {
 label "fridgeSensor"
 key cityId: "cityId", sensorId: "sensorId"
 exists()
 ignore "homeId"
 ignore "name"
}
```

### key

#### Synopsis

`key "fieldName"`

#### Description

Each record read from an input data file must be unique to avoid duplication. **key** defines a simple unique key for this element comprised of a single field and associated property key name.

#### Examples

Set the key in a mapping script to `name`:

`key "name"`
If the data file includes unique ids, such as a GraphSON or Gryo file written from DataStax Enterprise, the key can be set to identify the id:

```plaintext
key "-id" "id"
```

where `-id` defines that the id is found in the data file, and `id` renames the field to `id` in the loaded file.

Set a key in a mapping script to a composite custom id:

```plaintext
key city_id: "city_id", sensor_id: "sensor_id"
```

This definition uses the following pattern:

```plaintext
key <csv_column_name1>: "vertex_property_key1", <csv_column_name2>: "vertex_property_key2"
```

where `<csv_column_name>` is the column in the input file that specifies the value to be assigned to the `vertex_property_key` in the graph.

### label

**Synopsis**

```plaintext
label "labelName"
```

**Description**

Sets the label of the vertex to the given name. The vertex label must already exist.

`label` can be used in both vertex and incident edge mapping (`inE` (page 821), `outE` (page 825)).

**Examples**

Set the label in a mapping script to `recipe`.

```plaintext
label "recipe"
```

### labelField

**Synopsis**

```plaintext
labelField "fieldName"
```

**Description**

Sets the label of the vertex to the name associated with the given field in the input data file. The vertex label must already exist.

`labelField` can be used in both vertex and incident edge mapping (`inE` (page 821), `outE` (page 825)).
Examples

Set the label in a mapping script to the field name *type*.

```
labelField "type"
```

The contents of the field *type* will designate the vertex label. For instance, if a record in the data file has the field *type* entered as *author*, then the record will be read into a vertex with the vertex label set to *author*. The next record might instead have a value of *recipe* for the *type* field, and the data will be read into a vertex with a vertex label set to *recipe*. Thus, mixed sets of data can be read from a single input data file.

**outE**

Synopsis

```
outE "edgeLabel" {
 labelField "fieldName"
 vertex "vertexLabel" {
 label "labelName"
 key "fieldName"
 }
}
```

Description

Sets the information for an outgoing edge to the given edge label and vertex. The edge label must already exist. *labelField* is optional.

Examples

Set the outgoing edge in a mapping script to *ingredient*.

```
outE "authored", {
 vertex "book", {
 label "book"
 key "name"
 }
}
```

The vertex with its *label* (page 824) and *key* (page 823) must be set along with *outE*.

**outV**

Synopsis

```
DSE5.1.2 and earlier:
outV "field_name", {
 label "field_name"
 [key "key_name" | key key1_name: "key1_name", key2_name: "key2_name"]
 [exists()]
```

DSE 5.1 Developer Guide Earlier version, latest patch 5.1.15

Page 825
Using DataStax Enterprise advanced functionality

DSE 5.1.3 and later:
```
outV {
 label "field_name"
 [key "key_name" | key key1_name: "key1_name", key2_name: "key2_name"
 ignore "field_name"
 [exists()]
}
```

Description

In DSE versions 5.1.2 and earlier, sets the field name in the input file that will define the outgoing vertex of an edge. Both `outV` and `inV` (page 822) must be defined in an edge mapping statement. In DSE 5.1.3 and later, the `field_name` is deleted from between the `outV` keyword and the `{`.

Examples

DSE 5.1.2 and earlier: Set the field name for the outgoing vertex of an edge in a mapping script to `ingredient`.

```
//Sample line read:
// city_id|sensor_id|name
// santaCruz|93c4ec9b-68ff-455e-8668-1056ebc3689f|asparagus

// The outgoing vertex has a vertex label of ingredient, the particular
// vertex is defined as the one with
// the name of asparagus

outV "ingredient", {
 label "ingredient"
 key "name"
}
```

The field name in the input file that defines the outgoing vertex is `ingredient`, the vertex has a vertex label of `ingredient`, and the key value `name` is supplied in the input file field set in this statement. The label (page 824) and key (page 823) must be set along with `outV`.

DSE 5.1.3 and later:

```
//Sample line read:
// cityId|sensorId|homeId|name
// santaCruz|93c4ec9b-68ff-455e-8668-1056ebc3689f|asparagus
// or JSON
// {"sensor": {"cityId": "santaCruz", "sensorId":
// "93c4ec9b-68ff-455e-8668-1056ebc3689f"}, "name": "asparagus"}

// The incoming vertex has a vertex label of fridgeSensor, the
// particular vertex is defined as the one with
```
Using DataStax Enterprise advanced functionality

```cql
outV {
 label "ingredient"
 key "name"
 exists()
 ignore "homeId"
 ignore "cityId"
 ignore "sensorId"
}
```

**property**

**Synopsis**

```
property ["csv_column"] "propertyName"
```

**Description**

Identifies a property of a vertex to the given field name that will be mapped onto a property from an input data file. If a CSV column is named differently than the field in the graph, the CSV column name may be optionally set. If no property is set, all properties are read. If `ignore` (page 820) is used, a property will be bypassed.

During the `graphloader` stage 1 schema discovery, if a property key sequentially occurs multiple times on the same vertex, then the property is considered to be a multi-property. This is a reasonable deduction; however, it might change the discovered schema in certain fringe cases. Typically, in JSON input data, nested lists are mapped to multi-cardinality (page 634) properties and should be read in that manner. If multi-cardinal fields exist in the input file, schema must define those elements prior to loading. Another example is a JDBC column that is of data type `java.sql.Array`.

**Examples**

Set `property` in a mapping script to `gender`. The values of the property will be read based on the values set in the `value` field of `badge`.

```cql
property "gender"
```

For this mapping, the data could be:

```cql
{ "name":"Jane Doe", "gender":"M" }
```

Set `property` to read a column `nick` in a CSV file to `nickname` in a mapping script.

```cql
property "nick" "nickname"
```

For this mapping, the data could be:

```cql
name, nick
```
vertex

Synopsis

vertex "fieldName", {
    label "labelName"
    key "fieldName"
}

Description

Each record read from an input data file will have vertex information. vertex defines the label and key for a vertex that will be read. If no property values are set, all properties in the record will be input.

Examples

Set the parameters for a vertex in a mapping script:

vertex "recipe", {
    label "recipe"
    key "name"
}

For this vertex, each vertex created with the vertex label recipe will be created from a record in the input file in which the vertex label is defined as recipe and the key field as name.

vertexProperty

Synopsis

vertexProperty "propertyName"

Description

Sets the vertex property of a vertex to the given name.

Examples

Set vertexProperty in a mapping script to badge. The values of the vertex property will be read based on the values set in the value field of badge.

vertexProperty "badge", {
    "value" "since"
}

For this mapping, the data could be:
DSE Graph and Graph Analytics

Many local graph traversals can be executed in real time at high transactional loads. When the density of the graph is too high or the branching factor too large (the number of connected nodes at each level of the graph), the memory and computation requirements to answer OLTP queries go beyond what is acceptable under typical application workloads. These type of queries are called deep queries.

Scan queries are queries that touch either an entire graph or large parts of the graph. They typically traverse a large number of vertices and edges. For example, a query on a social network graph that searches for friends of friends is a scan query.

For applications that use deep and scan queries, using a OLAP query will result in better performance.

Performing OLAP queries using DSE Graph

Every graph created in DSE Graph has an OLAP traversal source a that is available to gremlin-console and DataStax Studio. This traversal source uses the SparkGraphComputer to analyze queries and execute them against the underlying DSE Analytics nodes. The nodes must be started with Graph and Spark enabled to access the OLAP traversal source. You must connect to the Spark Master (page 341) node for the datacenter by either running the console from the Spark Master or specifying the Spark Master in the hosts field of the Gremlin console yaml file. For one-off or single-session OLAP queries, alias database.a to g and create the query. For example in the Gremlin console:

```plaintext
:remote config alias g database.a
g.V().count()
```

If you are performing multiple queries against different parts of the graph, use graph.snapshot() to return an OLAP traversal source for each part of the graph. For example, in the Gremlin console:

```plaintext
categories = graph.snapshot().vertices('category1', 'category2').create()
```

To create a snapshot, supply all the vertices the snapshot will traverse. For example, the following query touches both the Person and Address vertices.

```plaintext
def person = graph.snapshot().vertices('Person', 'Address').create()
```
Using DataStax Enterprise advanced functionality

```
person.V().hasLabel('Person').out('HAS_ADDRESS').count()
```

Use the `conf()` method on the snapshot before you call `create()` to set TinkerPop's `SparkGraphComputer configuration options`. For example, to explicitly set the storage level for the snapshot to `MEMORY_ONLY`:

```
graph.snapshot().vertices("vertexlabel_alice", "vertexlabel_bob").edges("edgelabel_carol").conf("gremlin.spark.persistStorageLevel", "MEMORY_ONLY").create()
```

**Setting Spark properties from Gremlin**

Spark properties ([page 353](#)) can be set from Gremlin using the `graph.configuration.setProperty` method on the graph.

```
:remote config alias g database.a

g.graph.configuration.setProperty("property name", value)
```

By default, Spark applications will use all available resources on the node, so no other Spark application can run. Limit the application's resources before running OLAP traversals by setting the maximum number of cores and the amount of memory used by the traversal. This is particularly important on servers with very large amounts of cores and memory.

For example this request sets 10 executors with 1 core and 4 GB of memory each:

```
:remote config alias g example_graph.a

===>g=example_graph.a

g.graph.configuration.setProperty("spark.cores.max", 10)
g.graph.configuration.setProperty("spark.executor.memory", "4g")
g.graph.configuration.setProperty("spark.executor.cores", "1")
```

The `spark.cores.max` property sets the maximum number of cores used by Spark. Setting this property lower than the total number of cores limits the number of nodes on which the queries will be run. The `spark.executor.memory` property sets the amount of memory used for each executor. The `spark.executor.cores` property sets the number of cores used for each executor.

Before you configure Spark properties from Gremlin kill the currently-running Spark context from the Spark web UI ([page 326](#)). This will kill all currently running Gremlin OLAP queries. From the Spark web UI, find the application named Apache TinkerPop's Spark-Gremlin and click `kill` next to the Application ID.

OLAP traversals create many intermediate objects during execution. These objects are garbage-collected by the JVM, so we recommend configuring a larger pool of executors each with smaller memory and CPU resources, compared to non-graph Spark jobs which typically perform better with fewer executors with higher memory and CPU resources.
We recommend allocating executors with no more than 8 cores (1 should work in most cases) to reduce garbage collection pauses and improve OLAP traversal performance. The memory available to Spark should be equally spread among the cores. For example, if you have 3 nodes and each has 24 cores and 96 GB dedicated to Spark you have 24 * 3 = 72 cores and 96 GB * 3 = 188 GB memory. To allocate all resources you should request 72 single core executors with 4 GB of memory each:

```java
:remote config alias g example_graph.a
 ==> g = example_graph.a

 g.graph.configuration.setProperty("spark.cores.max", 72)
 g.graph.configuration.setProperty("spark.executor.memory", "4g")
 g.graph.configuration.setProperty("spark.executor.cores", "1")
```

When to use analytic OLAP queries

On large graphs, OLAP queries typically perform better for deep queries. However, executing deep queries as part of an OLTP load may make sense if they are rarely performed. For example, on online payment provider will favor OLTP queries to process payments quickly, but may require a deep query if there are indications of fraud in the transaction. While the deep query may take much longer as an OLTP workload, on the whole the performance of the application will be faster than segmenting the application into OLTP and OLAP queries.

Long running and periodic processes like recommendation engines and search engines that analyze an entire graph are the ideal use cases for OLAP queries. However, one-off data analysis operations that involve deep queries or that scan the entire database also can benefit from being run as OLAP queries. See DSE Graph, OLTP, and OLAP (page 592) for detailed information on performance differences between OLTP and OLAP queries.

Best practices for deleting large numbers of edges and vertices

When deleting large numbers of edges or vertices from a graph, you may end up getting error messages in subsequent queries due the large number of tombstones left in the database before they are automatically removed.

The log entries for such errors resemble the following:

```
 - Scanned over 100001 tombstones during query 'SELECT * FROM t33215.PhoneNumber_p WHERE token(community_id) > -7331398285705078207 AND token(community_id) <= -685840487917653807 LIMIT 1000' (last scanned row partition key was ((216134144), 1250272)); query aborted
```

To avoid these errors, reduce the number of tombstones per request by setting the `spark.cassandra.input.split.size_in_mb` property to a smaller size than the default of 64 MB. The `spark.cassandra.input.split.size_in_mb` property sets the approximate size of data the Spark Cassandra Connector will request with each individual CQL query.
Using DataStax Enterprise advanced functionality

The following example shows how to set the `spark.cassandra.input.split.size_in_mb` property to 1 MB and then to drop all phone number vertices from a graph.

```scala
:remote config alias g example_graph.a

g.graph.configuration.setProperty("spark.cassandra.input.split.size_in_mb", "1")
g.V().hasLabel("PhoneNumber").drop().iterate()
```

DSE authentication and OLAP queries

If DSE authentication is enabled, the internal user `dse_inproc_user` runs the application, not the user who submitted the Graph OLAP query.

**Using the DseGraphFrame framework for graph analytics queries**

The `DseGraphFrame` framework allows you create applications that use the Spark API for analytics operations on DSE Graph. It is inspired by the Databricks `GraphFrame` library and supports a subset of the Gremlin graph traversal language. You can read DSE Graph data into a `GraphFrame` and write `GraphFrame` objects from any format supported by Spark into DSE Graph.

Choosing when to use DseGraphFrame or DSE Graph OLAP queries

DSE Graph OLAP (page 829) has broader support for Gremlin than the `DseGraphFrame` API. While Graph OLAP is the best choice for deep queries, simple filtering and counts are much faster using the `DseGraphFrame` API.

Overview of DseGraphFrame

DseGraphFrame represents a graph as two virtual tables: a vertex and an edge `DataFrame`. The `V()` method returns the vertex `DataFrame` of a graph. The `E()` method returns the edge `DataFrame` of a graph.

```scala
val g = spark.dseGraph("test")
g.V.show
g.E.show
```

DseGraphFrame uses a `GraphFrame`-compatible format. This format requires the vertex `DataFrame` to have only one `id` column and the edge `DataFrame` to have hard coded `src` and `dst` columns. Since DSE Graph allows users to define any arbitrary set of columns as the vertex `id` and since there is no concept of labels in `GraphFrame`, DseGraphFrame will serialize the entire DSE Graph `id` into one `id` column. The label is represented as part of the `id` and also as the `~label` property column.

Using DseGraphFrame

The starting point for all operations is the `DseGraphFrame` object. In Scala, there's an implicit conversion between `DseGraphFrame objects and GraphFrame objects`.

```scala
// load a graph
```
Using DataStax Enterprise advanced functionality

```java
val graph = spark.dseGraph("my_graph")
// use the TinkerPop API
graph.V().has("edge", gt(100)).count().next()
// use the GraphFrame API
graph.find("(a)-[e]->(b); (b)-[e2]->(c)").filter("e2.`~label` ='
'includedIn'").select("a.name", "e.`~label`", "b.name", "e2.`~label`",
"c.name").distinct.show
// Use both the TinkerPop and GraphFrame APIs:
graph.V().out().hasLabel("label").df.show
```

In Java, use the `gf()` method, or use the `DseGraphFrameBuilder.dseGraph(String graphName, GraphFrame gf)` method to return a GraphFrame instance.

```java
// load a graph
GraphFrame graph = DseGraphFrameBuilder.dseGraph("my_graph", spark);
// use the TinkerPop API
graph.V().has("edge", gt(100)).count().next()
// use the GraphFrame API
graph.find("(a)-[e]->(b); (b)-[e2]->(c)").filter("e2.label ='
'includedIn'").select("a.name", "e.`~label`", "b.name", "e2.`~label`",
"c.name").distinct().show()
// Use both the TinkerPop and GraphFrame APIs:
graph.V().out().hasLabel("label").df().show()
```

Before doing complex queries, it is strongly recommended you cache the graph. You can do so using the `cache()` or `persist(level)` methods.

```java
g.cache()
```

The `persist()` method requires one of the Spark persist levels as a parameter.

```java
g.persist(MEMORY_AND_DISK_SER)
```

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>gf()</code></td>
<td>Returns a <code>GraphFrame</code> object.</td>
</tr>
<tr>
<td><code>V()</code></td>
<td>Returns a <code>DseGraphTraversal[Vertex]</code> object to start a vertex traversal.</td>
</tr>
<tr>
<td><code>E()</code></td>
<td>Returns a <code>DseGraphTraversal[Edge]</code> object to start an edge traversal.</td>
</tr>
<tr>
<td><code>cache()</code></td>
<td>Cache the graph data with Spark.</td>
</tr>
<tr>
<td><code>persist(level)</code></td>
<td>Cache the graph data with one of the Spark persist levels.</td>
</tr>
<tr>
<td><code>deleteVertices()</code></td>
<td>Delete vertices.</td>
</tr>
<tr>
<td><code>deleteVertices(label: String)</code></td>
<td>Delete all vertices with the specified label.</td>
</tr>
</tbody>
</table>
Using DataStax Enterprise advanced functionality

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>deleteEdges()</td>
<td>Delete edges.</td>
</tr>
<tr>
<td>deleteVertexProperties()</td>
<td>Delete vertex properties.</td>
</tr>
<tr>
<td>deleteEdgeProperties()</td>
<td>Delete edge properties.</td>
</tr>
<tr>
<td>updateVertices(df: DataFrame, labels: Seq[String] = Seq.empty)</td>
<td>Change the properties of an existing vertex or insert a new vertex.</td>
</tr>
<tr>
<td></td>
<td>The optional parameter labels improves the performance of the update by iterating over the provided labels rather than deriving the vertices to update from the DataFrame.</td>
</tr>
<tr>
<td>updateEdges(df: DataFrame, labels: Seq[String] = Seq.empty)</td>
<td>Change the properties of an existing edge or insert a new edge.</td>
</tr>
<tr>
<td></td>
<td>The optional parameter labels improves the performance of the update by iterating over the provided labels rather than deriving the edges to update from the DataFrame.</td>
</tr>
</tbody>
</table>

**TinkerPop API support in DseGraphFrame**

DseGraphFrame supports a subset of the Apache TinkerPop traversal API.

DseGraphFrame does not support org.apache.tinkerpop.gremlin.process.traversal.Traverser or org.apache.tinkerpop.gremlin.process.traversal.TraversalSideEffects.

Supported methods

DseGraphFrame mimics the TinkerPop graph traversal source by defining two methods: E() and V(). These methods return a GraphTraversal that has all methods defined below. Only a limit set of TinkerPop’s Step classes are supported. Steps other than the ones in the following table will throw an UnsupportedException.

**Table 52: TinkerPop read methods**

<table>
<thead>
<tr>
<th>Steps</th>
<th>Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>CountGlobalStep</td>
<td>count()</td>
</tr>
<tr>
<td>GroupCountStep</td>
<td>groupCount()</td>
</tr>
<tr>
<td>IdStep</td>
<td>id()</td>
</tr>
<tr>
<td>PropertyValuesStep</td>
<td>values()</td>
</tr>
<tr>
<td>PropertyMapStep</td>
<td>propertyMap()</td>
</tr>
<tr>
<td>HasStep</td>
<td>has(), hasLabel()</td>
</tr>
</tbody>
</table>
Using DataStax Enterprise advanced functionality

<table>
<thead>
<tr>
<th>Steps</th>
<th>Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>IsStep</td>
<td>is()</td>
</tr>
<tr>
<td>VertexStep</td>
<td>to(), out(), in(), both(), toE(), outE(), inE(), bothE()</td>
</tr>
<tr>
<td>EdgeVertexStep</td>
<td>toV(), inV(), outV(), bothV()</td>
</tr>
<tr>
<td>NotStep</td>
<td>not()</td>
</tr>
<tr>
<td>TraversalFilterStep</td>
<td>where()</td>
</tr>
<tr>
<td>AndStep</td>
<td>and(A, B)</td>
</tr>
<tr>
<td>PageRankVertexProgramStep</td>
<td>pageRank()</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Steps</th>
<th>Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>DropStep</td>
<td>V().drop(), E().drop(), properties().drop()</td>
</tr>
<tr>
<td>AddPropertyStep</td>
<td>property(name, value, ...)</td>
</tr>
</tbody>
</table>

DseGraphFrame can be used to drop millions of vertices or edges at once, and is much faster for bulk property updates than Gremlin OLAP or OLTP.

For example this query drops all person vertices and their associated edges:

```g.V().hasLabel("person").drop().iterate()```

Table 53: TinkerPop update steps and methods

<table>
<thead>
<tr>
<th>Steps</th>
<th>Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>DropStep</td>
<td>V().drop(), E().drop(), properties().drop()</td>
</tr>
<tr>
<td>AddPropertyStep</td>
<td>property(name, value, ...)</td>
</tr>
</tbody>
</table>

Using DseGraphFrame in Scala

GraphTraversal is a Java interface, and extends the Java Iterator interface. To iterate through the results of a traversal as a DataFrame use the df() method. DseGraphFrame supports implicit conversion to DataFrame.

The following example will traverse the vertices of a graph using TinkerPop and then show the result as a DataFrame.

```g.V().out().show```

In some cases you may need to use the TinkerPop Java API to get the correct TinkerPop objects.

For example, to extract the DSE Graph Id object the Traversal Java iterator can be converted to a Scala iterator which allows direct access to the TinkerPop representation of the Id. This method allows you to use the original Id instead of the DataFrame methods which return the DataFrame String representation of the Id, you can also use the toList() and toSet() methods to set the appropriate ID.

```import scala.collection.JavaConverters._```
// convert the iterator to a Scala iterator to get the native Id object
for(i <- g.V().id().asScala) println (i)

{-label=vertex, community_id=748226688, member_id=0}
{-label=custom, name=Name, value=1}

// convert to a Set
g.V.id.toSet

res18: java.util.Set[Object] = [{-label=demigod,
 community_id=224391936, member_id=0}, ...

The TinkerPop P (predicate) and T (constant) classes are imported by the Spark shell automatically.

g.E().groupCount().by(T.label)
g.V().has("age", P.gt(30)).show

For standalone applications, import these classes.

import org.apache.tinkerpop.gremlin.structure.T
import org.apache.tinkerpop.gremlin.process.traversal.P
import org.apache.tinkerpop.gremlin.process.traversal.dsl.graph.__

Scala is not always able to infer the return type, especially in the Spark shell. The property values of the type should be provided explicitly.

g.V().values[Any]("name").next()

Or similarly:

val n: String = g.V().values("name").next()

Explicitly set the type when dropping properties.

g.V().properties[Any]("age", "name").drop().iterate()

In this case, using the DataFrame API is easier as you do not need to specify the type.

++
||
++

++
g.V().values("age").show()
Table 54: Using Java methods in DseGraphFrame Scala applications

<table>
<thead>
<tr>
<th>Method</th>
<th>Use case</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>hasNext()</td>
<td>You want to know if there’s a result, but you don’t care about the value.</td>
<td>Did Alice create any other vertices</td>
</tr>
<tr>
<td></td>
<td></td>
<td>g.V().has("name", "Alice").outE("created").hasNext()</td>
</tr>
<tr>
<td>next()</td>
<td>You know that there is at least 1 result and you want to get the first one (or the second if you call it twice, and so on).</td>
<td>Get the vertex label distribution. Group steps will always return exactly 1 result.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>g.V().groupCount().by(label).next()</td>
</tr>
<tr>
<td>iterate()</td>
<td>You just want to execute the traversal, but don’t care about the result and whether it did anything at all.</td>
<td>Set all age properties to 10.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>g.V().property("age", 10).iterate()</td>
</tr>
<tr>
<td>toList(), toSet()</td>
<td>You expect the result to contain an arbitrary number of items and you want to get all of them.</td>
<td>Get all the people Alice knows.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>g.V().has("name", "Alice").out("knows").toList()</td>
</tr>
</tbody>
</table>

Mapping rules for DseGraphFrame

DseGraphFrame uses mapping rules for column names and types.

Column mapping rules

DataFrame column names are the same as graph property names except in the following cases.

- Conflict with column names reserved by GraphFrame will result in an underscore (_) added to the property name. For example, the id column will result in a property named _id.

Table 55: Reserved column names in GraphFrame

<table>
<thead>
<tr>
<th>Reserved column name</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
</tr>
</tbody>
</table>
Using DataStax Enterprise advanced functionality

<table>
<thead>
<tr>
<th>Reserved column name</th>
</tr>
</thead>
<tbody>
<tr>
<td>src</td>
</tr>
<tr>
<td>dst</td>
</tr>
<tr>
<td>new_id</td>
</tr>
<tr>
<td>new_src</td>
</tr>
<tr>
<td>new_dst</td>
</tr>
<tr>
<td>graphx_attr</td>
</tr>
</tbody>
</table>

- DseGraphFrame and Spark SQL are case insensitive by default. Column names that differ only in case will result in conflicts. Set the Spark property `spark.sql.caseSensitive=true` to avoid case conflicts.

```
$ dse spark --conf spark.sql.caseSensitive=true
```

Type mapping rules

DseGraphFrame and Spark SQL have a limited set of supported types. A vertex is represented by a `Row` instance.

If the vertex has multiple properties, each property will be represented as a Spark SQL array with property values. If a property has meta-properties it will be represented as `StructType`. The `value` field of the struct contains the property value. All other fields will represent the meta-properties.

Table 56: DSE Graph to Spark SQL and DseGraphFrame type mapping

<table>
<thead>
<tr>
<th>DSE Graph type</th>
<th>Spark SQL type</th>
<th>Conversion rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>boolean</td>
<td>BooleanType</td>
<td></td>
</tr>
<tr>
<td>smallint</td>
<td>ShortType</td>
<td></td>
</tr>
<tr>
<td>int</td>
<td>IntegerType</td>
<td></td>
</tr>
<tr>
<td>bigint</td>
<td>LongType</td>
<td></td>
</tr>
<tr>
<td>float</td>
<td>FloatType</td>
<td></td>
</tr>
<tr>
<td>double</td>
<td>DoubleType</td>
<td></td>
</tr>
<tr>
<td>decimal</td>
<td>DecimalType(38, 18)</td>
<td></td>
</tr>
</tbody>
</table>
Using DataStax Enterprise advanced functionality

<table>
<thead>
<tr>
<th>DSE Graph type</th>
<th>Spark SQL type</th>
<th>Conversion rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>varint</td>
<td>DecimalType(38, 0)</td>
<td></td>
</tr>
<tr>
<td>timestamp</td>
<td>TimestampType</td>
<td></td>
</tr>
<tr>
<td>date</td>
<td>DateType</td>
<td></td>
</tr>
<tr>
<td>time</td>
<td>LongType</td>
<td>The number of nanoseconds from the beginning of the day.</td>
</tr>
<tr>
<td>text</td>
<td>StringType</td>
<td></td>
</tr>
<tr>
<td>uuid</td>
<td>StringType</td>
<td>The UUID.toString() and UUID.fromString() methods are used to convert the value.</td>
</tr>
<tr>
<td>inet</td>
<td>StringType</td>
<td>The toString and InetAddress.getByName() methods are used to convert the value.</td>
</tr>
<tr>
<td>blob</td>
<td>BinaryType</td>
<td></td>
</tr>
<tr>
<td>'PointType'</td>
<td>StringType</td>
<td>The toWellKnownText() and fromWellKnownText() methods are used to convert the value.</td>
</tr>
<tr>
<td>'LineStringType'</td>
<td>StringType</td>
<td>The toWellKnownText() and fromWellKnownText() methods are used to convert the value.</td>
</tr>
<tr>
<td>'PolygonType'</td>
<td>StringType</td>
<td>The toWellKnownText() and fromWellKnownText() methods are used to convert the value.</td>
</tr>
</tbody>
</table>

Exporting graphs using DseGraphFrame

Use `DseGraphFrame` to export the graph to any format supported by Spark.

1. Export the vertices and edges to a Spark-supported using the `write` method.

 Export the graph to a JSON file in the DSEFS file system.

 scala> g.V.write.json("/tmp/v_json")
 scala> g.E.write.json("/tmp/e_json")

 That will create two directories in the DSEFS file system with vertex and edge JSON files. You can get data locally if they are not too large for the local file system:
Using DataStax Enterprise advanced functionality

$ dse hadoop fs -cat /tmp/v_json/* > local_vertices.json
$ dse hadoop fs -cat /tmp/e_json/* > local_edges.json

Importing graphs using DseGraphFrame

Use DseGraphFrame to import a graph to DataStax Enterprise.

Prerequisites:

The graph schema should be created manually in the Gremlin console or DSE Studio before importing the graph. Import only works with custom ID mapping.

1. Start the Spark shell.

 $ dse spark

2. If you exported the graph to JSON using DseGraphFrame, import it in the Spark shell.

 val g = spark.dseGraph("gods_import")
 g.updateVertices(spark.read.json("/tmp/v.json"))
 g.updateEdges(spark.read.json("/tmp/e.json"))

 val g = spark.dseGraph("graph name")
 g.updateVertices(spark.read.json("path to exported vertices JSON"))
 g.updateEdges(spark.read.json("path to exported edges JSON"))

3. If you have a custom graph:

 a. Examine the schema of the graph and note how to map it to the expected schema of a DSE Graph schema.

 This example will use the friends graph from the GraphFrame project.

 scala> import org.graphframes._
 scala> val g: GraphFrame = examples.Graphs.friends
 scala> g.vertices.printSchema
 root
 |-- id: string (nullable = true)
 |-- name: string (nullable = true)
 |-- age: integer (nullable = false)

 scala> g.edges.printSchema
 root
 |-- src: string (nullable = true)
 |-- dst: string (nullable = true)
 |-- relationship: string (nullable = true)

 b. In the Gremlin console or DSE Studio create the schema.
Using DataStax Enterprise advanced functionality

```java
system.graph('friends').create()
:remote config alias g friends.g
    schema.propertyKey("age").Int().create()
    schema.propertyKey("name").Text().create()
    schema.propertyKey("id").Text().single().create()

    schema.vertexLabel('people').partitionKey("id").properties("name", "age").create();
    schema.edgeLabel("friend").create()
    schema.edgeLabel("follow").create()
```

c. In the Spark shell create an empty `DseGraphFrame` graph and check the target schemas.

```scala
scala> val d = spark.dseGraph("friends")
scala> d.V.printSchema
root
|-- id: string (nullable = false)
|-- ~label: string (nullable = false)
|-- _id: string (nullable = true)
|-- name: string (nullable = true)
|-- age: integer (nullable = true)

scala> d.E.printSchema
root
|-- src: string (nullable = false)
|-- dst: string (nullable = false)
|-- ~label: string (nullable = true)
|-- id: string (nullable = true)
```

d. Convert the edges and vertices to the target format.

```scala
scala> val v = g.vertices.select ($"id" as "_id",
          lit("people") as "~label", $"name", $"age")
scala> val e = g.edges.select (d.idColumn(lit("people"), $"src") as "src",
          d.idColumn(lit("people"), $"dst") as "dst",
          $"relationship" as "~label")
```

e. Append the converted vertices and edges to the target graph.

```scala
d.updateVertices (v)
d.updateEdges (e)
```

Using the Northwind demo graph with Spark OLAP jobs

The Northwind demo included with the DSE demos has a script for creating a graph of the data for a fictional trading company.
In this task, you'll use the Gremlin console to create the Northwind graph, snapshot part of the graph, and run a count operation on the subgraph using the SparkGraphComputer.

Prerequisites:
- Enable DSE Graph, DSE Search, and DSE Analytics modes *(page 1275)* in your datacenter.
- Install the DSE Graph Loader *(page 745)*.
- Clone the graph-examples Git repository to the machine on which you are running the Gremlin console.

```bash
$ git clone https://github.com/datastax/graph-examples.git
```

1. Load the Northwind graph and supplemental data using the graphloader tool:

```bash
$ graphloader -graph northwind -address localhost graph-examples/northwind/northwind-mapping.groovy -inputpath graph-examples/northwind/data
$ graphloader -graph northwind -address localhost graph-examples/northwind/supplemental-data-mapping.groovy -inputpath graph-examples/northwind/data/
```

2. Start the Gremlin console using the `dse gremlin-console` command:

```bash
$ dse gremlin-console
```

3. Alias the traversal to Northwind graph using the default OLTP traversal source:

```bash
gremlin> :remote config alias g northwind.g
```

4. Set the schema mode to Development.

To allow modifying the schema for the connected graph database, you must set the mode to Development each session. The default schema mode for DSE Graph is Production, which doesn't allow you to modify the graph's schema.

```bash
gremlin>
schema.config().option('graph.schema_mode').set('Development')
```

5. Enable the use of scans and lambdas.

```bash
gremlin> schema.config().option('graph.allow_scan').set('true')
```

6. Look at the schema of the northwind graph:
7. Alias the traversal to the Northwind analytics OLAP traversal source. Alias `g` to the OLAP traversal source for one-off analytic queries:

```
gremlin> :remote config alias g northwind.a
```

8. Count the number of vertices using the OLAP traversal source:

```
gremlin> g.V().count()
```

```
=>3294
```

When you alias `g` to the OLAP traversal source `database name.a`, DSE Analytics is the workload back-end.

9. Store subgraphs into snapshots using `graph.snapshot()`.

When you need to run multiple OLAP queries on a graph in one session, use snapshots of the graph as the traversal source.

```
gremlin> employees =
    graph.snapshot().vertices('employee').create()
```

```
=>graphtraversalsource[hadoopgraph[persistedinputrdd->persistedoutputrdd], sparkgraphcomputer]
```

```
gremlin> categories =
    graph.snapshot().vertices('category').create()
```

```
=>graphtraversalsource[hadoopgraph[persistedinputrdd->persistedoutputrdd], sparkgraphcomputer]
```

The `snapshot()` method returns an OLAP traversal source using the SparkGraphComputer.

10. Run an operation on the snapshot graphs.

Count the number of employee vertices in the snapshot graph:

```
gremlin> employees.V().count()
```

```
=> 9
```

Count the number of category vertices in the snapshot graph:

```
gremlin> categories.V().count()
```
Using DataStax Enterprise advanced functionality

DSE Graph Tools

In addition to the Gremlin console, other tools are available for working with DSE Graph:

DataStax Studio (page 1361)

Web-based notebook-style visualization tool. Currently supports Markdown and Gremlin. Includes a variety of list and graph functions.

DSE OpsCenter

Visual management and monitoring tool.

DSE Lifecycle Manager

Powerful provisioning and configuration management tool.
DSE Graph Reference

The graph API

graph commands add data to an existing graph.

addEdge

Synopsis

\[\text{vertex1}.addEdge('edgeLabel', \text{vertex2}, [T.id, 'edge_id'], ['key', 'value'] [,\ldots])\]

Description

Edge data is inserted using addEdge. A previously created edge label (page 855) must be specified. An edge_id may be specified, to upsert data for a multiple cardinality edge to prevent creation of a new edge. Property key-value pairs may be optionally specified.

Examples

Create an edge with an edge label rated between the vertices johnDoe and beefBourguignon with the properties timestamp, stars, and comment.

\[\text{johnDoe}.addEdge('rated', \text{beefBourguignon}, 'timestamp', '2014-01-01T00:00:00.00Z', 'stars', 5, 'comment', 'Pretty tasty!')\]

Update an edge with an edge label created between the vertices juliaChild and beefBourguignon, specifying the edge with an edge id of 2c85fabd-7c49-4b28-91a7-ca72ae53fd39, and a property createDate of 2017-08-22:

\[\text{juliaChild}.addEdge('created', 'beefBourguignon', T.id, java.util.UUID.fromString('2c85fabd-7c49-4b28-91a7-ca72ae53fd39'), 'createDate', '2017-08-22')\]
Using DataStax Enterprise advanced functionality

Note that a conversion function must be used to convert a string to the UUID. \texttt{T.id} is a literal that must be included in the statement.

\textbf{addVertex}

\textbf{Synopsis}

\begin{verbatim}
addVertex(label, 'label_name', 'key', 'value', 'key', 'value')
\end{verbatim}

\textbf{Description}

Vertex data is inserted using \texttt{addVertex}. A previously created vertex label (page 861) must be specified.

\textbf{Examples}

Create a vertex with a vertex label \texttt{reviewer} with the properties \texttt{location} and \texttt{status}.

\begin{verbatim}
graph.addVertex(label, 'reviewer', 'location', 'Santa Cruz, CA', 'status', 'Rock Star')
\end{verbatim}

\textbf{io}

\textbf{Synopsis}

\begin{verbatim}
io([gryo() | graphson() | graphml()]).[readGraph | writeGraph] (file_name)
\end{verbatim}

\textbf{Description}

Graph data is written to a file or read from a file using \texttt{io}.

\textbf{Examples}

Write the graph data to a file using the Gryo format:

\begin{verbatim}
graph.io(gryo()).writeGraph('/tmp/test.gryo')
\end{verbatim}

Read the graph data from a file using the Gryo format:

\begin{verbatim}
graph.io(gryo()).readGraph('/tmp/test.gryo')
\end{verbatim}

\textbf{Restriction:} This method of reading a graph is not recommended, and will not work with graphs larger than 10,000 vertices or elements. \texttt{DSE Graph Loader (page 744)} is a better choice in production. Additionally, a schema setting may need modification for this method to work:
Using DataStax Enterprise advanced functionality

```java
schema.config().option("tx_autostart").set(true)
```

property

Synopsis

```java
vertex1.property( ['key', 'value'] [...], [T.id, 'property_id'])
```

Description

Property data is inserted using `property`. Property key-value pairs are specified. A `property_id` may be specified, to upsert data for a multiple cardinality property to prevent creation of a new property.

Examples

Create a property with values for `gender` and `nickname`.

```java
jamieOliver = g.V().has('person', 'name', 'Jamie Oliver').next()
jamieOliver.property('gender', 'M').property('nickname', 'jimmy')
```

Update the property `gender` for the vertex `juliaChild` specifying a property with a property id of `2c85fabd-7c49-4b28-91a7-ca72ae53fd39`:

```java
uuid = java.util.UUID.fromString('2c85fabd-7c49-4b28-91a7-ca72ae53fd39')
juliaChild.property('gender', 'F', T.id, uuid)
```

Note that a conversion function must be used to convert a string to the UUID. `T.id` is a literal that must be included in the statement.

tx().config().option()

Synopsis

```java
tx().config().option(option).open()
```

Description

Examples

Change the value of `allow_scan` for a transaction. The effect of this change is to allow all commands executed in the gremlin-console on a particular node to do full graph scans, even if the consistency level for the cluster is not `QUORUM`, the value required to change this option in the appropriate system table.

```java
graph.tx().config().option("allow_scan", true).open()
```
Note that the previous transaction (automatically opened in gremlin-console or Studio) must be committed before the new configuration option value is set.

The schema API

`schema` commands are used to create schema such as vertex labels, edge labels, property keys and indexes.

clear

Synopsis

```java
schema.clear()
```

Description

Clear schema information for a particular graph using this command. An alias must be created to bind the graph to a graph traversal before running this command.

Examples

Clear the schema and data for a particular graph.

```java
gremlin> schema.clear()
```

The result if the clear command is successful:

```java
==>null
```

connection

Synopsis

```java
connection('outV', 'inV')
```

Description

An adjacency between two vertices is created using an edge label and the vertex labels of the outgoing and incoming vertices. This step is used in conjunction with `edgeLabel()`.

Examples

Create an edge label `isA` specifying that the outgoing vertex label is `ingredient` and the incoming vertex label is `FridgeItem`.

```java
schema.edgeLabel('isA').connection('ingredient', 'FridgeItem').create()
```

An adjacency between the `vertexLabel` `author` and `author` specifying the `edgeLabel` `knows`.
config

Synopsis

```java
schema.config().option(arg).[ set(value) | unset(value) | get() | exists() | describe() ]
```

Schema can be configured per graph using the `config()` command. An option and value can be set or unset. An option's value can be retrieved with the `get()` command. Whether or not the option is configured can be discovered with the `exists()` command. The `describe()` command returns a value if the option has been set manually.

Table 57: Graph-specific options

(Graph-specific options are preceded by `graph`. For example, `graph.schema_mode`.)

<table>
<thead>
<tr>
<th>Option argument</th>
<th>Setting Example</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>allow_scan</td>
<td>true</td>
<td>Setting to allow costly graph scan queries.</td>
<td>true</td>
</tr>
<tr>
<td>schema_mode</td>
<td>Production</td>
<td>Set mode to Production or Development.</td>
<td>Development</td>
</tr>
<tr>
<td>default_property_key_cardinality</td>
<td>single</td>
<td>Set the cardinality that will be used by default unless otherwise specified.</td>
<td></td>
</tr>
<tr>
<td>tx_autostart</td>
<td>true</td>
<td>Set whether transactions are started automatically or must be manually opened.</td>
<td>false</td>
</tr>
</tbody>
</table>

Table 58: TraversalSource-specific options

(TraversalSource-specific options are preceded by `graph.traversal_sources.` where `*` must be a specified traversal source such as the graph traversal `g`. For example, `graph.traversal_sources.g.type`. The most common TraversalSource is the graph traversal `g`.)

<table>
<thead>
<tr>
<th>Option argument</th>
<th>Setting Example</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>evaluation_timeout</td>
<td>PT10S (10 seconds) or "1500 ms"</td>
<td>Maximum time to wait for a traversal to evaluate - this will override other system level settings for the current TraversalSource.</td>
<td>0 days</td>
</tr>
</tbody>
</table>
Using DataStax Enterprise advanced functionality

<table>
<thead>
<tr>
<th>Option argument</th>
<th>Setting Example</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>restrict_lambda</td>
<td>false</td>
<td>Prevent the use of lambdas with this TraversalSource. A particular traversal source can be identified.</td>
<td>true</td>
</tr>
<tr>
<td>type</td>
<td>read-only</td>
<td>Specify type of TraversalSource. A particular traversal source can be identified.</td>
<td>default</td>
</tr>
</tbody>
</table>

Important: Setting a timeout value of greater than 1095 days (maximum integer) can exceed the limit of a graph session. Starting a new session and setting the timeout to a lower value can recover access to a hung session. This caution is applicable for all timeouts: evaluation_timeout, system_evaluation_timeout, analytic_evaluation_timeout, and realtime_evaluation_timeout.

Table 59: Transaction-specific options

(transaction-specific options are preceded by graph.tx_groups.* where * must be specified as a transaction group or default. For example, graph.tx_groups.default.read_only will make all transactions which aren't explicitly named read_only, whereas graph.tx_groups.myTxGroup.read_only would apply only to transactions which are given the group name myTxGroup.)

<table>
<thead>
<tr>
<th>Option</th>
<th>Setting Example</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>authenticated_user</td>
<td>test_user</td>
<td>The username to use as the current user for a transaction.</td>
<td>ANONYMOUS_USER</td>
</tr>
<tr>
<td>cache</td>
<td>true</td>
<td>Cache retrievals and data store calls within a transaction in transaction-level caches. This setting provides a restricted type of isolation within a transaction (concurrent modifications in other transactions aren't visible and result sets remain consistent between calls) and can improve performance at the expense of additional memory consumption.</td>
<td>true</td>
</tr>
<tr>
<td>Option</td>
<td>Setting Example</td>
<td>Description</td>
<td>Default</td>
</tr>
<tr>
<td>--------------------</td>
<td>-----------------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>deep_profiling</td>
<td>true</td>
<td>Enable CQL tracing for <code>profile()</code> in queries. Very costly profiling.</td>
<td>false</td>
</tr>
<tr>
<td>internal_vertex_verify</td>
<td>true</td>
<td>Set whether a transaction should verify that vertices for internally provided vertex ids (autogenerated vertex ids) actually exist.</td>
<td>false</td>
</tr>
<tr>
<td>external_vertex_verify</td>
<td>false</td>
<td>Set whether a transaction should verify that vertices for externally provided vertex ids (custom vertex ids) actually exist.</td>
<td>true</td>
</tr>
<tr>
<td>logged_batch</td>
<td>true</td>
<td>Use a logged batch when committing changes. This guarantees that all mutations will eventually occur at the expense of performance.</td>
<td>false</td>
</tr>
<tr>
<td>max_mutations</td>
<td>5000</td>
<td>The maximum number of vertices, properties and edges (cumulatively) that may be added or removed in a single transaction.</td>
<td>10000</td>
</tr>
<tr>
<td>max_profile_events</td>
<td>5</td>
<td>The maximum number of profiling events to report for an individual traversal step. Restricting the number of reported events makes output manageable, but can hide important information.</td>
<td>10</td>
</tr>
<tr>
<td>Option</td>
<td>Setting Example</td>
<td>Description</td>
<td>Default</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>prefetch</td>
<td>true</td>
<td>Sets whether the query executor should asynchronously pre-fetch data based on its expected execution of the traversal prior to the data being requested. This can reduce transaction latency but can cause throughput to worse.</td>
<td>true</td>
</tr>
<tr>
<td>read_only</td>
<td>true</td>
<td>Set whether a transaction is read-only.</td>
<td>false</td>
</tr>
<tr>
<td>read_consistency</td>
<td>ALL</td>
<td>Specify the consistency level for read operations of a transaction.</td>
<td>ONE</td>
</tr>
<tr>
<td>single_thread</td>
<td>true</td>
<td>Set whether a transaction is only accessed by a single thread.</td>
<td>false</td>
</tr>
<tr>
<td>thread_bound</td>
<td>true</td>
<td>Set whether a transaction is bound to a particular thread.</td>
<td>false</td>
</tr>
<tr>
<td>transaction_timestamp</td>
<td></td>
<td>The timestamp at which all mutations of this transaction are persisted.</td>
<td>Instant.EPOCH</td>
</tr>
<tr>
<td>verify_unique</td>
<td>false</td>
<td>Set whether transactions should ensure that uniqueness constraints are enforced.</td>
<td>true</td>
</tr>
<tr>
<td>vertex_cache_size</td>
<td>4000</td>
<td>Maximum size of the transaction-level cache of recently-used vertices</td>
<td>20000l</td>
</tr>
<tr>
<td>Option</td>
<td>Setting Example</td>
<td>Description</td>
<td>Default</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------------</td>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td>vertex_dirty_size</td>
<td></td>
<td>This is a performance hint for write-heavy, performance-sensitive transactional workloads. If set, it should roughly match the median vertices modified per transaction.</td>
<td>32</td>
</tr>
<tr>
<td>write_consistency</td>
<td>ANY</td>
<td>Specify the consistency level for write operations of a transaction</td>
<td>QUORUM</td>
</tr>
</tbody>
</table>

Description

Configure a graph. Options can be set, unset, or get (retrieve the value).

Examples

Set the current graph to disallow full graph scans in the currently aliased graph.

```java
schema.config().option('graph.allow_scan').set('false')
```

To retrieve all traversal sources that have been set, use the `get()` command with the traversal source type option:

```java
schema.config().option('graph.traversal_sources.*.type').get()
```

resulting in a list of values for the option that have been manually set:

```
REAL_TIME
```

Set the default write consistency for a transaction to `ALL` in the currently aliased graph.

```java
schema.config().option('graph.tx_groups.default.write_consistency').set('ALL')
```

Get the current write consistency for a transaction in the currently aliased graph.

```java
schema.config().option('graph.tx_groups.default.write_consistency').get()
```

To confirm that an option setting has been set manually, use the `exists()` command:

```java
schema.config().option('graph.tx_groups.default.write_consistency').exists()
```

This command will return:

```
true
```
Using DataStax Enterprise advanced functionality

if the setting has been set to a value, otherwise it returns false.

To enable CQL tracing during traversal query profiling, set the deep_profiling() option:

```java
schema.config().option('graph.tx_groups.default.deep_profiling').set('TRUE')
```

To verify that external vertex ids exist, set the external_vertex_verify() option:

```java
schema.config().option('graph.tx_groups.default.external_vertex_verify').set('TRUE')
```

If this setting is true, then a vertex will not be returned if it doesn't exist. However, if external_vertex_verify() is set to false, then a vertex will be returned even if the vertex does not exist given an id. Applications should ensure that vertices exist using the exists() method for expected behavior.

To retrieve a list of configuration options that have been set, use the describe() command:

```java
schema.config().describe()
```

resulting in a list of all options that have been manually set:

```
graph.tx_groups.default.write_consistency: ALL
graph.allow_scan: False
```

There are some configuration options for which the default (for example, values are not explicitly set) is determined by using the value of other configuration options. For instance, if allow_scan is not explicitly set, the default value is true if schema_mode is set to Development, but false if the schema_mode is set to Production. These configuration options are not linked to the default settings, leading to potentially misleading information when using schema.config().get() to discover the setting value because the default value is displayed rather than a set value.

To set restrict_lambda to FALSE in order to test lambda functions (only appropriate for non-production systems):

```java
schema.config().option('graph.traversal_sources.g.restrict_lambda').set('FALSE')
```

Full graph scan settings are as follows:

<table>
<thead>
<tr>
<th>setting</th>
<th>schema mode</th>
<th>scans allowed</th>
</tr>
</thead>
<tbody>
<tr>
<td>dse.yaml schema_mode:Production</td>
<td>Production</td>
<td>no</td>
</tr>
<tr>
<td>dse.yaml schema_mode:Development</td>
<td>Development</td>
<td>yes</td>
</tr>
<tr>
<td>graph.schema_mode:Production</td>
<td>Production</td>
<td>no</td>
</tr>
<tr>
<td>graph.schema_mode:Development</td>
<td>Development</td>
<td>no</td>
</tr>
<tr>
<td>graph.allow_scan:true</td>
<td>Production</td>
<td>yes</td>
</tr>
</tbody>
</table>
Using DataStax Enterprise advanced functionality

<table>
<thead>
<tr>
<th>setting</th>
<th>schema mode</th>
<th>scans allowed</th>
</tr>
</thead>
<tbody>
<tr>
<td>graph.allow_scan: true</td>
<td>Development</td>
<td>yes</td>
</tr>
</tbody>
</table>

describe

Synopsis

```java
schema.describe()
```

Description

List schema information about a particular graph using this command. An alias must be created to bind the graph to a graph traversal before running this command.

Examples

Discover if a particular graph exists. The return value is a boolean value.

```java
gremlin> schema.describe()
```

The resulting list:

```java
==>schema.vertexLabel("FridgeItem").create()
```

edgeLabel

Synopsis

```java
schema.edgeLabel('edgeLabel').[ single() | multiple() ].
[ connection( outVertex, inVertex ) ].[ ttl ].[ properties(property[, property]) ].[ ifNotExists() ].[ create() | add() | describe() | exists() ]
```

Description

An edge label specifies a type of edge that can be stored in DSE Graph. An edge label can have cardinality specified (default is multiple *(page 634)*), the connections that are defined between two types of vertices, properties that an edge has defined, and a time-to-live (TTL) to determine the lifecycle of an edge.

Examples

Create an edgeLabel created:

```java
schema.edgeLabel('created').create()
```

Create an edgeLabel includedIn if the edge label doesn't already exist:

```java
schema.edgeLabel('includedIn').ifNotExists().create()
```

Create an edgeLabel with multiple cardinality *(page 635)*:
Using DataStax Enterprise advanced functionality

```java
schema.edgeLabel('rated').multiple().create()
```

Add properties to an edgeLabel:

```java
schema.edgeLabel('rated').properties('rating','last_date').add()
```

Create an edgeLabel with both a property and a connection:

```java
schema.edgeLabel('rated').properties('rating').connection('recipe', 'reviewer').add()
```

Create a time-to-live (TTL) for an edgeLabel of 60 seconds. Setting a TTL will expire all edges inserted with the edgeLabel at the set TTL value.

```java
schema.edgeLabel('createDate').ttl(60).create()
```

Note: DSE Graph sets TTL differently from the DSE database. The DSE database sets TTL per mutation (insertion or update) or can inherit a default value from the table schema. DSE Graph sets TTL per vertex label or edge label, and all vertices or edges will be affected by the TTL setting. DSE Graph cannot set TTL for an individual vertex or edge.

Check if an edgeLabel exists:

```java
schema.edgeLabel('rated').exists()
```

Get the schema creation command for an edgeLabel using the `describe()` command:

```java
schema.edgeLabel('createDate').describe()
```

exists

Synopsis

```java
schema.<schema_element>('author').exists()
```

Description

Discover if a particular schema element exists using this command. This command can be used with vertexLabel, edgeLabel, or propertyKey.

Examples

Discover if a particular vertex label exists. The return value is a boolean value.

```javascript
gremlin> schema.vertexLabel('author').exists()
```

The resulting list:
index - edge index

Synopsis

index('index_name').[outE('edgeLabel') | inE('edgeLabel') | bothE('edgeLabel')].by('propertykey_name').add()

Description

An edge index specifies an index that is built using an edge property key in DSE Graph. A vertex label must be specified, and edge indexes are only defined in relationship to a vertex label. The index name must be unique.

An edge index can be created using either outgoing edges (outE()) from a vertex label, incoming edges (inE()) from a vertex label, or both outgoing and incoming (bothE()). The last type, bothE(), is rarely used, but could be used in a situation where the index must track both the incoming and outgoing edges from a particular vertex label. An example would be a graph storing reviewers who can both be liked and like other reviewers. To search for reviewers who are liked and who like a particular reviewer, both incoming and outgoing edges would be searched.

Examples

Create an index ratedByStars with an outE edge label using the property key stars. The vertex label is specified as reviewer.

```
schema.vertexLabel('reviewer').index('ratedByStars').outE('rated').by('stars').add()
```

Create an index ratedByStars2Way with a bothE edge label using the property key year. The edge index allows queries that find both recipes with a certain year and reviewers who gave a review in a certain year.

```
schema.vertexLabel('recipe').index('byAuthOrRecipe').bothE('created').by('year').ifNotExists().add()
```

It can replace two indexes:

```
schema.vertexLabel('recipe').index('toRecipesRated').inE('rated').by('year').add()
schema.vertexLabel('reviewer').index('toReviewersWhoRated').outE('rated').by('year').add()
```

index - property index

Synopsis

index('index_name').property('propertykey_name').by('meta-propertykey_name').add()
Using DataStax Enterprise advanced functionality

Description

A property index specifies an index that is built using the meta-property (page 623) of a vertex property key in DSE Graph. A vertex label must be specified. The index name must be unique. The property key specified must have multiple cardinality.

Examples

Create an index `byLocation` index using the property key `country` and meta-property key `livedIn`. The vertex label is specified as `author`.

```java
schema().vertexLabel('author').index('byLocation').property('country').by('livedIn').add()
```

index - vertex index

Synopsis

```java
index('index_name').[secondary() | materialized() | search()].by('propertykey_name').[ asText() | asString() ].add()
```

Description

A vertex index specifies an index that is built using a vertex property key in DSE Graph. A vertex label must be specified. Vertex indexes can be specified as secondary, materialized, or search. The index name must be unique.

A search vertex index must be named search; only one search index can exist. Multiple property keys can be specified in a single search index definition. The options asText() and asString() must be specified for a search index.

Examples

Create an index `byRecipe` as a secondary index using the property key `name`. The vertex label is specified as `recipe`.

```java
schema.vertexLabel('recipe').index('byRecipe').secondary().by('name').add()
```

Create an index `byMeal` as a materialized index using the property key `name`. The vertex label is specified as `meal`.

```java
schema.vertexLabel('meal').index('byMeal').materialized().by('name').add()
```

Create an index `search` as a search index using the property key `instructions` and specify that the index is a asText(). The vertex label is specified as `recipe`.

```java
schema.vertexLabel('recipe').index('search').search().by('instructions').asText().add()
```

Create an index `search` as a search index using multiple property keys `instructions` with asText() and `category` with asString(). The vertex label is specified as `recipe`.

```java
schema.vertexLabel('recipe').index('search').search().by('instructions').asText().add()
```
partitionKey - clusteringKey

Synopsis

```
partitionKey('id_name').[ clusteringKey('id_name') ]
```

Description

partitionKey and clusteringKey are used to specify a customer vertex id in conjunction with vertexLabel. The partitionKey sets a partition key. A composite partition key can also be set by chaining partitionKey items. The clusteringKey sets a clustering key. The property keys used must be created prior to use.

Examples

Create a propertyKey city_id.

```
schema.propertyKey('city_id').Int().create()
```

Create a vertexLabel using sensor_id as a partitioning key.

```
schema().vertexLabel('FridgeSensor').partitionKey('sensor_id').create()
```

Create a vertex label with a custom partitioning key city_id and clustering key sensor_id.

```
schema().vertexLabel('FridgeSensor').partitionKey('city_id').clusteringKey('sensor_id').create()
```

Create a vertex using city_id as a partitioning key and sensor_id as a clustering key. The property key sensor_id must already exist and be an UUID.

```
graph.addVertex(label, 'FridgeSensor', 'city_id', 100, 'sensor_id', '60bcae02-f6e5-11e5-9ce9-5e5517507c66')
```

Create a vertexLabel using city_id and sensor_id as a composite partitioning key.

```
schema().vertexLabel('FridgeSensor').partitionKey('city_id', 'sensor_id').create()
```

properties

Synopsis

```
properties('name').add()
```
Using DataStax Enterprise advanced functionality

Description

Properties can be added to vertices and edges. A property key (page 860) must be created prior to adding it to either type of element. Allowed characters for the name are alphabetical or underscore.

Examples

Add a property key to a vertex label. The property key nationality must exist prior to adding it to the vertex label.

```java
schema.vertexLabel('author').properties('nationality').add()
```

Add more than one property to a vertex label.

```java
schema.vertexLabel('author').properties('nationality', 'age', 'assocRestaurants').add()
```

propertyKey

Synopsis

```java
propertyKey('name').type().{ single() | multiple() }.[ ttl ].
[ properties(metadata_property) ].[ ifNotExists() ].[ create() | add() |
| describe() | exists() ]
```

Description

Property keys are created for vertices and edges. A property key must be created prior to adding it to either type of element. Allowed characters for the name are alphabetical or underscore. The data type (page 869) must be included. A property key can have cardinality specified, single(default) or multiple, properties (meta-properties), and a time-to-live (TTL) to determine the lifecycle of a property.

Caution:

Multiple cardinality (multi-properties) will be retrieved in graph traversals more slowly than single cardinality properties, because vertices with multi-properties will default to requesting properties individually.

Examples

Create a property key with the name name of Text type.

```java
schema.propertyKey('name').Text().create()
```

Create a property key with the name num_items of Integer type if the property key doesn't already exist.

```java
schema.propertyKey('num_items').Int().ifNotExists().create()
```
Create a property key with the *name* `createDate` of `Timestamp` type with multiple property cardinality.

```java
schema.propertyKey('createDate').Timestamp().multiple().create()
```

Add a meta-property for a property. The meta-property, `first_publication`, must exist.

```java
schema.propertyKey('createDate').properties('first_publication').add()
```

Create a time-to-live (TTL) for a property key of 60 seconds. Setting a TTL will expire all properties inserted with the propertyKey at the set TTL value.

```java
schema.propertyKey('createDate').ttl(60).create()
```

Note: DSE Graph sets TTL differently from the DSE database. The DSE database sets TTL per mutation (insertion or update) or can inherit a default value from the table schema. DSE Graph sets TTL per vertex label or edge label, and all vertices or edges will be affected by the TTL setting. DSE Graph cannot set TTL for an individual vertex or edge.

Check if a property key exists.

```java
schema.propertyKey('name').exists()
```

Get the schema creation command for a property key using the `describe()` command.

```java
schema.propertyKey('name').describe()
```

vertexLabel

Synopsis

```java
schema.vertexLabel('vertexLabel').[ partitionKey(propertyKey, [ partitionKey(propertyKey) ] ).[ clusteringKey(propertyKey) ]. [ ttl ].[ properties(property, property) ].[ index ].[ partition() ]. [ cache() ].[ ifNotExists() ].[ create() | add() | describe() | exists() ]
```

Description

A vertex label specifies a type of vertex that can be stored in DSE Graph. A vertex label can have properties defined, a partition key, clustering key, indexes, cache, and a time-to-live (TTL) to determine the lifecycle of an vertex.

DSE Graph limits the number of vertex labels to 200 per graph.

Examples

Create a vertexLabel `author`.
Using DataStax Enterprise advanced functionality

```java
schema.vertexLabel('author').create()
```

Create a vertexLabel `ingredient` if the vertex label doesn't already exist.

```java
schema.vertexLabel('ingredient').ifNotExists().create()
```

For partition and clustering keys, see `partitionKey-clusteringKey (page 859)`.

Add properties to a vertexLabel.

```java
schema.vertexLabel('author').properties('location','restaurant').add()
```

For indexes, see each index entry (edge index (page 857), property index (page 857), vertex index (page 858)) in the Schema API.

Cache all properties for `author` vertices up to an hour (3600 seconds).

```java
schema.vertexLabel('author').cache().properties().ttl(3600).add()
```

Enabling property cache causes index queries to use IndexCache for the specified vertex label.

Cache both incoming and outgoing `created` edges for `author` vertices up to a minute (60 seconds).

```java
schema.vertexLabel('author').cache().bothE('created').ttl(60).add()
```

Partition a vertexLabel based on a particular edgeLabel.

```java
schema.vertexLabel('author').partition().inE('created').add()
```

Create a time-to-live (TTL) for an vertexLabel of 60 seconds. Setting a TTL will expire all vertices inserted with the vertexLabel at the set TTL value.

```java
schema.vertexLabel('author').ttl(60).create()
```

Note: DSE Graph sets TTL differently from the DSE database. The DSE database sets TTL per mutation (insertion or update) or can inherit a default value from the table schema. DSE Graph sets TTL per vertex label or edge label, and all vertices or edges will be affected by the TTL setting. DSE Graph cannot set TTL for an individual vertex or edge.

Check if a vertexLabel exists.

```java
schema.vertexLabel('author').exists()
```

Get the schema creation command for a vertexLabel using the `describe()` command.
The system API

The system commands create, drop, and describe graphs, as well as list existing graphs and check for existence. Graph and system configuration can also be set and unset with system commands.

create

Synopsis

system.graph('graph_name').create()

Description

Create a new graph. The graph_name specified is used to create two DSE database keyspaces, graph_name and graph_name_system, and can only contain alphanumeric and underscore characters.

Examples

Create a new graph.

gremlin> system.graph('FridgeItem').create()

The resulting list:

==>FridgeItem

Create a new graph if it doesn’t currently exist by modifying with ifNotExists().

gremlin> system.graph('FridgeItem').ifNotExists().create()

The resulting list:

==>FridgeItem

Creating a graph should include setting the replication factor for the graph (page 866) and the graph_system (page 868). It can also include other options (page 865).

drop

Synopsis

system.graph('graph_name').[ifExists()].drop()

Description

Drop an existing graph using this command. All data and schema will be lost.
Examples

Drop a graph.

```
gremlin>  system.graph('FridgeItem').drop()
```

The resulting list:

```=>null```

Drop an existing graph if it exists.

```
gremlin> system.graph('FridgeSensors').ifExists().drop()
```

The resulting list:

```=>null```

exists

Synopsis

```
system.graph('graph_name').exists()
```

Description

Discover if a particular graph exists using this command.

Examples

Discover if a particular graph exists. The return value is a boolean value.

```
gremlin>  system.graph('FridgeItem').exists()
```

The resulting list:

```=>true```

**graphs**

**Synopsis**

```
system.graphs()
```

**Description**

Discover what graphs currently exist using this command.

**Examples**

Discover all graphs that exist in a DSE cluster.

```
gremlin> system.graphs()
```
The resulting list:

```plaintext
=> quickstart
=> test
```

**Note:** This command is not available if a graph traversal is aliased with the `:remote config alias g some_graph.g` command. In order to access the system command, reset the alias with `:remote config alias reset`.

### option

**Synopsis**

```plaintext
option(arg).set(value)
```

Graphs can be configured per graph using the following options. The Gremlin console must be used to set `system` commands.

<table>
<thead>
<tr>
<th>Option argument</th>
<th>Setting Example</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>replication_config</td>
<td><code>{ 'class': 'NetworkTopologyStrategy', 'dc1': 3 }</code></td>
<td>Set replication configuration for a single graph.</td>
<td><code>{ 'class': 'SimpleStrategy', 'replication_factor': 1 }</code></td>
</tr>
<tr>
<td>system_replication_config</td>
<td><code>{ 'class': 'NetworkTopologyStrategy', 'dc1': 3 }</code></td>
<td>Set replication configuration for a single graph system data.</td>
<td><code>{ 'class': 'SimpleStrategy', 'replication_factor': 1 }</code></td>
</tr>
<tr>
<td>default_property_key_cardinality</td>
<td><code>Single</code></td>
<td>The default cardinality for automatically defined properties</td>
<td>Single</td>
</tr>
</tbody>
</table>

**Description**

Configure a graph. Options can be set.

**Restriction:** The replication factor and system replication factor cannot be altered once set for the `graph_name` and `graph_name_system` keyspaces.

**Examples**

Create a new graph and set the `graph` replication configuration and the `graph_system` replication configuration to the DSE database settings shown.
Using DataStax Enterprise advanced functionality

```
using DataStax Enterprise advanced functionality

system.graph('food').
 option("graph.replication_config").set({"'class':
 'NetworkTopologyStrategy', 'dc1': 3 })
 option("graph.system_replication_config").set({"'class':
 'NetworkTopologyStrategy', 'dc1': 3 })
 ifNotExists().create()

The resulting list:

==>null

The replication settings can be verified using the cqlsh tool, running the CQL command

DESCRIBE keyspace food;

Note: The options shown (graph.replication_config and

graph.system_replication_config) have been replaced in DSE 5.1.3 and later; see the table above.

Other schema settings (page 849) can be set at graph creation, but must be changed
using schema.config() if modified later.

system.graph('food2').
 option("graph.replication_config").set({"'class': 'SimpleStrategy',
 'replication_factor': 1 })
 option("graph.system_replication_config").set({"'class':
 'SimpleStrategy', 'replication_factor': 1 })
 option("graph.schema_mode").set("Development")
 option("graph.allow_scan").set("false")
 option("graph.default_property_key_cardinality").set("multiple")
 option("graph.tx_groups.*.write_consistency").set("ALL")
 create()

To check the schema settings:

:remote config alias g food2.g
schema.config().describe()

to get the results:

graph.schema_mode: Development
graph.allow_scan: False
graph.tx_groups.*.write_consistency: ALL
graph.default_property_key_cardinality: Multiple

gremlin> schema.config().option("graph.allow_scan").set("true")

Note the use of a wildcard * to set the write consistency for all transaction groups.

replication

Synopsis

```

system.graph('graph_name').replication("{class:
    'NetworkTopologyStrategy', 'dc1': 3, 'dc2': 2}"

DSE 5.1 Developer Guide Earlier version, latest patch 5.1.15
Description

Create a new graph. The graph_name specified is used to create two DSE database keyspaces, graph_name and graph_name_system, and can only contain alphanumeric and underscore characters.

Examples

Create a new graph and set the graph_name replication configuration using replication() as well as the graph_name_system configuration using systemReplication(). DSE database settings for replication factor are used, either SimpleStrategy for a single datacenter or NetworkTopologyStrategy for multiple datacenters.

The default replication strategy for a multi-datacenter graph is NetworkTopologyStrategy, whereas for a single datacenter, the replication strategy will default to SimpleStrategy. The number of nodes will determine the default replication factor:

<table>
<thead>
<tr>
<th>number of nodes per datacenter</th>
<th>graph_name replication factor</th>
<th>graph_name_system replication factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3</td>
<td>number of nodes per datacenter</td>
<td>number of nodes per datacenter</td>
</tr>
<tr>
<td>greater than 3</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

```
system.graph('food').
replication("{'class' : 'NetworkTopologyStrategy', 'dcl' : 3, 'dc2' : 2 }")
.systemReplication("{'class' : 'NetworkTopologyStrategy', 'dcl' : 3, 'dc2' : 2 }").
ifNotExists().create()
```

The resulting list:

```csharp```
=>null
```

The replication settings can be verified using the cqlsh tool, running the CQL command:

```
DESCRIBE KEYSSPACE food;
```

with a result:

```
CREATE KEYSSPACE food WITH replication = {'class':
 'NetworkTopologyStrategy', 'dcl: '3', 'dc2' : 2 } AND durable_writes = true;
```

In addition to setting the replication factor for the graph_name keyspace, the replication factor for the graph_name_system (page 868) must also be set.
Restriction: The replication factor and system replication factor cannot be altered once set for the `graph_name` and `graph_name_system` keyspaces.

systemReplication

Synopsis

```java
system.graph('graph_name').systemReplication("{'class' : 'NetworkTopologyStrategy', 'dc1' : 3, 'dc2' : 2 }")
```

Description

Create a new graph. The `graph_name` specified is used to create two DSE database keyspaces, `graph_name` and `graph_name_system`, and can only contain alphanumeric and underscore characters.

Examples

Create a new graph and set the `graph_name` replication configuration using `replication()` as well as the `graph_name_system` configuration using `systemReplication()`. DSE database settings for replication factor are used, either `SimpleStrategy` for a single datacenter or `NetworkTopologyStrategy` for multiple datacenters.

The default replication strategy for a multi-datacenter graph is `NetworkTopologyStrategy`, whereas for a single datacenter, the replication strategy will default to `SimpleStrategy`. The number of nodes will determine the default replication factor:

<table>
<thead>
<tr>
<th>number of nodes per datacenter</th>
<th><code>graph_name</code> replication factor</th>
<th><code>graph_name_system</code> replication factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3</td>
<td>number of nodes per datacenter</td>
<td>number of nodes per datacenter</td>
</tr>
<tr>
<td>greater than 3</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

```java
system.graph('food').
 replication("{'class' : 'NetworkTopologyStrategy', 'dc1' : 3, 'dc2' : 2 }").
 systemReplication("{'class' : 'NetworkTopologyStrategy', 'dc1' : 3, 'dc2' : 2 }").
 ifNotExists().create()
```

The resulting list:

```text
==>null
```

The system replication settings can be verified using the `cqlsh` tool, running the CQL command `DESCRIBE keyspace food_system command:`
Using DataStax Enterprise advanced functionality

DESCRIBE KEYSPACE food_system;

with a result:

CREATE KEYSPACE food_system WITH replication = {'class': 'NetworkTopologyStrategy', 'dc1': '3', 'dc2': 2 } AND durable_writes = true;

Important: Because the graph’s schema is stored in graph_name_system, it is extremely important that the replication factor is set consistent with the table values above. If the graph’s schema is lost, it renders the entire graph inoperable.

In addition to setting the replication factor for the graph_name_system keyspace, the replication factor for the graph_name (page 866) must also be set.

DSE Graph data types

DSE Graph has many data types that are aligned with CQL data types. For search indexes, see the relationship between DSE Graph and Solr data types.

Table 61: DSE Graph Data Types

<table>
<thead>
<tr>
<th>DSE Graph Data Type</th>
<th>Description</th>
<th>Schema example</th>
</tr>
</thead>
<tbody>
<tr>
<td>bigint</td>
<td>64-bit signed long</td>
<td>schema.propertyKey('big_number').BigInt().create()</td>
</tr>
<tr>
<td>blob</td>
<td>Arbitrary bytes (no validation), expressed as base64 strings</td>
<td>schema.propertyKey('serial_string').Blob().create()</td>
</tr>
<tr>
<td>boolean</td>
<td>True or false</td>
<td>schema.propertyKey('alive').Boolean().create()</td>
</tr>
<tr>
<td>date</td>
<td>Date, in the format of ‘1940’ or ‘1940-01-01’.</td>
<td>schema.propertyKey('review_date').Date().create()</td>
</tr>
<tr>
<td>decimal</td>
<td>Variable-precision decimal</td>
<td>schema.propertyKey('book_price').Decimal().create()</td>
</tr>
<tr>
<td>double</td>
<td>64-bit IEEE-754 floating point</td>
<td>schema.propertyKey('stars').Double().create()</td>
</tr>
<tr>
<td>duration</td>
<td>Time duration in milliseconds</td>
<td>schema.propertyKey('until').Duration().create()</td>
</tr>
<tr>
<td>float</td>
<td>32-bit IEEE-754 floating point</td>
<td>schema.propertyKey('precise').Float().create()</td>
</tr>
<tr>
<td>DSE Graph Data Type</td>
<td>Description</td>
<td>Schema example</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>inet</td>
<td>IP address string in IPv4 or IPv6 format, used by the python-cql driver and CQL native protocols</td>
<td>schema.propertyKey('website_ip').Inet().create()</td>
</tr>
<tr>
<td>int</td>
<td>32-bit signed integer</td>
<td>schema.propertyKey('age').Int().create()</td>
</tr>
<tr>
<td>linestring</td>
<td>Used for geospatial and Cartesian linestrings (double .... points)</td>
<td>schema.propertyKey('road').Linestring().withGeoBounds().create() (geospatial) schema.propertyKey('road').Linestring().withBounds(-1, -1, 1, 1).create() (Cartesian)</td>
</tr>
<tr>
<td>point</td>
<td>Used for geospatial and Cartesian points (double x, double y); note that this corresponds to longitude/latitude, in that order, for mapping geospatial points.</td>
<td>schema.propertyKey('coordinates').Point().withGeoBounds().create() (geospatial) schema.propertyKey('coordinates').Point().withBounds(-1, -1, 1, 1).create() (Cartesian)</td>
</tr>
<tr>
<td>polygon</td>
<td>Used for geospatial and Cartesian polygons (double .... points)</td>
<td>schema.propertyKey('block').Polygon().withGeoBounds().create() (geospatial) schema.propertyKey('block').Polygon().withBounds(-1, -1, 1, 1).create() (Cartesian)</td>
</tr>
<tr>
<td>smallint</td>
<td>2 byte integer</td>
<td>schema.propertyKey('age').Smallint().create()</td>
</tr>
<tr>
<td>text</td>
<td>String or UTF-8 encoded string</td>
<td>schema.propertyKey('name').Text().create()</td>
</tr>
<tr>
<td>time</td>
<td>Time in the format of '10:00:00' or '10:00'.</td>
<td>schema.propertyKey('time').Time().create()</td>
</tr>
<tr>
<td>timestamp</td>
<td>Date, or date plus time, encoded as 8 bytes since epoch. The timestamp data type must be specified as a valid DSE database timestamp:</td>
<td>schema.propertyKey('mealCreationDate').Timestamp().create()</td>
</tr>
<tr>
<td>uuid</td>
<td>A UUID in standard UUID format or timeuuid format</td>
<td>schema.propertyKey('authorID').Uuid().create()</td>
</tr>
<tr>
<td>varint</td>
<td>Arbitrary-precision integer</td>
<td>schema.propertyKey('number').Varint().create()</td>
</tr>
</tbody>
</table>

**Graph storage in the DSE database keyspace and tables**

DSE Graph uses the DSE database to store schema and data. Three DSE database keyspaces are created for each graph, `<graphname>`, `<graphname_system>`, and `<graphname_pvt>`. For example, for a graph called `food`, the three keyspaces created...
will be *food, food_system, and food_pvt*. The first keyspace *food* will hold the data for the graph. The second keyspace *food_system* holds schema and other system data about the graph. The third keyspace *food_pvt* holds information about partitioning for vertices should the graph contain a vertex with a large number of edges that requires the vertex table to be partitioned across the cluster.

In the `<graphname>` keyspace, two tables are created for each vertex label to store vertex and edge information, *vertexLabel_p* and *vertexLabel_e*, respectively. For example, for a vertex label *author*, two tables are created, *author_p* and *author_e*.

**Apache TinkerPop graph computing framework**

**Apache TinkerPop** is a graph abstraction layer that works with numerous different graph databases and graph processors. Apache TinkerPop is composed of two elements: a structure API and a process API.

The primary components of the Apache TinkerPop structure API are:

**Graph**
- maintains a set of vertices and edges

**Vertex**
- extends a general class Element and maintains a set of incoming and outgoing edges as well as a collection of properties and a vertex type
- DSE Graph schema stores VertexLabel - ID, name, TTL

**Edge**
- extends Element and maintains an incoming and outgoing vertex as well as a collection of properties and an edge type
- DSE Graph schema stores EdgeLabel - ID, name, TTL, multiplicity (multi, simple), unidirected, visible, sort-key

**Property**
- a string key associated with a value
- DSE Graph schema stores PropertyKey - ID, name, TTL, datatype, cardinality (single, list)

**VertexProperty**
- a string key associated with a value as well as a collection of metadata properties (vertices only)

The primary components of the Apache TinkerPop process API are:

**TraversalSource**
- a generator of traversals for a particular graph, domain specific language (DSL), and execution engine

**Traversal<S,E>**
- a functional data flow process transforming objects of type *S* into object of type *E*

**GraphTraversal**
- a traversal DSL that is oriented towards the semantics of the raw graph (i.e. vertices, edges, etc.)
Using DataStax Enterprise advanced functionality

a system that processes the graph in parallel and potentially, distributed over a multi-machine cluster

**VertexProgram**
- code executed at all vertices in a logically parallel manner with intercommunication via message passing

**MapReduce**
- computations that analyzes all vertices in the graph in parallel and yields a single reduced result

A key feature of Apache TinkerPop is Gremlin, a graph traversal language and virtual machine. Apache TinkerPop and Gremlin are to graph databases what JDBC and SQL are to relational databases. Gremlin variants are available for many languages: Java, Groovy, Python, and others.

### DSE Advanced Replication

DSE Advanced Replication supports configurable distributed data replication from source clusters to destination clusters. It is designed to tolerate sporadic connectivity that can occur in constrained environments, such as retail, oil-and-gas remote sites, and cruise ships.

**Note:** To learn about replication, see About data distribution and replication.

### About DSE Advanced Replication

DSE Advanced Replication supports configurable distributed data replication from source clusters to destination clusters. It is designed to tolerate sporadic connectivity that can occur in constrained environments, such as retail, oil-and-gas remote sites, and cruise ships.

**Note:** To learn about replication, see About data distribution and replication.

### Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Smartsly replicates data from source clusters to destination clusters</strong></td>
<td>Supports replicating data in a spoke and hub configuration from remote locations to central data hubs and repositories. Enterprise customers with remote clusters are able to establish a cluster presence in each location. In addition, mesh configuration can replicate data from any source cluster to another destination cluster within reasonable limits.</td>
</tr>
<tr>
<td><strong>Prioritizes data streams</strong></td>
<td>Allows higher priority data streams to be sent from the source cluster to a destination cluster ahead of lower priority data streams.</td>
</tr>
<tr>
<td><strong>Supports ingestion and querying of data at every source</strong></td>
<td>DSE Advanced Replication enables ingesting and querying data at any source and sent to any destination that collects and analyzes data from all of the sites.</td>
</tr>
<tr>
<td><strong>Solves problem of periodic downtime</strong></td>
<td>Useful for energy (oil and gas), transportation, telecommunications, retail (point-of-sale systems), and other vertical markets that might experience periods of network or internet downtime at the remote locations.</td>
</tr>
</tbody>
</table>
Using DataStax Enterprise advanced functionality

| Satisfies data sovereignty regulations | Provides configurable streams of selected outbound data, while preventing data changes to inbound data. |
| Satisfies data locality regulations | Prevents data from leaving the current geography. |

**DSE Advanced Replication architecture**

DSE Advanced Replication enables configurable replication between clusters, identifying source and destination clusters with replication channels. Topologies such as hub-and-spoke or mesh networks can differentially push or pull data depending on operational needs.

A common operational scenario for DSE Advanced Replication is a network of remote sensors with poor network connection to a centrally located storage and analytics network. The remote edge clusters collect data, but can experience disconnections from the network and periodically send one-way updates to the central hub clusters when a connection is available. Some sensors may be deemed more important than others, requiring prioritization of transmission. All sensors can continue to collect data, and to transmit in a specified manner, or have collection turned off as needed. Each remote sensor cluster would be designated as a source, while the central database cluster would be a destination.
Using DataStax Enterprise advanced functionality
This configuration would also be suitable to a network of microservices clusters that report data to a central analytics cluster.

Another scenario may include similar remote sites that mainly send data to a centralized location, but must periodically be updated with information from the centralized location. In this scenario, each remote cluster would be both a source and a destination, with two channels designated, one upstream and one downstream. A small Point of Sale (POS) system serves as a possible model for this scenario, with periodic updates to the remote systems.

A mesh network can also use advanced replication, with remote clusters receiving updates from either a central location or another remote cluster.
Although any cluster, remote or centralized, may serve as a source for an advanced replication channel, a limited number of destinations can be configured for any one source. In general, consider the flow of replication as many sources to few destinations, rather than few sources to many destinations.

**Traffic between the clusters**

Traffic between the source cluster and the destination cluster is managed with permits, priority, and configurable failover behavior for multi-datacenter operation.

**Permits**

Traffic between the source cluster and the destination cluster is managed with permits. When a permit cannot be acquired, the message is postponed and waits in the replication log until it is processed when a permit becomes available. Permits are global and not per destination.

To manage permits and set the maximum number of messages that can be replicated to all destinations simultaneously, use `dse advrep conf`:

```
$ dse advrep conf update --permits 1000
```

The default is 30,000.
Channel with a higher priority will take precedence in acquiring permits. Permits are required to transmit data from a source to a destination.

Priority and FIFO/LIFO enablement

The commit log is flushed from memory to disk, writing the data to the appropriate table. A Capture-Data-Change (CDC) collection agent additionally filters the data written and creates replication log files on disk. Each channel source table will have a separate data directory created on disk into which data is appended each time the commit log is flushed, storing all the messages that are to be replicated to a destination. Several replication log files may exist per source table at any given time. Each file stores a contiguous time-slice, configurable with `dse advrep conf update` command and the `--collection-time-slice-width` option (default: 60 seconds). A CDC transmission agent then sends the messages stored in the replication log files to the destination, where the data is processed and written to the appropriate database table. The order in which source table data is transmitted can be altered with the `priority` option when creating a channel, and the order in which a source table’s replication log files are read can be tuned with the `--fifo-enabled` and `--lifo-enabled` options.

The replication log files are processed according to the time and priority of the replication channel. Replication channel priorities are set per table, and determines how the transmission agent orders the transmission of replication log files from the source to the destination. The replication log files can be passed to the destination in either last in, first out (LIFO) or first in, first out (FIFO); FIFO is the default. If the newest messages should be read first, use LIFO; if the oldest messages should be read first, use FIFO. Once an individual replication log file is transmitted, the messages it contains are read FIFO. Both options, priority and read order, can be set during channel creation:

```
$ dse advrep --host 192.168.3.10 channel create --source-keyspace foo --source-table bar --source-id source1 --source-id-column source_id --destination mydest --destination-keyspace foo --destination-table bar --collection-enabled true --priority 1 --lifo-enabled
```

This example sets the channel for table `foo.bar` to the top priority of one, so that the table’s replication log files will be transmitted before other table’s replication log files. It also sets the replication log files to be read from newest to oldest.

Configure automatic failover for hub clusters with multiple datacenters

DSE Advanced Replication uses the DSE Java driver load balancing policy to communicate with the hub cluster. You can explicitly define the local datacenter for the datacenter-aware round robin policy (`DCAwareRoundRobinPolicy`) that is used by the DSE Java driver.

You can enable or disable failover from a local datacenter to a remote datacenter. When multiple datacenter failover is configured and a local datacenter fails, data replication from the edge to the hub continues using the remote datacenter. Tune the configuration with these parameters:

**driver-local-dc**

For destination clusters with multiple datacenters, you can explicitly define the name of the datacenter that you consider local. Typically, this is the datacenter that
is closest to the source cluster. This value is used only for clusters with multiple data enters.

**driver-used-hosts-per-remote-dc**

To use automatic failover for destination clusters with multiple datacenters, you must define the number of hosts per remote datacenter that the datacenter aware round robin policy (DCAwareRoundRobinPolicy) considers available.

**driver-allow-remote-dcs-for-local-cl**

Set to true to enable automatic failover for destination clusters with multiple datacenters. The value of the **driver-consistency-level** parameter must be LOCAL_ONE or LOCAL_QUORUM.

To enable automatic failover with a consistency level of LOCAL_QUORUM, use `dse advrep destination update`:

```bash
$ dse advrep destination update --name mydest --driver-allow-remote-dcs-for-local-cl true --driver-consistency-level LOCAL_QUORUM
Destination mydest updated
Updated driver_allow_remote_dcs_for_local_cl from null to true
Updated driver_consistency_level from ONE to LOCAL_QUORUM
```

**DSE Advanced Replication terminology**

This terminology is specific to DSE Advanced Replication that supports distributed data replication from a DataStax Enterprise source cluster to a destination cluster.

- **collection agent**
  The process thread that runs on the source cluster that captures the incoming changes and populates the replication log.

- **destination cluster**
  The cluster to which the data flow is going from the source cluster.

- **source cluster**
  A cluster that primarily sends data to one or more destination clusters. DSE Advanced Replication must be enabled on the source cluster.

- **source datacenter**
  A datacenter of a source cluster.

- **destination cluster**
  A cluster that generally supports one or more source clusters that replicate data to the destination cluster. DSE Advanced Replication is not required on the destination cluster.

- **destination datacenter**
  A datacenter of a destination cluster.

- **isolated**
  The state of a cluster when there is not a live connection between the source cluster and the destination cluster.

- **replication agent**
  The process thread that runs on the source cluster that reads data from the replication log and transmits that data to the destination cluster.

- **replication channel**
A defined channel of change data between source clusters and destination clusters. A replication channel is defined by the source cluster, source keyspace, source table name, destination cluster, destination keyspace, and destination table name.

**replication channel priority**

The priority order of which replication channel has precedence when limited bandwidth occurs between the source cluster and the destination cluster.

**replication log**

The replication log on the source cluster stores data in preparation for transmission to the destination cluster.

**tethered**

The state when there is a live connection between the source cluster and the destination cluster.

### Getting started with DSE Advanced Replication

To test Advanced Replication, you must set up an source cluster and a destination cluster. These steps set up one node in each cluster.

Getting started overview:

1. Setting up the destination cluster node *(page 879)*
2. Setting up the source cluster *(page 880)*
3. Creating sample keyspace and table *(page 881)*
4. Configuring replication on the source node *(page 881)*
5. Creating the replication channel *(page 887)*
6. Starting replication from source to destination *(page 888)*
7. Inserting data on the source *(page 888)*
8. Testing loss of connectivity *(page 889)*
9. Testing replication start and stop *(page 890)*

**Note:** Due to Cassandra-11368, list inserts might not be idempotent (unchanged). Because DSE Advanced Replication might deliver the same message to the destination more than once, this Cassandra bug might lead to data inconsistency if lists are used in a column family schema. DataStax recommends using other collection types, like sets or frozen lists, when ordering is not important.

**Prerequisite:** If you are using Advanced Replication V1 from DSE 5.0, you must upgrade to DSE 5.1 and migrate to Advanced Replication V2.

Setting up the destination cluster node

The destination cluster requires DataStax Enterprise 4.8 or later. On the destination node:
1. Install DataStax Enterprise *(page 145)* 4.8 or later.

2. Start DataStax Enterprise as a transactional node with the command that is appropriate for the installation method *(page 1275)*.

3. Note the public IP address for the destination node.

Setting up the source cluster

The source cluster requires DataStax Enterprise 5.1 or later. On the source node:

1. Install DataStax Enterprise *(page 145)* 5.1 or later.

2. To enable replication, edit the dse.yaml file.

   At the end of the file, uncomment the `advanced_replication_options` setting and options, and set `enabled: true`.

   ```
 # Advanced Replication configuration settings
 advanced_replication_options:
 enabled: true
   ```

3. Enable Capture-Data-Change (CDC) *(page 198)* in the cassandra.yaml file on a per-node basis for each source:

   ```
 cdc_enabled: true
   ```

   **Note:** Advanced Replication will not start if CDC is not enabled, since CDC logs are used to implement the feature.

4. Consider increasing the default CDC disk space, depending on the load (default: 4096 or 1/8 of the total space where `cdc_raw_directory` resides):

   ```
 cdc_total_space_in_mb: 16384
   ```

5. The commitlog compression should be checked for the following value:

   ```
 commitlog_compression:
 - class_name: LZ4Compressor
   ```

6. Start DataStax Enterprise as a transactional node with the command that is appropriate for the installation method *(page 1275)*.

7. Once advanced replication is started on a cluster, the source node will create keyspaces and tables that need alteration. See Keyspaces *(page 890)* for information.
Creating the sample keyspace and table

These steps show you how to create the demonstration keyspace and table.

1. On the source node and the destination node, create the sample keyspace and table:

   ```
 CREATE KEYSPACE foo
 WITH REPLICAATION = {
 'class': 'SimpleStrategy',
 'replication_factor': 1};
   ```

   **Remember:** Remember to use escaped quotes around keyspace and table names as command line arguments to preserve casing: `dse advrep create --keyspace "keyspaceName" --table "tableName"`

2. On the source node:

   ```
 CREATE TABLE foo.bar (
 name TEXT,
 val TEXT,
 scalar INT,
 PRIMARY KEY (name));
   ```

3. On the destination node:

   ```
 CREATE TABLE foo.bar (
 name TEXT,
 val TEXT,
 scalar INT,
 source_id TEXT,
 PRIMARY KEY (name, source_id));
   ```

   **Note:** The `source_id` column is required on the destination node.

Configuring a replication destination on the source node

DSE Advanced Replication stores all of its settings in CQL tables. To configure replication, use the `dse advrep command line tool` (page 924).

When you configure replication on the source node:

- The source node points to its destination using the public IP address that you saved earlier.
- The `source-id` value is a unique identifier for all data that comes from this particular source node.
- The `source-id` unique identifier is written to the `source-id-column` that was included when the `foo.bar` table was created on the destination node.

To configure a replication destination, run this command:
Using DataStax Enterprise advanced functionality

dse advrep --verbose destination create --name mydest --addresses 10.200.182.148 --transmission-enabled true

Destination mydest created

To verify the configuration, run this command:

dse advrep destination list-conf

<table>
<thead>
<tr>
<th>destination</th>
<th>name</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>mydest</td>
<td>driver_ssl_enabled</td>
<td>false</td>
</tr>
<tr>
<td>mydest</td>
<td>addresses</td>
<td>10.200.182.148</td>
</tr>
<tr>
<td>mydest</td>
<td>driver_read_timeout</td>
<td>15000</td>
</tr>
<tr>
<td>mydest</td>
<td>driver_connections_max</td>
<td>8</td>
</tr>
<tr>
<td>mydest</td>
<td>source_id_column</td>
<td>source_id</td>
</tr>
<tr>
<td>mydest</td>
<td>driver_connect_timeout</td>
<td>15000</td>
</tr>
<tr>
<td>mydest</td>
<td>driver_ssl_protocol</td>
<td>TLS</td>
</tr>
<tr>
<td>mydest</td>
<td>driver_consistency_level</td>
<td>QUORUM</td>
</tr>
<tr>
<td>mydest</td>
<td>driver_used_hosts_per_remote_dc</td>
<td>0</td>
</tr>
<tr>
<td>mydest</td>
<td>driver_allow_remote_dcs_for_local_cl</td>
<td>false</td>
</tr>
<tr>
<td>mydest</td>
<td>driver_compression</td>
<td>lz4</td>
</tr>
<tr>
<td>mydest</td>
<td>driver_connections</td>
<td>1</td>
</tr>
<tr>
<td>mydest</td>
<td>driver_ssl_cipher_suites</td>
<td>[TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384,</td>
</tr>
</tbody>
</table>
Using DataStax Enterprise advanced functionality

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384,	
TLS_RSA_WITH_AES_256_CBC_SHA256,	
TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384,	
TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384,	
TLS_DHE_RSA_WITH_AES_256_CBC_SHA256,	
TLS_DHE_DSS_WITH_AES_256_CBC_SHA256,	
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA,	
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA,	
TLS_RSA_WITH_AES_256_CBC_SHA,	
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA256,	
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA,	
TLS_DHE_RSA_WITH_AES_256_CBC_SHA,	
TLS_DHE_DSS_WITH_AES_256_CBC_SHA,	
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256,	
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256,	
TLS_RSA_WITH_AES_128_CBC_SHA256,	
TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256,	
TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256,	
TLS_DHE_RSA_WITH_AES_128_CBC_SHA256,	
TLS_DHE_DSS_WITH_AES_128_CBC_SHA256,	
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,	
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA,	
TLS_RSA_WITH_AES_128_CBC_SHA,	
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,	
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA,	
TLS_RSA_WITH_AES_128_CBC_SHA,	
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,	
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA,	
TLS_DHE_RSA_WITH_AES_128_CBC_SHA,	
TLS_DHE_DSS_WITH_AES_128_CBC_SHA,	
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,	
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,	
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,	
TLS_RSA_WITH_AES_256_GCM_SHA384,	
TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384,	
TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384,	
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384,	
TLS_DHE_DSS_WITH_AES_256_GCM_SHA384,	
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,	
TLS_RSA_WITH_AES_128_GCM_SHA256,	
TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256,	
TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256,	
TLS_DHE_RSA_WITH_AES_128_GCM_SHA256,	
TLS_DHE_DSS_WITH_AES_128_GCM_SHA256,	
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSL_RSA_WITH_3DES_EDE_CBC_SHA,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLS_ECDHE_ECDSA_WITH_RC4_128_SHA,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLS_ECDHE_RSA_WITH_RC4_128_SHA,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSL_RSA_WITH_RC4_128_SHA,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLS_ECDHE_ECDSA_WITH_RC4_128_SHA,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLS_ECDH_RSA_WITH_RC4_128_SHA,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSL_RSA_WITH_RC4_128_MD5,</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Creating the replication channel

A replication channel is a defined channel of change data between source clusters and destination clusters. A replication channel is defined by the source cluster, source keyspace, source table name, destination cluster, destination keyspace, and destination table name. Source clusters can exist in multi-datacenter clusters, but a replication channel is configured with only one datacenter as the responsible party.

The keyspace and table names on the destination can be different than on the source, but in this example they are the same. You can also set the `source-id` and `source-id-column` differently from the global setting.

To create the replication channel for our keyspace and table:

```
dse advrep channel create --source-keyspace foo --source-table bar --source-id source1 --source-id-column source_id --destination mydest --destination-keyspace foo --destination-table bar --collection-enabled true --transmission-enabled true --priority 1
```

```
Created channel dc=Cassandra keyspace=foo table=bar to mydest
```

dse advrep channel status

<table>
<thead>
<tr>
<th>dc</th>
<th>keyspace</th>
<th>table</th>
<th>collecting</th>
<th>transmitting</th>
<th>replication order</th>
<th>priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>foo</td>
<td>bar</td>
<td>true</td>
<td>true</td>
<td>FIFO</td>
<td>1</td>
</tr>
</tbody>
</table>

**Warning:** The designated keyspace for a replication channel must have durable writes enabled. If `durable_writes = false`, then an error message will occur and the channel will not be created. If the durable writes setting is changed after the replication channel is created, the tables will not write to the commit log and CDC will not work. The data will not be ingested through the replication channel and a warning is logged, but the failure will be silent.
Using DataStax Enterprise advanced functionality

Starting replication from source to destination

At this point, the replication is configured and the replication channel is enabled and replication has been started.

1. On the destination, use cqlsh to verify that no data is present:

```
SELECT * FROM foo.bar;
```

<table>
<thead>
<tr>
<th>name</th>
<th>source_id</th>
<th>scalar</th>
<th>val</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(0 rows)

2. On the source, replication to the destination can be paused or resumed, the latter shown here:

```
dse advrep channel resume --source-keyspace foo --source-table bar --transmission
```

Channel dc=Cassandra keyspace=foo table=bar collection to mydest was resumed

Notice that either `--transmission` or `--collection` can be specified, to resume transmission from the source to the destination or to resume collection of data on the source.

3. Review the number of records that are in the replication log. Because no data is inserted yet, the record count in the replication log is 0:

```
dse advrep replog count --destination mydest --source-keyspace foo --source-table bar
```

0

Inserting data on the source

Insert data on the source for replication to the destination.

1. On the source, insert data using cqlsh:

```
INSERT INTO foo.bar (name, val, scalar) VALUES ('a', '1', 1);
INSERT INTO foo.bar (name, val, scalar) VALUES ('b', '2', 2);
```

2. On the destination, verify that the data was replicated:

```
SELECT * FROM foo.bar;
```

<table>
<thead>
<tr>
<th>name</th>
<th>source_id</th>
<th>scalar</th>
<th>val</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(0 rows)
Using DataStax Enterprise advanced functionality

Checking data on the destination

Check data on the destination.

1. On the destination, verify that the data was replicated:

```
SELECT * FROM foo.bar;
```

<table>
<thead>
<tr>
<th>name</th>
<th>source_id</th>
<th>scalar</th>
<th>val</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>source1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>source1</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

(2 rows)

Testing loss of connectivity

To test loss of connectivity to the destination, stop the DataStax Enterprise process on the destination, and insert more data on the source. The expected result is for data to be replicated quickly after the destination cluster resumes.

1. On the destination cluster, stop DataStax Enterprise:

```
dse cassandra-stop
```

2. On the source, insert more data:

```
INSERT INTO foo.bar (name, val, scalar) VALUES ('c', '3', 3);
INSERT INTO foo.bar (name, val, scalar) VALUES ('d', '4', 4);
```

3. Review the number of records that are in the replication log. The replication log should have 2 entries:

```
dse advrep replog count --destination mydest --source-keyspace foo --source-table bar
```

2

4. On the destination, restart DataStax Enterprise.

```
dse cassandra
```

Wait a moment for communication and data replication to resume to replicate the new records from the source to destination.
SELECT * FROM foo.bar;

<table>
<thead>
<tr>
<th>name</th>
<th>source_id</th>
<th>scalar</th>
<th>val</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>source1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>source1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>d</td>
<td>source1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>b</td>
<td>source1</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

4 rows(s)

5. On the source, the replication log count should be back to 0:

```bash
dse advrep replog count --destination mydest --source-keyspace foo --source-table bar
```

0

Testing replication start and stop

Similar to testing loss of connectivity, you can pause and resume individual replication channels by using the `advrep` command line tool (page 924). The expected result is that newly inserted data is not saved to the replication log and will never be sent to the destination.

1. On the source, pause the replication channel:

```bash
dse advrep --verbose channel pause --keyspace foo --table bar --collection
```

2. Insert more data.

3. On the source, resume the replication channel:

```bash
dse advrep --verbose channel resume --keyspace foo --table bar --collection
```

DSE Advanced Replication keyspace overview

Keyspaces and tables are automatically created on the source cluster when DSE Advanced Replication runs for the first time. Two keyspaces are used, `dse_system` and `dse_advrep`. Each keyspace is configured differently.

**Note:** System keyspaces on the source and destination are not supported for advanced replication.

The `dse_system` keyspace uses the EverywhereStrategy replication strategy by default; this setting must not be altered. The `dse_advrep` keyspace is configured to use the
SimpleStrategy replication strategy by default and this setting must be updated in production environments to avoid data loss. After starting the cluster, alter the keyspace to use the NetworkTopologyStrategy replication strategy with an appropriate settings for the replication factor and datacenters. For example, use a CQL statement to configure a replication factor of 3 on the DC1 datacenter using NetworkTopologyStrategy:

```cql
ALTER KEYSPACE dse_advrep
WITH REPLICATION = {
 'class': 'NetworkTopologyStrategy',
 'DC1': '3'};
```

For most environments using DSE Advanced Replication, a replication factor of 3 is suitable. The strategy must be configured for any datacenters which are serving as an advanced replication source.

`nodetool repair` must be run on each node of the affected datacenters to repair the altered keyspace:

```bash
nodetool repair -full dse_advrep
```

For more information, see Changing keyspace replication strategy (page 1309).

**DSE Advanced Replication data types**

DSE data types are supported for most operations in DSE Advanced Replication. The following table shows the supported data types and operations:

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Advanced Replication Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primitive data types: int, ascii, bigint, blob, boolean, decimal, double, float, inet, text, timestamp, timeuuid, uuid, varchar, varint</td>
<td>All types are implemented for insert/update/delete.</td>
</tr>
<tr>
<td>Frozen collections: frozen-list&lt;<code>data_type</code>&gt;, frozen-set&lt;<code>data_type</code>&gt;, frozen-map&lt;<code>data_type</code>, <code>data_type</code>&gt;</td>
<td>All frozen collections are implemented for insert/update/delete, as values are immutable blocks - entire column value is replicated.</td>
</tr>
<tr>
<td>Tuples: tuple&lt;<code>data_type</code>, <code>data_type</code>, <code>data_type</code>&gt;, frozen-tuple&lt;<code>data_type</code>, <code>data_type</code>, <code>data_type</code>&gt;</td>
<td>All tuples are implemented for insert/update/delete, as values are immutable blocks - entire column value is replicated.</td>
</tr>
<tr>
<td>Frozen user-defined type (UDT): UDT type and frozen UDT type</td>
<td>All UDTs are implemented for insert/update/delete, as values are immutable blocks - entire column value is replicated.</td>
</tr>
<tr>
<td>Geometric types: Point, LineString, Polygon</td>
<td>All geometric types are implemented for insert/update/delete.</td>
</tr>
</tbody>
</table>

The following table shows the data type and operations that are not supported in DSE Advanced Replication:
Using DataStax Enterprise advanced functionality

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Advanced Replication Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unfrozen updatable collections:</td>
<td>All unfrozen updatable collections are implemented for insert/delete if the entire column value is replicated. Unfrozen collections cannot update values.</td>
</tr>
<tr>
<td>&lt;list&lt;data_type&gt;&gt;, &lt;set&lt;data_type&gt;&gt;,</td>
<td></td>
</tr>
<tr>
<td>&lt;map&lt;data_type, data_type&gt;&gt;</td>
<td></td>
</tr>
<tr>
<td>Unfrozen updatable user-defined type (UDT)</td>
<td>All unfrozen updatable UDTs are implemented for insert/delete if the entire column value is replicated. Unfrozen UDTs cannot update values.</td>
</tr>
</tbody>
</table>

Using DSE Advanced Replication

Operations including starting, stopping, and configuring DSE Advanced Replication.

1. Starting DSE Advanced Replication (page 892)
2. Stopping DSE Advanced Replication (page 893)
3. Configuring global configuration settings (page 894)
4. Configuring destination settings (page 895)
5. Configuring channel settings (page 908)
6. Security (page 909)
7. Data insert methods (page 911)
8. Monitoring operations (page 911)

Prerequisite: If you are using Advanced Replication V1 from DSE 5.0, you must upgrade to DSE 5.1 and migrate to Advanced Replication V2.

Starting DSE Advanced Replication

Before you can start and use DSE Advanced Replication, you must create the user keyspaces (page 890) and tables on the source cluster and the destination cluster.

On all nodes in the source cluster:

1. Enable replication in the dse.yaml file.

   At the end of the file, uncomment all advanced_replication_options entries, set enabled: true, and specify a directory to hold advanced replication log files with advanced_replication_directory:

   ```yaml
 # Advanced Replication configuration settings
 advanced_replication_options:
 enabled: true
   ```
advanced_replication_directory: /var/lib/cassandra/advrep

2. **Enable Capture-Data-Change (CDC) (page 198)** in the cassandra.yaml file on a per-node basis for each source:

```yaml
cdc_enabled: true
cdc_raw_directory: /var/lib/cassandra/cdc_raw
```

Note: Advanced Replication will not start if CDC is not enabled. Either use the default directory or change it to a preferred location.

3. Consider increasing the default CDC disk space, depending on the load (default: 4096 MB or 1/8 of the total space where cdc_raw_directory resides):

```yaml
cdc_total_space_in_mb: 16384
```

4. Commitlog compression is turned off by default. To avoid problems with advanced replication, this option should NOT be used:

```yaml
commitlog_compression:
- class_name: LZ4Compressor
```

5. Do a rolling restart: restart the nodes in the source cluster one at a time while the other nodes continue to operate online.

Disabling DSE Advanced Replication

When replication is not enabled, data is not written to the replication log. On all nodes in the source cluster:

1. To disable replication, edit the dse.yaml file.
   
   In the advanced_replication_options section, set enabled: false.

   ```yaml
 # Advanced Replication configuration settings
 advanced_replication_options:
 enabled: false
   ```

2. Do a rolling restart: restart the nodes in the source cluster one at a time while the other nodes continue to operate online.

3. To clean out the data that was used for DSE Advanced Replication, use cqlsh to remove these keyspaces (page 890):

   ```cql
 DROP TABLE dse_system.advrep_source_config;
 DROP TABLE dse_system.advrep_destination_config;
 DROP TABLE dse_system.advrep_repl_channel_config;
   ```
Configuring global configuration settings

Global settings apply to the entire source cluster. These global settings are stored in the CQL table `dse_system.advrep_source_config` that is automatically created.

Change global settings by using the `dse advrep command line tool (page 924)` with this syntax:

```
dse advrep conf ...
```

To view the source node configuration settings:

```
dse advrep conf list
```

The result is:

```
<table>
<thead>
<tr>
<th>name</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>audit_log_file</td>
<td>/tmp/myaudit.gz</td>
</tr>
<tr>
<td>audit_log_enabled</td>
<td>true</td>
</tr>
</tbody>
</table>
```

The following table describes the configuration keys, their default values, and identifies when a restart of the source node is required for the change to be recognized.

The `dse advrep command line tool` uses these configuration keys as command arguments to the `dse advrep (page 924)` command line tool.

<table>
<thead>
<tr>
<th>Configuration key</th>
<th>Default value</th>
<th>Description</th>
<th>Restart required</th>
</tr>
</thead>
<tbody>
<tr>
<td>permits</td>
<td>30,000</td>
<td>Maximum number of messages that can be replicated in parallel over all destinations.</td>
<td>No</td>
</tr>
<tr>
<td>source-id</td>
<td>N/A</td>
<td>Identifies this source cluster and all inserts from this cluster. The source-id must also exist in the primary key on the destination for population of the source-id to occur.</td>
<td>No</td>
</tr>
<tr>
<td>collection-expire-after-write</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>collection-time-slice-count</td>
<td>5</td>
<td>The number of files which are open in the ingester simultaneously.</td>
<td>Yes</td>
</tr>
<tr>
<td>collection-time-slice-width</td>
<td>60 seconds</td>
<td>The time period in seconds for each data block ingested. Smaller time widths =&gt; more files. Larger timer widths =&gt; larger files but more data to resend on CRC mismatches.</td>
<td>Yes</td>
</tr>
<tr>
<td>Configuration key</td>
<td>Default value</td>
<td>Description</td>
<td>Restart required</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>invalid-message-log</td>
<td>SYSTEM_LOG</td>
<td>Select one of these logging strategies to adopt when an invalid message is discarded: SYSTEM_LOG: Log the CQL query and the error message in the system log on the destination. CHANNEL_LOG: Store the CQL query and the error message in files in /var/lib/cassandra/advrep/invalid_queries on the destination. NONE: Perform no logging. See Managing invalid messages (page 921). Requires node restart.</td>
<td>No</td>
</tr>
<tr>
<td>audit-log-enable</td>
<td>false</td>
<td>Specifies whether to store the audit log.</td>
<td>Yes</td>
</tr>
<tr>
<td>audit-log-file</td>
<td>/tmp/advrep_rl_audit</td>
<td>Specifies the file name prefix template for the audit log file. The file name is appended with .gz if compressed using gzip.</td>
<td>Yes</td>
</tr>
<tr>
<td>audit-log-max-life-span-mins</td>
<td>0</td>
<td>Specifies the maximum lifetime of audit log files. Periodically, when log files are rotated, audit log files are purged when they: • Match the audit log file template • And they have not been written to for more than the specified maximum lifespan minutes To disable purging, set to 0.</td>
<td>Yes</td>
</tr>
<tr>
<td>audit-log-rotate-time-mins</td>
<td>60</td>
<td>Specifies the time interval to rotate the audit log file. On rotation, the rotated file is appended with the log counter .[logcounter], incrementing from [0]. To disable rotation, set to 0.</td>
<td>Yes</td>
</tr>
</tbody>
</table>

### Configuring destination settings

A destination is a location to which source data will be written. Destinations are stored in the CQL table `dse_system.advrep_destination_config` that is automatically created.

Change destination settings by using the `dse advrep command line tool (page 924)` with this syntax:

```
dse advrep destination ...
```

You can verify the channel configuration before you change it. For example:

```
dse advrep destination list-conf
```

The result is:
<table>
<thead>
<tr>
<th>destination</th>
<th>name</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>mydest</td>
<td>driver_ssl_enabled</td>
<td>false</td>
</tr>
<tr>
<td>mydest</td>
<td>addresses</td>
<td>10.200.182.251</td>
</tr>
<tr>
<td>mydest</td>
<td>driver_read_timeout</td>
<td>15000</td>
</tr>
<tr>
<td>mydest</td>
<td>driver_connections_max</td>
<td>8</td>
</tr>
<tr>
<td>mydest</td>
<td>source_id_column</td>
<td>source_id</td>
</tr>
<tr>
<td>mydest</td>
<td>driver_connect_timeout</td>
<td>15000</td>
</tr>
<tr>
<td>mydest</td>
<td>driver_ssl_protocol</td>
<td>TLS</td>
</tr>
<tr>
<td>mydest</td>
<td>driver_consistency_level</td>
<td>QUORUM</td>
</tr>
<tr>
<td>mydest</td>
<td>driver_used_hosts_per_remote_dc</td>
<td>0</td>
</tr>
<tr>
<td>mydest</td>
<td>driver_allow_remote_dcs_for_local_cl</td>
<td>false</td>
</tr>
<tr>
<td>mydest</td>
<td>driver_compression</td>
<td>lz4</td>
</tr>
<tr>
<td>mydest</td>
<td>driver_connections</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>driver_ssl_cipher_suites</td>
<td>[TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384, ,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384, ,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TLS_RSA_WITH_AES_256_CBC_SHA256, ,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>]</td>
</tr>
<tr>
<td>TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384,</td>
<td>,</td>
<td></td>
</tr>
<tr>
<td>TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384,</td>
<td>,</td>
<td></td>
</tr>
<tr>
<td>TLS_DHE_RSA_WITH_AES_256_CBC_SHA256,</td>
<td>,</td>
<td></td>
</tr>
<tr>
<td>TLS_DHE_DSS_WITH_AES_256_CBC_SHA256,</td>
<td>,</td>
<td></td>
</tr>
<tr>
<td>TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA,</td>
<td>,</td>
<td></td>
</tr>
<tr>
<td>TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA,</td>
<td>,</td>
<td></td>
</tr>
<tr>
<td>TLS_RSA_WITH_AES_256_CBC_SHA,</td>
<td>,</td>
<td></td>
</tr>
<tr>
<td>TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA,</td>
<td>,</td>
<td></td>
</tr>
<tr>
<td>TLS_ECDH_RSA_WITH_AES_256_CBC_SHA,</td>
<td>,</td>
<td></td>
</tr>
<tr>
<td>TLS_DHE_RSA_WITH_AES_256_CBC_SHA,</td>
<td>,</td>
<td></td>
</tr>
<tr>
<td>TLS_DHE_DSS_WITH_AES_256_CBC_SHA,</td>
<td>,</td>
<td></td>
</tr>
<tr>
<td>TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256,</td>
<td>,</td>
<td></td>
</tr>
<tr>
<td>TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256,</td>
<td>,</td>
<td></td>
</tr>
<tr>
<td>TLS_RSA_WITH_AES_128_CBC_SHA256,</td>
<td>,</td>
<td></td>
</tr>
</tbody>
</table>
Using DataStax Enterprise advanced functionality

Using DataStax Enterprise advanced functionality	
--------------------------------------------------	
TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256,	
TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256,	
TLS_DHE_RSA_WITH_AES_128_CBC_SHA256,	
TLS_DHE_DSS_WITH_AES_128_CBC_SHA256,	
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,	
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA,	
TLS_RSA_WITH_AES_128_CBC_SHA,	
TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA,	
TLS_ECDH_RSA_WITH_AES_128_CBC_SHA,	
TLS_DHE_RSA_WITH_AES_128_CBC_SHA,	
TLS_DHE_DSS_WITH_AES_128_CBC_SHA,	
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,	
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,	
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,	
TLS_RSA_WITH_AES_256_GCM_SHA384,	
TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384,	
TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384,	
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384,	
TLS_DHE_DSS_WITH_AES_256_GCM_SHA384,	
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,	
TLS_RSA_WITH_AES_128_GCM_SHA256,	
TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256,	
TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256,	
TLS_DHE_RSA_WITH_AES_128_GCM_SHA256,	
TLS_DHE_DSS_WITH_AES_128_GCM_SHA256,	
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,	
TLS_RSA_WITH_AES_128_GCM_SHA256,	
TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256,	
TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256,	
TLS_DHE_RSA_WITH_AES_128_GCM_SHA256,	
TLS_DHE_DSS_WITH_AES_128_GCM_SHA256,	
TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA,	
TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA,	
Using DataStax Enterprise advanced functionality

<table>
<thead>
<tr>
<th>mydest</th>
<th>source_id</th>
<th>source1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mydest</td>
<td>transmission_enabled</td>
<td>true</td>
</tr>
</tbody>
</table>

```
SSL_RSA_WITH_3DES_EDE_CBC_SHA,

TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA,

TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA,

SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA,

SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA,

TLS_ECDHE_ECDSA_WITH_RC4_128_SHA,

TLS_ECDHE_RSA_WITH_RC4_128_SHA,

SSL_RSA_WITH_RC4_128_SHA,

TLS_ECDH_ECDSA_WITH_RC4_128_SHA,

TLS_ECDH_RSA_WITH_RC4_128_SHA,

SSL_RSA_WITH_RC4_128_MD5,

TLS_EMPTY_RENEGOTIATION_INFO_SCSV]
```
<table>
<thead>
<tr>
<th>llpdest</th>
<th>driver_ssl_enabled</th>
<th>false</th>
</tr>
</thead>
<tbody>
<tr>
<td>llpdest</td>
<td>addresses</td>
<td>10.200.177.184</td>
</tr>
<tr>
<td>llpdest</td>
<td>driver_read_timeout</td>
<td>15000</td>
</tr>
<tr>
<td>llpdest</td>
<td>driver_connections_max</td>
<td>8</td>
</tr>
<tr>
<td>llpdest</td>
<td>source_id_column</td>
<td>source_id</td>
</tr>
<tr>
<td>llpdest</td>
<td>driver_connect_timeout</td>
<td>15000</td>
</tr>
<tr>
<td>llpdest</td>
<td>driver_ssl_protocol</td>
<td>TLS</td>
</tr>
<tr>
<td>llpdest</td>
<td>driver_consistency_level</td>
<td>ONE</td>
</tr>
<tr>
<td>llpdest</td>
<td>driver_used_hosts_per_remote_dc</td>
<td>0</td>
</tr>
<tr>
<td>llpdest</td>
<td>driver_allow_remote_dcs_for_local_cl</td>
<td>false</td>
</tr>
<tr>
<td>llpdest</td>
<td>driver_compression</td>
<td>lz4</td>
</tr>
<tr>
<td>llpdest</td>
<td>driver_connections</td>
<td>1</td>
</tr>
<tr>
<td>llpdest</td>
<td>driver_ssl_cipher_suites</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TLS_RSA_WITH_AES_256_CBC_SHA256,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384,</td>
<td></td>
</tr>
</tbody>
</table>
Using DataStax Enterprise advanced functionality

| TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384, |
| TLS_DHE_RSA_WITH_AES_256_CBC_SHA256, |
| TLS_DHE_DSS_WITH_AES_256_CBC_SHA256, |
| TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, |
| TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA, |
| TLS_RSA_WITH_AES_256_CBC_SHA, |
| TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA256, |
| TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256, |
| TLS_RSA_WITH_AES_128_CBC_SHA256, |
| TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256, |
Using DataStax Enterprise advanced functionality

TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256,    |
TLS_DHE_RSA_WITH_AES_128_CBC_SHA256,      |
TLS_DHE_DSS_WITH_AES_128_CBC_SHA256,     |
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,    |
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA,      |
TLS_RSA_WITH_AES_128_CBC_SHA,            |
TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA,     |
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA,      |
TLS_DHE_RSA_WITH_AES_128_CBC_SHA,        |
TLS_DHE_DSS_WITH_AES_128_CBC_SHA,        |
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, |
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, |
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,   |
Using DataStax Enterprise advanced functionality

- TLS_RSA_WITH_AES_256_GCM_SHA384,
- TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384,
- TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384,
- TLS_DHE_RSA_WITH_AES_256_GCM_SHA384,
- TLS_DHE_DSS_WITH_AES_256_GCM_SHA384,
- TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
- TLS_RSA_WITH_AES_128_GCM_SHA256,
- TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256,
- TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256,
- TLS_DHE_RSA_WITH_AES_128_GCM_SHA256,
- TLS_DHE_DSS_WITH_AES_128_GCM_SHA256,
- TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA,
- TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA,
- TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA,
Using DataStax Enterprise advanced functionality

<table>
<thead>
<tr>
<th>Source_ID</th>
<th>Transmission Enabled</th>
<th>Source1</th>
</tr>
</thead>
<tbody>
<tr>
<td>llpdest</td>
<td>false</td>
<td></td>
</tr>
</tbody>
</table>
The following table describes the configuration keys, their default values, and identifies when a restart of the source node is required for the change to be recognized.

<table>
<thead>
<tr>
<th>Configuration key</th>
<th>Default value</th>
<th>Description</th>
<th>Restart required</th>
</tr>
</thead>
<tbody>
<tr>
<td>separator</td>
<td>N/A</td>
<td>Field separator.</td>
<td>No</td>
</tr>
<tr>
<td>name</td>
<td>N/A</td>
<td>Name for destination (required).</td>
<td>No</td>
</tr>
<tr>
<td>addresses</td>
<td>none</td>
<td>REQUIRED. A comma separated list of IP addresses that are used to connect to the destination cluster using the DataStax Java driver.</td>
<td>No</td>
</tr>
<tr>
<td>driver-allow-remote-dcs-for-local-cl</td>
<td>false</td>
<td>Set to true to enable automatic failover for destination clusters with multiple datacenters. The value of the <code>driver-consistency-level</code> parameter must be LOCAL_ONE or LOCAL_QUORUM.</td>
<td>Yes</td>
</tr>
<tr>
<td>driver-compression</td>
<td>lz4</td>
<td>The compression algorithm the DataStax Java driver uses to send data from the source to the destination. Supported values are lz4 and snappy.</td>
<td>Yes</td>
</tr>
<tr>
<td>driver-connect-timeout</td>
<td>15000</td>
<td>Time in milliseconds the DataStax Java driver waits to connect to a server.</td>
<td>No</td>
</tr>
<tr>
<td>driver-connections</td>
<td>32</td>
<td>The number of connections the DataStax Java driver will create.</td>
<td>Yes</td>
</tr>
<tr>
<td>driver-connections-max</td>
<td>256</td>
<td>The maximum number of connections the DataStax Java driver will create.</td>
<td>Yes</td>
</tr>
<tr>
<td>driver-max-requests-per-connection</td>
<td>1024</td>
<td>The maximum number of requests per connection the DataStax Java driver will create.</td>
<td></td>
</tr>
<tr>
<td>driver-consistency-level</td>
<td>ONE</td>
<td>The consistency level used by the DataStax Java driver when executing statements for replicating data to the destination. Specify a valid DSE consistency level: ANY, ONE, TWO, THREE, QUORUM, ALL, LOCAL_QUORUM, EACH_QUORUM, SERIAL, LOCAL_SERIAL, or LOCAL_ONE.</td>
<td>No</td>
</tr>
<tr>
<td>driver-local-dc</td>
<td>N/A</td>
<td>For destination clusters with multiple datacenters, you can explicitly define the name of the datacenter that you consider local. Typically, this is the datacenter that is closest to the source cluster. This value is used only for clusters with multiple data enters.</td>
<td>Yes</td>
</tr>
<tr>
<td>Configuration key</td>
<td>Default value</td>
<td>Description</td>
<td>Restart required</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>---------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>driver-pwd</td>
<td>none</td>
<td>Driver password if the destination requires a user and password to connect. Changing the driver-pwd value for connection to a destination will automatically connect, but with a slight delay. <strong>Note:</strong> By default, driver user names and passwords are plain text. DataStax recommends encrypting the driver passwords before you add them to the CQL table.</td>
<td>Yes</td>
</tr>
<tr>
<td>driver-read-timeout</td>
<td>15000</td>
<td>Time in milliseconds the DataStax Java driver waits to read responses from a server.</td>
<td>No</td>
</tr>
<tr>
<td>driver-ssl-enabled</td>
<td>false</td>
<td>Whether SSL is enabled for connection to the destination.</td>
<td>Yes</td>
</tr>
<tr>
<td>driver-ssl-disabled</td>
<td></td>
<td>Disable SSL for connection to the destination.</td>
<td></td>
</tr>
<tr>
<td>driver_ssl_keystore_path</td>
<td>none</td>
<td>The path to the keystore for connection to DSE when SSL client authentication is enabled.</td>
<td>Yes</td>
</tr>
<tr>
<td>driver_ssl_keystore_password</td>
<td>none</td>
<td>The keystore password for connection to DSE when SSL client authentication is enabled.</td>
<td>Yes</td>
</tr>
<tr>
<td>driver_ssl_keystore_type</td>
<td>none</td>
<td>The keystore type for connection to DSE when SSL client authentication is enabled.</td>
<td>Yes</td>
</tr>
<tr>
<td>driver_ssl_truststore_path</td>
<td>none</td>
<td>The path to the truststore for connection to DSE when SSL is enabled.</td>
<td>Yes</td>
</tr>
<tr>
<td>driver_ssl_truststore_password</td>
<td>none</td>
<td>The truststore password for connection to DSE when SSL is enabled.</td>
<td>Yes</td>
</tr>
<tr>
<td>driver_ssl_truststore_type</td>
<td>none</td>
<td>The keystore type for connection to DSE when SSL client authentication is enabled.</td>
<td>Yes</td>
</tr>
<tr>
<td>driver-ssl-protocol</td>
<td>TLS</td>
<td>The SSL protocol for connection to DSE when SSL is enabled.</td>
<td>Yes</td>
</tr>
<tr>
<td>driver-ssl-cipher-suites</td>
<td>none</td>
<td>A comma-separated list of SSL cipher suites for connection to DSE when SSL is enabled. Cipher suites must be supported by the source machine.</td>
<td>Yes</td>
</tr>
<tr>
<td>driver-used-hosts-per-remote-dc</td>
<td>0</td>
<td>To use automatic failover for destination clusters with multiple datacenters, you must define the number of hosts per remote datacenter that the datacenter aware round robin policy (<code>DCAwareRoundRobinPolicy</code>) considers available.</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Using DataStax Enterprise advanced functionality

<table>
<thead>
<tr>
<th>Configuration key</th>
<th>Default value</th>
<th>Description</th>
<th>Restart required</th>
</tr>
</thead>
<tbody>
<tr>
<td>drive-user</td>
<td>none</td>
<td>Driver username if the destination requires a user and password to connect. Changing the drive-user value for connection to a destination will automatically connect, but with a slight delay.</td>
<td>Yes</td>
</tr>
<tr>
<td>source-id</td>
<td>N/A</td>
<td>Identifies this source cluster and all inserts from this cluster. The source-id must also exist in the primary key on the destination for population of the source-id to occur.</td>
<td>No</td>
</tr>
<tr>
<td>source-id-column</td>
<td>source-id</td>
<td>The column to use on remote tables to insert the source id as part of the update. If this column is not present on the table that is being updated, the source id value is ignored.</td>
<td>No</td>
</tr>
<tr>
<td>transmission-enabled</td>
<td>false</td>
<td>Specify if data collector for the table should be replicated to the destination using boolean value.</td>
<td>No</td>
</tr>
</tbody>
</table>

Configuring channel settings

A replication channel is a defined channel of change data between source clusters and destination clusters. A replication channel is defined by the source cluster, source keyspace, source table name, destination cluster, destination keyspace, and destination table name. Replications for each channel (unique keyspace and table) are stored in the CQL table dse_system.advrep_repl_channel_config that is automatically created.

Change the settings using the dse advrep command line tool (page 924) with this syntax:

```
dse advrep channel ...
```

You can verify the channel configuration before you change it. For example:

```
dse advrep channel status
```

The result is:

```
<table>
<thead>
<tr>
<th>dc</th>
<th>keyspace</th>
<th>table</th>
<th>collecting</th>
<th>transmitting</th>
<th>replication</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>order</td>
<td>priority</td>
<td>dest ks</td>
<td>dest table</td>
<td>src id</td>
</tr>
<tr>
<td>Cassandra</td>
<td>foo</td>
<td>bar</td>
<td>true</td>
<td>true</td>
<td>FIFO</td>
</tr>
<tr>
<td>2</td>
<td>foo</td>
<td>bar</td>
<td>source1</td>
<td>source_id</td>
<td>mydest</td>
</tr>
</tbody>
</table>
```

Properties are continuously read from the metadata, so a restart is not required after configuration changes are made. The following table describes the configuration settings.
<table>
<thead>
<tr>
<th>Column name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>separator</td>
<td>Field separator.</td>
</tr>
<tr>
<td>keyspace</td>
<td>The keyspace on the source for the table to replicate.</td>
</tr>
<tr>
<td>table</td>
<td>The table name on the source to replicate.</td>
</tr>
<tr>
<td>source-id</td>
<td>Placeholder to override the source-id that is defined in the advrep_conf metadata</td>
</tr>
<tr>
<td>source-id-column</td>
<td>Placeholder to override the source-id-column that is defined in advrep_conf metadata</td>
</tr>
<tr>
<td>enabled</td>
<td>If true, replication will start for this table. If false, no more messages from this table will be saved to the replication log.</td>
</tr>
<tr>
<td>data-center-id</td>
<td>Datacenter this replication channel is meant for, if none specified the replication will happen in all specified dc1.</td>
</tr>
<tr>
<td>destination</td>
<td>Destination to which data is written.</td>
</tr>
<tr>
<td>destination-keyspace</td>
<td>The keyspace on the destination for the replicated table.</td>
</tr>
<tr>
<td>destination-table</td>
<td>The table name on the destination for the replicated table.</td>
</tr>
<tr>
<td>priority</td>
<td>Messages are marked by priority in descending order (DESC).</td>
</tr>
<tr>
<td>transmission-enabled</td>
<td>Specify if the data collector for the table should be replicated to the destination.</td>
</tr>
<tr>
<td>fifo-order</td>
<td>Specify if the channel should be replicated in FIFO order (default).</td>
</tr>
<tr>
<td>lifo-order</td>
<td>Specify if the channel should be replicated in LIFO order.</td>
</tr>
</tbody>
</table>

Security

Authentication credentials can be provided in several ways, see Connecting to authentication enabled clusters. The user who is doing the replicating with DSE Advanced Replication requires table and keyspace level authorization. If the same user access is required, then ensure that the authorization is the same on the source and destination clusters.

Advanced Replication also supports setting row-level permissions on the destination cluster. The user which connects to the destination cluster must have permission to write to the specified destination table at the row level replicated from the source, according to the RLAC restrictions. The user is specified with the --driver-user destination (page 895) setting. Row-level access control (RLAC) on the source cluster does not impact Advanced Replication. Because Advanced Replication reads the source data at the raw CDC file layer, it essentially reads as a superuser and has access to all configured data tables.

Advanced Replication supports encrypting the driver passwords. Driver passwords are stored in a CQL table. By default, driver passwords are plain text. DataStax recommends encrypting the driver passwords before you add them to the CQL table. Create a global
encryption key, called a system_key for SSTable encryption. Each node in the source cluster must have the same system key. The destination does not require this key.

1. In the dse.yaml file:
   - Verify that the `config_encryption_active` property is false:
     ```yaml
 config_encryption_active: false
     ```
   - Enable driver password encryption with the `conf_driver_password_encryption_enabled` property:
     ```yaml
 conf_driver_password_encryption_enabled: true
     ```
   - Define where system keys are stored on disk with the `system_key_directory` property:
     ```yaml
 system_key_directory: /etc/dse/conf
     ```
     The default value is `/etc/dse/conf`.
   - Specify that encryption keys are generated as system keys with the `config_encryption_key_name` property:
     ```yaml
 config_encryption_key_name: system_key
     ```

2. Generate a system key:
   On-server:
   ```bash
dsetool createsystemkey cipher_algorithm strength system_key_file
   ```
   Off-server
   ```bash
dsetool createsystemkey cipher_algorithm strength system_key_file -kmip=kmip_groupname
   ```
   For example:
   ```bash
dsetool createsystemkey 'AES/ECB/PKCS5Padding' 128 system_key_file
   ```
   where `system_key_file` is a unique file name for the generated system key file. See `createsystemkey` (page 1182).

   Result: Configure transparent data encryption (TDE) on a per table basis. You can configure encryption with or without compression. You can create a global encryption key in the location that is specified by `system_key_directory` (page 242) in the `dse.yaml` file. This default global encryption key is used when the `system_key_file` subproperty is not specified.

3. Copy the returned value.
4. On any node in the source cluster, use the `dse` command to set the encrypted password in the DSE Advanced Replication environment:

```
dse advrep destination --driver-pwd "Sa9xOVaym7bddjXUT/eeOQ==" --
driver-user "username"
```

5. **Start dse (page 1275).**

Data insert methods

There are several ways to get data into a DataStax Enterprise cluster. Any normal paths used will result in data replication using DSE Advanced Replication.

Supported data insert methods:
- CQL insert, including cqlsh and applications that use the standard DSE drivers
- Copy from a CSV file
- Solr HTTP or CQL
- Spark saveToCassandra

Unsupported data insert methods:
- Tables that are defined for compact storage
- sstableloader ([Cassandra bulk loader (page 1256)](#))
- OpsCenter restore from backup
- Spark bulkSaveToCassandra

```
dse.yaml
```

The location of the `dse.yaml` file depends on the type of installation:

<table>
<thead>
<tr>
<th>Package installations</th>
<th>/etc/dse/dse.yaml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer-Services installations</td>
<td></td>
</tr>
</tbody>
</table>
| Tarball installations | installation_location/
| Installer-No Services installations | resources/dse/conf/dse.yaml |

Monitoring operations

Advanced replication can be monitored with JMX metrics. The outgoing replication queue size is a key factor to watch. See [Metrics (page 913)](#) for more details.

**CQL queries in DSE Advanced Replication**

This overview of supported CQL queries and replication concepts for DSE Advanced Replication provide details on supported CQL queries and best practices guidelines.

DSE Advanced Replication replicates data from source clusters to destination clusters. Replication takes the CQL query on the source and then recreates a modified version of the query and runs it on the destination. DataStax Enterprise supports a restricted list of valid
CQL queries to manipulate data. In DSE Advanced Replication, the same restrictions apply to the generated CQL queries that are used to replicate data into the destination.

Restrictions apply to the primary key. The primary key consists of two parts: the partition key and the clustering key. The primary key parts plus the optional field values comprise the database row.

If differences exist between the primary key on the source table and the primary key on the destination table, restrictions apply for which CQL queries are supported.

Best practices

DataStax recommends the following best practices to ensure seamless replication.

Schema structure on the source table and the destination table

- Maintain an identical primary key (partition keys and clustering keys) format in the same order, with the same columns.
- Add the optional source_id as the first clustering column.
- Maintain all, or a subset of, the field values.

  Note: Although the source_id column can be present in the source table schema, values that are inserted into that column are ignored. When records are replicated, the configured source-id (page 931) value is used.

Partition key columns

The following list details support and restrictions for partition keys:

- In the destination table, only an additional optional source_id column is supported in the partition key. Additional destination table partition key columns are not supported. The source_id can be either a clustering column or a partition key, but not both.
- Using a subset of source table partition key columns in the destination table might result in overwriting. There is a many-to-one mapping for row entries.
- Order is irrelevant for replication. All permutations are supported.
- CQL UPDATE queries require that all of the partition key columns are fully restricted. Restrict partition key columns using = or IN (single column) restrictions.
- CQL DELETE queries require that all of the partition key columns are fully restricted. Restrict partition key columns using = or IN (single column) restrictions.

Clustering columns

The following list details support and restrictions for clustering columns:

- In the destination table, only an additional optional source_id column is supported in the clustering column. Additional destination table partition key columns are not supported. The source_id can be either a clustering column or a partition key, but not both.
- Using a subset of source table clustering columns in the destination table might result in overwriting. There is a many-to-one mapping for row entries.
• Order is irrelevant for replication when using CQL `INSERT` and `UPDATE` queries. All permutations are supported.
• Order is relevant for replication when using CQL `DELETE` queries. There are limits to permutation support, all permutations are not supported.
• CQL `UPDATE` queries require that all of the clustering columns are fully restricted. Restrict partition key columns using `=` or `IN` (single column) restrictions.
• CQL `DELETE` queries require that the last-specified clustering column be restricted using `=/>/>=</<=` (single or multiple column) or `IN` (single or multiple column). All of the clustering columns that precede the last-specified clustering column must also be restricted using `=` or `IN`.
• Restricting clustering columns is optional. However, if you do restrict clustering columns, then all of the clustering columns that you restrict between the first and last (in order) clustering columns must be restricted.

Field values

The following list details support and requirements for field values:
• A subset, or all, of the field values on the source are supported for replication to the destination.
• Fields that are present on the source, but absent on the destination, are not replicated.
• Fields that are present on the destination, but absent on the source, are not populated.

Source ID (source_id)

The `source_id` identifies the source cluster and all inserts from the source cluster. The following list details support and requirements for the `source_id`:
• The `source_id` configuration key (page 894) must be present and correct in the metadata.
• The `source_id` must be the first position in the clustering column, or any of the partition keys.

If not, then the CQL `INSERT` and `UPDATE` queries should work, but the CQL `DELETE` queries with partially restricted clustering columns might fail.
• The `source_id` is always restricted in CQL `DELETE` and `UPDATE` queries. Certain delete statements are not supported where the clustering key is not fully restricted, and the `source_id` is not the first clustering column

**DSE Advanced Replication metrics**

Collect metrics on each source node to review the current status of that node in the source cluster. A working source and destination configuration is required to use the metrics feature. See Getting started (page 879).

Ensure JMX access

Metrics are stored in the DataStax Enterprise JMX system. JMX access is required.
• For production, DataStax recommends authenticating JMX users, see Enabling DSE Unified Authentication.

• Use these steps to enable local JMX access. Localhost access is useful for test and development.

1. On the source node, edit cassandra-env.sh and enable local JMX:

   ```
 JVM_OPTS="$JVM_OPTS -Djava.rmi.server.hostname=localhost"
 LOCAL_JMX=yes
   ```

2. On the source node, stop and restart (page 1275) DataStax Enterprise to recognize the local JMX change.

Display metrics on the command line

Use the `dse advrep` command line tool to display metrics on the command line. Ensure that the source node meets the command line prerequisites.

1. On the source node:

   ```
 dse advrep --jmx-port 7199 metrics list
   ```

<table>
<thead>
<tr>
<th>Group</th>
<th>Type</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tables</td>
<td>MessagesDelivered</td>
<td>1002</td>
</tr>
<tr>
<td>ReplicationLog</td>
<td>CommitLogsToConsume</td>
<td>1</td>
</tr>
<tr>
<td>Tables</td>
<td>MessagesReceived</td>
<td>1002</td>
</tr>
<tr>
<td>ReplicationLog</td>
<td>MessageAddErrors</td>
<td>0</td>
</tr>
<tr>
<td>ReplicationLog</td>
<td>CommitLogsDeleted</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group</th>
<th>Type</th>
<th>Count</th>
<th>RateUnit</th>
<th>MeanRate</th>
</tr>
</thead>
<tbody>
<tr>
<td>FifteenMinuteRate</td>
<td>OneMinuteRate</td>
<td>FiveMinuteRate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ReplicationLog</td>
<td>MessagesAdded</td>
<td>1002</td>
<td>events/second</td>
<td>0.012688461014514603</td>
</tr>
<tr>
<td>0.012688461014514603</td>
<td>9.862886141388435E-39</td>
<td>2.964393875E-314</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.322135514219019E-114</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ReplicationLog</td>
<td>MessagesDeleted</td>
<td>0</td>
<td>events/second</td>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Page 914
Using DataStax Enterprise advanced functionality

<table>
<thead>
<tr>
<th>ReplicationLog</th>
<th>MessagesAcknowledged</th>
<th>1002</th>
<th>events/second</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.012688456391385135</td>
<td>9.86403600116801E-39</td>
<td>2.964393875E-314</td>
</tr>
<tr>
<td></td>
<td>2.3230339468969963E-114</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ReplicationLog</th>
<th>CommitLogMessagesRead</th>
<th>16873</th>
<th>events/second</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.21366497971804438</td>
<td>0.20580430240786005</td>
<td>0.39126032533612265</td>
</tr>
<tr>
<td></td>
<td>0.2277227124698431</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group</th>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmission</td>
<td>AvailablePermits</td>
<td>30000</td>
</tr>
</tbody>
</table>

Accessing the metrics

Use JMX to access the metrics. Any JMX tool, such as jconsole, can access the MBeans for advanced replication. The port listed above, 7199, is used with the hostname or IP address:

Choose the MBeans tab and find com.datastax.bdp.advrep.v2.metrics in the left-hand navigation frame:
The example shown here displays the attributes for
com.datastax.bdp.advrep.v2.metrics:type=ReplicationLog,name=MessagesAdded.

Performance metrics

Metrics are exposed as JMX MBeans under the com.datastax.bdp.advrep.v2.metrics path and are logically divided into main groups. Each group refers to an architecture component. Metrics types are:

**Counter**
A simple incrementing and decrementing 64-bit integer.

**Meter**
Measures the rate at which a set of events occur.

**Histogram**
Measures the distribution of values in a stream of data.

**Timer**
A histogram of the duration of a type of event and a meter of the rate of its occurrence.

**Gauge**
A gauge is an instantaneous measurement of a value.

Metrics are available for the following groups:
• ReplicationLog (page 917)
• Transmission (page 918)
• AdvancedReplicationHub-[destinationId]-metrics (page 918)

Metrics are also available per table:
• Performance metrics per table (page 920)

Descriptions of each metric is provided.

Note: Metrics for DSE 5.0 (V1) are still present; see the DSE 5.0 documentation for those metrics.

ReplicationLog

Metrics for the ReplicationLog group:

<table>
<thead>
<tr>
<th>Metric name</th>
<th>Description</th>
<th>Metric type</th>
</tr>
</thead>
<tbody>
<tr>
<td>MessagesAdded</td>
<td>The number of messages that were added to the replication log, and the rate that the messages were added, per replica.</td>
<td>Meter</td>
</tr>
<tr>
<td>MessagesAcknowledged</td>
<td>The number of messages that were acknowledged (and removed) from the replication log. Acknowledgement can be 1 or 1+n if errors occur.</td>
<td>Meter</td>
</tr>
<tr>
<td>MessagesDeleted</td>
<td>The number of messages that were deleted from the replication log, including invalid messages and messages that were removed after a channel truncate operation.</td>
<td>Meter</td>
</tr>
<tr>
<td>MessageAddErrors</td>
<td>The number of errors that occurred when adding a message to the replication log.</td>
<td>Counter</td>
</tr>
<tr>
<td>CommitLogsToConsume</td>
<td>The number of commit logs that need to be consumed that have advanced replication messages.</td>
<td>Counter</td>
</tr>
<tr>
<td>CommitLogMessagesRead</td>
<td>The number of commit log messages added to the replication log. The commit log messages are read if a message pertains to a source table that has collection enabled.</td>
<td>Meter</td>
</tr>
<tr>
<td>Metric name</td>
<td>Description</td>
<td>Metric type</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>CommitLogMessagesDeleted</td>
<td>The number of commit log messages deleted from the commit log after adding to the replication log. Like CommitLogMessagesRead, this metric only pertains to messages in tables that are enabled for advanced replication.</td>
<td>Meter</td>
</tr>
</tbody>
</table>

Transmission

Metrics for the Transmission group:

<table>
<thead>
<tr>
<th>Metric name</th>
<th>Description</th>
<th>Metric type</th>
</tr>
</thead>
<tbody>
<tr>
<td>AvailablePermits</td>
<td>The current number of available global permits for transmission.</td>
<td>Gauge</td>
</tr>
</tbody>
</table>

AdvancedReplicationHub-[destinationName]-metrics

Metrics for the AdvancedReplicationHub-[destinationName]-metrics group are provided automatically by the DSE Java driver.
Incomplete examples of per-destination-metrics are:

<table>
<thead>
<tr>
<th>Metric name</th>
<th>Metric type</th>
</tr>
</thead>
<tbody>
<tr>
<td>known-hosts</td>
<td>Counter</td>
</tr>
<tr>
<td>connected-to</td>
<td>Counter</td>
</tr>
<tr>
<td>open-connections</td>
<td>Counter</td>
</tr>
<tr>
<td>requests-timer</td>
<td>Timer</td>
</tr>
<tr>
<td>connection-errors</td>
<td>Counter</td>
</tr>
<tr>
<td>write-timeouts</td>
<td>Counter</td>
</tr>
<tr>
<td>read-timeouts</td>
<td>Counter</td>
</tr>
<tr>
<td>unavailables</td>
<td>Counter</td>
</tr>
<tr>
<td>other-errors</td>
<td>Counter</td>
</tr>
<tr>
<td>retries</td>
<td>Counter</td>
</tr>
</tbody>
</table>
Using DataStax Enterprise advanced functionality

<table>
<thead>
<tr>
<th>Metric name</th>
<th>Metric type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ignores</td>
<td>Counter</td>
</tr>
</tbody>
</table>

For details, see the DSE Java driver documentation.

Performance metrics per table

Use JMX to find performance metrics per table, look under the com.datastax.bdp.advrep.v2.metrics tab in the left-hand navigation frame for Tables, select a table and inspect the metrics:

For example, to access the MessagesReceived metric for the table sensor_readings in the keyspace demo look at the following path:

com.datastax.bdp.advrep.v2.metrics:type=Tables,scope=demo.sensor_readings,name=MessagesReceived

The following metrics are provided per table:

<table>
<thead>
<tr>
<th>Metric name</th>
<th>Description</th>
<th>Metric type</th>
</tr>
</thead>
<tbody>
<tr>
<td>MessagesReceived</td>
<td>The number of messages received from the source cluster for this table.</td>
<td>Counter</td>
</tr>
</tbody>
</table>
Using DataStax Enterprise advanced functionality

<table>
<thead>
<tr>
<th>Metric name</th>
<th>Description</th>
<th>Metric type</th>
</tr>
</thead>
<tbody>
<tr>
<td>MessagesDelivered</td>
<td>The number of messages for the source table that were replicated to the destination.</td>
<td>Counter</td>
</tr>
<tr>
<td>MessagesDeleted</td>
<td>The number of messages that were deleted from the replication log, including invalid messages and messages that were removed after a channel truncate operation.</td>
<td>Counter</td>
</tr>
</tbody>
</table>

cassandra-env.sh

The location of the cassandra-env.sh file depends on the type of installation:

<table>
<thead>
<tr>
<th>Package installations</th>
<th>/etc/dse/cassandra/cassandra-env.sh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer-Services installations</td>
<td>/etc/dse/cassandra/cassandra-env.sh</td>
</tr>
<tr>
<td>Tarball installations</td>
<td>installation_location/resources/cassandra/conf/cassandra-env.sh</td>
</tr>
<tr>
<td>Installer-No Services installations</td>
<td>installation_location/resources/cassandra/conf/cassandra-env.sh</td>
</tr>
</tbody>
</table>

Managing invalid messages

During message replication, DSE Advanced Replicates attempts to manipulate the message to ensure successful replication. In some cases, replication might occur with only a subset of the data.

In other cases, replication fails when there are too many differences between the schema on the source cluster and the schema on the destination cluster. For example, schema incompatibilities occur when a column in the destination has a different type than the same column in the source, or a table in the source doesn’t contain all the columns that form the primary key of the same table in the destination.

If a message cannot be replicated, a second transmission will be tried. If replication still fails after that the second try, the message is discarded and removed from the replication log. The replication log on the source cluster stores data in preparation for transmission to the destination cluster.

When a message is discarded, the CQL query string and the related error message are logged on the destination cluster. To define where to store the CQL strings and the error messages that are relevant to the failed message replication, use one of the following logging strategies:

- **SYSTEM_LOG**: Log the CQL query and the error message in the system log on the destination.
- **CHANNEL_LOG**: Store the CQL query and the error message in files in /var/lib/cassandra/advrep/invalid_queries on the destination. This is the default value.
- **NONE**: Perform no logging.

For the channel logging strategy, a file is created in the channel log directory on the source node, following the pattern /var/lib/cassandra/advrep/invalidQueries/
Using DataStax Enterprise advanced functionality

<keyspace>/<table>/<destination>/invalid_queries.log where keyspace, table and destination are:

- keyspace: keyspace name of the invalid query
- table: table name of the invalid query
- destination: destination cluster of the channel

The log file stores the following data that is relevant to the failed message replication:

- time_bucket: an hourly time bucket to prevent the database partition from getting too wide
- id: a time based id (timeuuid)
- cql_string: the CQL query string, explicitly specifies the original timestamp by including the USING TIMESTAMP option.
- error_msg: the error message

Invalid messages are inserted by time in the log table.

Manage invalid messages using channel logging:

1. To store the CQL query string and error message using a channel log, instead of the default system log location, specify the invalid_message_log configuration key as CHANNEL_LOG:

   $ dse advrep conf update --invalid_message_log CHANNEL_LOG

Manage invalid messages using system logging:

2. To store the CQL query string and error message using a system log, instead of the default channel log location, specify the invalid_message_log configuration key as SYSTEM_LOG:

   $ dse advrep conf update --invalid_message_log SYSTEM_LOG

3. To identify the problem, examine the error messages, the CQL query strings, and the schemas of the data on the source and the destination.

4. Take appropriate actions to resolve the incompatibility issues.

Managing audit logs

DSE Advanced Replication provides replication audit logging and commands to manage the audit logs with metadata configuration. Audit logs are stored on the source cluster and are handled by the audit log analyzer (AuditLogAnalyzer). The audit log analyzer reads the log files, including audit log files in GZIP (.gz) format, that might be incomplete because they are still being written or they were improperly closed. The audit log analyzer identifies the list of files which match the template that is defined with the audit_log_file configuration key
and that have exceeded the maximum time interval since they were written to. Purging is based on these criteria.

Global settings apply to the entire source cluster. These global settings are stored in the CQL table `dse_system.advrep_source_config` that is automatically created. To define configuration keys to change global settings (page 894), use the `dse advrep conf update` command. The audit log files are read/write (RW) only for the file owner, with no permissions for other users.

**Note:** The time stamp for all writes is UTC (Universal Time Coordinated).

1. Enable replication audit logging:
   ```bash
 $ dse advrep conf update --audit-log-enabled true
   ```

2. The default base audit log directory is `/var/lib/cassandra/advrep/auditlog`. To define a different directory for storing audit log files:
   ```bash
 $ dse advrep conf update --audit-log-file /tmp/auditAdvRep
   ```
   If the configured audit log file is a relative path, then the log files be placed in the default base directory. If the configured audit log file is an absolute path, then that path is used.

3. To compress the audit log output using the gzip file format:
   ```bash
 $ dse advrep conf update --audit-log-compression GZIP --audit-log-file /tmp/auditAdvRep/myaudit.gz
   ```
   The default value is NONE for compression. If .gz is not appended to the audit log filename in the command, it will be appended to the created files. Compressed audit log files will remain locked until rotated out; the active file cannot be opened.

4. Specify the time interval to rotate the audit log file. On rotation, the rotated file is appended with the log counter .[logcounter], incrementing from [0]. To disable rotation, set to 0.
   ```bash
 $ dse advrep conf update --audit-log-rotate-mins 120
   ```
   For example, the compressed file from the last step can be uncompressed after rotating out to `/tmp/auditAdvRep/myaudit.[0].gz`.

5. Specify the maximum lifetime of audit log files.
   After audit log files are rotated, they are periodically purged when the log files:
   - Match the audit log file
   - And have not been written to for more than the specified maximum lifespan minutes

   To disable purging, set to 0.
6. Restart the node to enable the changes.

When logging is enabled, log files that would be overwritten are moved to a subdirectory in the log directory. The subdirectory is named `archive_x`, where x increments from 0 until an unused directory is identified and created.

**DSE Advanced Replication command line tool**

The command line tool provides commands and options for configuring and using DSE Advanced Replication.

**DSE Advanced Replication commands**

These DSE Advanced Replication commands are available:

- Command options *(page 924)* for all commands
- Client to DSE connection commands *(page 924)*
- Replication channel *(page 927)* commands
- Replication destination *(page 928)* commands
- Replication configuration *(page 931)* commands
- Replication log *(page 933)* commands
- Metrics *(page 933)* commands

**DSE Advanced Replication command options**

**Synopsis**

```bash
dse advrep [--v1] [connection_options] [command] [sub_command] [sub_command_options]
```

**To show the command line help for dse advrep:**

```bash
$ dse advrep help
```

Authentication credentials can be provided in several ways, see Connecting to authentication enabled clusters.

The optional flag, `--v1`, can be used to access advanced replication commands for DSE 5.0; advanced replication commands changed with DSE 5.1. See DSE 5.0 Advanced Replication documentation for commands compatible with the `--v1` flag. An example of using the `--v1` flag is:

```bash
dse advrep --v1 edge conf --edge-id "edge1" --edge-id-col-name "edge_id" --hub-ip-addresses "10.200.182.148"
```

**Client to DSE connection commands**

The default port for DSE Advanced Replication is 9042. Connection options are specified as:
**dse advrep** `[connection_options]`

<table>
<thead>
<tr>
<th>Connection options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>--separator</code></td>
<td>Specify the field separator if <code>--no-pretty-print</code> is used for printing. Default: comma</td>
</tr>
<tr>
<td><code>field_separator</code></td>
<td></td>
</tr>
<tr>
<td><code>--no-pretty-print</code></td>
<td>If specified, data is printed as a comma delimited list. If not specified, data is printed as tabular output.</td>
</tr>
<tr>
<td><code>--use-server-config</code></td>
<td>Read connection configuration from server YAML files (dse.yaml and cassandra.yaml) instead of reading them from configuration files. Use only when the DSE installation against which the command run is a running node.</td>
</tr>
<tr>
<td><code>--cipher-suites</code></td>
<td>A comma-separated list of SSL cipher suites for connection to DSE when SSL is enabled. For example, <code>--cipher-suites=c1,c2,c3</code>.</td>
</tr>
<tr>
<td><code>ssl_cipher_suites</code></td>
<td></td>
</tr>
<tr>
<td><code>--host</code></td>
<td>The DSE host RPC broadcast address. The default value is localhost.</td>
</tr>
<tr>
<td><code>address</code></td>
<td></td>
</tr>
<tr>
<td><code>--port</code></td>
<td>The DSE native protocol RPC connection port.</td>
</tr>
<tr>
<td><code>--kerberos-enabled</code></td>
<td>`true</td>
</tr>
<tr>
<td><code>--keystore-password</code></td>
<td>Keystore password for connection to DSE when SSL client authentication is enabled.</td>
</tr>
<tr>
<td><code>ssl_keystore_password</code></td>
<td></td>
</tr>
<tr>
<td><code>--keystore-path</code></td>
<td>Set path to the keystore for connection to DSE when SSL client authentication is enabled.</td>
</tr>
<tr>
<td><code>ssl_keystore_path</code></td>
<td></td>
</tr>
<tr>
<td><code>--keystore-type</code></td>
<td>Setkeystore type for connection to DSE when SSL client authentication is enabled. JKS is the type for keys generated by the Java keytool binary, but other types are possible, depending on user environment.</td>
</tr>
<tr>
<td><code>ssl_keystore_type</code></td>
<td></td>
</tr>
<tr>
<td><code>--truststore-password</code></td>
<td>Set the truststore password for connection to DSE when SSL is enabled.</td>
</tr>
<tr>
<td><code>ssl_truststore_password</code></td>
<td></td>
</tr>
<tr>
<td><code>--truststore-path</code></td>
<td>Set path to truststore for connection to DSE when SSL is enabled.</td>
</tr>
<tr>
<td><code>ssl_truststore_path</code></td>
<td></td>
</tr>
</tbody>
</table>
Using DataStax Enterprise advanced functionality

<table>
<thead>
<tr>
<th>Connection options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>--truststore-type</td>
<td>Set truststore type for connection to DSE when SSL is enabled. JKS is the type for keys generated by the Java keytool binary, but other types are possible, depending on user environment.</td>
</tr>
<tr>
<td>_ssl_truststore_type</td>
<td></td>
</tr>
<tr>
<td>--sasl-protocol-name</td>
<td>The SASL protocol name must match the username of the Kerberos service principal (page 236) used by the DSE server.</td>
</tr>
<tr>
<td>dse_service_principal</td>
<td></td>
</tr>
<tr>
<td>--ssl</td>
<td>Specify whether SSL is enabled for connection to DSE.</td>
</tr>
<tr>
<td>--ssl-enabled</td>
<td>true is the same as --ssl.</td>
</tr>
<tr>
<td>--ssl-protocol</td>
<td>SSL protocol for connection to DSE when SSL is enabled.</td>
</tr>
<tr>
<td>ssl_protocol</td>
<td></td>
</tr>
<tr>
<td>-t</td>
<td>Delegation token which can be used to login, or alternatively, DSE_TOKEN environment variable can be used.</td>
</tr>
</tbody>
</table>

Connection options examples:

```
$ dse advrep --host ip-10-200-300-138.example.lan --kerberos-enabled=true conf list
```

and

```
$ dse advrep --use-server-config conf list
```

Printing option example:

```
dse advrep --no-pretty-print destination list-conf --separator "|"
```

will result in output:

```
destination|name|value
mydest|addresses|192.168.200.100
mydest|transmission-enabled|true
mydest|driver-ssl-cipher-suites|TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256,TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256,TLS_RSA_WITH_AES_128_CBC_SHA256,TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA,TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA,TLS_RSA_WITH_3DES_EDE_CBC_SHA,TLS_ECDHE_ECDSA_WITH_NULL_SHA,TLS_ECDHE_RSA_WITH_NULL_SHA,TLS_RSA_WITH_NULL_SHA,TLS_ECDHE_ECDSA_WITH_RC4_128_SHA,TLS_ECDHE_RSA_WITH_RC4_128_SHA,TLS_RSA_WITH_RC4_128_SHA,TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA,TLS_RSA_WITH_AES_128_CBC_SHA,TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA,TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA,TLS_RSA_WITH_AES_256_CBC_SHA,TLS_ECDHE_ECDSA_WITH_NULL_SHA256,TLS_ECDHE_RSA_WITH_NULL_SHA256,TLS_RSA_WITH_NULL_SHA256,TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256,TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256,TLS_RSA_WITH_AES_128_CBC_SHA256,TLS_ECDHE_ECDSA_WITH_RC4_128_SHA256,TLS_ECDHE_RSA_WITH_RC4_128_SHA256,TLS_RSA_WITH_RC4_128_SHA256,TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA256,TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA256,TLS_RSA_WITH_AES_256_CBC_SHA256,TLS_ECDHE_ECDSA_WITH_NULL_SHA1,TLS_ECDHE_RSA_WITH_NULL_SHA1,TLS_RSA_WITH_NULL_SHA1,TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA1,TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA1,TLS_RSA_WITH_AES_128_CBC_SHA1,TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA1,TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA1,TLS_RSA_WITH_AES_256_CBC_SHA1,TLS_ECDHE_ECDSA_WITH_RC4_128_SHA1,TLS_ECDHE_RSA_WITH_RC4_128_SHA1,TLS_RSA_WITH_RC4_128_SHA1,TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256,TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256,TLS_RSA_WITH_AES_128_CBC_SHA256,
mydest|driver-ssl-enabled|false
mydest|driver-ssl-protocol|TLS
mydest|name|mydest
mydest|driver-connect-timeout|15000
mydest|driver-max-requests-per-connection|1024
mydest|driver-connections-max|8
mydest|driver-connections|1
mydest|driver-compression|lz4
mydest|driver-consistency-level|ONE
mydest|driver-allow-remote-dcs-for-local-cl|false
mydest|driver-used-hosts-per-remote-dc|0
mydest|driver-read-timeout|15000
```

If --no-pretty-print is not used, the output is in tabular format by default.
Replication channel commands

Synopsis

$ dse advrep channel command [sub_command] [sub_command_options]

To show the command line help for dse advrep channel:

$ dse advrep help channel

Command and command arguments for:

$ dse advrep channel sub_command [sub_command_options]

<table>
<thead>
<tr>
<th>Sub-command</th>
<th>Sub-command options</th>
</tr>
</thead>
</table>
| **create (page 934)** | Create a replication channel for a keyspace:  
  --source-keyspace *keyspace_name* *(required)*  
  --destination-table *destination_table_name*  
  --source-id-column  
  --fifo-order Specify if the channel should be replicated in FIFO order *(default)*.  
  --lifo-order Specify if the channel should be replicated in LIFO order.  
  --destination *destination* *(required)* Destination where the replication will be sent.  
  --source-table *source_table_name* *(required)* Source table to replicate.  
  --collection-enabled true | false specify if the source table should be enabled for replication collection on creation.  
  --priority *channel_priority*  
  --transmission-enabled true | false Specify if data collector for the table should be replicated to the destination. |
| **update (page 933)** | Update a replication channel for a keyspace:  
  --source-keyspace *keyspace_name*  
  --destination-table *destination_table_name*  
  --source-id-column  
  --fifo-order Specify if the channel should be replicated in FIFO order *(default)*.  
  --lifo-order Specify if the channel should be replicated in LIFO order.  
  --destination *destination* Destination where the replication will be sent.  
  --source-table *source_table_name* Source table to replicate.  
  --collection-enabled true | false specify if the source table should be enabled for replication collection on creation.  
  --priority *channel_priority*  
  --transmission-enabled true | false Specify if data collector for the table should be replicated to the destination. |
<table>
<thead>
<tr>
<th>Sub-command</th>
<th>Sub-command options</th>
</tr>
</thead>
</table>
| delete      | Delete replication channel:  
--source-keyspace *keyspace_name* *(required)*  
--destination *destination* *(required)* Destination where the replication will be sent.  
--source-table *source_table_name* *(required)* Source table to replicate.  
--data-center-id *data-center-id* Datacenter for this channel |
| pause       | Pause replication channel for a keyspace:  
--source-keyspace *keyspace_name*  
--data-center-ids *data-center-id(s)* Comma-separated list of data-center-ids on which to filter  
--destinations *destination(s)* Comma-separated list of destinations  
--transmission If specified, no data for the source table is sent to the specified destination.  
--source-table *source_table_name*  
--collection If specified, no data for the source table is collected. |
| resume      | Resume replication for a paused channel:  
--source-keyspace *keyspace_name*  
--data-center-ids *data-center-id(s)* Comma-separated list of data-center-ids on which to filter  
--destinations *destination(s)* Comma-separated list of destinations  
--transmission If specified, no data for the source table is sent to the specified destination.  
--source-table *source_table_name*  
--collection If specified, no data for the source table is collected. |
| status      | Verify status of replication channel:  
--keyspace *keyspace_name*  
--destination *destination* Destination where the replication will be sent.  
--table *source_table_name* Source table to replicate.  
--data-center-id *data-center-id* Datacenter for this channel |
| truncate    | Truncate a channel, all messages currently in the replication log for that channel will not be replicated:  
--source-keyspace *keyspace_name*  
--data-center-ids *data-center-id(s)* Comma-separated list of data-center-ids on which to filter  
--destinations *destination(s)* Comma-separated list of destinations  
--source-table *source_table_name* |

Destination commands

Synopsis
Using DataStax Enterprise advanced functionality

$dse advrep destination [sub_command] [sub_command_options]

To show the command line help for `dse advrep destination`:

$ dse advrep help destination

Commands and command arguments for edge configuration and replication:

$ dse advrep destination sub_command [sub_command_options]

<table>
<thead>
<tr>
<th>Command</th>
<th>Command arguments</th>
</tr>
</thead>
<tbody>
<tr>
<td>create</td>
<td>Create a channel from a keyspace source table to a destination cluster:</td>
</tr>
<tr>
<td></td>
<td>--name (required)</td>
</tr>
<tr>
<td></td>
<td>--addresses (required)</td>
</tr>
<tr>
<td></td>
<td>--transmission-enabled true</td>
</tr>
<tr>
<td></td>
<td>--driver-user password</td>
</tr>
<tr>
<td></td>
<td>--driver-pwd username</td>
</tr>
<tr>
<td></td>
<td>--driver-connect-timeout ms_driver_waits_to_connect_server</td>
</tr>
<tr>
<td></td>
<td>--driver-read-timeout ms_driver_waits_to_read_server_responses</td>
</tr>
<tr>
<td></td>
<td>--driver-compression lz4_or_snappy_algorithm</td>
</tr>
<tr>
<td></td>
<td>--driver-connections num_connections_to_create</td>
</tr>
<tr>
<td></td>
<td>--driver-connections-max max_num_connections_to_create</td>
</tr>
<tr>
<td></td>
<td>--driver-max-requests-per-connections max_num_requests_per_connection</td>
</tr>
<tr>
<td></td>
<td>--driver-local-dc dc_name</td>
</tr>
<tr>
<td></td>
<td>--driver-consistency-level consistency [ANY</td>
</tr>
<tr>
<td></td>
<td>--driver-used-hosts-per-remote-dc number_of_hosts</td>
</tr>
<tr>
<td></td>
<td>--driver-allow-remote-dcs-for-local-cl true</td>
</tr>
<tr>
<td></td>
<td>--driver-ssl-enabled true</td>
</tr>
<tr>
<td></td>
<td>--driver-ssl-keystore-path ssl_keystore_path</td>
</tr>
<tr>
<td></td>
<td>--driver-ssl-keystore-password ssl_keystore_password</td>
</tr>
<tr>
<td></td>
<td>--driver-ssl-keystore-type ssl_keystore_type</td>
</tr>
<tr>
<td></td>
<td>--driver-ssl-truststore-path ssl_truststore_path</td>
</tr>
<tr>
<td></td>
<td>--driver-ssl-truststore-password ssl_truststore_password</td>
</tr>
<tr>
<td></td>
<td>--driver-ssl-truststore-type ssl_keystore_type</td>
</tr>
<tr>
<td></td>
<td>--driver-ssl-protocol ssl_protocol</td>
</tr>
<tr>
<td></td>
<td>--driver-ssl-cipher-suites ssl_cipher_suites</td>
</tr>
<tr>
<td>Command</td>
<td>Command arguments</td>
</tr>
<tr>
<td>----------</td>
<td>--------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
</tbody>
</table>
| update   | Update a channel from a keyspace source table to a destination cluster:  
|          | --name (required)  
|          | --addresses  
|          | --transmission-enabled true|false  
|          | --driver-user password  
|          | --driver-pwd username  
|          | --driver-connect-timeout ms_driver_waits_to_connect_server  
|          | --driver-read-timeout ms_driver_waits_to_read_server_responses  
|          | --driver-compression lz4 or snappy_algorithm  
|          | --driver-connections num_connections_to_create  
|          | --driver-connections-max max_num_connections_to_create  
|          | --driver-max-requests-per-connections max_num_requests_per_connection  
|          | --driver-local-dc dc_name  
|          | --driver-consistency-level consistency {[ANY|ONE|TWO|THREE|QUORUM|ALL|LOCAL_QUORUM|EACH_QUORUM|SERIAL|LOCAL_SERIAL|LOCAL_ONE]}  
|          | --driver-used-hosts-per-remote-dc number_of_hosts  
|          | --driver-allow-remote-dcs-for-local-cl true|false  
|          | --driver-ssl-enabled true|false  
|          | --driver-ssl-keystore-path ssl_keystore_path  
|          | --driver-ssl-keystore_password ssl_keystore_password  
|          | --driver-ssl-keystore_type ssl_keystore_type  
|          | --driver-ssl-truststore-path ssl_truststore_path  
|          | --driver-ssl-truststore-password ssl_truststore_password  
|          | --driver-ssl-truststore-type ssl_keystore_type  
|          | --driver-ssl-protocol ssl_protocol  
|          | --driver-ssl-cipher-suites ssl_cipher_suites  
| delete   | Delete destination:  
|          | --name (required)  
| list-conf | List the destination configuration:  
|          | --name (required)  |
### Configuration commands

**Synopsis**

```
$ dse advrep conf [sub_command] [sub_command_options]
```

To show the command line help for `dse advrep conf`:

```
$ dse advrep help conf
```

**Commands and command arguments for configuration:**

```
$ dse advrep conf sub_command [sub_command_options]
```
<table>
<thead>
<tr>
<th>Command</th>
<th>Command arguments</th>
</tr>
</thead>
<tbody>
<tr>
<td>update</td>
<td>Update the configuration:</td>
</tr>
<tr>
<td></td>
<td>--collection-max-open-files value Number of option files kept</td>
</tr>
<tr>
<td></td>
<td>--audit-log-file audit_log_name Audit log file name</td>
</tr>
<tr>
<td></td>
<td>--audit-log-compression none</td>
</tr>
<tr>
<td></td>
<td>--audit-log-enabled true</td>
</tr>
<tr>
<td></td>
<td>--audit-log-max-life-span-mins minutes Audit log max lifespan in minutes before discarding.</td>
</tr>
<tr>
<td></td>
<td>--audit-log-rotate-mins minutes Number of minutes before audit log rotates files.</td>
</tr>
<tr>
<td></td>
<td>--permits Maximum number of messages that can be replicated in parallel over all destinations (default: 30,000).</td>
</tr>
<tr>
<td></td>
<td>--invalid-message-log Error information for messages that could not be replicated are saved to system_log, channel_log (default), or none.</td>
</tr>
<tr>
<td></td>
<td>--collection-time-slice-count count The number of files which are open in the ingestor simultaneously. Default: 5</td>
</tr>
<tr>
<td></td>
<td>--collection-time-slice-width The time period in seconds for each data block ingested. Smaller time widths equal more files. Larger timer widths equal larger files but more data to resend on CRC mismatches. Default: 60 seconds</td>
</tr>
<tr>
<td></td>
<td>--collection-expire-after-write</td>
</tr>
<tr>
<td>remove</td>
<td>Remove configuration:</td>
</tr>
<tr>
<td></td>
<td>--collection-max-open-files value Number of option files kept</td>
</tr>
<tr>
<td></td>
<td>--audit-log-file audit_log_name Audit log file name</td>
</tr>
<tr>
<td></td>
<td>--audit-log-compression Disable audit log compression.</td>
</tr>
<tr>
<td></td>
<td>--audit-log-enabled true</td>
</tr>
<tr>
<td></td>
<td>--audit-log-max-life-span-mins minutes Audit log max lifespan in minutes before discarding.</td>
</tr>
<tr>
<td></td>
<td>--audit-log-rotate-mins minutes Number of minutes before audit log rotates files.</td>
</tr>
<tr>
<td></td>
<td>--permits Maximum number of messages that can be replicated in parallel over all destinations (default: 30,000).</td>
</tr>
<tr>
<td></td>
<td>--invalid-message-log Error information for messages that could not be replicated are saved to system_log, channel_log (default), or none.</td>
</tr>
<tr>
<td></td>
<td>--collection-time-slice-count count The number of files which are open in the ingestor simultaneously.</td>
</tr>
<tr>
<td></td>
<td>--collection-time-slice-width The time period in seconds for each data block ingested. Smaller time widths equal more files. Larger timer widths equal larger files but more data to resend on CRC mismatches.</td>
</tr>
<tr>
<td></td>
<td>--collection-expire-after-write</td>
</tr>
<tr>
<td>list (page 934)</td>
<td>List the configuration - no options</td>
</tr>
</tbody>
</table>
Metrics

Display metrics from the command line once JMX access (page 913) is configured:

```
$ dse advrep metrics
```

To show the command line help for `dse advrep metrics`:

```
$ dse advrep help metrics
```

Command options for:

```
$ dse advrep metrics list [sub_command_options]
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Command options</th>
</tr>
</thead>
<tbody>
<tr>
<td>list</td>
<td>[ --metric-group filter_by_group ]</td>
</tr>
<tr>
<td></td>
<td>[ --metric-type filter_by_type ]</td>
</tr>
</tbody>
</table>

Replication log commands

Display replication log information from the command line.

```
$ dse advrep replog
```

To show the command line help for `dse advrep replog`:

```
$ dse advrep help replog
```

Command options for:

```
$ dse advrep replog sub_command [sub_command_options]
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Command options</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>--data-center-id data-center-id</td>
</tr>
<tr>
<td></td>
<td>--destination destination (required) Destination where the replication will be sent.</td>
</tr>
<tr>
<td></td>
<td>--source-keyspace keyspace_name (required)</td>
</tr>
<tr>
<td></td>
<td>--source-table table_name (required)</td>
</tr>
<tr>
<td>analyze-audit-log</td>
<td>--file filename Audit log file.</td>
</tr>
</tbody>
</table>

Replication command examples

The `dse advrep channel` command line tool examples and results:

Creating a destination

```
$ dse advrep --verbose destination create --name mydest --addresses 10.200.182.148 --transmission-enabled true
```
Using DataStax Enterprise advanced functionality

Destination mydest created

Creating a replication source channel

$ dse advrep channel create --source-keyspace foo --source-table bar --source-id source1 --source-id-column source_id --destination mydest --destination-keyspace foo --destination-table bar --collection-enabled true --priority 1
Created channel dc=Cassandra keyspace=foo table=bar to mydest

Viewing a replication source channel status

$ dse advrep channel status
|dc       |keyspace|table          |collecting|transmitting|
replication order|priority|dest ks|dest table     |src id |src id col|dest enabled|
------------------------------------------------------------------------------------------------------------------------------------------------------
|Cassandra|foo     |bar            |true      |false       |FIFO |
|1       |foo    |bar            |source1|source_id |
mydest|true        |
------------------------------------------------------------------------------------------------------------------------------------------------------

Removing a destination channel

$ dse advrep delete --name mydest

Removing a replication source channel

$ dse advrep delete --source-keyspace foo --source-table bar --destination mydest

Resuming collection from a source to a destination

$ dse advrep channel resume --source-keyspace foo --source-table bar --destinations mydest --collection
Channel dc=Cassandra keyspace=foo table=bar collection to mydest was resumed

Resuming transmission from a source to a destination

$ dse advrep channel resume --source-keyspace foo --source-table bar --destinations mydest --transmission
Channel dc=Cassandra keyspace=foo table=bar transmission to mydest was resumed

Pausing transmission from a source to a destination

The replication is stopped for the entire edge cluster. Specify the IP address of any node on the edge.

$ dse advrep channel pause --source-keyspace foo --source-table bar --destinations mydest --transmission
Channel dc=Cassandra keyspace=foo table=bar transmission to mydest was paused
Verifying the record count held in the replication log

$ dse advrep replog count --destination mydest --source-keysce foo --source-table bar

2

Metrics command examples

The `dse advrep metrics` command line tool examples and results.

Show all metrics

$ dse advrep --host localhost --port 7199 metrics list

<table>
<thead>
<tr>
<th>Group</th>
<th>Type</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>ReplicationLog</td>
<td>CommitLogsToConsume</td>
<td>1</td>
</tr>
<tr>
<td>ReplicationLog</td>
<td>MessageAddErrors</td>
<td>0</td>
</tr>
<tr>
<td>Tables</td>
<td>MessagesInReplicationLog</td>
<td>0</td>
</tr>
<tr>
<td>ReplicationLog</td>
<td>CommitLogsDeleted</td>
<td>2</td>
</tr>
</tbody>
</table>

-----------------------------------------------------------------------------------------------------------------------------------------------------
<table>
<thead>
<tr>
<th>Group</th>
<th>Type</th>
<th>Count</th>
<th>RateUnit</th>
<th>MeanRate</th>
</tr>
</thead>
<tbody>
<tr>
<td>FifteenMinuteRate</td>
<td>OneMinuteRate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FiveMinuteRate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ReplicationLog</td>
<td>MessagesAdded</td>
<td>4</td>
<td>events/second</td>
<td>2.6401646866982826E-4</td>
</tr>
<tr>
<td>ReplicationLog</td>
<td>MessagesDeleted</td>
<td>0</td>
<td>events/second</td>
<td>0.0</td>
</tr>
<tr>
<td>ReplicationLog</td>
<td>CommitLogMessagesRead</td>
<td>3551</td>
<td>events/second</td>
<td>0.23438054858983395</td>
</tr>
</tbody>
</table>

Filter by group

$ dse advrep --host localhost --port 7199 metrics list --metric-group Tables

<table>
<thead>
<tr>
<th>Group</th>
<th>Type</th>
<th>Count</th>
</tr>
</thead>
</table>

Using DataStax Enterprise advanced functionality

| Tables | MessagesInReplicationLog | 0 |

Filter by group and type

```bash
$ dse advrep --host localhost --port 7199 metrics list --metric-type MessagesAdded
```

<table>
<thead>
<tr>
<th>Group</th>
<th>Type</th>
<th>Count</th>
<th>RateUnit</th>
<th>MeanRate</th>
</tr>
</thead>
<tbody>
<tr>
<td>FifteenMinuteRate</td>
<td>OneMinuteRate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ReplicationLog</td>
<td>MessagesAdded</td>
<td>4</td>
<td>events/second</td>
<td>2.621009715537605E-4</td>
</tr>
</tbody>
</table>
DataStax Enterprise tools

DataStax Enterprise Metrics Collector

Available in DSE 5.1.14 and later, DSE Metrics Collector aggregates DataStax Enterprise (DSE) metrics and integrates with existing monitoring solutions to facilitate problem resolution and remediation.

DSE Metrics Collector is built on collectd, a popular, well-supported, open source metric collection agent. With over 90 plugins, you can tailor the solution to collect metrics most important to your organization.

When DSE Metrics Collector is enabled, metrics and other structured events are sent to DSE Metrics Collector. Use dsetool insights_config (page 1195) to enable and configure the frequency and type of metrics that are sent to DSE Metrics Collector. After setting the configuration properties, you can export the aggregated metrics to tools like Prometheus, Graphite, and Splunk, which can then be visualized in a dashboard such as Grafana.

Enabling and disabling DSE Metrics Collector

Enable DSE Metrics Collector to aggregate and collect metrics in a meaningful way to provide fast, accurate problem resolution that system administrators and DataStax Support can use to troubleshoot problems.

Enabling DSE Metrics Collector

Enable DSE Metrics Collector to aggregate and collect metrics.

DSE Metrics Collector is disabled by default.

Prerequisites: The DSE Metrics Collector requires DSE 5.1.13 or later.

1. To view the current configuration:

   $ dsetool insights_config --show_config

   The results of the default configuration show that the DSE Metrics Collector is disabled:

   ```
 {
 "mode" : "DISABLED",
 "config_refresh_interval_in_seconds" : 30,
 "metric_sampling_interval_in_seconds" : 30,
 "data_dir_max_size_in_mb" : 1024,
 "node_system_info_report_period" : "PT1H"
 }
   ```
2. To enable the DSE Metrics Collector, use the `dsetool insights_config` (page 1195) command to change the mode.

   - To enable metrics collection with local storage:
     
     ```
 $ dsetool insights_config --mode ENABLED_WITH_LOCAL_STORAGE
     ```

   - To enable metrics collection for reporting to a real-time monitoring system:
     
     ```
 $ dsetool insights_config --mode ENABLED_WITH_NO_STORAGE
     ```

3. To view the current configuration:

   ```
 $ dsetool insights_config --show_config
   ```

   For example, these results show that the DSE Metrics Collector is enabled with local storage:

   ```
 {
 "mode" : "ENABLED_WITH_LOCAL_STORAGE",
 "config_refresh_interval_in_seconds" : 30,
 "metric_sampling_interval_in_seconds" : 30,
 "data_dir_max_size_in_mb" : 1024,
 "node_system_info_report_period" : "PT1H"
 }
   ```

   DSE Metrics Collector is enabled.

**Disabling DSE Metrics Collector**

1. To view the current configuration:

   ```
 $ dsetool insights_config --show_config
   ```

   When enabled, the results show that DSE Metrics Collector is enabled with local storage:

   ```
 {
 "mode" : "ENABLED_WITH_LOCAL_STORAGE",
 "config_refresh_interval_in_seconds" : 30,
 "metric_sampling_interval_in_seconds" : 30,
 "data_dir_max_size_in_mb" : 1024,
 "node_system_info_report_period" : "PT1H"
 }
   ```

2. To disable the DSE Metrics Collector, use the `dsetool insights_config` (page 1195) command to change the mode.
DSE Metrics Collector is disabled.

**Configuring DSE Metrics Collector**

DataStax Enterprise (DSE) Metrics Collector configuration includes tuning:

- Time interval of metrics collection
- Time interval to refresh configuration changes
- Time interval of node system information collection
- Maximum size of the local data directory
- The directories where DSE Metrics Collector stores metrics and metrics logs.

1. Ensure that the DSE Metrics Collector is enabled (page 937).

2. To configure metrics collection, use the `dsetool insights_config` (page 1195) command with the applicable option to adjust:
   - Interval of metrics collection
   - Interval to refresh configuration changes
   - Maximum size of the local data directory
   - Node system information reporting period
   
   See configuration examples (page 940) for instructions to modify specific configurations.

3. Define the directories where DSE Metrics Collector stores metrics and metrics logs.

   **Important:** DataStax recommends explicitly setting the location of the DSE Metrics Collector data directory. The maximum size of the local data directory cannot exceed 2 GB.

   a. To make changes, uncomment the `insights_options` (page 263) section in `dse.yaml` and the options under that heading:

   ```yaml
 insights_options:
 data_dir: /var/lib/cassandra/insights_data
 log_dir: /var/log/cassandra/
   ```

   When `data_dir` is not set, the default location of the `/insights_data` directory is the same location as the `/commitlog` directory, as defined with the `commitlog_directory` property in `cassandra.yaml`. The default location of the `commitlog` directory is `/var/lib/cassandra/commitlog`.

   ```bash
 $ dsetool insights_config --mode DISABLED
   ```
b. Restart (page 1275) the node for DSE to recognize the directory changes.

DSE Metrics Collector configuration examples

These configuration examples show how to:

- View the current configuration
- Enable and disable metrics collection
- Adjust the interval of metrics collection
- Adjust the interval to refresh configuration changes
- Set the maximum size of the local data directory (2 GB limit)
- Adjust the node system information reporting period

Examples

**To view the current DSE Metrics Collector configuration**

```
$ dsetool insights_config --show_config
```

The results of the default configuration:

```
{
 "mode" : "DISABLED",
 "config_refresh_interval_in_seconds" : 30,
 "metric_sampling_interval_in_seconds" : 30,
 "data_dir_max_size_in_mb" : 1024,
 "node_system_info_report_period" : "PT1H"
}
```

**To enable metrics collection when collectd is configured to report to a real-time monitoring system**

```
$ dsetool insights_config --mode ENABLED_NO_STORAGE
```

**To enable metrics collection with local storage**

```
$ dsetool insights_config --mode ENABLED_WITH_LOCAL_STORAGE
```

**To configure 1500 MB for the DSE Metrics Collector local data directory**

```
$ dsetool insights_config --data_dir_max_size_in_mb 1500
```

**Note:** The maximum size of the local data directory must not exceed 2 GB.

**To change the node system reporting duration to 1 week**
Use a ISO-8601 time duration string.

```bash
$ dsetool insights_config --node_system_info_report_period P1W
```

To disable metrics collection

```bash
$ dsetool insights_config --mode DISABLED
```

To configure the metric sampling interval for 60 seconds

```bash
$ dsetool insights_config --metric_sampling_interval_in_seconds 60
```

To configure 120 seconds for the configuration refresh interval

Push configuration changes to all nodes in the cluster every 2 minutes:

```bash
$ dsetool insights_config --config_refresh_interval_in_seconds 120
```

Filtering metrics

Use the `dsetool insights_filters` (page 1198) command to filter metrics deemed unimportant or sensitive, and focus on specific metrics important to your organization.

Apply filters with one of these options:

--global

Filters metrics reported locally and insights data files.

--insights_only

Filters insights data files only (for diagnostic purposes).

Use a regular expression (regex) to specify which metrics to include or exclude from the filter. The regex is not anchored, so a substring match like `Keyspace` blocks anything with keyspace in the metric name. You can also specify a full regex such as `org.apache.cassandra.metrics.Keyspace.+` to filter metrics from a specific keyspace. See example filters (page 942) for details.

The following tables describe whitelist and blacklist combinations to grant or deny access to a metric using a regex. When evaluating a regex, the blacklist always overrides the whitelist.

### Table 62: Blacklist and whitelist combinations to grant access

<table>
<thead>
<tr>
<th>Regex</th>
<th>Blacklist</th>
<th>Whitelist</th>
<th>Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>No metric indicated.</td>
<td>-</td>
<td>-</td>
<td>#</td>
</tr>
<tr>
<td>Metric included in whitelist without any blacklist entries.</td>
<td>-</td>
<td>Match</td>
<td>#</td>
</tr>
</tbody>
</table>
Table 63: Blacklist and whitelist combinations to deny access

<table>
<thead>
<tr>
<th>Regex</th>
<th>Blacklist</th>
<th>Whitelist</th>
<th>Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metric not included in blacklist without any whitelist entries.</td>
<td>No match</td>
<td>-</td>
<td>#</td>
</tr>
<tr>
<td>Metric included in whitelist without any matches in blacklist.</td>
<td>No match</td>
<td>Match</td>
<td>#</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Regex</th>
<th>Blacklist</th>
<th>Whitelist</th>
<th>Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metric not included in whitelist without any blacklist entries.</td>
<td>-</td>
<td>No match</td>
<td>X</td>
</tr>
<tr>
<td>Metric included in blacklist without any whitelist entries.</td>
<td>Match</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>Metric not included in whitelist.</td>
<td>No match</td>
<td>No match</td>
<td>X</td>
</tr>
<tr>
<td>Metric included in blacklist without a match in the whitelist.</td>
<td>Match</td>
<td>No match</td>
<td>X</td>
</tr>
<tr>
<td>Metric included in both blacklist and whitelist.</td>
<td>Match</td>
<td>Match</td>
<td>X</td>
</tr>
</tbody>
</table>

Example: Example filters

**Show all active filters**

```bash
$ dsetool insights_filters --show_filters
```

**Remove all active filters**

```bash
$ dsetool insights_filters --remove_all_filters
```

**Add a global filter to deny all metrics matching KeyspaceMetrics**

```bash
```

**Remove a global filter to deny metrics for a specific keyspace**

```bash
$ dsetool insights_filters --remove --global --deny
```
Add a filter to insights data files that deny grace period metrics

$ dsetool insights_filters --add --insights_only --deny .+gc.+ 

Exporting and visualizing metrics with Prometheus and Docker

To quickly get started with DSE Metrics Collector, download and install Docker to use the DataStax preconfigured dashboards. If you already have a monitoring and visualization solution, see Manually exporting and visualizing metrics with Prometheus (page 946).

Prerequisites:

1. If necessary, download and install DSE (page 145).
2. Download and install Docker.
3. Download and install Docker Compose.
4. Clone the DSE Metrics Collector Dashboards repository from GitHub.

   Note: Docker, Docker Compose, and the DSE Metrics Collector Dashboards repository must all be located on a node where DSE is not installed.

1. On your DSE cluster, enable the DSE Metrics Collector:

   $ dsetool insights_config --show_config

   ```
 {
 "mode" : "DISABLED",
 "config_refresh_interval_in_seconds" : 30,
 "metric_sampling_interval_in_seconds" : 30,
 "data_dir_max_size_in_mb" : 1024,
 "node_system_info_report_period" : "PT1H"
 }
   ```

2. To check the configuration for DSE Metrics Collector:

   $ dsetool insights_config --show_config

   ```
 {
 "mode" : "ENABLED_WITH_LOCAL_STORAGE",
 "config_refresh_interval_in_seconds" : 30,
 "metric_sampling_interval_in_seconds" : 30,
   ```
3. To enable the Prometheus server, create a configuration file on a DataStax Enterprise (DSE) cluster that DSE Metrics Collector reads from.

   a. Create a `prometheus.conf` file in one of the following directories:
      - **Tarball**: `installation_location/resources/dse/collectd/etc/collectd`
      - **Package**: `/etc/dse/collectd`

      ```
 $ sudo touch prometheus.conf
      ```

      **Tip:** If the `/collectd` directory does not exist, create it, and then create the `prometheus.conf` file.

   b. Add the following code to the `prometheus.conf` configuration file and save it:

      ```
 $ vi prometheus.conf

 LoadPlugin write_prometheus

 <Plugin write_prometheus>
 Port "9103"
 </Plugin>
      ```

   c. On any node in the cluster, disable and re-enable DSE Metrics Collector to propagate the changes:

      ```
 $ dsetool insights_config --mode DISABLED

 Note: Disabling DSE Metrics Collector can take up to 30 seconds to propagate across the cluster. Wait at least 30 seconds before re-enabling DSE Metrics Collector.

 $ dsetool insights_config --mode ENABLED_WITH_LOCAL_STORAGE
      ```

4. Ensure that the node is listening on port 9103, in addition to the typical DSE ports:

   ```
 $ netstat -lnt
   ```

   **Active Internet connections (only servers)**
   Proto Recv-Q Send-Q Local Address Foreign Address
   State
5. On the node where you cloned the DSE Metrics Collector Dashboard repository, navigate to the `/prometheus` directory and modify the `tg_dse.json` file to include the IP address of each node in your cluster under “targets”. The list of IP addresses is comma-delimited, and each IP address must be enclosed in double quotes.

```bash
$ vi tg_dse.json
```

```
[{
 "targets": [
 "10.100.110.96:9103",
 "10.100.100.95:9103",
 "10.100.100.97:9103"
]
}
```

6. From the directory where you cloned the DSE Metrics Collector repository, start and attach the Docker containers. This command also starts the included Prometheus and Grafana servers.

```bash
$ docker-compose up
```

7. View the Prometheus and Grafana dashboards where DSE Metrics Collector is reporting metrics:

   a. Open a browser and navigate to `http://localhost:9090/targets` to view the Prometheus dashboard, which displays each DSE node as a target.
b. Open a browser and navigate to http://localhost:3000/dashboards to view the Grafana dashboards that are linked to local Prometheus data source.

8. List the name of all Docker containers to obtain the container IDs for the Prometheus and Grafana images:

```
$ docker ps -a
```

<table>
<thead>
<tr>
<th>CONTAINER ID</th>
<th>IMAGE</th>
<th>COMMAND</th>
</tr>
</thead>
<tbody>
<tr>
<td>78d3324982ba</td>
<td>grafana/grafana</td>
<td>&quot;/run.sh&quot;</td>
</tr>
<tr>
<td>aadc3d4ad1d1</td>
<td>prom/prometheus</td>
<td>&quot;/bin/prometheus --c...&quot;</td>
</tr>
</tbody>
</table>

The Grafana dashboards display metrics for the defined clusters.

**Manually exporting and visualizing metrics with Prometheus**

After configuring DSE Metrics Collector, you can export metrics and visualize them in a dashboard. In the following examples, Prometheus is the monitoring solution and Grafana is used as the dashboard. However, other monitoring and visualization tools can be used with DSE Metrics Collector.

If you already have a Prometheus server running, this method of exporting and visualizing metrics enables use of the existing server.

**Prerequisites:**

1. If necessary, Download and install DSE 5.1.13 (page 145) or later.

2. Download and install Prometheus, which is used as the monitoring solution, or use a Prometheus server that is already running.

3. Download and install Grafana, which is used as the visualization dashboard.

4. Download the prometheus.yaml file from GitHub and save it in a directory on the server where Prometheus is running. The prometheus.yaml file is preconfigured to scrape metrics reported by DSE Metrics Collector. Each metric uses a specific regex for the metric type.

5. Download the tg_dse.json file and save it in the same directory as the prometheus.yaml file. The prometheus.yaml file references this file to obtain the IP addresses for each cluster node.

6. Download the JSON files for the preconfigured Grafana dashboards provided by DataStax. Place these files in a local directory that is accessible.

**Quick check**
On the server where Prometheus is running, the `prometheus.yaml` file and the `tg_dse.json` file are collocated in the same directory.

1. To enable the Prometheus server, create a configuration file on a DataStax Enterprise (DSE) cluster that DSE Metrics Collector reads from.
   a. Create a `prometheus.conf` file in one of the following directories:
      - **Tarball**: `installation_location/resources/dse/collectd/etc/collectd`
      - **Package**: `/etc/dse/collectd`

      ```
 $ sudo touch prometheus.conf

 Tip: If the `/collectd` directory does not exist, create it, and then create the `prometheus.conf` file.
      ```

   b. Add the following code to the `prometheus.conf` configuration file and save it:

      ```
 $ vi prometheus.conf

 LoadPlugin write_prometheus

 <Plugin write_prometheus>
 Port "9103"
 </Plugin>
      ```

   c. On any node in the cluster, disable and re-enable DSE Metrics Collector to propagate the changes:

      ```
 $ dsetool insights_config --mode DISABLED

 Note: Disabling DSE Metrics Collector can take up to 30 seconds to propagate across the cluster. Wait at least 30 seconds before re-enabling DSE Metrics Collector.
      ```

      ```
 $ dsetool insights_config --mode ENABLED_WITH_LOCAL_STORAGE
      ```

2. Modify the downloaded `tg_dse.json` file to include the IP address of each node in the cluster under “targets”. The list of IP addresses is comma-delimited, and each IP address must be enclosed in double quotes.

      ```
 $ vi tg_dse.json

 [

 "targets": [
      ```
3. Start Prometheus with the --config option to specify the prometheus.yaml file you downloaded from the DSE Metrics Collector Dashboards repository. For example, if you saved the prometheus.yaml file in the /etc/dse/tmp directory, the command would look like this:

```
$./prometheus --config.file=/etc/dse/tmp/prometheus.yaml
```

4. Verify the Prometheus and Grafana targets:

   a. Open a browser and navigate to http://prometheus_server_IP_address:9090, where
      prometheus_server_IP_address is the IP address where the Prometheus server is running, and 9090 is the default port where Prometheus runs.

   b. Navigate to http://prometheus_server_IP_address:9090/targets to view the targets that Prometheus is monitoring. Each of the nodes specified in the tg_dse.json file displays as an endpoint, with the current status and last scrape time.

5. After verifying that Prometheus is scraping the endpoints where DSE Metrics Collector is running, start Grafana and enable the Prometheus plugin, which is included with Grafana by default (separate installation not required).

   Note: You must have Admin privileges for your organization to add data sources in Grafana.

   a. Log in to your Grafana instance at http://grafana_server_IP_address:3000, where grafana_server_IP_address is the IP address where your Grafana server is running.

   b. Open the side menu by clicking the Grafana icon in the upper left.

   c. In the side menu, select Configuration#Data Sources.

   d. On the Configuration page, click Add data source.

   e. Enter a name for your data source.

   f. Select Prometheus as the data source Type.
g. Enter the URL where your Prometheus server is running.

h. Select Server or Browser, depending on where your Prometheus instance is running.

i. Click Save & Test.

6. Create a Grafana dashboard using the Prometheus data source.

   a. Log in to your Grafana instance.

   b. In the side menu, click Create#Import.

   c. Click Upload .json file and select the one of the JSON files you downloaded. For example, dse-cluster-condensed.json.

   d. Enter a name for the dashboard and click Import.

The dashboard displays in your Grafana instance.

![](image)

**nodetool**

**About the nodetool utility**

The nodetool utility is a command-line interface for monitoring a cluster and performing routine database operations. It is typically run from an operational node.
The nodetool utility supports the most important JMX metrics and operations, and includes other useful commands for cluster administration, such as the proxyhistogram command (page 1007).

Command formats

$ nodetool [options] command [args]

Tarball and Installer No-Services path:

installation_location/resources/cassandra/bin

Connection options

Connection options specify how to connect and authenticate for all nodetool commands:

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Username.</td>
</tr>
<tr>
<td>--</td>
<td></td>
<td>Separates command parameters from a list of options.</td>
</tr>
</tbody>
</table>

Note:

- If a username and password for RMI authentication are set explicitly in the cassandra-env.sh file for the host, then you must specify credentials.
- The repair and rebuild commands can affect multiple nodes in the cluster.
- Most nodetool commands operate on a single node in the cluster if -h is not used to identify one or more other nodes. If the node from which you issue the command is the intended target, you do not need the -h option to identify the target; otherwise, for remote invocation, identify the target node, or nodes, using -h.

Example:

$ nodetool -u username -pw password deserializing demo_keyspace

cassandra-env.sh
The location of the cassandra-env.sh file depends on the type of installation:

<table>
<thead>
<tr>
<th>Package installations</th>
<th>/etc/dse/cassandra/cassandra-env.sh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer-Services installations</td>
<td></td>
</tr>
</tbody>
</table>
DataStax Enterprise tools

Using nodetool command help

**nodetool help**
Provides a listing of nodetool commands.

**nodetool help command name**
Provides help on a specific command. For example:
```
 nodetool help upgradesstables
```
For more information, see [nodetool help (page 994)](page994).

**nodetool abortrebuild**

Abort a currently running rebuild operation that was started on the connected node.
Completes processing of active streams, but no new streams are started. The abort operation is logged with an optional reason comment.

**Synopsis**
```
$ nodetool connection_options abortrebuild [-r 'log_comment']
```

**Connection options**

Connection options specify how to connect and authenticate for all nodetool commands:

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Username.</td>
</tr>
<tr>
<td>--</td>
<td></td>
<td>Separates command parameters from a list of options.</td>
</tr>
</tbody>
</table>

**Note:**
- If a username and password for RMI authentication are set explicitly in the cassandra-env.sh file for the host, then you must specify credentials.
- The repair and rebuild commands can affect multiple nodes in the cluster.
- Most nodetool commands operate on a single node in the cluster if -h is not used to identify one or more other nodes. If the node from which you issue the command is the intended target, you do not need the -h option to identify the...
DataStax Enterprise tools

target; otherwise, for remote invocation, identify the target node, or nodes, using `-h`.

Example:

```
$ nodetool -u username -pw password describering demo_keyspace
```

cassandra-env.sh

The location of the `cassandra-env.sh` file depends on the type of installation:

<table>
<thead>
<tr>
<th>Package installations</th>
<th>/etc/dse/cassandra/cassandra-env.sh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer-Services installations</td>
<td></td>
</tr>
<tr>
<td>Tarball installations</td>
<td><code>installation_location/resources/cassandra/conf/cassandra-env.sh</code></td>
</tr>
<tr>
<td>Installer-No Services installations</td>
<td></td>
</tr>
</tbody>
</table>

`-r 'log_comment', --reason 'log_comment'`

Comment added to log.

**nodetool assassinate**

Forcefully removes a dead node without re-replicating any data. It is a last resort tool if you cannot successfully use `nodetool removenode` *(page 1018)*.

**Synopsis**

```
$ nodetool [options] assassinate <ip_address>
```

**Tarball and Installer No-Services path:**

```
installation_location/resources/cassandra/bin
```

**Table 64: Options**

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td>ip_address</td>
<td></td>
<td>IP address of the endpoint to assassinate.</td>
</tr>
<tr>
<td>--</td>
<td></td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
</tr>
</tbody>
</table>
Note:

- For tarball installations, execute the command from the `installation_location/bin` directory.
- If a username and password for RMI authentication are set explicitly in the `cassandra-env.sh` file for the host, then you must specify credentials.
- `nodetool assassinate` operates on a single node in the cluster if `-h` is not used to identify one or more other nodes. If the node from which you issue the command is the intended target, you do not need the `-h` option to identify the target; otherwise, for remote invocation, identify the target node, or nodes, using `-h`.

Description

The `nodetool assassinate` command is a tool of last resort. Only use this tool to remove a node from a cluster when `removenode` is not successful.

Examples

```
$ nodetool -u username -pw password assassinate 192.168.100.2
```

**nodetool bootstrap**

Monitor and manage a node’s bootstrap process.

Synopsis

```
$ nodetool [options] bootstrap [resume]
```

Tarball and Installer No-Services path:

```
installation_location/resources/cassandra/bin
```

**Table 65: Options**

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td>--</td>
<td>Separates an option from an argument that could be mistaken for an option.</td>
<td></td>
</tr>
</tbody>
</table>
Note:

- For tarball installations, execute the command from the installation_location/bin directory.
- If a username and password for RMI authentication are set explicitly in the cassandra-env.sh file for the host, then you must specify credentials.
- nodetool bootstrap operates on a single node in the cluster if -h is not used to identify one or more other nodes. If the node from which you issue the command is the intended target, you do not need the -h option to identify the target; otherwise, for remote invocation, identify the target node, or nodes, using -h.

Description

The nodetool bootstrap command can be used to monitor and manage a node's bootstrap process. If no argument is defined, the help information is displayed. If the argument resume is used, bootstrap streaming is resumed.

Examples

```
$ nodetool -u username -pw password bootstrap resume
```

cassandra-env.sh

The location of the cassandra-env.sh file depends on the type of installation:

<table>
<thead>
<tr>
<th>Type of Installation</th>
<th>File Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package installations</td>
<td>/etc/dse/cassandra/cassandra-env.sh</td>
</tr>
<tr>
<td>Installer-Services installations</td>
<td></td>
</tr>
<tr>
<td>Tarball installations</td>
<td>installation_location/resources/cassandra/conf/cassandra-env.sh</td>
</tr>
<tr>
<td>Installer-No Services installations</td>
<td></td>
</tr>
</tbody>
</table>

nodetool cfhistograms

This tool has been renamed to nodetool tablehistograms (page 1062).

nodetool cfstats

This tool has been renamed to nodetool tablestats (page 1063).

nodetool cleanup

Cleans up keyspaces and partition keys no longer belonging to a node.

Synopsis

```
$ nodetool <options> cleanup -- <keyspace> (<table> ...)
```

Tarball and Installer No-Services path:

`installation_location/resources/cassandra/bin`
**Table 66: Options**

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-j</td>
<td>--job</td>
<td>Number of sstables to cleanup simultaneously; 0 uses all available compaction threads.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td>keyspace</td>
<td></td>
<td>Keyspace name.</td>
</tr>
<tr>
<td>table</td>
<td></td>
<td>One or more table names, separated by a space.</td>
</tr>
<tr>
<td>--</td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
<td></td>
</tr>
</tbody>
</table>

**Description**

Use this command to remove unwanted data after adding a new node to the cluster. DataStax Enterprise does not automatically remove data from nodes that lose part of their partition range to a newly added node. Run `nodetool cleanup` on the source node and on neighboring nodes that shared the same subrange after the new node is up and running. Failure to run this command after adding a node causes the database to include the old data to rebalance the load on that node. Running the `nodetool cleanup` command causes a temporary increase in disk space usage proportional to the size of your largest SSTable. Disk I/O occurs when running this command.

 Optionally, this command takes a list of table names. If you do not specify a keyspace, this command cleans all keyspaces no longer belonging to a node.

### nodetool clearsnapshot

Removes one or more snapshots.

**Synopsis**

```
$ nodetool <options> clearsnapshot -t <snapshot> -- <keyspace> ...
```

**Tarball and Installer No-Services path:**

```
installation_location/resources/cassandra/bin
```
### Table 67: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td>-t</td>
<td></td>
<td>Remove the snapshot with a designated name.</td>
</tr>
<tr>
<td>keyspace</td>
<td></td>
<td>Remove snapshots from the designated keyspaces, separated by a space.</td>
</tr>
<tr>
<td>snapshot</td>
<td></td>
<td>Name of the snapshot.</td>
</tr>
<tr>
<td>--</td>
<td></td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
</tr>
</tbody>
</table>

**Description**

Deletes snapshots in one or more keyspaces. To remove all snapshots, omit the snapshot name.

**nodetool compact**

Forces a major compaction on one or more tables.

**Synopsis**

```
$ nodetool [options] compact [(-et <end_token> | --end-token <end_token>)]
[(--split-output)] [(-s | --split-output) [(-st <start_token> | --start-token <start_token>)]] [--] [<keyspace> [<tables>...]]
[--user-defined] <relative_path_to_SSTable file>...
```

**Tarball and Installer No-Services path:**

```
installation_location/resources/cassandra/bin
```

**Common options**

These options apply to all nodetool commands.
Table 68: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Remote JMX agent port number.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent user name.</td>
</tr>
<tr>
<td>--</td>
<td></td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
</tr>
</tbody>
</table>

Note:
- For tarball installations, execute the command from the `installation_location/bin` directory.
- If a username and password for RMI authentication are set explicitly in the `cassandra-env.sh` file for the host, then you must specify credentials.

Compact options

The following options are specific to the compact command:

Table 69: compact options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-et token</td>
<td>--end-token token</td>
<td>Specify a token at which the compaction range ends. Requires start token (-st).</td>
</tr>
<tr>
<td>-st token</td>
<td>--start-token token</td>
<td>Specify a token at which the compaction range starts. Requires end token (-et).</td>
</tr>
<tr>
<td>-s</td>
<td>--split-output</td>
<td>Split output when using STCS to files that are 50%-25%-12.5% and so on of the total size.</td>
</tr>
</tbody>
</table>

Note:
- For STCS, excluding the -s option creates a single large SSTable.
- For DTCS, using -s has no effect; a single file is still created.
<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>keyspace [tables]</td>
<td>Run compaction on an entire keyspace or specified tables; use a space to separate table names.</td>
</tr>
<tr>
<td></td>
<td>--user-defined sstable filenames</td>
<td>Run compaction on one or more SSTables. Specify the relative paths and file names.</td>
</tr>
</tbody>
</table>

**Description**

This command starts the *compaction process* on tables using SizeTieredCompactionStrategy (STCS), TimeWindowCompactionStrategy (TWCS), or Leveled compaction (LCS):

- If you do not specify a keyspace or table, a major compaction is run on all keyspaces and tables.
- If you specify only a keyspace, a major compaction is run on all tables in that keyspace.
- If you specify one or more tables, a major compaction is run on those tables.

Major compactions may behave differently depending which compaction strategy is used for the affected tables:

- **SizeTieredCompactionStrategy (STCS)**: The default compaction strategy. This strategy triggers a minor compaction when there are a number of similar sized SSTables on disk as configured by the table subproperty, `min_threshold`. A minor compaction does not involve all the tables in a keyspace. Also see **STCS compaction subproperties**.
- **DateTieredCompactionStrategy (DTCS) (deprecated).** (deprecated)
- **TimeWindowCompactionStrategy (TWCS)** This strategy is an alternative for time series data. TWCS compacts SSTables using a series of *time windows*. While with a time window, TWCS compacts all SSTables flushed from memory into larger SSTables using STCS. At the end of the time window, all of these SSTables are compacted into a single SSTable. Then the next time window starts and the process repeats. The duration of the time window is the only setting required. See **TWCS compaction subproperties**. For more information about TWCS, see How is data maintained?.
- **LeveledCompactionStrategy (LCS)**: The leveled compaction strategy creates SSTables of a fixed, relatively small size (160 MB by default) that are grouped into levels. Within each level, SSTables are guaranteed to be non-overlapping. Each level (L0, L1, L2 and so on) is 10 times as large as the previous. Disk I/O is more uniform and predictable on higher than on lower levels as SSTables are continuously being compacted into progressively larger levels. At each level, row keys are merged into non-overlapping SSTables in the next level. This process can improve performance for reads, because the database can determine which SSTables in each level to check for the existence of row key data. This compaction strategy is modeled after Google’s LevelDB implementation. Also see **LCS compaction subproperties**.

For more details, see How is data maintained? and Configuring compaction (page 1353).
Note: A major compaction incurs considerably more disk I/O than minor compactions.

nodetool compactionhistory

Provides the history of compaction operations.

Synopsis

```
$ nodetool connection_options compactionhistory [-F (json | yaml) | --format (json | yaml)]
```

Connection options

Connection options specify how to connect and authenticate for all nodetool commands:

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Username.</td>
</tr>
<tr>
<td>--</td>
<td></td>
<td>Separates command parameters from a list of options.</td>
</tr>
</tbody>
</table>

Note:

- If a username and password for RMI authentication are set explicitly in the cassandra-env.sh file for the host, then you must specify credentials.
- The repair and rebuild commands can affect multiple nodes in the cluster.
- Most nodetool commands operate on a single node in the cluster if -h is not used to identify one or more other nodes. If the node from which you issue the command is the intended target, you do not need the -h option to identify the target; otherwise, for remote invocation, identify the target node, or nodes, using -h.

Example:

```
$ nodetool -u username -pw password describering demo_keyspace
```

cassandra-env.sh
The location of the cassandra-env.sh file depends on the type of installation:

<table>
<thead>
<tr>
<th>Package installations</th>
<th>/etc/dse/cassandra/cassandra-env.sh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer-Services installations</td>
<td>/etc/dse/cassandra/cassandra-env.sh</td>
</tr>
</tbody>
</table>
DataStax Enterprise tools

<table>
<thead>
<tr>
<th>Tarball installations</th>
<th>installation_location/resources/cassandra/conf/cassandra-env.sh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer-No Services installations</td>
<td></td>
</tr>
</tbody>
</table>

**compactionhistory options**

Options of the `compactionhistory` command:

- `-F (json | yaml)`, `--format (json | yaml)`
  Specifies the format for the output, use either `json` or `yaml`. The default is plain text.

**Example**

The actual output of compaction history is seven columns wide. The first three columns show the id, keyspace name, and table name of the compacted SSTable.

```bash
$ nodetool compactionhistory
```

<table>
<thead>
<tr>
<th>Compaction History:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>keyspace_name</td>
</tr>
<tr>
<td></td>
<td>columnfamily_name</td>
</tr>
<tr>
<td>d06f7080-07a5-11e4-9b36-abc3a0ec9088</td>
<td>system</td>
</tr>
<tr>
<td>schema_columnfamilies</td>
<td></td>
</tr>
<tr>
<td>d198ae40-07a5-11e4-9b36-abc3a0ec9088</td>
<td>libdata</td>
</tr>
<tr>
<td>0381bc30-07b0-11e4-9b36-abc3a0ec9088</td>
<td>Keyspace1</td>
</tr>
<tr>
<td>74eb69b0-0621-11e4-9b36-abc3a0ec9088</td>
<td>local</td>
</tr>
<tr>
<td>e35dd980-07ae-11e4-9b36-abc3a0ec9088</td>
<td>system</td>
</tr>
<tr>
<td>compactions_in_progress</td>
<td></td>
</tr>
<tr>
<td>8d5cf160-07ae-11e4-9b36-abc3a0ec9088</td>
<td>system</td>
</tr>
<tr>
<td>ba376020-07af-11e4-9b36-abc3a0ec9088</td>
<td>Keyspace1</td>
</tr>
<tr>
<td>d18cc760-07a5-11e4-9b36-abc3a0ec9088</td>
<td>libdata</td>
</tr>
<tr>
<td>64009bf0-07a4-11e4-9b36-abc3a0ec9088</td>
<td>libdata</td>
</tr>
<tr>
<td>d04700f0-07a5-11e4-9b36-abc3a0ec9088</td>
<td>system</td>
</tr>
<tr>
<td>sstable_activity</td>
<td></td>
</tr>
<tr>
<td>c2a97370-07a9-11e4-9b36-abc3a0ec9088</td>
<td>libdata</td>
</tr>
<tr>
<td>cb928a80-07ae-11e4-9b36-abc3a0ec9088</td>
<td>Keyspace1</td>
</tr>
<tr>
<td>cd8d1540-079e-11e4-9b36-abc3a0ec9088</td>
<td>system</td>
</tr>
<tr>
<td>schema_columns</td>
<td></td>
</tr>
<tr>
<td>62ced2b0-07a4-11e4-9b36-abc3a0ec9088</td>
<td>system</td>
</tr>
<tr>
<td>schema_keyspaces</td>
<td></td>
</tr>
<tr>
<td>d19ccccf0-07a5-11e4-9b36-abc3a0ec9088</td>
<td>system</td>
</tr>
<tr>
<td>compactions_in_progress</td>
<td></td>
</tr>
<tr>
<td>640bfbf80-07a4-11e4-9b36-abc3a0ec9088</td>
<td>libdata</td>
</tr>
<tr>
<td>6cd5ae60-07ae-11e4-9b36-abc3a0ec9088</td>
<td>Keyspace1</td>
</tr>
<tr>
<td>c2924f0-07a9-11e4-9b36-abc3a0ec9088</td>
<td>libdata</td>
</tr>
<tr>
<td>c2a30ad0-07a9-11e4-9b36-abc3a0ec9088</td>
<td>system</td>
</tr>
<tr>
<td>compactions_in_progress</td>
<td></td>
</tr>
<tr>
<td>e3a6d920-079d-11e4-9b36-abc3a0ec9088</td>
<td>system</td>
</tr>
<tr>
<td>schema_keyspaces</td>
<td></td>
</tr>
<tr>
<td>62c55cd0-07a4-11e4-9b36-abc3a0ec9088</td>
<td>system</td>
</tr>
<tr>
<td>schema_columnfamilies</td>
<td></td>
</tr>
</tbody>
</table>
The four columns to the right of the table name show the timestamp, size of the SSTable before and after compaction, and the number of partitions merged. The notation means \{tables:rows\}. For example: \{1:3, 3:1\} means 3 rows were taken from one SSTable (1:3) and 1 row taken from 3 SSTables (3:1) to make the one SSTable in that compaction operation.
nodetool compactionstats

Provide statistics about a compaction.

Synopsis

$ nodetool options compactionstats

Table 70: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td>-H</td>
<td>--human-readable</td>
<td>Display bytes in human readable form: KiB (kibibyte), MiB (mebibyte), GiB (gibibyte), TiB (tebibyte).</td>
</tr>
</tbody>
</table>

Description

The total column shows the total number of uncompressed bytes of SSTables being compacted. The system log lists the names of the SSTables compacted.
Example

$ nodetool compactionstats

<table>
<thead>
<tr>
<th>pending tasks: 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>compaction type</td>
</tr>
<tr>
<td>total</td>
</tr>
<tr>
<td>Compaction</td>
</tr>
<tr>
<td>302170540 bytes</td>
</tr>
<tr>
<td>Compaction</td>
</tr>
<tr>
<td>307520780 bytes</td>
</tr>
<tr>
<td>Active compaction remaining time : 0h00m16s</td>
</tr>
</tbody>
</table>

**nodetool decommission**

Deactivates a node by streaming its data to another node.

Causes a live node to decommission itself, streaming its data to the next node on the ring. See Decommissioning a datacenter (page 1302), Removing a node (page 1305), and Adding a node and then decommissioning the old node (page 1300).

**Tip:** Use nodetool nodetool netstats (page 1005) to monitor the progress.

**Note:** Decommission does not shutdown the node, shutdown the node after decommission has completed.

**Synopsis**

$ nodetool options decommission [-f | --force]

**Tarball and Installer No-Services path:**

`installation_location/resources/cassandra/bin`

**Table 71: Options**

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td>--</td>
<td></td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
</tr>
<tr>
<td>-f</td>
<td>--force</td>
<td></td>
</tr>
</tbody>
</table>

- **f, --force**
DataStax Enterprise tools

Force decommission of this node even when it reduces the number of replicas to below configured RF.

**nodetool describecluster**

Provide the name, snitch, partitioner and schema version of a cluster

**Synopsis**

```
$ nodetool <options> describecluster -- <datacenter>
```

**Tarball and Installer No-Services path:**

`installation_location/resources/cassandra/bin`

**Table 72: Options**

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td>--</td>
<td></td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
</tr>
</tbody>
</table>

**Description**

Describe cluster is typically used to validate the schema after upgrading. If a schema disagreement occurs, check for and resolve schema disagreements.

**Example**

```
$ nodetool describecluster
```

Cluster Information:
Name: Test Cluster
Snitch: org.apache.cassandra.locator.DynamicEndpointSnitch
Partitioner: org.apache.cassandra.dht.Murmur3Partitioner
Schema versions:
65e78f0e-e81e-30d8-a631-a65dff93bf82: [127.0.0.1]

If a schema disagreement occurs, the last line of the output includes information about unreachable nodes.
$ nodetool describecluster

Cluster Information:
Name: Production Cluster
    Snitch: org.apache.cassandra.locator.DynamicEndpointSnitch
    Partitioner: org.apache.cassandra.dht.Murmur3Partitioner
    Schema versions:
        UNREACHABLE: 1176b7ac-8993-395d-85fd-41b89ef49fbb:
        [10.202.205.203]

**nodetool describering**

Provides the partition ranges of a keyspace.

**Synopsis**

$ nodetool <options> describering -- <keyspace>

**Tarball and Installer No-Services path:**

installation_location/resources/cassandra/bin

**Table 73: Options**

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td><strong>keyspace</strong></td>
<td></td>
<td>Name of keyspace.</td>
</tr>
<tr>
<td>--</td>
<td></td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
</tr>
</tbody>
</table>

**Example**

This example shows the sample output of the command on a three-node cluster.

$ nodetool describering demo_keyspace

Schema Version:1b04bd14-0324-3fc8-8bcb-9256d1e15f82
TokenRange:
If a schema disagreement occurs, the last line of the output includes information about unreachable nodes.

```
$ nodetool describecluster
```

Cluster Information:
Name: Production Cluster
    Snitch: org.apache.cassandra.locator.DynamicEndpointSnitch
    Partitioner: org.apache.cassandra.dht.Murmur3Partitioner
    Schema versions:
        UNREACHABLE: 1176b7ac-8993-395d-85fd-41b89ef49fbb:
        [10.202.205.203]

**nodetool disableautocompaction**

Disables autocompaction for a keyspace and one or more tables on the current node only.

**Synopsis**

```
$ nodetool main_options
```
disableautocompaction [--] [keyspace_name [table_name ...]]

Tarball and Installer No-Services path:

installation_location/resources/cassandra/bin

Connection options

Connection options specify how to connect and authenticate for all nodetool commands:

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Username.</td>
</tr>
<tr>
<td></td>
<td>--</td>
<td>Separates command parameters from a list of options.</td>
</tr>
</tbody>
</table>

Note:

- If a username and password for RMI authentication are set explicitly in the cassandra-env.sh file for the host, then you must specify credentials.
- The repair and rebuild commands can affect multiple nodes in the cluster.
- Most nodetool commands operate on a single node in the cluster if -h is not used to identify one or more other nodes. If the node from which you issue the command is the intended target, you do not need the -h option to identify the target; otherwise, for remote invocation, identify the target node, or nodes, using -h.

Example:

$ nodetool -u username -pw password describering demo_keyspace

cassandra-env.sh
The location of the cassandra-env.sh file depends on the type of installation:

<table>
<thead>
<tr>
<th>Package installations</th>
<th>Installer-Services installations</th>
</tr>
</thead>
<tbody>
<tr>
<td>/etc/dse/cassandra/cassandra-env.sh</td>
<td></td>
</tr>
</tbody>
</table>
nodetool disablebackup

Disables incremental backup.

Synopsis

$ nodetool <options> disablebackup

Table 74: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td>--</td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
<td></td>
</tr>
</tbody>
</table>

nodetool disablebinary

Disables the native transport.

Synopsis

$ nodetool <options> disablebinary

Table 75: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
</tbody>
</table>
### DataStax Enterprise tools

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td>--</td>
<td></td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
</tr>
</tbody>
</table>

#### Description

Disables the binary protocol, also known as the native transport.

**nodetool disablegossip**

Disables the gossip protocol.

#### Synopsis

```
$ nodetool <options> disablegossip
```

#### Tarball and Installer No-Services path:

`installation_location/resources/cassandra/bin`

#### Table 76: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td>--</td>
<td></td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
</tr>
</tbody>
</table>

#### Description

This command effectively marks the node as being down.

**nodetool disablehandoff**

Disables storing of future hints on the current node.
DataStax Enterprise tools

Synopsis

$ nodetool <options> disablehandoff

Tarball and Installer No-Services path:

installation_location/resources/cassandra/bin

Table 77: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td>--</td>
<td></td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
</tr>
</tbody>
</table>

**nodetool disablehintsfordc**

Disable hints for a datacenter.

Synopsis

$ nodetool [options] disablehintsfordc [--] <datacenter>

Tarball and Installer No-Services path:

installation_location/resources/cassandra/bin

Table 78: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td>datacenter</td>
<td></td>
<td>The datacenter to disable.</td>
</tr>
<tr>
<td>Short</td>
<td>Long</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>--</td>
<td></td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
</tr>
</tbody>
</table>

**Note:**

- For tarball installations, execute the command from the `installation_location/bin` directory.
- If a username and password for RMI authentication are set explicitly in the `cassandra-env.sh` file for the host, then you must specify credentials.
- `nodetool disablehintsfor_dc` operates on a single node in the cluster if `-h` is not used to identify one or more other nodes. If the node from which you issue the command is the intended target, you do not need the `-h` option to identify the target; otherwise, for remote invocation, identify the target node, or nodes, using `-h`.
- `[--]` can be used to separate command-line options from the list of arguments, when the list might be mistaken for options.

**Description**

The `nodetool disablehintsfor_dc` command is used to turn off hints for a datacenter. This can be useful if there is a downed datacenter, but hints should continue on other datacenters. Another common case is during datacenter failover, when hints will put unnecessary pressure on the datacenter.

**Examples**

```
$ nodetool -u username -pw password disablehintsfor_dc DC2
```

cassandra-env.sh

The location of the `cassandra-env.sh` file depends on the type of installation:

<table>
<thead>
<tr>
<th>Package installations</th>
<th>/etc/dse/cassandra/cassandra-env.sh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer-Services installations</td>
<td>/etc/dse/cassandra/cassandra-env.sh</td>
</tr>
<tr>
<td>Tarball installations</td>
<td>installation_location/resources/cassandra/conf/cassandra-env.sh</td>
</tr>
<tr>
<td>Installer-No Services installations</td>
<td>installation_location/resources/cassandra/conf/cassandra-env.sh</td>
</tr>
</tbody>
</table>

**nodetool disablethrift**

Disables the Thrift server.

**Synopsis**

```
$ nodetool [options] disablethrift
```

Tarball and Installer No-Services path:
DataStax Enterprise tools

installation_location/resources/cassandra/bin

Table 79: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
</tr>
</tbody>
</table>

Note:

- For tarball installations, execute the command from the installation_location/bin directory.
- If a username and password for RMI authentication are set explicitly in the cassandra-env.sh file for the host, then you must specify credentials.
- nodetool disablethrift operates on a single node in the cluster if -h is not used to identify one or more other nodes. If the node from which you issue the command is the intended target, you do not need the -h option to identify the target; otherwise, for remote invocation, identify the target node, or nodes, using -h.

Description

nodetool disablethrift will disable thrift on a node preventing the node from acting as a coordinator. The node can still be a replica for a different coordinator and data read at consistency level ONE could be stale. To cause a node to ignore read requests from other coordinators, nodetool disablegossip would also need to be run. However, if both commands are run, the node will not perform repairs, and the node will continue to store stale data. If the goal is to repair the node, set the read operations to a consistency level of QUORUM or higher while you run repair. An alternative approach is to delete the node’s data and restart the DataStax Enterprise process.

Note that the nodetool commands using the -h option will not work remotely on a disabled node until nodetool enablethrift and nodetool enablegossip are run locally on the disabled node.
Examples

$ nodetool -u username -pw password disablethrift 192.168.100.1

nodetool drain

Drains the node.

Synopsis

$ nodetool <options> drain

Table 80: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td>--</td>
<td></td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
</tr>
</tbody>
</table>

Description

Flushes all memtables from the node to SSTables on disk. DataStax Enterprise (DSE) stops listening for connections from the client and other nodes. You need to restart DSE after running nodetool drain. You typically use this command before upgrading a node to a new version of DSE. To simply flush memtables to disk, use nodetool flush.

nodetool enableautocompaction

Enables autocompaction for a keyspace and one or more tables.

Synopsis

$ nodetool <options> enableautocompaction -- <keyspace> ( <table> ... )

Tarball and Installer No-Services path:

installation_location/resources/cassandra/bin
Table 81: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
</tbody>
</table>

**keyspace** Name of keyspace.

**table** One or more table names, separated by a space.

**--** Separates an option from an argument that could be mistaken for a option.

**Description**

The keyspace can be followed by one or more tables. Enables compaction for the named keyspace or the current keyspace, and one or more named tables, or all tables.

**nodetool enablebackup**

Enables incremental backup.

**Synopsis**

```
$ nodetool <options> enablebackup
```

**Tarball and Installer No-Services path:**

```
installation_location/resources/cassandra/bin
```

Table 82: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
</tbody>
</table>
DataStax Enterprise tools

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
<td>--</td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
</tr>
</tbody>
</table>

**nodetool enablebinary**

Re-enables native transport.

**Synopsis**

```
$ nodetool main_options enablebinary
```

**Connection options**

Connection options specify how to connect and authenticate for all nodetool commands:

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Username.</td>
</tr>
<tr>
<td>--</td>
<td></td>
<td>Separates command parameters from a list of options.</td>
</tr>
</tbody>
</table>

**Note:**

- If a username and password for RMI authentication are set explicitly in the cassandra-env.sh file for the host, then you must specify credentials.
- The repair and rebuild commands can affect multiple nodes in the cluster.
- Most nodetool commands operate on a single node in the cluster if -h is not used to identify one or more other nodes. If the node from which you issue the command is the intended target, you do not need the -h option to identify the target; otherwise, for remote invocation, identify the target node, or nodes, using -h.

**Example:**

```
$ nodetool -u username -pw password describering demo_keyspace
```

cassandra-env.sh

The location of the cassandra-env.sh file depends on the type of installation:
DataStax Enterprise tools

<table>
<thead>
<tr>
<th>Package installations</th>
<th>/etc/dse/cassandra/cassandra-env.sh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer-Services installations</td>
<td>/etc/dse/cassandra/cassandra-env.sh</td>
</tr>
<tr>
<td>Tarball installations</td>
<td>installation_location/resources/cassandra/conf/cassandra-env.sh</td>
</tr>
<tr>
<td>Installer-No Services installations</td>
<td>installation_location/resources/cassandra/conf/cassandra-env.sh</td>
</tr>
</tbody>
</table>

**Description**

Re-enables the binary protocol, also known as native transport.

**nodetool enablegossip**

Re-enables gossip.

**Synopsis**

```
$ nodetool <options> enablegossip
```

**Tarball and Installer No-Services path:**

```
installation_location/resources/cassandra/bin
```

**Table 83: Options**

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td></td>
<td>--</td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
</tr>
</tbody>
</table>

**nodetool enablehandoff**

Re-enables the storing of future hints on the current node.

**Synopsis**

```
$ nodetool <options> enablehandoff
```

**Tarball and Installer No-Services path:**

```
installation_location/resources/cassandra/bin
```
### Table 84: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td>--</td>
<td></td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
</tr>
</tbody>
</table>

nodetool enablehintsfordc

Enable hints for a datacenter.

Synopsis

```
$ nodetool [options] enablehintsfordc [--] <datacenter>
```

Tarball and Installer No-Services path:

```
installation_location/resources/cassandra/bin
```

### Table 85: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td>datacenter</td>
<td></td>
<td>The datacenter to enable.</td>
</tr>
<tr>
<td>--</td>
<td></td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
</tr>
</tbody>
</table>

**Note:**

- For tarball installations, execute the command from the
  `installation_location/bin` directory.
• If a username and password for RMI authentication are set explicitly in the cassandra-env.sh file for the host, then you must specify credentials.

• nodetool enablehintsfordc operates on a single node in the cluster if -h is not used to identify one or more other nodes. If the node from which you issue the command is the intended target, you do not need the -h option to identify the target; otherwise, for remote invocation, identify the target node, or nodes, using -h.

• [---] can be used to separate command-line options from the list of arguments, when the list might be mistaken for options.

Description

The nodetool enablehintsfordc command is used to turn on hints for a datacenter. The cassandra.yaml file has a parameter, hinted_handoff_disabled_datacenters (page 223) that will blacklist datacenters on startup. If a datacenter can be enabled later with nodetool enablehintsfordc.

Examples

$ nodetool -u username -pw password enablehintsfordc DC2

cassandra-env.sh

The location of the cassandra-env.sh file depends on the type of installation:

| Package installations | /etc/dse/cassandra/cassandra-env.sh |
| Installer-Services installations | 
| Tarball installations | installation_location/resources/cassandra/conf/cassandra-env.sh |
| Installer-No Services installations | 

nodetool enablethrift

Re-enables the Thrift server.

Synopsis

$ nodetool <options> enablethrift

Table 86: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
</tbody>
</table>
### nodetool failuredetector

Shows the failure detector information for the cluster.

**Synopsis**

```
$ nodetool [options] failuredetector
```

**Tarball and Installer No-Services path:**

`installation_location/resources/cassandra/bin`

### Table 87: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td>--</td>
<td></td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
</tr>
</tbody>
</table>

### Description

Shows the failure detector information for the cluster.

### nodetool flush

Flushes one or more tables from the memtable.

**Synopsis**

```
$ nodetool <options> flush -- <keyspace> (<table> ...)
```

**Tarball and Installer No-Services path:**
Table 88: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
</tbody>
</table>

**keyspace** Name of keyspace.

**table** One or more table names, separated by a space.

**--** Separates an option from an argument that could be mistaken for a option.

Description

You can specify a keyspace followed by one or more tables that you want to flush from the memtable to SSTables on disk.

**nodetool garbagecollect**

Remove deleted data from one or more tables.

**Note:** The `nodetool garbagecollect` command is not the same as the **Perform GC** option in OpsCenter.

Synopsis

```
$ nodetool options garbagecollect [--] keyspace_name table_name
```

Tarball and Installer No-Services path:

```
installation_location/resources/cassandra/bin
```
Table 89: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
</table>
| -g    | --granularity | Granularity of garbage removal. 
ROW (default) removes deleted partitions and rows. CELL also removes overwritten or deleted cells. |
| -h    | --host     | Hostname or IP address.                                                    |
| -j    | --jobs     | Number of sstables to cleanup simultaneously, set to 0 to use all available compaction threads. |
| -p    | --port     | Port number.                                                                |
| -pwf  | --password-file | Password file path.                                                      |
| -pw   | --password | Password.                                                                   |
| -u    | --username | Remote JMX agent username.                                                  |

**keyspace_name** Name of keyspace.

**table_name** Name of table.

|-- Separates an option from an argument that could be mistaken for a option.

**nodetool gcstats**

Print garbage collection (GC) statistics.

**Synopsis**

```
$ nodetool [options] gcstats
```

**Tarball and Installer No-Services path:**

```
installation_location/resources/cassandra/bin
```

Table 90: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
</tbody>
</table>

DSE 5.1 Developer Guide Earlier version, latest patch 5.1.15
DataStax Enterprise tools

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td>--</td>
<td></td>
<td>Separates an option from an argument</td>
</tr>
<tr>
<td></td>
<td></td>
<td>that could be mistaken for a option.</td>
</tr>
</tbody>
</table>

**Note:**
- For tarball installations, execute the command from the `installation_location/bin` directory.
- If a username and password for RMI authentication are set explicitly in the `cassandra-env.sh` file for the host, then you must specify credentials.
- `nodetool gcstats` operates on a single node in the cluster if `-h` is not used to identify one or more other nodes. If the node from which you issue the command is the intended target, you do not need the `-h` option to identify the target; otherwise, for remote invocation, identify the target node, or nodes, using `-h`.

**Description**

The `nodetool gcstats` command will print garbage collection statistics that returns values based on all the garbage collection that has run since the last time `nodetool gcstats` was run. Statistics identify the interval time, some GC elapsed time measures, the disk space reclaimed (in megabytes (MB)), number of garbage collections that took place, and direct memory bytes.

**Examples**

```
$ nodetool -u username -pw password gcstats
```

cassandra-env.sh

The location of the `cassandra-env.sh` file depends on the type of installation:

<table>
<thead>
<tr>
<th>Package installations</th>
<th><code>/etc/dse/cassandra/cassandra-env.sh</code></th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer-Services installations</td>
<td><code>/etc/dse/cassandra/cassandra-env.sh</code></td>
</tr>
<tr>
<td>Tarball installations</td>
<td><code>installation_location/resources/cassandra/conf/cassandra-env.sh</code></td>
</tr>
<tr>
<td>Installer-No Services installations</td>
<td><code>installation_location/resources/cassandra/conf/cassandra-env.sh</code></td>
</tr>
</tbody>
</table>

**nodetool getcompactionthreshold**

Provides the minimum and maximum compaction thresholds in megabytes for a table.

**Synopsis**

```
$ nodetool <options> getcompactionthreshold -- <keyspace> <table>
```

Tarball and Installer No-Services path:
installation_location/resources/cassandra/bin

Table 91: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
</tbody>
</table>

`keyspace`  Name of keyspace.
`table`  Name of table.
`--`  Separates an option from an argument that could be mistaken for a option.

**nodetool getcompactionthroughput**

Print the throughput cap in megabytes (MB) per second for compaction in the system.

**Synopsis**

```
$ nodetool [options] getcompactionthroughput
```

**Tarball and Installer No-Services path:**

`installation_location/resources/cassandra/bin`

Table 92: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
</tbody>
</table>
DataStax Enterprise tools

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
<td></td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
</tr>
</tbody>
</table>

Note:

- For tarball installations, execute the command from the `installation_location/bin` directory.
- If a username and password for RMI authentication are set explicitly in the `cassandra-env.sh` file for the host, then you must specify credentials.
- `nodetool getcompactionthroughput` operates on a single node in the cluster if `-h` is not used to identify one or more other nodes. If the node from which you issue the command is the intended target, you do not need the `-h` option to identify the target; otherwise, for remote invocation, identify the target node, or nodes, using `-h`.

Description

The `nodetool getcompactionthroughput` command prints the current compaction throughput.

Examples

```bash
$ nodetool -u username -pw password getcompactionthroughput
```

cassandra-env.sh

The location of the `cassandra-env.sh` file depends on the type of installation:

<table>
<thead>
<tr>
<th>Package installations</th>
<th>/etc/dse/cassandra/cassandra-env.sh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer-Services installations</td>
<td>/etc/dse/cassandra/cassandra-env.sh</td>
</tr>
<tr>
<td>Tarball installations</td>
<td>installation_location/resources/cassandra/conf/cassandra-env.sh</td>
</tr>
<tr>
<td>Installer-No Services installations</td>
<td>installation_location/resources/cassandra/conf/cassandra-env.sh</td>
</tr>
</tbody>
</table>

`nodetool getconcurrentcompactors`

Get the number of concurrent compactors in the system.

Synopsis

```
$ nodetool [options] getconcurrentcompactors
```

Tarball and Installer No-Services path:

`installation_location/resources/cassandra/bin`
Table 93: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td>--</td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
<td></td>
</tr>
</tbody>
</table>

Note:
- For tarball installations, execute the command from the `installation_location/bin` directory.
- If a username and password for RMI authentication are set explicitly in the `cassandra-env.sh` file for the host, then you must specify credentials.

Description
The `nodetool getconcurrentcompactors` command gets the number of concurrent compactors in the system.

Examples

```bash
$ nodetool -u username -pw password getconcurrentcompactors
```

cassandra-env.sh
The location of the `cassandra-env.sh` file depends on the type of installation:

<table>
<thead>
<tr>
<th>Package installations Installer-Services installations</th>
<th>/etc/dse/cassandra/cassandra-env.sh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tarball installations Installer-No Services installations</td>
<td><code>installation_location/resources/cassandra/conf/cassandra-env.sh</code></td>
</tr>
</tbody>
</table>

`nodetool getendpoints`

Provides the IP addresses or names of replicas that own the partition key.

Synopsis

```bash
$ nodetool <options> getendpoints -- <keyspace> <table> key
```

Tarball and Installer No-Services path:
Table 94: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
</tbody>
</table>

keyspace | Name of keyspace. |

| table | Name of table. |

| key | Partition key of the end points you want to get. |

| -- | Separates an option from an argument that could be mistaken for a option. |

Example

For example, which nodes own partition key_1, key_2, and key_3?

Note: The partitioner returns a token for the key. DataStax Enterprise will return an endpoint whether or not data exists on the identified node for that token.

```
$ nodetool -h 127.0.0.1 -p 7100 getendpoints myks mytable key_1
127.0.0.2

$ nodetool -h 127.0.0.1 -p 7100 getendpoints myks mytable key_2
127.0.0.2
```

For example, consider the following table, which uses a primary key of race_year and race_name. This table is created in the cycling keyspace.

```
CREATE TABLE cycling.rank_by_year_and_name (
 race_year int,
 race_name text,
 rank int,
 cyclist_name text,
```
Given the previous information that was inserted into the table, run `nodetool getendpoints` and enter a value from the partition key. For example:

```
$ nodetool getendpoints cycling rank_by_year_and_name "2014"
```

```
10.255.100.150
```

The resulting output is the IP address of the replica that owns the partition key. Alternatively, you can specify values that comprise the full primary key. For example:

```
$ nodetool getendpoints cycling rank_by_year_and_name "2014:4th Tour of Beijing"
```

```
10.255.100.150
```

**nodetool getinterdcstreamthroughput**

Prints the throughput cap in Megabits per second (Mbps) for inter-datacenter streaming.

**Synopsis**

```
$ nodetool options getinterdcstreamthroughput
```
DataStax Enterprise tools

Tarball and Installer No-Services path:

installation_location/resources/cassandra/bin

**Table 95: Options**

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td>value_in_mb</td>
<td></td>
<td>Throughput capacity in megabits per second for streaming. To disable, set to 0.</td>
</tr>
</tbody>
</table>

**nodetool getlogginglevels**

Get the runtime logging levels.

**Synopsis**

```
$ nodetool <options> getlogginglevels
```

Tarball and Installer No-Services path:

installation_location/resources/cassandra/bin

**Table 96: Options**

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
</tbody>
</table>
### Table 97: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-h</td>
<td>--host</td>
</tr>
<tr>
<td></td>
<td>-p</td>
<td>--port</td>
</tr>
<tr>
<td></td>
<td>-pw</td>
<td>--password</td>
</tr>
<tr>
<td></td>
<td>-pwf</td>
<td>--password-file</td>
</tr>
<tr>
<td></td>
<td>-u</td>
<td>--username</td>
</tr>
<tr>
<td></td>
<td>--</td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
</tr>
</tbody>
</table>

#### nodetool getseeds

Refreshes the IP address of the seed node currently in use, as listed by the seed provider.

**Synopsis**

```bash
$ nodetool <options> getseeds
```

Example:

```bash
$ nodetool -u username -pw password getseeds
```

#### nodetool getsstables

Provides the SSTables that own the partition key.

**Synopsis**

```bash
$ nodetool <options> getsstables [(-hf | --hex-format)]
 -- <keyspace> <table> <key>
```

#### Tarball and Installer No-Services path:

```
installation_location/resources/cassandra/bin
```
Table 98: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
</tbody>
</table>

keyspace: Name of keyspace.

Table: One or more table names, separated by a space.

key: Partition key of the SSTables.

--: Separates an option from an argument that could be mistaken for a option.

Description

This command can be used to retrieve an SSTable.

Examples

The following example of this command retrieves the SSTable for cycling.cyclist_name with the key argument fb372533-eb95-4bb4-8685-6ef61e994caa, which is the id for one of the cyclists listed in the cyclist_name table:

```bash
$ nodetool getsstables cycling cyclist_name 'fb372533-eb95-4bb4-8685-6ef61e994caa'
```

The output is:

```
/var/lib/cassandra/data/cycling/
cyclist_name-612a64002ec211e6a92457e568fce26f/ma-1-big-Data.db
```

Sometimes it's useful to retrieve an SSTable from the hex string representation of its key, for instance, when you get this exception and you want to find out which SSTable owns the faulty key:

```
java.lang.AssertionError: row DecoratedKey(2769066505137675224, 00040000002e00000800000153441a3ef000) received out of order wrt DecoratedKey(27747470408498866654, 000400000019b0000080000015348847eb200)
```
The `nodetool getsstables` command will only work if the primary key of the given table is a blob.

```
$ nodetool getsstables keyspace table_name
00400000002e0000800000153441a3ef000
```

Use the `--hex-key` option to retrieve the DecoratedKey from the hexstr representation of the key:

```
$ nodetool getsstables ks cf --hex-key
00400000002e0000800000153441a3ef000
```

```
$ nodetool getsstables keyspace1 standard1 3330394c344e35313730
```

**nodetool getstreamthroughput**

Provides the Mb (megabit) per second outbound throughput limit for streaming in the system.

**Synopsis**

```
$ nodetool <options> getstreamthroughput
```

**Tarball and Installer No-Services path:**

```
installation_location/resources/cassandra/bin
```

**Table 99: Options**

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td>--</td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
<td></td>
</tr>
</tbody>
</table>

**nodetool gettimeout**

Print the timeout value of the given type in milliseconds.

**Synopsis**

```
$ nodetool [options] gettimeout [--] <timeout_type>
```
Tarball and Installer No-Services path:

installation_location/resources/cassandra/bin

Table 100: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td></td>
<td>timeout_type</td>
<td>The timeout type, one of read, range, write,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>counterwrite, cascontention, truncate, streamingsocket, misc (general rpc_timeout_in_ms).</td>
</tr>
<tr>
<td>--</td>
<td></td>
<td>Separates an option from an argument that could</td>
</tr>
<tr>
<td></td>
<td></td>
<td>be mistaken for a option.</td>
</tr>
</tbody>
</table>

Note:

- For tarball installations, execute the command from the installation_location/bin directory.
- If a username and password for RMI authentication are set explicitly in the cassandra-env.sh file for the host, then you must specify credentials.
- -- separates an option and argument that could be mistaken for a option.
- The timeout type:
  
  # read
  # range
  # write
  # counterwrite
  # cascontention
  # truncate
  # streamingsocket
  # misc, such as general rpc_timeout_in_ms

Description

The nodetool gettimeout command prints the timeout value of the given type in milliseconds. Several timeouts are available.
Examples

```bash
$ nodetool -u username -pw password gettimeout read
```

cassandra-env.sh
The location of the `cassandra-env.sh` file depends on the type of installation:

<table>
<thead>
<tr>
<th>Package installations</th>
<th>Installer-Services installations</th>
</tr>
</thead>
<tbody>
<tr>
<td>/etc/dse/cassandra/cassandra-env.sh</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tarball installations</th>
<th>Installer-No Services installations</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>installation_location/resources/cassandra/conf/cassandra-env.sh</code></td>
<td></td>
</tr>
</tbody>
</table>

**nodetool gettraceprobability**

Get the current trace probability.

**Synopsis**

```bash
$ nodetool <options> gettraceprobability
```

**Tarball and Installer No-Services path:**

`installation_location/resources/cassandra/bin`

**Table 101: Options**

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td>--</td>
<td></td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
</tr>
</tbody>
</table>

**Description**

Provides the current trace probability. To set the trace probability, see `nodetool settraceprobability (page 1044)`.

**nodetool gossipinfo**

Provides the gossip information for the cluster.
## Synopsis

$ nodetool <options> gossipinfo

### Table 102: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td></td>
<td>--</td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
</tr>
</tbody>
</table>

### nodetool help

Provides nodetool command help.

### Synopsis

$ nodetool help <command>

### Description

The help command provides a synopsis and brief description of each nodetool command.

### Examples

Using nodetool help lists all commands and usage information. For example, nodetool help netstats provides the following information.

```
NAME
nodetool netstats - Print network information on provided host (connecting node by default)

SYNOPSIS
```
nodetool [(-h <host> | --host <host>)] [(-p <port> | --port <port>)]
[(-pw <password> | --password <password>)]
[(-u <username> | --username <username>)] netstats

OPTIONS
- h <host>, --host <host>
  Node hostname or ip address
- p <port>, --port <port>
  Remote jmx agent port number
- pw <password>, --password <password>
  Remote jmx agent password
- u <username>, --username <username>
  Remote jmx agent username

nodetool info

Provides node information, such as load and uptime.

Synopsis

$ nodetool <options> info -T | --tokens

Tarball and Installer No-Services path:

installation_location/resources/cassandra/bin

Table 103: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td>-T</td>
<td>--tokens</td>
<td>Show all tokens.</td>
</tr>
<tr>
<td>--</td>
<td></td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
</tr>
</tbody>
</table>
Description

Provides node information including the token and on disk storage (load) information, times started (generation), uptime in seconds, and heap memory usage.

**nodetool invalidatecountercache**

Clears the counter cache.

**Synopsis**

```
$ nodetool [options] invalidatecountercache
```

**Tarball and Installer No-Services path:**

```
installation_location/resources/cassandra/bin
```

**Table 104: Options**

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td>--</td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
<td></td>
</tr>
</tbody>
</table>

**Note:**

- For tarball installations, execute the command from the `installation_location/bin` directory.
- If a username and password for RMI authentication are set explicitly in the `cassandra-env.sh` file for the host, then you must specify credentials.
- `nodetool invalidatecountercache` operates on a single node in the cluster if `-h` is not used to identify one or more other nodes. If the node from which you issue the command is the intended target, you do not need the `-h` option to identify the target; otherwise, for remote invocation, identify the target node, or nodes, using `-h`.

**Description**

The `nodetool invalidatecountercache` command clears the counter cache, and the system will start saving all counter keys.
Examples

$ nodetool -u username -pw password invalidatecountercache

cassandra-env.sh
The location of the `cassandra-env.sh` file depends on the type of installation:

<table>
<thead>
<tr>
<th>Package installations</th>
<th>Installer-Services installations</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSTALLATION_LOCATION</td>
<td>/etc/dse/cassandra/cassandra-env.sh</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tarball installations</th>
<th>Installer-No Services installations</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSTALLATION_LOCATION</td>
<td>installation_location/resources/cassandra/conf/cassandra-env.sh</td>
</tr>
</tbody>
</table>

`nodetool invalidatekeycache`

Clears the key cache. The key cache is present only until `nodetool sstableupgrades (page 1270)` is run.

Synopsis

$ nodetool [connection_options] invalidatekeycache

**Table 105: Legend**

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td>Italics</td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( ( ) ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ‘ ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets ( &lt; &gt; ) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
</tbody>
</table>
## Syntax conventions

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cql_statement;</code></td>
<td>End CQL statement. A semicolon ( ; ) terminates all CQL statements.</td>
</tr>
<tr>
<td><code>[ -- ]</code></td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td><code>' &lt;schema&gt; ... &lt;/schema&gt; '</code></td>
<td>Search CQL only: Single quotation marks ( ' ) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td><code>@xml_entity='xml_entity_type'</code></td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

---

## Definition

The short form and long form parameters are comma-separated.

## Connection options

- **-h, --host hostname**
  
  The hostname or IP address of a remote node or nodes. When omitted, the default is the local machine.

- **-p, --port jmx_port**
  
  The JMX port number.

- **-pw, --password jmxpassword**
  
  The JMX password for authenticating with secure JMX. If a password is not provided, you are prompted to enter one.

- **-pwf, --password-file jmx_password_filepath**
  
  The filepath to the file that stores JMX authentication credentials.

- **-u, --username jmx_username**
  
  The user name for authenticating with secure JMX.

## Command arguments

This command takes no arguments.

## Examples

**Clears the key cache**

```bash
$ nodetool invalidatekeycache
```

### `nodetool invalidaterowcache`

Invalidates the row_cache_keys_to_save setting in cassandra.yaml to enable the default behavior to save all keys.
Synopsis

$ nodetool [connection_options] invalidaterowcache

Table 106: Legend

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td>Italics</td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( () ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ’ ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets ( &lt; &gt; ) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td>cql_statement;</td>
<td>End CQL statement. A semicolon (;) terminates all CQL statements.</td>
</tr>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td>' &lt;schema&gt; ... &lt;/schema&gt;'</td>
<td>Search CQL only: Single quotation marks ( ’ ) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td>@xml_entity='xml_entity_type'</td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

Definition

The short form and long form parameters are comma-separated.

Connection options
-h, --host hostname
  The hostname or IP address of a remote node or nodes. When omitted, the default
  is the local machine.
-p, --port jmx_port
  The JMX port number.
-pw, --password jmxpassword
  The JMX password for authenticating with secure JMX. If a password is not
  provided, you are prompted to enter one.
-pwf, --password-file jmx_password_filepath
  The filepath to the file that stores JMX authentication credentials.
-u, --username jmx_username
  The user name for authenticating with secure JMX.

Command arguments

This command takes no arguments.

Examples

Resets row_cache_keys_to_save parameter to save all keys

```shell
$ nodetool invalidaterowcache
```

nodetool join

Causes the node to join the ring.

Synopsis

```shell
$ nodetool <options> join
```

Tarball and Installer No-Services path:

```text
installation_location/resources/cassandra/bin
```

Table 107: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
</tbody>
</table>
### DataStax Enterprise tools

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
<td></td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
</tr>
</tbody>
</table>

### Description

Causes the node to join the ring, assuming the node was initially *not* started in the ring using the `-Djoin_ring=false (page 284)` cassandra utility option. The joining node should be properly configured with the desired options for seed list, initial token, and auto-bootstrapping.

### nodetool listendpointspendinghints

Prints information about hints that the node has for other nodes.

Hint information includes Host ID, Address, Rack, DC (datacenter), node status, total number of hints and files, and timestamp of newest and oldest hints.

#### Synopsis

```
$ nodetool [connection_options] -h hostname listendpointspendinghints
```

#### Table 108: Legend

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td>Italics</td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( ( ) ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ’ ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets ( &lt; &gt; ) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
</tbody>
</table>
### Syntax conventions

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cql_statement;</code></td>
<td>End CQL statement. A semicolon ( ; ) terminates all CQL statements.</td>
</tr>
<tr>
<td><code>[ -- ]</code></td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td><code>' &lt;schema&gt; ... &lt;/schema&gt; '</code></td>
<td>Search CQL only: Single quotation marks ( ' ) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td><code>@xml_entity='xml_entity_type'</code></td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

### Definition

The short form and long form parameters are comma-separated.

### Connection options

**-h, --host hostname**

The hostname or IP address of the remote node to get information about hints that the node has for other nodes.

**-p, --port jmx_port**

The JMX port number.

**-pw, --password jmxpassword**

The JMX password for authenticating with secure JMX. If a password is not provided, you are prompted to enter one.

**-pwf, --password-file jmx_password_filepath**

The filepath to the file that stores JMX authentication credentials.

**-u, --username jmx_username**

The user name for authenticating with secure JMX.

### Command arguments

This command takes no arguments.

### Examples

**To print relevant hint information about the local node endpoints**

```
$ nodetool listendpointspendinghints
```

<table>
<thead>
<tr>
<th>Host ID</th>
<th>Address</th>
<th>Rack</th>
<th>DC</th>
<th>Status</th>
<th>Total hints</th>
<th>Total files</th>
<th>Newest</th>
<th>Oldest</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DataStax Enterprise tools

5762b140-3fdf-4057-9ca7-05c070ccc9c3 127.0.0.2 rack1 datacenter1 DOWN
25098 2 2018-09-18 14:05:18,835 2018-09-18 14:05:08,811

nodetool listsnapshots

Lists snapshot names, size on disk, and true size.

Synopsis

$ nodetool <options> listsnapshots

Tarball and Installer No-Services path:

installation_location/resources/cassandra/bin

Table 109: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td></td>
<td>--</td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
</tr>
</tbody>
</table>

Example

<table>
<thead>
<tr>
<th>Snapshot Details:</th>
<th>Snapshot Name</th>
<th>Keyspace</th>
<th>Column Family</th>
<th>True Size</th>
<th>Size on Disk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1387304478196</td>
<td>Keyspace1</td>
<td>Standard1</td>
<td>0 bytes</td>
<td>308.66 MB</td>
</tr>
<tr>
<td></td>
<td>1387304417755</td>
<td>Keyspace1</td>
<td>Standard1</td>
<td>0 bytes</td>
<td>107.21 MB</td>
</tr>
<tr>
<td></td>
<td>1387305820866</td>
<td>Keyspace1</td>
<td>Standard2</td>
<td>0 bytes</td>
<td>41.69 MB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Keyspace1</td>
<td>Standard1</td>
<td>0 bytes</td>
<td>308.66 MB</td>
</tr>
</tbody>
</table>

nodetool mark_unrepaired

Mark all SSTables of a table or keyspace as unrepaired. Use when no longer running incremental repair on a table or keyspace.

WARNING: This operation marks all targeted SSTables as unrepaired, potentially creating new compaction tasks. Only use if no longer running incremental repair on this node.
Notice: New command available in DataStax Enterprise 5.1.3 and later.

Synopsis

$ nodetool mark_unrepaired [-f] [--] keyspace_name [table_name ...]

Tarball and Installer No-Services path:

installation_location/resources/cassandra/bin

Table 110: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td>--</td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
<td></td>
</tr>
</tbody>
</table>

Options

- **-f, --force**
  Confirms the operation.

keyspace_name [table_name ...]
  Requires a keyspace. To target specific tables, enter a space separated list of tables.
  
  Note: When no table name is specified, marks all tables in the keyspace as unrepaired.

nodetool move

Moves the node on the token ring to a new token.

Additional syntax is required to move a node to a negative tokens:

- Use the preferred double hyphen (---):

  $ nodetool move -- -9223372036854775808

- Escape the hyphen with a backslash (\):

  $ nodetool move \-9223372036854775808
Synopsis

$ nodetool <options> move -- <new token>

Table 111: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
</tbody>
</table>

new token

Number in partition range. For Murmur3Partitioner (default): \(-2^{63} \text{ to } +2^{63}\) - 1.

--

Separates an option from an argument that could be mistaken for a option.

Description

This command moves a node from one token value to another. This command is generally used to shift tokens slightly.

**nodetool netstats**

Provides network information about the host.

Synopsis

$ nodetool <options> netstats -H

Tarball and Installer No-Services path:

`installation_location/resources/cassandra/bin`

Table 112: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
</tbody>
</table>

DataStax Enterprise tools

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td>-H</td>
<td>--human-readable</td>
<td>Display bytes in human readable form: KiB (kibibyte), MiB (mebibyte), GiB (gibibyte), TiB (tebibyte).</td>
</tr>
<tr>
<td>--</td>
<td></td>
<td>Separates an option from an argument that could be mistaken for an option.</td>
</tr>
</tbody>
</table>

Description

The default host is the connected host if the user does not include a host name or IP address in the command. The output includes the following information:

- JVM settings
- Mode
  - The operational mode of the node: JOINING, LEAVING, NORMAL, DECOMMISSIONED, CLIENT
- Read repair statistics
- Attempted
  - The number of successfully completed read repair operations.
- Mismatch (blocking)
  - The number of read repair operations since server restart that blocked a query.
- Mismatch (background)
  - The number of read repair operations since server restart performed in the background.
- Pool name
  - Information about client read and write requests by thread pool size.
- Active, pending, and completed number of commands and responses

Example

Get the network information of the local node:

```
$ nodetool netstats
```

The output is:
Mode: NORMAL
Not sending any streams.
Read Repair Statistics:
Attempted: 0
Mismatch (Blocking): 1
Mismatch (Background): 1

<table>
<thead>
<tr>
<th>Pool Name</th>
<th>Active</th>
<th>Pending</th>
<th>Completed</th>
<th>Dropped</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large messages</td>
<td>n/a</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Small messages</td>
<td>n/a</td>
<td>0</td>
<td>23295</td>
<td>0</td>
</tr>
<tr>
<td>Gossip messages</td>
<td>n/a</td>
<td>0</td>
<td>1853117</td>
<td>0</td>
</tr>
</tbody>
</table>

**nodetool pausehandoff**

Pauses the hints delivery process

**Synopsis**

```
$ nodetool <options> pausehandoff
```

**Table 113: Options**

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote J MX agent username.</td>
</tr>
<tr>
<td>--</td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
<td></td>
</tr>
</tbody>
</table>

**nodetool proxyhistograms**

Provides a histogram of network statistics at the time of the command.

**Synopsis**

```
$ nodetool <options> proxyhistograms
```

**Tarball and Installer No-Services path:**

`installation_location/resources/cassandra/bin`
Table 114: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td>--</td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
<td></td>
</tr>
</tbody>
</table>

Description

The output of this command shows the full request latency recorded by the coordinator. The output includes the percentile rank of read and write latency values for inter-node communication. Typically, you use the command to see if requests encounter a slow node.

Examples

This example shows the output from nodetool proxyhistograms after running 4,500 insert statements and 45,000 select statements on a three ccm node-cluster on a local computer.

```
$ nodetool proxyhistograms
```

<table>
<thead>
<tr>
<th>Percentile</th>
<th>Read Latency (micros)</th>
<th>Write Latency (micros)</th>
<th>Range Latency (micros)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50%</td>
<td>1502.50</td>
<td>375.00</td>
<td>446.00</td>
</tr>
<tr>
<td>75%</td>
<td>1714.75</td>
<td>420.00</td>
<td>498.00</td>
</tr>
<tr>
<td>95%</td>
<td>31210.25</td>
<td>507.00</td>
<td>800.20</td>
</tr>
<tr>
<td>98%</td>
<td>36365.00</td>
<td>577.36</td>
<td>948.40</td>
</tr>
<tr>
<td>99%</td>
<td>36365.00</td>
<td>740.60</td>
<td>1024.39</td>
</tr>
<tr>
<td>Min</td>
<td>616.00</td>
<td>230.00</td>
<td>311.00</td>
</tr>
<tr>
<td>Max</td>
<td>36365.00</td>
<td>55726.00</td>
<td>59247.00</td>
</tr>
</tbody>
</table>

In DataStax Enterprise 5.1, three metrics have been added to the output:

- CAS Read Latency
- CAS Write Latency
- View Write Latency

CAS Read and Write Latency provides data for compare-and-set operations, while View Write Latency provides data for materialized view write operations. The results are slightly different from previous versions:
nodetool rangekeysample

Provides the sampled keys held across all keyspaces.

Synopsis

$ nodetool <options> rangekeysample

Tarball and Installer No-Services path:

installation_location/resources/cassandra/bin

Table 115: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td>--</td>
<td></td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
</tr>
</tbody>
</table>

nodetool rebuild

Rebuilds data by streaming from other nodes.

Synopsis

$ nodetool options rebuild
DataStax Enterprise tools

```
[-ks | --keyspace keyspace_name [, keyspace_name] . . .]
[-mode rebuild_mode]
[-ts | --tokens specific_tokens]
[-- source-dc-name]
```

**Tarball and Installer No-Services path:**

```
installation_location/resources/cassandra/bin
```

### Table 116: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-m</td>
<td>--mode</td>
<td>Rebuild mode.</td>
</tr>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-ks</td>
<td>--keyspace</td>
<td>Rebuild specific keyspace.</td>
</tr>
<tr>
<td>--</td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
<td></td>
</tr>
<tr>
<td>source-dc-name</td>
<td>Name of datacenter from which to select sources for streaming. By default, choose any datacenter.</td>
<td></td>
</tr>
</tbody>
</table>

**Parameters**

- **-ks, --keyspace keyspace_name, ...**
  Comma-separated list of one or more keyspaces. List only the keyspaces to include in the rebuild.

  **Warning**: Do not include any keyspaces that are local to the datacenter, including DSEFS keyspaces, or any keyspaces created with the replication class, SimpleStrategy, such as system and system_schema.

- **rebuild_mode**
  - normal - conventional behavior. Streams only ranges that are not locally available. Default.
  - refetch - resets locally available ranges. Streams all ranges but leaves current data untouched.
  - reset - resets locally available ranges. Removes all locally present data (like a TRUNCATE). Streams all ranges.
  - reset-no-snapshot - resets locally available ranges. Removes all locally present data (like a TRUNCATE). Streams all ranges. Prevents a snapshot if auto_snapshot (page 215) is enabled in cassandra.yaml.
specific_tokens

One or more tokens, and/or one or more ranges of tokens. The token_spec can be:

- One specific token.
- A comma-delimited list of single tokens.
- A range of tokens, specified as `(start_token, end_token)`.
- A comma-delimited list of token ranges — for example, `(start_token1, end_token1), (start_token2, end_token2),...
- A comma-delimited list of mixed single tokens and token ranges — for example, `token1, (start_token2, end_token2), (start_token3, end_token3), token4, ...

--

Separates an option and argument that could be mistaken for a option.

source-dc-name

The name of the datacenter that DataStax Enterprise (DSE) uses as the source for streaming. DSE rebuilds from any datacenter. If the statement does not specify one, DSE chooses at random.

Description

This command operates on multiple nodes in a cluster. Like nodetool bootstrap (page 953), rebuild only streams data from a single source replica when rebuilding a token range. Use this command to add a new datacenter (page 1283) to an existing cluster.

If rebuild fails because some token ranges cannot be retrieved, you can rebuild selectively by using the -ts or --token option to specify a list of tokens, or one or more token ranges.

Note: If rebuild is interrupted before completion, you can restart it by re-entering the command. The process resumes from the point at which it was interrupted.

nodetool rebuild_index

Performs a full rebuild of the index for a table

Synopsis

```
$ nodetool <options> rebuild_index -- <keyspace> <table> <indexName> ...
```

Table 117: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
</tbody>
</table>
### DataStax Enterprise tools

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td>keyspace</td>
<td></td>
<td>Name of keyspace.</td>
</tr>
<tr>
<td>table</td>
<td></td>
<td>One or more table names, separated by a space.</td>
</tr>
<tr>
<td>indexName</td>
<td></td>
<td>List of index names separated by a space.</td>
</tr>
<tr>
<td>--</td>
<td></td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
</tr>
</tbody>
</table>

The keyspace and table name followed by a list of index names. For example:
```
Standard3.IdxName Standard3.IdxName1
```

**Description**

Fully rebuilds one or more indexes for a table.

### nodetool rebuild_view

Performs a rebuild of the specified materialized views for a particular base table on the node on which the command is run. Use this command to rebuild materialized views after restoring SSTables or after restarting a materialized view build that was previously stopped. If no materialized views are specified, all materialized views based on the specified table are rebuilt.

**Note:** The rebuild_view command does not clear existing data in the materialized view.

**Synopsis**

```
$ nodetool <options>rebuild_view
 -- <keyspace> <table> [<materialized_view_name>] [<materialized_view_name>...]
```

**Tarball and Installer No-Services path:**
```
installation_location/resources/cassandra/bin
```
Table 118: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td>keyspace</td>
<td>Name of keyspace.</td>
<td></td>
</tr>
<tr>
<td>table</td>
<td>Name of table.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>--</td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
</tr>
</tbody>
</table>

Examples

Rebuild materialized views cyclist_by_age and cyclist_by_birthday_and_age on cycling keyspace and cyclist_base table

```
$ Rebuild materialized views cyclist_by_age and
cyclist_by_birthday_and_age on cycling keyspace and cyclist_base table
```

**nodetool refresh**

Loads newly placed SSTables onto the system without a restart.

Synopsis

```
$ nodetool <options> refresh -- <keyspace> <table>
```

Tarball and Installer No-Services path:

```
installation_location/resources/cassandra/bin
```

Table 119: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
</tbody>
</table>
### DataStax Enterprise tools

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td>keyspace</td>
<td></td>
<td>Name of keyspace.</td>
</tr>
<tr>
<td>table</td>
<td></td>
<td>Name of table.</td>
</tr>
<tr>
<td>--</td>
<td></td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
</tr>
</tbody>
</table>

#### nodetool refreshsizeestimates

Refreshes system.size_estimates table. Use when huge amounts of data are inserted or truncated which can result in size estimates becoming incorrect.

**Synopsis**

```
$ nodetool <options> refreshsizeestimates
```

**Tarball and Installer No-Services path:**

`installation_location/resources/cassandra/bin`

#### Table 120: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td>--</td>
<td></td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
</tr>
</tbody>
</table>

#### nodetool reloadlocalschema

Reload local node schema from system tables.
Synopsis

$ nodetool connection_options reloadlocalschema

Tarball and Installer No-Services path:

installation_location/resources/cassandra/bin

Connection options

Connection options specify how to connect and authenticate for all nodetool commands:

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Username.</td>
</tr>
<tr>
<td>--</td>
<td></td>
<td>Separates command parameters from a list of options.</td>
</tr>
</tbody>
</table>

Note:
- If a username and password for RMI authentication are set explicitly in the cassandra-env.sh file for the host, then you must specify credentials.
- The repair and rebuild commands can affect multiple nodes in the cluster.
- Most nodetool commands operate on a single node in the cluster if -h is not used to identify one or more other nodes. If the node from which you issue the command is the intended target, you do not need the -h option to identify the target; otherwise, for remote invocation, identify the target node, or nodes, using -h.

Example:

$ nodetool -u username -pw password describering demo_keyspace

cassandra-env.sh
The location of the cassandra-env.sh file depends on the type of installation:

<table>
<thead>
<tr>
<th>Package installations</th>
<th>/etc/dse/cassandra/cassandra-env.sh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer-Services installations</td>
<td>/etc/dse/cassandra/cassandra-env.sh</td>
</tr>
</tbody>
</table>
### nodetool reloadtriggers

Reloads trigger classes.

**Synopsis**

```bash
$ nodetool <options> reloadtriggers
```

**Table 121: Options**

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td>--</td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
<td></td>
</tr>
</tbody>
</table>

### nodetool reloadseeds

Reloads the seed node list from the seed node provider.

**Synopsis**

```bash
$ nodetool <options> reloadseeds
```

**Table 122: Options**

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Remote JMX agent port number.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
</tbody>
</table>
DataStax Enterprise tools

### Short	Long	Description
-u | --username | Remote JMX agent username.
-- |  | Separates an option from an argument that could be mistaken for a option.

#### Examples

```bash
$ nodetool -u username -pw password reloadseeds
```

### nodetool relocatesstables

Rewrites any SSTable that contains tokens that should be in another data directory for JBOD disks. Basically, this commands relocates SSTables to the correct disk.

#### Synopsis

```bash
$ nodetool <options>relocatesstables -- <keyspace> <table>
```

#### Tarball and Installer No-Services path:

`installation_location/resources/cassandra/bin`

#### Table 123: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td>keyspace</td>
<td>Name of keyspace.</td>
<td></td>
</tr>
<tr>
<td>table</td>
<td>Name of table.</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
<td></td>
</tr>
</tbody>
</table>

#### Description

This `nodetool` command can be used to manually rewrite the location of SSTables on disk. It is for use with JBOD disk storage. The command can also be used if you change the
replication factor for the cluster stored on JBOD or if you add a new disk. If all the token are correctly stored in the data directories, `nodetool relocatesstables` will have no effect.

Examples

```
$ nodetool relocatesstables cycling
```

**nodetool removenode**

Provides the status of current node removal, forces completion of pending removal, or removes the identified node.

**Warning:** This command triggers cluster streaming. In large environments, the additional streaming activity causes more pending gossip tasks in the output of `nodetool tpstats`. Nodes can start to appear offline and may need to be restarted to clear up the back log of pending gossip tasks.

**Synopsis**

```
$ nodetool [connection_options] removenode
 -- <status> | <force> | <ID>
```

**Table 124: Options**

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td>status</td>
<td>Status of current node removal.</td>
<td></td>
</tr>
<tr>
<td>force</td>
<td>Forces completion of the pending removal.</td>
<td></td>
</tr>
<tr>
<td>ID</td>
<td>Host ID, in UUID format.</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
<td></td>
</tr>
</tbody>
</table>
Description
This command removes a node, shows the status of a removal operation, or forces the completion of a pending removal. When the node is down and `nodetool decommission` cannot be used, use `nodetool removenode`. Run this command only on nodes that are down. If the cluster does not use vnodes, before running the `nodetool removenode` command, adjust the tokens (page 1305).

Examples
Determine the UUID of the node to remove by running `nodetool status (page 1055)`. Use the UUID of the node that is down to remove the node.

```
$ nodetool status
Datcenter: DC1
=============
Status=Up/Down
|/ State=Normal/Leaving/Joining/Moving
-- Address Load Tokens Owns (effective) Host ID
Rack
UN 192.168.2.101 112.82 KB 256 31.7% 420129fc-0d84-42b0-be41-ef7dd3a8ad06 RAC1
DN 192.168.2.103 91.11 KB 256 33.9% d0844a21-3698-4883-ab66-9e2fd5150edd RAC1
UN 192.168.2.102 124.42 KB 256 32.6% 8d5ed9f4-7764-4dbd-bad8-43fddce94b7c RAC1

$ nodetool removenode d0844a21-3698-4883-ab66-9e2fd5150edd
```

View the status of the operation to remove the node:

```
$ nodetool removenode status
RemovalStatus: No token removals in process.
```

Confirm that the node has been removed.

```
$ nodetool removenode status
Datcenter: DC1
=============
Status=Up/Down
|/ State=Normal/Leaving/Joining/Moving
-- Address Load Tokens Owns (effective) Host ID
Rack
UN 192.168.2.101 112.82 KB 256 37.7% 420129fc-0d84-42b0-be41-ef7dd3a8ad06 RAC1
```
nodetool repair

The repair command repairs one or more nodes in a cluster, and provides options for restricting repair to a set of nodes, see Repairing nodes (page 1326). Performing an anti-entropy node repair on a regular basis is important, especially in an environment that deletes data frequently.

**Important:** Ensure that all involved replicas are up and accessible before running a repair. If repair encounters a down replica, an error occurs and the process halts. Re-run repair after bringing all replicas back online.

Control how the repair runs:

- **Number of nodes performing a repair:**
  - Parallel runs repair on all nodes with the same replica data at the same time. (Default behavior in DataStax Enterprise (DSE) 5.0 and later.)
  - Sequential (-seq, --sequential (page 1023)) runs repair on one node after another. (Default behavior in DSE 4.8 and earlier.)
  - Datacenter parallel (-dcpar, --dc-parallel (page 1022)) combines sequential and parallel by simultaneously running a sequential repair in all datacenters; a single node in each datacenter runs repair, one after another until the repair is complete.

- **Amount of data that is repaired:**
  - Full repair (default) compares all replicas of the data stored on the node where the command runs and updates each replica to the newest version. Does not mark the data as repaired or unrepaired. Default for DSE 5.1.3 and later. To switch to incremental repairs, see Migrating to incremental repairs (page 1332).
  - Full repair with partitioner range (-pr, --partitioner-range (page 1023)) repairs only the primary replicas of the data stored on the node where the command runs. Recommended for routine maintenance.
  - Incremental repair (-inc (page 1022)) splits the data into repaired and unrepaired SSTables, only repairs unrepaired data. Marks the data as repaired or unrepaired. Default behavior in DSE 5.1.0-5.1.2.

  **Note:** Due to CASSANDRA-9143, DataStax recommends upgrading to DSE 5.1.3 (or later) and switching to full repairs, see Migrating to full repairs (page 1332).

**Notice:** DSE changed the default behavior for nodetool repair as follows:

- **DSE 5.1.3 and later** runs full repair by default. To perform an incremental repair on a node running DSE 5.1.3 specify:

  ```
 $ nodetool repair -inc
  ```
• **DSE 5.1.0-5.1.2** runs incremental repair. To perform a full repair on a node running DSE 5.1.0-5.1.2 specify:

```
$ nodetool repair -full
```

**Tip:** Before using node repair tool, be sure to have an understanding of how node repair works.

**Synopsis**

```
$ nodetool [connection_options] repair
 [(-dc specific_dc | --in-dc specific_dc)...]
 [(-dcpar | --dc-parallel)]
 [(-et end_token | --end-token end_token)]
 [(-full | --full)]
 [(-hosts specific_host | --in-hosts specific_host)...]
 [-inc]
 [(-j job_threads | --job-threads job_threads)]
 [(-local | --in-local-dc)]
 [(-pr | --partitioner-range)]
 [(-pl | --pull)]
 [(-seq | --sequential)]
 [(-st start_token | --start-token start_token)]
 [(-tr | --trace)]
 [--]
 [keyspace tables...]
```

**Tarball and Installer No-Services path:**

```
installation_location/resources/cassandra/bin
```

**Connection options**

Connection options specify how to connect and authenticate for all nodetool commands:

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Username.</td>
</tr>
<tr>
<td>--</td>
<td></td>
<td>Separates command parameters from a list of options.</td>
</tr>
</tbody>
</table>

**Note:**
If a username and password for RMI authentication are set explicitly in the `cassandra-env.sh` file for the host, then you must specify credentials.

The repair and rebuild commands can affect multiple nodes in the cluster.

Most nodetool commands operate on a single node in the cluster if `-h` is not used to identify one or more other nodes. If the node from which you issue the command is the intended target, you do not need the `-h` option to identify the target; otherwise, for remote invocation, identify the target node, or nodes, using `-h`.

Example:

```
$ nodetool -u username -pw password describering demo_keyspace
```

cassandra-env.sh

The location of the `cassandra-env.sh` file depends on the type of installation:

<table>
<thead>
<tr>
<th>Package installations</th>
<th>/etc/dse/cassandra/cassandra-env.sh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer-Services installations</td>
<td></td>
</tr>
</tbody>
</table>

| Tarball installations                   | installation_location/resources/cassandra/conf/cassandra-env.sh |
| Installer-No Services installations     |                                                                    |

Repair options

Repair specific options. See Manual repair: Anti-entropy repair [page 1326](#) provides guidance on setting some of the following options.

**-dc dc_name, --in-dc dc_name**

Repair nodes in the named datacenter (`dc_name`). Datacenter names are case sensitive.

**-dcpar, --dc-parallel**

Runs a datacenter parallel repair, which combines sequential and parallel by simultaneously running a sequential repair in all datacenters; a single node in each datacenter runs repair, one after another until the repair is complete.

**-et end_token, --end-token end_token**

Token UUID. Repair a range of nodes starting with the first token (see `-st`) and ending with this token (`end_token`). Use `-hosts` to specify neighbor nodes.

**-full, --full**

Runs a full repair, which compares all replicas of the data stored on the node where the command runs and updates each replica to the newest version. Does not mark the data as repaired or unrepaired. Default for DSE 5.1.3 and later. To switch to incremental repairs, see Migrating to incremental repairs [page 1332](#).

**Note:** Option is only available on DSE 5.1.0-5.1.2, which by default runs incremental repairs. DataStax recommends upgrading to DSE 5.1.3 or later.

**-hosts specific_host, --in-hosts specific_host**

Repair specific hosts.

**-inc**
(Not recommended.) Runs an incremental repair, which persists already repaired data and calculates only the Merkle trees for SSTables that have not been repaired. Requires repairs to be run frequently (daily). Before running an incremental repair for the first time, perform migration steps (page 1332) first. Never run an incremental repair to restore a node or after bringing a downed node back online.

**Note:** This parameter is only available in DSE 5.1.3 and later. DataStax recommends migrating to full repairs, see Changing repair strategies (page 1331).

- `--job_threads job_threads`  
  Number of threads (`job_threads`) to run repair jobs. Usually the number of tables to repair concurrently. Be aware that increasing this setting puts more load on repairing nodes. (Default: 1, maximum: 4)

- `--local, --in-local-dc`  
  Use to only repair nodes in the same datacenter.

- `--partitioner-range`  
  Repair only the primary partition ranges of the node. To avoid re-repairing each range RF times, DataStax recommends using this option during routine maintenance (nodetool repair --pr) or using the OpsCenter Repair Service.

  **Note:** Not recommend with incremental repair because incremental repairs marks data as repaired during each step and does not re-repair the same data multiple times.

- `--pull`  
  Performs a one-way repair where data is streamed from a remote node to this node.

- `--sequential`  
  Runs a sequential repair, which runs repair on one node after another. (Default behavior in DSE 4.8 and earlier.)

- `--start_token start_token`  
  Specify the token (`start_token`) at which the repair range starts.

- `--trace`  
  Trace the repair. Traces are logged to `system_traces.events`.

`keyspace_name table_list`  
Name of keyspace and space separated list of tables.

--  
Separates an option from an argument that could be mistaken for a option.

**Example**

All nodetool repair arguments are optional.

To do a sequential repair of all keyspaces on the current node:

```
$ nodetool repair --seq
```

To do a partitioner range repair of the bad partition on current node using the good partitions on 10.2.2.20 or 10.2.2.21:
DataStax Enterprise tools

$ nodetool repair -pr -hosts 10.2.2.20 10.2.2.21

For a start-point-to-end-point repair of all nodes between two nodes on the ring:

$ nodetool repair -st -9223372036854775808 -et -3074457345618258603

To restrict the repair to the local datacenter, use the -dc option followed by the name of the datacenter. Issue the command from a node in the datacenter you want to repair. Issuing the command from a datacenter other than the named one returns an error. Do not use -pr with this option to repair only a local data center.

$ nodetool repair -dc DC1

Results in output:

  for keyspace system_traces (seq=true, full=true)
  for range (820981369067266915,822627736366088177] finished
  for range (2506042417712465541,2515941262699962473] finished
  
And an inspection of the system.log shows repair taking place only on IP addresses in DC1.

RepairSession.java:171
- [repair #16499ef0-1381-11e4-88e3-c972e09793ca] Received merkle tree
  for sessions from /192.168.2.101
- [repair #16499ef0-1381-11e4-88e3-c972e09793ca] requesting merkle
trees
  for events (to [/192.168.2.103, /192.168.2.101])
... 

**nodetool replaybatchlog**

Replay batchlog and wait for finish.

**Synopsis**

$ nodetool <options> replaybatchlog

**Tarball and Installer No-Services path:**

installation_location/resources/cassandra/bin
Table 125: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
</tr>
</tbody>
</table>

Description

This command is intended to force a batchlog replay. It also blocks until the batches have been replayed.

**nodetool resetlocalschema**

Reset the node's local schema and resynchronizes.

Synopsis

```
$ nodetool [options] resetlocalschema [args]
```

Tarball and Installer No-Services path:

`installation_location/resources/cassandra/bin`

Table 126: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
</tr>
</tbody>
</table>

**Note:**

- For tarball installations, execute the command from the `installation_location/bin` directory.
DataStax Enterprise tools

- If a username and password for RMI authentication are set explicitly in the 
cassandra-env.sh file for the host, then you must specify credentials.
- nodetool resetlocalschema operates on a single node in the cluster if -h is 
not used to identify one or more other nodes. If the node from which you issue 
the command is the intended target, you do not need the -h option to identify the 
target; otherwise, for remote invocation, identify the target node, or nodes, using -h.

Description

Normally, this command is used to rectify schema disagreements on different nodes. It can 
be useful if table schema changes have generated too many tombstones, on the order of 
100,000s.

nodetool resetlocalschema drops the schema information of the local node and 
resynchronizes the schema from another node. To drop the schema, the tool truncates all 
the system schema tables. The node will temporarily lose metadata about the tables on 
the node, but will rewrite the information from another node. If the node is experiencing 
problems with too many tombstones, the truncation of the tables will eliminate the 
tombstones.

This command is useful when you have one node that is out of sync with the cluster. The 
system schema tables must have another node from which to fetch the tables. It is not 
useful when all or many of your nodes are in an incorrect state. If there is only one node in 
the cluster (replication factor of 1) – it does not perform the operation, because another node 
from which to fetch the tables does not exist. Run the command on the node experiencing 
difficulty.

nodetool resume

Restart a node's bootstrap process.

Synopsis

$ nodetool [options] bootstrap resume

Table 127: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>Short</td>
<td>Long</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>--------------------------------------------------</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td></td>
<td>--</td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
</tr>
</tbody>
</table>

**Note:**

- For tarball installations, execute the command from the `installation_location/bin` directory.
- If a username and password for RMI authentication are set explicitly in the `cassandra-env.sh` file for the host, then you must specify credentials.
- `nodetool bootstrap` operates on a single node in the cluster if `-h` is not used to identify one or more other nodes. If the node from which you issue the command is the intended target, you do not need the `-h` option to identify the target; otherwise, for remote invocation, identify the target node, or nodes, using `-h`.

**Description**

The `nodetool bootstrap resume` command restarts bootstrap streaming.

**Examples**

```bash
$ nodetool -u username -pw password bootstrap resume
```

cassandra-env.sh

The location of the `cassandra-env.sh` file depends on the type of installation:

<table>
<thead>
<tr>
<th>Type</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package installations</td>
<td><code>/etc/dse/cassandra/cassandra-env.sh</code></td>
</tr>
<tr>
<td>Installer-Services installations</td>
<td><code>/etc/dse/cassandra/cassandra-env.sh</code></td>
</tr>
<tr>
<td>Tarball installations</td>
<td><code>installation_location/resources/cassandra/conf/cassandra-env.sh</code></td>
</tr>
<tr>
<td>Installer-No Services</td>
<td><code>installation_location/resources/cassandra/conf/cassandra-env.sh</code></td>
</tr>
</tbody>
</table>

**nodetool resumehandoff**

Resume hints delivery process.

**Synopsis**

```bash
$ nodetool <options> resumehandoff
```

Tarball and Installer No-Services path:

`installation_location/resources/cassandra/bin`
Table 128: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td>--</td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
<td></td>
</tr>
</tbody>
</table>

nodedtool ring

Provides node status and information about the ring.

Synopsis

```
$ nodedtool <options> ring (-r | --resolve-ip) -- <keyspace>
```

Tarball and Installer No-Services path:

```
installation_location/resources/cassandra/bin
```

Table 129: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td>-r</td>
<td>--resolve-ip</td>
<td>Provide node names instead of IP addresses.</td>
</tr>
<tr>
<td>keyspace</td>
<td></td>
<td>Name of keyspace.</td>
</tr>
<tr>
<td>--</td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
<td></td>
</tr>
</tbody>
</table>
Description

Displays node status and information about the ring as determined by the node being queried. This information can give you an idea of the load balance and if any nodes are down. If your cluster is not properly configured, different nodes may show a different ring. Check that the node appears the same way in the ring. If you use virtual nodes (vnodes), use `nodetool status` (page 1055) for succinct output.

- **Address**
  The node's URL.

- **DC (datacenter)**
  The datacenter containing the node.

- **Rack**
  The rack or, in the case of Amazon EC2, the availability zone of the node.

- **Status - Up or Down**
  Indicates whether the node is functioning or not.

- **State - N (normal), L (leaving), J (joining), M (moving)**
  The state of the node in relation to the cluster.

- **Load - updates every 90 seconds**
  The amount of file system data under the cassandra data directory after excluding all content in the snapshots subdirectories. Because all SSTable data files are included, any data that is not cleaned up, such as TTL-expired cell or tombstoned data) is counted.

- **Token**
  The end of the token range up to and including the value listed. For an explanation of token ranges, see Data Distribution in the Ring .

- **Owns**
  The percentage of the data owned by the node per datacenter times the replication factor. For example, a node can own 33% of the ring, but show 100% if the replication factor is 3.

- **Host ID**
The network ID of the node.

**nodetool scrub**

Creates a snapshot and then rebuilds SSTables on a node. If possible use `nodetool upgradesstables (page 1078)` instead of scrub.

Scrub automatically discards broken data and removes any tombstoned rows that have exceeded `gc_grace` period of the table. If partition key values do not match the column data type, the partition is considered corrupt and the process automatically stops.

**Attention:** When using LCS, resets all SSTables back to Level 0 and requires recompaction of all SSTables.

**Synopsis**

```
$ nodetool main_options scrub [(-j <jobs> | --jobs <jobs>)] \
[(--no-validate)][(--no-snapshot)] \
[--reinsert-overflowed-ttl] \
[|--] [<keyspace> <tables>...]
```

**Connection options**

Connection options specify how to connect and authenticate for all nodetool commands:

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Username.</td>
</tr>
<tr>
<td>--</td>
<td></td>
<td>Separates command parameters from a list of options.</td>
</tr>
</tbody>
</table>

**Note:**

- If a username and password for RMI authentication are set explicitly in the `cassandra-env.sh` file for the host, then you must specify credentials.
- The repair and rebuild commands can affect multiple nodes in the cluster.
- Most nodetool commands operate on a single node in the cluster if `-h` is not used to identify one or more other nodes. If the node from which you issue the command is the intended target, you do not need the `-h` option to identify the
target; otherwise, for remote invocation, identify the target node, or nodes, using -h.

Example:

```
$ nodetool -u username -pw password describing demo_keyspace
```

cassandra-env.sh

The location of the `cassandra-env.sh` file depends on the type of installation:

<table>
<thead>
<tr>
<th>Package installations</th>
<th>/etc/dse/cassandra/cassandra-env.sh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer-Services installations</td>
<td>installation_location/resources/cassandra/conf/cassandra-env.sh</td>
</tr>
</tbody>
</table>

Scrub parameters

Use the following parameters with the `scrub` command:

- `--jobs jobs`
  Number of SSTables to simultaneously scrub. Zero (0) uses all available compaction threads.
  Default: 2.

- `--no-validate`
  Suppresses validation of columns.
  Default: Validate all columns.

- `--no-snapshot`
  Suppresses creation of snapshot.
  Default: Create a snapshot before rebuilding SSTables.

- `--reinsert-overflowed-ttl`
  Rewrites SSTables containing rows with overflowed expiration time with the maximum expiration date of 2038-01-19T03:14:06+00:00 using the original timestamp + 1 (ms).

- `--skip-corrupted`
  Forces scrub to skip corrupt partitions and continue. Corrupt partitions have a column value that does not match the column data type. Logs skipped partitions in the `system.log`.
  Default: Stop scrubbing if a corrupted partition is detected.

  **Note:** Skipping corrupted partitions on tables with counter columns results in under-counting.

- `keyspace_name table_name [...]`
  Identifies the keyspace and targets specific tables using a space separated list.
DataStax Enterprise tools

Default: Include all keyspaces and tables on the node when no arguments are specified.

nodetool sequence

Run multiple nodetool commands from a file, resource, or standard input (StdIn) sequentially.

Synopsis

```
$ nodetool [options] sequence
[--failonerror] [(-i <input> | --input <input>)...] [--stoponerror] [--]
[<commands>...]
```

Tarball and Installer No-Services path:

`installation_location/resources/cassandra/bin`

Common options

These options apply to all nodetool commands.

Table 130: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Remote JMX agent port number.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent user name.</td>
</tr>
<tr>
<td>--</td>
<td></td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
</tr>
</tbody>
</table>

Note:

- For tarball installations, execute the command from the `installation_location/bin` directory.
- If a username and password for RMI authentication are set explicitly in the `cassandra-env.sh` file for the host, then you must specify credentials.

Sequence options

The following options are specific to the sequence command:
### Table 131: sequence options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>--failonerror</td>
<td>By default, the sequence command will not fail (return an error exit code) if one or more child commands fail. Set this option to true to return an error exit code if a child command fails.</td>
<td></td>
</tr>
<tr>
<td>-i input</td>
<td>--input input</td>
<td>The file or classpath resource to read nodetool commands from, one command per line. Use /dev/stdin to read from standard input. Multiple input can be entered.</td>
</tr>
<tr>
<td>--stoponerror</td>
<td>By default, if one child command fails, the sequence command continues with remaining commands. Set this option to true to stop on error.</td>
<td></td>
</tr>
<tr>
<td>commands</td>
<td>Commands to execute. Separate individual commands using a colon surrounded by whitespaces (‘ : ’). For example: nodetool sequence info : gettimeout read : gettimeout write : status</td>
<td></td>
</tr>
</tbody>
</table>

### Description

Run multiple nodetool commands from a file, resource, or standard input (StdIn) sequentially. Common options (host, port, username, password) are passed to child commands. This command reduces overhead and is faster than running nodetool commands individually from a shell script because the JVM doesn't have to restart for each command.

### Example

For example, create a text file with one command per line, and specify the file name and location file in the command. Each command in the file runs sequentially.

```
$ nodetool sequence -i path_to_text_file

#nodetool sequence sample file
info
gettimeout read
gettimeout write
```
nodetool setcachecapacity

Set global key and row cache capacities in megabytes.

Synopsis

$$\texttt{nodetool } <\texttt{options}> \texttt{setcachecapacity}$$

-- <key-cache-capacity> <row-cache-capacity>

Tarball and Installer No-Services path:

installation_location/resources/cassandra/bin

Table 132: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td>key-cache-capacity</td>
<td></td>
<td>Maximum size in megabytes (MB) of the key cache in memory.</td>
</tr>
<tr>
<td>row-cache-capacity</td>
<td></td>
<td>Maximum size in megabytes (MB) of the row cache in memory.</td>
</tr>
<tr>
<td>counter-cache-capacity</td>
<td></td>
<td>Maximum size in megabytes (MB) of the counter cache in memory.</td>
</tr>
<tr>
<td>--</td>
<td></td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
</tr>
</tbody>
</table>

Description

The key-cache-capacity argument corresponds to the key_cache_size_in_mb (page 216) parameter in the cassandra.yaml. Each key cache hit saves one seek and each row cache hit saves a minimum of two seeks. Devoting some memory to the key cache is usually a good tradeoff considering the positive effect on the response time. The default value is empty, which means a minimum of five percent of the heap in megabytes (MB) or 100 MB.
The row-cache-capacity argument corresponds to the `row_cache_size_in_mb` parameter in the `cassandra.yaml`. By default, row caching is zero (disabled).

The counter-cache-capacity argument corresponds to the `counter_cache_size_in_mb` in the `cassandra.yaml`. By default, counter caching is a minimum of 2.5% of Heap or 50MB.

**nodetool setcachekeystosave**

Sets the number of keys saved by each cache for faster post-restart warmup.

**Synopsis**

```
$ nodetool <options> setcachekeystosave
 -- <key-cache-keys-to-save> <row-cache-keys-to-save>
```

**Table 133: Options**

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td><strong>key-cache-keys-to-save</strong></td>
<td></td>
<td>The number of keys from the key cache to save to the saved caches directory. To disable, set to 0.</td>
</tr>
<tr>
<td><strong>row-cache-keys-to-save</strong></td>
<td></td>
<td>The number of keys from the row cache to save to the saved caches directory. To disable, set to 0.</td>
</tr>
<tr>
<td><strong>counter-cache-keys-to-save</strong></td>
<td></td>
<td>The number of keys from the counter cache to save to the saved caches directory. To disable, set to 0.</td>
</tr>
</tbody>
</table>
Description

This command saves the specified number of key and row caches to the saved caches directory, which you specify in the cassandra.yaml. The key-cache-keys-to-save argument corresponds to the key_cache_keys_to_save in the cassandra.yaml, which is disabled by default, meaning all keys will be saved. The row-cache-keys-to-save argument corresponds to the row_cache_keys_to_save in the cassandra.yaml, which is disabled by default.

**nodetool setcompactionthreshold**

Sets minimum and maximum compaction thresholds for a table.

**Synopsis**

```
$ nodetool options setcompactionthreshold
[--] [keyspace_name [table_name]] minthreshold maxthreshold
```

**Tarball and Installer No-Services path:**

```
installation_location/resources/cassandra/bin
```

**Table 134: Options**

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td>keyspace</td>
<td></td>
<td>Targets either an entire keyspace when used without specifying a table or qualifies the keyspace in that follow the keyspace name.</td>
</tr>
<tr>
<td>table</td>
<td></td>
<td>Targets specified table for compaction.</td>
</tr>
<tr>
<td>minthreshold</td>
<td></td>
<td>Sets the minimum number of SSTables to trigger a minor compaction when using SizeTieredCompactionStrategy.</td>
</tr>
</tbody>
</table>
maxthreshold

Sets the maximum number of SSTables to allow in a minor compaction when using SizeTieredCompactionStrategy.

Description

This command controls how many SSTables of a similar size must be present before a minor compaction is scheduled. The max_threshold table property sets an upper bound on the number of SSTables that may be compacted in a single minor compaction, as described in How is data updated?

When using LeveledCompactionStrategy, maxthreshold resets or overrides the internal setting of 32. SSTables are compacted concurrently to avoid wasting memory or running out of memory when compacting highly overlapping SSTables.

nodetool setcompactionthroughput

Sets the throughput capacity for compaction in the system, or disables throttling.

Synopsis

$ nodetool <options> setcompactionthroughput -- <value_in_mb>

Table 135: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username</td>
</tr>
<tr>
<td>value_in_mb</td>
<td>The throughput capacity in megabytes (MB) per second for compaction. To disable throttling, set to 0.</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
</tr>
</tbody>
</table>
DataStax Enterprise tools

Description
Set value_in_mb to 0 to disable throttling.

**nodetool setconcurrentcompactors**

Set number of concurrent compactors.

Synopsis

```
$ nodetool options setconcurrentcompactors value
```

Tarball and Installer No-Services path:

```
installation_location/resources/cassandra/bin
```

<table>
<thead>
<tr>
<th>Table 136: Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>-h</td>
</tr>
<tr>
<td>-p</td>
</tr>
<tr>
<td>-pwf</td>
</tr>
<tr>
<td>-pw</td>
</tr>
<tr>
<td>-u</td>
</tr>
<tr>
<td>value</td>
</tr>
<tr>
<td>--</td>
</tr>
</tbody>
</table>

**nodetool sethintedhandoffthrottlekb**

Sets hinted handoff throttle in KB/sec per delivery thread.

Synopsis

```
$ nodetool <options> sethintedhandoffthrottlekb <value_in_KB/sec>
```

Tarball and Installer No-Services path:

```
installation_location/resources/cassandra/bin
```
Table 137: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td>value_in_kb/sec</td>
<td></td>
<td>Throttle time in kilobytes (KB) per second.</td>
</tr>
<tr>
<td>--</td>
<td></td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
</tr>
</tbody>
</table>

Description

When a node detects that a node for which it is holding hints has recovered, it begins sending the hints to that node. This setting specifies the maximum sleep interval per delivery thread in kilobytes per second after delivering each hint. The interval shrinks proportionally to the number of nodes in the cluster. For example, if there are two nodes in the cluster, each delivery thread uses the maximum interval; if there are three nodes, each node throttles to half of the maximum interval, because the two nodes are expected to deliver hints simultaneously.

Example

```
$ nodetool sethintedhandoffthrottlekb 2048
```

**nodetool setinterdcstreamthroughput**

Sets the inter-datacenter throughput capacity in megabits per second (Mbps) streaming, or 0 to disable throttling.

**Note:** Since it is a subset of total throughput, `inter_dc_stream_throughput_outbound_megabits_per_sec (page 212)` should be set to a value less than or equal to `stream_throughput_outbound_megabits_per_sec (page 212)`.

Synopsis

```
$ nodetool options setinterdcstreamthroughput
[---] value_in_mbps
```

Tarball and Installer No-Services path:
DataStax Enterprise tools

Table 138: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
</tbody>
</table>

Description

Set to 0 to disable throttling.

**nodetool setlogginglevel**

Set the log level for a service.

**Synopsis**

```bash
$ nodetool <options> setlogginglevel -- <class> <level>
```

Tarball and Installer No-Services path:

`installation_location/resources/cassandra/bin`

Table 139: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
</tbody>
</table>
### DataStax Enterprise tools

#### Short	Long	Description
class | The class for changing the level, a fully qualified domain name such as org.apache.cassandra.service.StorageProxy. |
level | Logging level, for example DEBUG. |
-- | Separates an option from an argument that could be mistaken for a option. |

**Description**

You can use this command to set logging levels for services instead of modifying the logback-text.xml file. The following values are valid for the logger class qualifier:

- org.apache.cassandra
- org.apache.cassandra.db
- org.apache.cassandra.service.StorageProxy

The possible log levels are:

- ALL
- TRACE
- DEBUG
- INFO
- WARN
- ERROR
- OFF

If both class qualifier and level arguments to the command are empty or null, the command resets logging to the initial configuration.

**Example**

This command sets the StorageProxy service to debug level.

```
$ nodetool setlogginglevel org.apache.cassandra.service.StorageProxy DEBUG
```

**Note:** DataStax Enterprise 5.0 and later support extended logging for compaction. This utility must be configured as part of the table configuration. The extended compaction logs are stored in a separate file. For details, see Enabling extended compaction logging.

### nodetool setstreamthroughput

Sets the throughput capacity in megabytes (MB) (megabits) for streaming in the system, or disables throttling.
If `inter_dc_stream_throughput_outbound_megabits_per_sec (page 212)` is set, since it is a subset of total throughput, its value should be less than or equal to `stream_throughput_outbound_megabits_per_sec (page 212)`.

**Synopsis**

```bash
$ nodetool <options> setstreamthroughput -- <value_in_mb>
```

**Tarball and Installer No-Services path:**

`installation_location/resources/cassandra/bin`

**Table 140: Options**

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-h</code></td>
<td><code>--host</code></td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td><code>-p</code></td>
<td><code>--port</code></td>
<td>Port number.</td>
</tr>
<tr>
<td><code>-pwf</code></td>
<td><code>--password-file</code></td>
<td>Password file path.</td>
</tr>
<tr>
<td><code>-pw</code></td>
<td><code>--password</code></td>
<td>Password.</td>
</tr>
<tr>
<td><code>-u</code></td>
<td><code>--username</code></td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td><code>value_in_mb</code></td>
<td><code>Throughput capacity in megabits per second for streaming. To disable, set to 0.</code></td>
<td></td>
</tr>
<tr>
<td><code>--</code></td>
<td></td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
</tr>
</tbody>
</table>

**Description**

Set `value_in_mb` to 0 to disable throttling.

**nodetool settimeout**

Set the specified timeout in milliseconds, or 0 to disable timeout.

**Synopsis**

```bash
$ nodetool [options] settimeout
[++] <timeout_type> <timeout_in_ms>
```

**Tarball and Installer No-Services path:**

`installation_location/resources/cassandra/bin`
Table 141: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td></td>
<td>timeout_type</td>
<td>Type of timeout. Type should be one of read, range, write, counterwrite, cascontention, truncate, streamingsocket, misc (general rpc_timeout_in_ms).</td>
</tr>
<tr>
<td></td>
<td>timeout_in_ms</td>
<td>Timeout in in milliseconds. To disable socket streaming, set to 0.</td>
</tr>
<tr>
<td></td>
<td>--</td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
</tr>
</tbody>
</table>

Note:

- For tarball installations, execute the command from the installation_location/bin directory.
- If a username and password for RMI authentication are set explicitly in the cassandra-env.sh file for the host, then you must specify credentials.
- -- separates an option and argument that could be mistaken for a option.
- The timeout type:

```plaintext
read
range
write
counterwrite
cascontention
truncate
streamingsocket
misc, such as general rpc_timeout_in_ms
```

Description

The nodetool gettimeout command sets the specified timeout in milliseconds. Use "0" to disable a timeout. Several timeouts are available.
Examples

```
$ nodetool -u username -pw password settimeout read 100
```

cassandra-env.sh

The location of the `cassandra-env.sh` file depends on the type of installation:

<table>
<thead>
<tr>
<th>Package installations</th>
<th>/etc/dse/cassandra/cassandra-env.sh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer-Services installations</td>
<td></td>
</tr>
<tr>
<td>Tarball installations</td>
<td><code>installation_location/resources/cassandra/conf/cassandra-env.sh</code></td>
</tr>
<tr>
<td>Installer-No Services installations</td>
<td></td>
</tr>
</tbody>
</table>

`nodetool settraceprobability`

Sets the probability for tracing a request.

**Synopsis**

```
$ nodetool <options> settraceprobability -- <value>
```

Tarball and Installer No-Services path:

```
installation_location/resources/cassandra/bin
```

**Table 142: Options**

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-paw</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td>value</td>
<td>Trace probability</td>
<td>Trace probability between 0 and 1. For example: 0.2.</td>
</tr>
<tr>
<td>--</td>
<td>Separates an option</td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
</tr>
</tbody>
</table>

**Description**

Probabilistic tracing is useful to determine the cause of intermittent query performance problems by identifying which queries are responsible. This option traces some or all statements sent to a cluster. Tracing a request usually requires at least 10 rows to be inserted.
A probability of 1.0 will trace everything whereas lesser amounts (for example, 0.10) only sample a certain percentage of statements. Care should be taken on large and active systems, as system-wide tracing will have a performance impact. Unless you are under very light load, tracing all requests (probability 1.0) will probably overwhelm your system. Start with a small fraction, for example, 0.001 and increase only if necessary. The trace information is stored in a system_traces keyspace that holds two tables – sessions and events, which can be easily queried to answer questions, such as what the most time-consuming query has been since a trace was started. Query the parameters map and thread column in the system_traces.sessions and events tables for probabilistic tracing information.

To discover the current trace probability setting, use `nodetool gettraceprobability` (page 993).

**nodetool sjk**

Runs Swiss Java Knife (SJK) commands to execute, troubleshoot, and monitor the database using MBeans.

**Synopsis**

```
$ nodetool sjk options command command_options
```

**Table 143: Legend**

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td><em>Italics</em></td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ’ ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets ( &lt; &gt; ) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
</tbody>
</table>
Syntax conventions

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cql_statement;</td>
<td>End CQL statement. A semicolon ( ; ) terminates all CQL statements.</td>
</tr>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td>' &lt;schema&gt; ... &lt;/schema&gt; '</td>
<td>Search CQL only: Single quotation marks ( ‘ ) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td>@xml_entity='xml_entity_type'</td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

Connection options

How to connect and authenticate for all nodetool commands.

**Table 144: Options**

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td>--</td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
<td></td>
</tr>
</tbody>
</table>

Options

General Swiss Java Knife options.

--commands
Displays a list of all SJK commands.

--help
Displays command specific help, for example `nodetool sjk ttop --help`.

-X, --verbose
Displays detailed diagnostics.

Commands

DataStax Enterprise (DSE) supports running SJK commands from nodetool.

mxdump

Prints serialized MBeans to JSON format.

**Warning:**
The `nodetool sjk mxdump` command tries to print all exposed MBeans to the console. The command can fail if it encounters an improperly formatted MBean that exposes a non-serializable type. To interact with a specific list of MBeans, use the `nodetool sjk mx` command.

Run the `nodetool sjk mx` command with the `-q` (query) switch to avoid errors if a non-serializable type (such as an mx4j MBean) is returned.

```bash
-nodetool sjk mxdump -q java.lang:type=GarbageCollector,name=*
```

gc
Print GC (garbage collection) log messages for remote process.
To print the GC log messages:
```bash
$ nodetool sjk gc
```

**Note:** No options for GC.

hh
Heap histogram (hh) prints the class histogram, similar to `jmap -histo`. When no options are specified, prints complete histogram for all objects.

**Note:** For package installations, run nodetool with the account the runs the database.

For example, to print a histogram for young with a sample duration of 10000 milliseconds on a system with DataStax Enterprise package installation:

```bash
sudo -u cassandra nodetool sjk hh --young --sample-depth 10000ms -n 10
```

-d, --sample-depth
Specify an integer and unit to set the sample duration for `--dead-young (page 1048)` or `--young (page 1048)`; default: 10000ms. To set the unit, use the following notation:

- ms (milliseconds)
- s (seconds)
- m (minutes)
- h (hours)
- d (days)
--dead
Prints histogram of dead objects.

--dead-young
Prints histogram for sample of dead young objects. Use with -d (page 1047) to set the duration.

--live
Prints histogram of live objects.

-n, --top-number
Limits the number of buckets for $N$ top buckets; default: 2147483647.

--young
Prints histogram for a sample of the new objects. Use with -d (page 1047) to set the duration.

mx
Provides query and execution for Mbeans from the nodetool interface.

-all, --allMatched
Process all matched MBeans.

-a, --arguments
Arguments for MBean operation invocation.

-f, --field, --attribute
MBean attribute

-b, --bean
Mbean name.

-mc, --call
Invokes MBean method. Default false.

-mg, --get
Retrieves value of MBean attribute. Default false.

-mi, --info
Display metadata for MBean. Default false.

--max-col-width
Table column width threshold for formatting tabular data. Default 40.

-op, --operation
MBean operation name to be called.

--quiet
Avoid non-essential output; default: false.

-ms, --set
Sets value for MBean attribute; default: false.

-v, --value
Value to set for MBean attribute.

jps
Enhanced version of jps tool from the Java Development Kit (JDK) that lists the instrumented HotSpot Java Virtual Machines (JVMs) on the target system.

-fd, --filter-description
Use a wildcard expression to match the process description.
-fp, --filter-property
  Use a wildcard expressions to match JVM system properties.

-pd, --process-details
  Prints custom information related to a process; set to PID, MAIN, FDQN_MAIN, ARGS, D_sys-prop, or D_sys-prop.

X jvm-flag
  Prints custom information related to the specified JVM flag.

stcap
  Stack Capture dumps stack traces to file for further processing.

-e, --empty
  Set to true to retain threads without stack trace in dump (ignored by default); default: false.

-f, --filter
  Filters threads by name using Java RegEx syntax; default: .*  
  **Note:** The default value, period (.) followed by asterisk (*), allows any number of any characters, including nulls.

-l, --limit
  Target number of traces to collect, once reached command terminates where 0 is unlimited; default: 0.

-m, --match-frame
  Set to filtering string and only traces containing are included in the dump.

-o, --output
  Write the thread dump to the specified a file name.

-r, --rotate
  When specified output file would be rotated every N traces. Specify 0 for no rotation; default: 0.

-i, --sampler-interval
  Interval between polling MBeans; default: 0.

-t, --timeout
  Time until command terminate even without enough traces collected; default: 30000.

stcpy
  Stack Copy utility copies and filters dumps.

-e, --empty
  Set to true to retain threads without stack trace in dump (ignored by default); default: false.

-i, --input
  Input files.

--mask
  One or more masking rules, for example com.mycompany:com.somecompany. Default: null.

-m, --match-frame
Frame filter, only traces containing the string are included in dump.

- `--output`  
  Set to filename. Writes thread dump to the specified file.

- `--subsample`  
  If below 1.0 some frames are randomly thrown away. For example, 0.1 retains only every 10th frame; default: 1.0.

- `--thread-filter`  
  Filter threads by name using Java RegEx syntax; default: .*

`sса`

Stack Sample Analyzer for stack trace dumps.

- `--categorize`  
  Prints summary for provided categorization; no summary printed by default.

- `--csv-output`  
  Output data in CSV format; default: false.

- `--file`  
  Path to stack dump file.

- `--flame`  
  Exports flame graph to SVG format; default: not included.

- `--histo`  
  Prints frame histogram; default: not included.

- `--named-class`  
  Defines name stack trace. Use with other options.

- `--print`  
  Print traces from file; default: not included.

- `--rainbow`  
  List of filters for rainbow coloring.

- `--ssa-help`  
  Provides additional information about SSA options; default: not shown.

- `--summary-info`  
  Lists summaries.

- `--thread-info`  
  Prints per thread information summary; default: false.

- `--thread-name`  
  Filters thread name using Java RegEx syntax.

- `--time-range`  
  Filters time range.

- `--time-zone`  
  Time zone used for timestamps; default: UTC. Use --ssa-help for timezone notation.

- `--title`  
  Inserts a flame graph title; default: Flame Graph.
Applies filter to traces before processing. Use `--ssa-help` for more details about filter notation.

**-tt, --trace-trim**
Positional filter trim frames to process. Use `--ssa-help` for more details about trace filters.

**--width**
Flame graph width in pixels; default: 1200.

**ttop**
Displays top threads from JVM process.

**-f, --filter**
Wildcard expression to filter threads by name.

**-o, --order**
Sort order. Value tags: CPU, USER, SYS, ALLOC, NAME; default: CPU.

**-ri, --report-interval**
Interval between CPU usage reports; default: 10000.

**-si, --sampler-interval**
Interval between polling MBeans; default: 500.

**-n, --top-number**
Number of threads to show; default: 20.

**Examples**

Get status for the EndpointStateTracker MBean

```
$ nodetool sjk mx -b com.datastax.bdp:type=core,name=EndpointStateTracker
 -f Blacklisted --get
```

Set status to true for the EndpointStateTracker MBean

```
$ nodetool sjk mx -b com.datastax.bdp:type=core,name=EndpointStateTracker
 -f Blacklisted --set -v true
```

Get status of node1

```
$ nodetool sjk mx -b com.datastax.bdp:type=core,name=EndpointStateTracker
 -mc -op getBlacklistedStatus -a node1
```

**nodetool snapshot**

Backs up data and table schemas.

**Warning:** Always run `nodetool cleanup` before taking a snapshot for restore. Otherwise *invalid* replicas, that is replicas that have been superseded by new, valid replicas on newly added nodes can get copied to the target when they should not. This results in old data showing up on the target.
Synopsis

$ nodetool options snapshot
   ( -cf table_name | --column-family table_name )
   (-kc ktlist | --kc.list ktlist | -kt ktlist | --kt-list ktlist)
   (-sf | --skip-flush)
   (-t tag | --tag tag )
   -- ( keyspace_name | keyspace_name ... )

Tarball and Installer No-Services path:

installation_location/services/resources/cassandra/bin

Table 145: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td>-cf</td>
<td>--column-family</td>
<td>Name of the table to snapshot. You must specify one and only one keyspace.</td>
</tr>
<tr>
<td></td>
<td>table</td>
<td>Name of the table to snapshot. You must specify one and only one keyspace.</td>
</tr>
<tr>
<td>-kc</td>
<td>--kc.list</td>
<td>Comma separated list of keyspace_name.table_name with NO spaces.</td>
</tr>
<tr>
<td></td>
<td>ktlist</td>
<td>For example, -kc cycling.cyclist,basketball.players</td>
</tr>
<tr>
<td>-kt</td>
<td>--kt-list</td>
<td>Comma separated list of keyspace_name.table_name with NO spaces.</td>
</tr>
<tr>
<td></td>
<td>ktlist</td>
<td>For example, -kc cycling.cyclist,basketball.players</td>
</tr>
<tr>
<td>-sf</td>
<td>--skip-flush</td>
<td>Executes the snapshot without flushing the tables first.</td>
</tr>
</tbody>
</table>
| -t     | --tag              | Name for the snapshot directory installation_path/data/keyspace_name/table-UID/
<pre><code>                      | snapshots/snapshot_name                                                     |
</code></pre>
<p>|        |                    | Note: When not specified, the current time is used. For example, 1489076973698. |</p>
<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>keyspace</td>
<td>One or more optional keyspace names, separated by a space. Default: all keyspaces</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
<td></td>
</tr>
</tbody>
</table>

**Description**

A snapshot first flushes all in-memory writes to disk, then makes a hard link of the SSTable files for each keyspace. You must have enough free disk space on the node to accommodate making snapshots of your data files. A single snapshot requires little disk space. However, snapshots can cause your disk usage to grow more quickly over time because a snapshot prevents old obsolete data files from being deleted. After the snapshot is complete, you can move the backup files to another location if needed, or you can leave them in place.

**Note:** Restoring from a snapshot requires the table schema.

The snapshot directory path is: data/keyspace_name/table-UID/snapshots/snapshot_name. Data is backed up into multiple .db files and table schema is saved to schema.cql.

**Note:** Before upgrading, DataStax Enterprise (DSE) backs up all keyspaces. See taking a snapshot (page 1318).

For all installations, the default location of the data directory is /var/lib/cassandra/data.

**Example: All keyspaces**

Take a snapshot of all keyspaces on the node:

```
$ nodetool snapshot
```

A message displays with the name of the snapshot directory:

```
Requested creating snapshot(s) for [all keyspaces] with snapshot name [1489076973698] and options {skipFlush=false}
Snapshot directory: 1489076973698
```

**Example: Single keyspace snapshot**

Assuming you created the keyspace cycling, took a snapshot of the keyspace and named the snapshot cycling_2017-3-9:

```
$ nodetool snapshot -t cycling_2017-3-9 cycling
```
The following output appears:

```
Requested creating snapshot(s) for [cycling] with snapshot name [2015.07.17]
Snapshot directory: cycling_2017-3-9
```

Assuming the cycling keyspace contains two tables, cyclist_name and upcoming_calendar, taking a snapshot of the keyspace creates multiple snapshot directories named cycling_2017-3-9. A number of .db files containing the data are located in these directories as well table schema. For example, from the installation directory:

```
$ ls -1 data/cycling/cyclist_name-9e516080f30811e689e40725f37c761d/
snapshots/cycling_2017-3-9
manifest.json
mc-1-big-CompressionInfo.db
mc-1-big-Data.db
mc-1-big-Digest.crc32
mc-1-big-Filter.db
mc-1-big-Index.db
mc-1-big-Statistics.db
mc-1-big-Summary.db
mc-1-big-TOC.txt
schema.cql
```

**Example: Multiple keyspaces snapshot**

Assuming you created a keyspace named mykeyspace in addition to the cycling keyspace, take a snapshot of both keyspaces.

```
$ nodetool snapshot mykeyspace cycling
```

The following message appears:

```
Requested creating snapshot(s) for [mykeyspace, cycling] with snapshot name [1391460334889]
Snapshot directory: 1391460334889
```

**Example: Single table snapshot**

Take a snapshot of only the cyclist_name table in the cycling keyspace.

```
$ nodetool snapshot --table cyclist_name cycling
```

The following message appears:

```
Requested creating snapshot(s) for [cycling] with snapshot name [1391461910600]
Snapshot directory: 1391461910600
```
DSE creates the snapshot directory named 1391461910600 that contains data files and the schema of **cyclist_name** table in `data/cycling/cyclist_name-a882dca02aaf11e58c7b8b496c707234/snapshots`.

**Example: Multiple tables in different keyspaces**

Take a snapshot of several tables in different keyspaces, such as the **cyclist_name** table in the **cycling** keyspace and the **sample_times** table in the **test** keyspace. List tables in a comma separate list with no spaces.

```
$ nodetool snapshot -kt cycling.cyclist_name,test.sample_times
```

Requested creating snapshot(s) for
[cycling.cyclist_name,test.sample_times] with snapshot name [1431045288401] 
Snapshot directory: 1431045288401

**nodetool status**

Provide information about the cluster, such as the state, load, and IDs.

**Synopsis**

```
$ nodetool <options> status (-r | --resolve-ip) -- <keyspace>
```

**Tarball and Installer No-Services path:**

```
installation_location/resources/cassandra/bin
```

**Table 146: Options**

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td>-r</td>
<td>--resolve-ip</td>
<td>Show node names instead of IP addresses.</td>
</tr>
<tr>
<td>keyspace</td>
<td></td>
<td>Name of keyspace.</td>
</tr>
<tr>
<td>--</td>
<td></td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
</tr>
</tbody>
</table>
Description

The status command provides the following information:

- **Status** - U (up) or D (down)
  Indicates whether the node is functioning or not.

- **State** - N (normal), L (leaving), J (joining), M (moving)
  The state of the node in relation to the cluster.

- **Address**
  The node's URL.

- **Load** - updates every 90 seconds
  The amount of file system data under the cassandra data directory after excluding all content in the snapshots subdirectories. Because all SSTable data files are included, any data that is not cleaned up, such as TTL-expired cell or tombstoned data) is counted.

- **Tokens**
  The number of tokens set for the node.

- **Owns**
  The percentage of the data owned by the node per datacenter times the replication factor. For example, a node can own 33% of the ring, but show 100% if the replication factor is 3.

  **Attention:** If your cluster uses keyspaces having different replication strategies or replication factors, specify a keyspace when you run `nodetool status` to get meaningful ownership information.

- **Host ID**
  The network ID of the node.

- **Rack**
  The rack or, in the case of Amazon EC2, the availability zone of the node.

Example

This example shows the output from running `nodetool status`.

```
$ nodetool status mykeyspace
Datacenter: datacenter1
============
```
nodetool statusbackup

Provide the status of backup.

Synopsis

$ nodetool <options> statusbackup

Tarball and Installer No-Services path:

installation_location/resources/cassandra/bin

Table 147: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td>--</td>
<td>-- Separates an option from an argument that could be mistaken for a option.</td>
<td></td>
</tr>
</tbody>
</table>

Description

Provides the status of backup.

nodetool statusbinary

Provide the status of native transport.

Synopsis

$ nodetool <options> statusbinary

Tarball and Installer No-Services path:
Table 148: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td>--</td>
<td></td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
</tr>
</tbody>
</table>

Description

Provides the status of the binary protocol, also known as the native transport.

**nodetool statusgossip**

Provide the status of gossip.

Synopsis

```
$ nodetool <options> statusgossip
```

Table 149: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td>--</td>
<td></td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
</tr>
</tbody>
</table>
Description
Provides the status of gossip.

**nodetool statushandoff**

Provides the status of hinted handoff.

**Synopsis**

```
$ nodetool <options> statushandoff
```

**Tarball and Installer No-Services path:**

`installation_location/resources/cassandra/bin`

**Table 150: Options**

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td>--</td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
<td></td>
</tr>
</tbody>
</table>

Description
Provides the status of hinted handoff.

**nodetool statusthrift**

Provide the status of the Thrift server.

**Synopsis**

```
$ nodetool <options> statusthrift
```

**Tarball and Installer No-Services path:**

`installation_location/resources/cassandra/bin`
### Table 151: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td>--</td>
<td></td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
</tr>
</tbody>
</table>

### nodetool stop

Stops the compaction process.

**Synopsis**

```bash
$ nodetool <options> stop -- <compaction_type>
```

**Tarball and Installer No-Services path:**

installation_location/resources/cassandra/bin

### Table 152: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td>compaction type</td>
<td>Supported types are COMPACTION, VALIDATION, CLEANUP, SCRUB, VERIFY, INDEX_BUILD.</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
</tr>
</tbody>
</table>

**Note:**

- For tarball installations, execute the command from the installation_location/bin directory.
• If a username and password for RMI authentication are set explicitly in the cassandra-env.sh file for the host, then you must specify credentials.
• nodetool stop operates on a single node in the cluster if -h is not used to identify one or more other nodes. If the node from which you issue the command is the intended target, you do not need the -h option to identify the target; otherwise, for remote invocation, identify the target node, or nodes, using -h.
• Valid compaction types: COMPACTION, VALIDATION, CLEANUP, SCRUB, INDEX_BUILD

Description

Stops all compaction operations from continuing to run. This command is typically used to stop a compaction that has a negative impact on the performance of a node. After the compaction stops, the remaining operations in the queue are continued. Eventually, the compaction is restarted.

In DataStax Enterprise 5.0 and later, a single compaction operation can be stopped with the -id option. Run nodetool compactionstats to find the compaction ID.

**nodetool stopdaemon**

Stops the cassandra daemon.

**Synopsis**

```
$ nodetool <options> stopdaemon
```

**Tarball and Installer No-Services path:**

`installation_location/resources/cassandra/bin`

**Table 153: Options**

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
</tbody>
</table>
nodetool tablehistograms

Initial troubleshooting and performance metrics that provide current performance statistics for read and write latency on a table during the past fifteen minutes.

Synopsis

```
nodetool options tablehistograms
 [--] keyspace_name table_name
```

Table 154: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
</tbody>
</table>

Table 154: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Name of keyspace.</td>
</tr>
<tr>
<td></td>
<td>table_name</td>
<td>Name of table.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
</tr>
</tbody>
</table>

Description

nodetool tablehistograms shows table performance statistics over the past fifteen minutes, including read/write latency, partition size, cell count, and number of SSTables. Use this tool to analyze performance and tune individual tables and ensure that the percent latency level meets the SLA for the data stored in the table.
Example

For example, to get statistics for the DSE Search wiki demo solr table, use this command:

$ nodetool tablehistograms wiki solr

Output:

<table>
<thead>
<tr>
<th>Percentile</th>
<th>Size (bytes)</th>
<th>SSTables Count</th>
<th>Write Latency (micros)</th>
<th>Read Latency (micros)</th>
<th>Partition Cell Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>50%</td>
<td>2759</td>
<td>3</td>
<td>126.93</td>
<td>654.95</td>
<td></td>
</tr>
<tr>
<td>75%</td>
<td>5722</td>
<td>3</td>
<td>152.32</td>
<td>1358.10</td>
<td></td>
</tr>
<tr>
<td>95%</td>
<td>17084</td>
<td>3</td>
<td>785.94</td>
<td>5839.59</td>
<td></td>
</tr>
<tr>
<td>98%</td>
<td>29521</td>
<td>3</td>
<td>1629.72</td>
<td>12108.97</td>
<td></td>
</tr>
<tr>
<td>99%</td>
<td>42510</td>
<td>3</td>
<td>2346.80</td>
<td>12108.97</td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>104</td>
<td>3</td>
<td>73.46</td>
<td>219.34</td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>219342</td>
<td>3</td>
<td>2346.80</td>
<td>12108.97</td>
<td></td>
</tr>
</tbody>
</table>

The output shows the percentile rank of read and write latency values, the partition size, and the cell count for the table.

**nodetool tablestats**

Provides statistics about one or more tables.

**Synopsis**

$ nodetool [ options ] tablestats
   [ -H | --human-readable ]
   [ -i table [, table ] . . . ] [ -- ]
   [ keyspace | table | keyspace.table ] [ keyspace | table | keyspace.table ] . . .

**Tarball and Installer No-Services path:**

installation_location/resources/cassandra/bin
### Table 155: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td>-F</td>
<td>--format format</td>
<td>Output format: json or yaml.</td>
</tr>
<tr>
<td>-H</td>
<td>--human-readable</td>
<td>Display bytes in human readable form: KiB (kibibyte), MiB (mebibyte), GiB (gibibyte), TiB (tebibyte).</td>
</tr>
<tr>
<td>-l</td>
<td></td>
<td>Ignore the list of tables and display the remaining tables.</td>
</tr>
</tbody>
</table>

**keyspace.table**
- List of tables (or keyspace) names.

**--**
- Separates an option from an argument that could be mistaken for an option.

### Description

The `nodetool tablestats` command provides statistics about one or more tables. It's updated when SSTables change through compaction or flushing. DataStax Enterprise uses the [metrics-core](https://github.com/datastax/metrics-core) library to make the output more informative and easier to understand.

### Table 156: nodetool tablestats output for a single table

<table>
<thead>
<tr>
<th>Name of statistic</th>
<th>Example value</th>
<th>Brief description</th>
<th>Related information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keyspace</td>
<td>libdata</td>
<td>Name of the keyspace</td>
<td>Keyspace and table</td>
</tr>
<tr>
<td>Table</td>
<td>libout</td>
<td>Name of this table</td>
<td></td>
</tr>
<tr>
<td>SSTable count</td>
<td>3</td>
<td>Number of SSTables containing data for this table</td>
<td>Table statistics (page 1342)</td>
</tr>
<tr>
<td>Space used (live)</td>
<td>9592399</td>
<td>Total number of bytes of disk space used by all active SSTables belonging to this table</td>
<td>Storing data on disk in SSTables</td>
</tr>
<tr>
<td>Name of statistic</td>
<td>Example value</td>
<td>Brief description</td>
<td>Related information</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---------------</td>
<td>------------------------------------------------------------------------------------</td>
<td>-----------------------------------------------------------</td>
</tr>
<tr>
<td>Space used (total)</td>
<td>9592399</td>
<td>Total number of bytes of disk space used by SSTables belonging to this table, including obsolete SSTables waiting to be GCd</td>
<td>Same as above.</td>
</tr>
<tr>
<td>Space used by snapshots (total):</td>
<td>0</td>
<td>Total number of bytes of disk space used by snapshot of this table's data</td>
<td>About snapshots (<a href="#">page 1318</a>)</td>
</tr>
<tr>
<td>Off heap memory used (total)</td>
<td></td>
<td>Total number of bytes of off heap memory used for memtables, Bloom filters, index summaries and compression metadata for this table</td>
<td></td>
</tr>
<tr>
<td>SSTable Compression Ratio</td>
<td>0.367…</td>
<td>Ratio of size of compressed SSTable data to its uncompressed size</td>
<td>Types of compression options.</td>
</tr>
<tr>
<td>Number of partitions (estimate)</td>
<td>3</td>
<td>The number of partition keys for this table</td>
<td>Not the number of primary keys. This gives you the estimated number of partitions in the table.</td>
</tr>
<tr>
<td>Memtable cell count</td>
<td>1022550</td>
<td>Number of cells (storage engine rows x columns) of data in the memtable for this table</td>
<td>How the database reads and writes data</td>
</tr>
<tr>
<td>Memtable data size</td>
<td>32028148</td>
<td>Total number of bytes in the memtable for this table</td>
<td>Total amount of live data stored in the memtable, excluding any data structure overhead.</td>
</tr>
<tr>
<td>Memtable off heap memory used</td>
<td>0</td>
<td>Total number of bytes of off-heap data for this memtable, including column related overhead and partitions overwritten</td>
<td>The maximum amount is set in cassandra.yaml by the property <code>memtable_offheap_space_in_mb</code> (<a href="#">page 207</a>).</td>
</tr>
<tr>
<td>Memtable switch count</td>
<td>3</td>
<td>Number of times a full memtable for this table was swapped for an empty one</td>
<td>Increases each time the memtable for a table is flushed to disk. See How memtables are measured article.</td>
</tr>
<tr>
<td>Local read count</td>
<td>11207</td>
<td>Number of requests to read tables in the keyspace since startup</td>
<td></td>
</tr>
<tr>
<td>Name of statistic</td>
<td>Example value</td>
<td>Brief description</td>
<td>Related information</td>
</tr>
<tr>
<td>------------------------</td>
<td>---------------</td>
<td>-----------------------------------------------------------------------------------</td>
<td>-------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Local read latency</td>
<td>0.048 ms</td>
<td>Round trip time in milliseconds to complete the most recent request to read the table</td>
<td>How is data read?</td>
</tr>
<tr>
<td>Local write count</td>
<td>17598</td>
<td>Number of local requests to update the table since startup</td>
<td></td>
</tr>
<tr>
<td>Local write latency</td>
<td>0.054 ms</td>
<td>Round trip time in milliseconds to complete an update to the table</td>
<td>How are consistent read and write operations handled?</td>
</tr>
<tr>
<td>Pending flushes</td>
<td>0</td>
<td>Estimated number of reads, writes, and cluster operations pending for this table</td>
<td>Important: Monitor this metric to watch for blocked or overloaded memtable flush writers. The nodetool tpmstat (page 1072) tool does not report on blocked flushwriters.</td>
</tr>
<tr>
<td>Percent repaired</td>
<td>100.0</td>
<td>Percentage of data (uncompressed) marked as repaired across all non-system tables on a node. Tables with a replication factor of 1 are excluded.</td>
<td></td>
</tr>
<tr>
<td>Bloom filter false positives</td>
<td>0</td>
<td>Number of false positives reported by this table’s Bloom filter</td>
<td>Tuning bloom filters (page 1348)</td>
</tr>
<tr>
<td>Bloom filter false ratio</td>
<td>0.00000</td>
<td>Fraction of all bloom filter checks resulting in a false positive from the most recent read</td>
<td></td>
</tr>
<tr>
<td>Bloom filter space used, bytes</td>
<td>11688</td>
<td>Size in bytes of the bloom filter data for this table</td>
<td></td>
</tr>
<tr>
<td>Bloom filter off heap memory used</td>
<td>8</td>
<td>The number of bytes of off heap memory used for Bloom filters for this table</td>
<td></td>
</tr>
<tr>
<td>Name of statistic</td>
<td>Example value</td>
<td>Brief description</td>
<td>Related information</td>
</tr>
<tr>
<td>--------------------------------------------------------------</td>
<td>---------------</td>
<td>-----------------------------------------------------------------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Index summary off heap memory used</td>
<td>41</td>
<td>The number of bytes of off heap memory used for index summaries for this table</td>
<td></td>
</tr>
<tr>
<td>Compression metadata off heap memory used</td>
<td>8</td>
<td>The number of bytes of off heap memory used for compression offset maps for this table</td>
<td></td>
</tr>
<tr>
<td>Compacted partition minimum</td>
<td>1110</td>
<td>Size in bytes of the smallest compacted partition for this table</td>
<td></td>
</tr>
<tr>
<td>Compacted partition maximum bytes</td>
<td>126934</td>
<td>Size in bytes of the largest compacted partition for this table</td>
<td></td>
</tr>
<tr>
<td>Compacted partition mean bytes</td>
<td>2730</td>
<td>The average size of compacted partitions for this table</td>
<td></td>
</tr>
<tr>
<td>Average live cells per slice (last five minutes)</td>
<td>0.0</td>
<td>Average number of cells scanned by single key queries during the last five minutes</td>
<td></td>
</tr>
<tr>
<td>Maximum live cells per slice (last five minutes)</td>
<td>0.0</td>
<td>Maximum number of cells scanned by single key queries during the last five minutes</td>
<td></td>
</tr>
<tr>
<td>Average tombstones per slice (last five minutes)</td>
<td>0.0</td>
<td>Average number of tombstones scanned by single key queries during the last five minutes</td>
<td></td>
</tr>
<tr>
<td>Maximum tombstones per slice (last five minutes)</td>
<td>0.0</td>
<td>Maximum number of tombstones scanned by single key queries during the last five minutes</td>
<td></td>
</tr>
<tr>
<td>Name of statistic</td>
<td>Example value</td>
<td>Brief description</td>
<td>Related information</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------</td>
<td>------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Dropped mutations</td>
<td>0.0</td>
<td>The number of mutations (INSERTs, UPDATEs or DELETEs) started on this table but not completed</td>
<td>A high number of dropped mutations can indicate an overloaded node.</td>
</tr>
</tbody>
</table>

**Examples**

An excerpt of the output of the command reporting on a library data table just flushed to disk.

```
$ nodetool tablestats keyspace1.standard1
```

**Keyspace: keyspace1**
- Read Count: 182849
- Read Latency: 0.11363755339104945 ms.
- Write Count: 435355
- Write Latency: 0.01956930550929701 ms.
- Pending Flushes: 0
- Table: standard1
- SSTable count: 2
- Space used (live): 54131487
- Space used (total): 54131487
- Space used by snapshots (total): 0
- Off heap memory used (total): 309620
- SSTable Compression Ratio: 0.0
- Number of partitions (estimate): 376390
- Memtable cell count: 200120
- Memtable data size: 47355786
- Memtable off heap memory used: 0
- Memtable switch count: 2
- Local read count: 182849
- Local read latency: 0.125 ms
- Local write count: 435355
- Local write latency: 0.022 ms
- Pending flushes: 0
- Percent repaired: 100.0
- Bloom filter false positives: 11
- Bloom filter false ratio: 0.00009
- Bloom filter space used: 272192
- Bloom filter off heap memory used: 272176
- Index summary off heap memory used: 37444
- Compression metadata off heap memory used: 0
- Compacted partition minimum bytes: 216
- Compacted partition maximum bytes: 258
- Compacted partition mean bytes: 258
- Average live cells per slice (last five minutes): 1.0
- Maximum live cells per slice (last five minutes): 1
- Average tombstones per slice (last five minutes): 1.0
- Maximum tombstones per slice (last five minutes): 1
Using the human-readable option

Use the human-readable \(-H\) option to get output in easier-to-read units. For example:

```
$ C:\> %CASSANDRA_HOME%\nodetool tablestats \-H keyspace1.standard1
Keyspace: keyspace1
 Read Count: 182849
 Read Latency: 0.11363755339104945 ms.
 Write Count: 435355
 Write Latency: 0.01956930550929701 ms.
 Pending Flushes: 0
 Table: standard1
 SSTable count: 2
 Space used (live): 51.62 MB
 Space used (total): 51.62 MB
 Space used by snapshots (total): 0 bytes
 Off heap memory used (total): 302.36 KB
 SSTable Compression Ratio: 0.0
 Number of partitions (estimate): 376390
 Memtable cell count: 200120
 Memtable data size: 45.16 MB
 Memtable off heap memory used: 0 bytes
 Memtable switch count: 2
 Local read count: 182849
 Local read latency: 0.125 ms
 Local write count: 435355
 Local write latency: 0.022 ms
 Pending flushes: 0
 Percent repaired: 100.0
 Bloom filter false positives: 11
 Bloom filter false ratio: 0.000000
 Bloom filter space used: 265.81 KB
 Bloom filter off heap memory used: 265.8 KB
 Index summary off heap memory used: 36.57 KB
 Compression metadata off heap memory used: 0 bytes
 Compacted partition minimum bytes: 216 bytes
 Compacted partition maximum bytes: 258 bytes
 Compacted partition mean bytes: 258 bytes
 Average live cells per slice (last five minutes): 1.0
 Maximum live cells per slice (last five minutes): 1
 Average tombstones per slice (last five minutes): 1.0
 Maximum tombstones per slice (last five minutes): 1
```

**nodetool toppartitions**

Samples database reads and writes and reports the most active partitions in a specified table.

**Synopsis**

```
$ nodetool [options] toppartitions
 [-a samplers] [-k topcount] [-s size] [--]
```
DataStax Enterprise tools

keyspace table duration

Tarball and Installer No-Services path:

installation_location/resources/cassandra/bin

Table 157: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td>-a</td>
<td>samplers</td>
<td>Comma separated list of samplers to use</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(default: all)</td>
</tr>
<tr>
<td>-k</td>
<td>topCount</td>
<td>The number of the top partitions to list</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(default: 10)</td>
</tr>
<tr>
<td>-s</td>
<td>size</td>
<td>The capacity of stream summary.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A value closer to the actual cardinality of</td>
</tr>
<tr>
<td></td>
<td></td>
<td>partitions yields more accurate results.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(default: 256)</td>
</tr>
<tr>
<td>keyspace</td>
<td>Name of keyspace.</td>
<td></td>
</tr>
<tr>
<td>table</td>
<td>Name of table.</td>
<td></td>
</tr>
<tr>
<td>duration</td>
<td>The duration in</td>
<td></td>
</tr>
<tr>
<td></td>
<td>milliseconds</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>Separates an option</td>
<td></td>
</tr>
<tr>
<td></td>
<td>from an argument</td>
<td></td>
</tr>
<tr>
<td></td>
<td>that could be</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mistaken for a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>option.</td>
<td></td>
</tr>
</tbody>
</table>

Description

The `nodetool toppartitions` command samples the activity in a table during the specified duration and prints lists of the most active partitions during that time period. To run this command you must specify the keyspace and table to focus on and the time interval (in milliseconds) during which DataStax Enterprise samples the table’s activity.
Examples

Sample the most active partitions for the table test.users for 1,000 milliseconds

$ nodetool toppartitions test users 1000

The output of nodetool toppartitions is similar to the following:

WRITES Sampler:	CARDINALITY: ~2 (256 capacity)	
Top 4 partitions:		
Partition	Count	+/−
4b504d39354f37353131	15	14
3738313134394d353530	15	14
4f363735324e324e4d30	15	14
303535324e4b4d504c30	15	14

READS Sampler:	CARDINALITY: ~3 (256 capacity)	
Top 4 partitions:		
Partition	Count	+/−
4d4e30314f374e313730	42	41
4f363735324e324e4d30	42	41
303535324e4b4d504c30	42	41
4e355030324e344d3030	41	40

For each of the samplers used (WRITES and READS in the example), toppartitions reports:

- The cardinality of the sampled operations (that is, the number of unique operations in the sample set)

- The n partitions in the specified table that had the most traffic in the specified time period (where n is the value of the −k argument, or ten if −k is not explicitly set in the command).

For each Partition, toppartitions reports:

Partition: The partition key

Count: The number of operations of the specified type that occurred during the specified time period.

+/−: The margin of error for the Count statistic

Note: To keep the toppartitions reporting from slowing performance, the database does not keep an exact count of operations, but uses sampling techniques to create an approximate number. (This example reports on a sample cluster; a production system might generate
millions of reads or writes in a few seconds.) The +/− figure allows you to judge the accuracy of the toppartitions reporting.

nodetool tpstats

Provides usage statistics of thread pools.

Synopsis

$ nodetool <options> tpstats

Tarball and Installer No-Services path:

installation_location/resources/cassandra/bin

Table 158: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-F</td>
<td>--format</td>
<td>Output format json or yaml.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td></td>
<td>--</td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
</tr>
</tbody>
</table>

Description

The DataStax Enterprise (DSE) database is based on a Staged Event Driven Architecture (SEDA). The database separates different tasks into stages connected by a messaging service. Each stage has a queue and a thread pool. Although some stages skip the messaging service and queue tasks immediately on a different stage when it exists on the same node. The database can back up a queue if the next stage is too busy and lead to a performance bottlenecks, as described in Monitoring a DataStax Enterprise cluster (page 1334).

The nodetool tpstats command reports on each stage of database operations by thread pool:

- The number of Active threads
- The number of Pending requests waiting to be executed by this thread pool
- The number of tasks Completed by this thread pool
The number of requests that are currently Blocked because the thread pool for the next step in the service is full.

The total number of All-Time Blocked requests, which are all requests blocked in this thread pool up to now.

Reports are updated when SSTables change through compaction or flushing.

Run `nodetool tpstats` on a local node to get statistics for the thread pool used by the DSE instance running on that node.

Run `nodetool tpstats` with the appropriate options to check the thread pool statistics for a remote node. For setup instructions, see Enabling DSE Unified Authentication.

This table describes the task or property associated with each pool name reported in the `nodetool tpstats` output:

<table>
<thead>
<tr>
<th>Pool Name</th>
<th>Associated tasks</th>
<th>Related information</th>
</tr>
</thead>
<tbody>
<tr>
<td>AntiEntropyStage</td>
<td>Processing repair messages and streaming</td>
<td>For details, see [Nodetool repair](page 1020).</td>
</tr>
<tr>
<td>CacheCleanupExecutor</td>
<td>Clearing the cache</td>
<td></td>
</tr>
<tr>
<td>CommitlogArchiver</td>
<td>Copying or archiving commitlog files for recovery</td>
<td></td>
</tr>
<tr>
<td>CompactionExecutor</td>
<td>Running compaction</td>
<td></td>
</tr>
<tr>
<td>CounterMutationStage</td>
<td>Processing local counter changes</td>
<td>Will back up if the write rate exceeds the mutation rate. A high pending count will be seen if consistency level is set to ONE and there is a high counter increment workload.</td>
</tr>
<tr>
<td>GossipStage</td>
<td>Distributing node information via Gossip</td>
<td>Out of sync schemas can cause issues. You may have to sync using [nodetool resetlocalschema](page 1025).</td>
</tr>
<tr>
<td>HintedHandoff</td>
<td>Sending missed mutations to other nodes</td>
<td>Usually symptom of a problem elsewhere. Use [nodetool disablehandoff](page 969) and run repair.</td>
</tr>
<tr>
<td>InternalResponseStage</td>
<td>Responding to non-client initiated messages, including bootstrapping and schema checking</td>
<td></td>
</tr>
<tr>
<td>Pool Name</td>
<td>Associated tasks</td>
<td>Related information</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------------------------------------------------</td>
<td>------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>MemtableFlushWriter</td>
<td>Writing memtable contents to disk</td>
<td>May back up if the queue is overruns the disk I/O, or because of sorting processes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Warning:</strong> nodetool tpstats no longer reports blocked threads in the MemtableFlushWriter pool. Check the Pending Flushes <em>(page 1066)</em> metric reported by nodetool tblestats.</td>
</tr>
<tr>
<td>MemtablePostFlush</td>
<td>Cleaning up after after flushing the memtable (discarding commit logs and secondary indexes as needed)</td>
<td></td>
</tr>
<tr>
<td>MemtableReclaimMemory</td>
<td>Making unused memory available</td>
<td></td>
</tr>
<tr>
<td>MigrationStage</td>
<td>Processing schema changes</td>
<td></td>
</tr>
<tr>
<td>MiscStage</td>
<td>Snapshotting, replicating data after node remove completed.</td>
<td></td>
</tr>
<tr>
<td>MutationStage</td>
<td>Performing local inserts/updates, schema merges, commit log replays or hints in progress</td>
<td>A high number of Pending write requests indicates the node is having a problem handling them. Fix this by adding a node, tuning hardware and configuration, and/or updating data models.</td>
</tr>
<tr>
<td>Native-Transport-</td>
<td>Processing CQL requests to the server</td>
<td></td>
</tr>
<tr>
<td>Requests</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PendingRangeCalculator</td>
<td>Calculating pending ranges per bootstraps and departed nodes</td>
<td>Reporting by this tool is not useful — see Developer notes</td>
</tr>
<tr>
<td>ReadRepairStage</td>
<td>Performing read repairs</td>
<td>Usually fast, if there is good connectivity between replicas. If Pending grows too large, attempt to lower the rate for high-read tables by altering the table to use a smaller read_repair_chance value, like 0.11.</td>
</tr>
<tr>
<td>ReadStage</td>
<td>Performing local reads</td>
<td>Also includes deserializing data from row cache. Pending values can cause increased read latency. Generally resolved by adding nodes or tuning the system.</td>
</tr>
</tbody>
</table>
nodetool tpstats droppable messages

The database generates the messages listed below, but discards them after a timeout. The `nodetool tpstats` command reports the number of messages of each type that have been dropped. You can view the messages themselves using a JMX client.

<table>
<thead>
<tr>
<th>Message Type</th>
<th>Stage</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>BINARY</td>
<td>n/a</td>
<td>Deprecated</td>
</tr>
<tr>
<td>_TRACE</td>
<td>n/a (special)</td>
<td>Used for recording traces (nodetool settraceprobability) Has a special executor (1 thread, 1000 queue depth) that throws away messages on insertion instead of within the execute</td>
</tr>
<tr>
<td>MUTATION</td>
<td>MutationStage</td>
<td>If a write message is processed after its timeout (write_request_timeout_in_ms) it either sent a failure to the client or it met its requested consistency level and will relay on hinted handoff and read repairs to do the mutation if it succeeded.</td>
</tr>
<tr>
<td>COUNTER_MUTATION</td>
<td>MutationStage</td>
<td>If a write message is processed after its timeout (write_request_timeout_in_ms) it either sent a failure to the client or it met its requested consistency level and will relay on hinted handoff and read repairs to do the mutation if it succeeded.</td>
</tr>
<tr>
<td>READ_REPAIR</td>
<td>MutationStage</td>
<td>Times out after write_request_timeout_in_ms</td>
</tr>
<tr>
<td>Message Type</td>
<td>Stage</td>
<td>Notes</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------</td>
<td>----------------------------------------------------------------------</td>
</tr>
<tr>
<td>READ</td>
<td>ReadStage</td>
<td>Times out after read_request_timeout_in_ms. No point in servicing reads after that point since it would of returned error to client</td>
</tr>
<tr>
<td>RANGE.Slice</td>
<td>ReadStage</td>
<td>Times out after range_request_timeout_in_ms.</td>
</tr>
<tr>
<td>PAGED_RANGE</td>
<td>ReadStage</td>
<td>Times out after request_timeout_in_ms.</td>
</tr>
<tr>
<td>REQUEST_RESPONSE</td>
<td>RequestResponseStage</td>
<td>Times out after request_timeout_in_ms. Response was completed and sent back but not before the timeout</td>
</tr>
</tbody>
</table>

**Example**

Running `nodetool tpstats`:

```
$ nodetool tpstats
```

**Example output is:**

<table>
<thead>
<tr>
<th>Pool Name</th>
<th>Active</th>
<th>Pending</th>
<th>Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>ReadStage</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>ContinuousPagingStage</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MiscStage</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CompactionExecutor</td>
<td>0</td>
<td>0</td>
<td>76</td>
</tr>
<tr>
<td>MutationStage</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>GossipStage</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RequestResponseStage</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ReadRepairStage</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CounterMutationStage</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MemtablePostFlush</td>
<td>0</td>
<td>0</td>
<td>182</td>
</tr>
<tr>
<td>ValidationExecutor</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Event Name</td>
<td>Dropped</td>
<td>Latency waiting in queue</td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---------</td>
<td>--------------------------</td>
<td></td>
</tr>
<tr>
<td>MemtableFlushWriter</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ViewMutationStage</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>CacheCleanupExecutor</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>MemtableReclaimMemory</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PendingRangeCalculator</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>AntiCompactionExecutor</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>SecondaryIndexManagement</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>HintsDispatcher</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Native-Transport-Requests</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>MigrationStage</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PerDiskMemtableFlushWriter_0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sampler</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>InternalResponseStage</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>AntiEntropyStage</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Message type</th>
<th>Dropped</th>
<th>Latency waiting in queue</th>
</tr>
</thead>
<tbody>
<tr>
<td>READ</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>RANGE_SLICE</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>_TRACE</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>HINT</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>MUTATION</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>COUNTER_MUTATION</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>BATCH_STORE</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>BATCH_REMOVE</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>REQUEST_RESPONSE</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>PAGED_RANGE</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
nodetool truncatehints

Truncates all hints on the local node, or truncates hints for the one or more endpoints.

Synopsis

```
$ nodetool <options> truncatehints -- <endpoint> ...
```

Table 159: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td>endpoint</td>
<td>One or more endpoint IP addresses or host names designating which hints to deleted.</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
<td></td>
</tr>
</tbody>
</table>

nodetool upgradesstables

Rewrites SSTables for tables that are not running the current version of DataStax Enterprise. Ensure that the SSTables are compatible with the current DSE version.

For SSTable compatibility and upgrading, see SSTable compatibility.

Synopsis

```
$ nodetool <options> upgradesstables
 (-a | --include-all-sstables)
 -- <keyspace> <table> ...
```

Tarball and Installer No-Services path:
Table 160: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-j</td>
<td>--job</td>
<td>Number of sstables to upgrade simultaneously; 0 uses all available compaction threads.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td>-a</td>
<td>--include-all-sstables</td>
<td>Forces an upgrade of the SSTables, even if they have the target version.</td>
</tr>
</tbody>
</table>

**keyspace** Name of keyspace.

**table** One or more table names, separated by a space.

**--** Separates an option from an argument that could be mistaken for a option.

**Description**
Rewrites SSTables on a node that are incompatible with the current version. Use this command when upgrading your server or changing compression options.

**nodetool verify**

Verify (check data checksum for) one or more tables.

**Synopsis**

```
$ nodetool [options] verify [(-e | --extended-verify)] [--] [<keyspace> <table>...]
```

**Tarball and Installer No-Services path:**

`installation_location/resources/cassandra/bin`
### Table 161: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td>-e</td>
<td>--extended-verify</td>
<td>Verify each cell data, beyond simply checking SSTable checksums.</td>
</tr>
<tr>
<td></td>
<td>keyspace</td>
<td>Name of keyspace.</td>
</tr>
<tr>
<td></td>
<td>table</td>
<td>One or more table names, separated by a space.</td>
</tr>
<tr>
<td></td>
<td>--</td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
</tr>
</tbody>
</table>

**Note:**
- For tarball installations, execute the command from the `installation_location/bin` directory.
- If a username and password for RMI authentication are set explicitly in the `cassandra-env.sh` file for the host, then you must specify credentials.
- `nodetool verify` operates on a single node in the cluster if `-h` is not used to identify one or more other nodes. If the node from which you issue the command is the intended target, you do not need the `-h` option to identify the target; otherwise, for remote invocation, identify the target node, or nodes, using `-h`.

**Description**

The `nodetool verify` command checks the data checksum for one or more specified tables. An optional argument, `-e` or `--extended-verify`, will verify each cell data, whereas without the option, only the SSTable checksums are verified.

**Examples**

```
$ nodetool -u username -pw password verify cycling cyclist_name
```

cassandra-env.sh

The location of the `cassandra-env.sh` file depends on the type of installation:

<table>
<thead>
<tr>
<th>Package installations</th>
<th>/etc/dse/cassandra/cassandra-env.sh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer-Services installations</td>
<td></td>
</tr>
</tbody>
</table>
nodetool version

Provides the version number of Cassandra running on the specified node.

Synopsis

$ nodetool <options> version

Table 162: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td>--</td>
<td>Separates an option from an argument that could be mistaken for a option.</td>
<td></td>
</tr>
</tbody>
</table>

Example

Run nodetool version

$ nodetool version

ReleaseVersion: 3.11.3.5115

nodetool viewbuildstatus

Shows the progress of a materialized view build.

Synopsis

$ nodetool viewbuildstatus <keyspace> <view> | <keyspace.view>

Tarball and Installer No-Services path:
Table 163: Options

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--host</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>-p</td>
<td>--port</td>
<td>Port number.</td>
</tr>
<tr>
<td>-pwf</td>
<td>--password-file</td>
<td>Password file path.</td>
</tr>
<tr>
<td>-pw</td>
<td>--password</td>
<td>Password.</td>
</tr>
<tr>
<td>-u</td>
<td>--username</td>
<td>Remote JMX agent username.</td>
</tr>
<tr>
<td>keyspace</td>
<td></td>
<td>The name of the keyspace.</td>
</tr>
<tr>
<td>view</td>
<td></td>
<td>The name of the view. You can also use keyspace.view.</td>
</tr>
<tr>
<td>--</td>
<td></td>
<td>Separates an option from an argument that could be mistaken for an option.</td>
</tr>
</tbody>
</table>

Description

Shows the progress of a materialized view build.

**dse commands**

The dse commands for starting the database and connecting an external client to a DataStax Enterprise node and performing common utility tasks.

**About dse commands**

The dse commands provide controls for starting and using DataStax Enterprise (DSE).

**dse subcommands**

Specify one dse subcommand and none or more optional command arguments.

**Note:** When multiple flags are used, list them separately on the command line. For example, ensure there is a space between -k and -s in `dse cassandra -k -s`.

**DSE Multi-Instance commands**

To run standard DataStax Enterprise commands for nodes on a DSE Multi-Instance host machine, specify the node name using this syntax:
sudo dse dse-nodeId subcommand [command_arguments]

For details, see DSE Multi-Instance commands.

**dse command connection options**

Options to authenticate connections to the database and to JMX for dse commands.

**Synopsis**

```
$ dse
[-f config_file | -u username -p password]
[-a jmx_username [-b jmx_password]]
command [options]
```

**Table 164: Legend**

<table>
<thead>
<tr>
<th><strong>Syntax conventions</strong></th>
<th><strong>Description</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td><em>Italics</em></td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ‘ ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets ( &lt; &gt; ) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td>cql_statement;</td>
<td>End CQL statement. A semicolon ( ; ) terminates all CQL statements.</td>
</tr>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
</tbody>
</table>
### Syntax conventions

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>&lt;schema&gt; ... &lt;/schema&gt;</code></td>
<td>Search CQL only: Single quotation marks (’’) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td><code>@xml_entity='xml_entity_type'</code></td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

Specify how to connect and authenticate to the database for dse commands.

This list shows short form (`-f filename`) and long form (`--config-file=filename`):

- `-f, --config-file config_filename`
  - File path to configuration file that stores credentials. The credentials in this configuration file override the `~/.dserc` credentials. If not specified, then use `~/.dserc` if it exists.
  
  The configuration file can contain DataStax Enterprise and JMX login credentials. For example:

  ```
 username=username
 password=password
 jmx_username=jmx_username
 jmx_password=jmx_password
  ```

  The credentials in the configuration file are stored in clear text. DataStax recommends restricting access to this file only to the specific user.

- `-u username`
  - Role to authenticate for database access.

- `-p, --password password`
  - Password to authenticate for database access.

- `-a, --jmxusername jmx_username`
  - User name for authenticating with secure local JMX.

- `-b, --jmxpassword jmx_password`
  - Password for authenticating with secure local JMX. If you do not provide a password, you are prompted to enter one.

**Examples**

**To authenticate a connection to the database**

```
$ dse -u user1 -p mypassword
```

**To authenticate a connection using a configuration file**
For DSE Multi-Instance, simplifies adding and configuring a node on a host machine. When optional parameters are absent, the default values remain unchanged.

Important: The user running the command must have permissions for writing to the directories that DSE uses, or use sudo.

Restriction: DSE Multi-Instance commands are supported only on package installations.

Synopsis

$ dse add-node -n nodeId
[--advrep-directory advrepdirectory]
[--analytics]
[--cdc-directory=cddirectory]
[--cluster=clustername]
[--commit-directory=commitdirectory]
[--cpus=number_of_cpus]
[--dc=datacenter_placement]
[--data-directory=datadirectory]
[--dsefs] [--dsefs-directory=dsefsdatadirectory]
[--graph]
[--hadoop-logs=hadooplogsdirectory]
[help]
[--hints-directory=hintsdirectory]
[--jmxport=jmx_port]
[--listen-address=listen_IP_address]
[--logs-directory=alllogsdirectory]
[--max-heap-size=heapsize]
[--native-transport-address=native_transport_IP_address]
[--num-tokens=number_of_tokens]
[--pig-logs=piglogdirectory]
[--rack=rack_placement]
[--rpc-address=rpc_IP_address]
[--saved-caches-directory=savedcachesdirectory]
[search]
[--seeds=IP_address1,IP_address2,...]
[--spark-local-directory=sparklocaldirectory]
[--spark-log-directory=sparklogdirectory]
[--spark-worker-cores=number_of_cores]
[--spark-worker-directory=sparkworkerdirectory]
[--spark-worker-memory=memory]
[--tomcat-logs=tomcatlogsdirectory]
[--unix-group=groupname]
[--unix-username=username]
**Table 165: Legend**

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td><em>Italics</em></td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( () ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td>Or. A vertical bar (</td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ' ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets ( &lt; &gt; ) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td>cql_statement;</td>
<td>End CQL statement. A semicolon ( ; ) terminates all CQL statements.</td>
</tr>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td>' &lt;schema&gt; ... &lt;/schema&gt; '</td>
<td>Search CQL only: Single quotation marks ( ' ) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td>@xml_entity='xml_entity_type'</td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

New node configuration options:

- **-n=nodeId, --node-id=nodeId**
  Required. For DSE Multi-Instance, the alphanumeric node name for the new node. The specified node name is automatically prepended with dse- so that the resulting node ID is dse-nodeId. For example, if you specify node1, the resulting node name is dse-node1.

- **--advrep-directory=advrepcollection**
  Optional. The DSE Advanced Replication data directory.
  Default: /var/lib/dse-nodeId/advancedrep
--analytics
   Enable DSE Analytics.
--cdc-directory=cdcdirectory
   Optional. The CDC raw data directory.
   Default: /var/lib/dse-nodeId/cdc_raw
--cluster=clusternname
   Optional. The name of the DataStax Enterprise cluster that the new node belongs	o. Only non-whitespace values are supported.
--cpus=number_of_cpus
   Optional. The number of cores.
--commit-directory=commitdirectory
   Optional. The commit log directory.
   Default: /var/lib/dse-nodeId/commitlog
--dc=datacenter_placement
   Optional. The data center placement.
--data-directory=datadirectory
   Optional. The root directory for storing data.
   Default: /var/lib/dse-nodeId/data
--dsefs
   Optional. Enable DSEFS.
--dsefs-directory=dsefsdatadirectory
   Optional. The DSEFS data directory.
   Default: /var/lib/dse-nodeId/dsefs
--graph
   Optional. Enable DSE Graph.
--hadoop-logs=hadooplogsdirectory
   Optional. The log directory for Hadoop logs.
   Default: logs-directory/hadoop
--help
   Optional. Send dse add-node option descriptions to standard output.
--hints-directory=hintsdirectory
   Optional. The hints directory.
   Default: /var/lib/dse-nodeId/hints
--jmxport=jmx_port
   Optional. The DSE JMX metrics monitoring port.
--listen-address=listen_IP_address
   Optional. The IP address or hostname that DSE binds to when connecting to other
   nodes.
--logs-directory=alllogsdirectory
   Optional. The root directory for all of the logs.
   Default: /var/log/dse-nodeId
--max-heap-size=heapsize
   Optional. The Java heap size. If you omit MB the size is interpreted as megabytes.
--num-tokens=number_of_tokens
   Optional. The number of tokens.
--pig-logs=piglogdirectory
   The log directory for Pig logs.
   Default: logs-directory/pig
DataStax Enterprise tools

--rack=rack_placement
  Optional. The rack placement.

--rpc-address=rpc_IP_address
  Optional. The IP address or hostname that DSE binds to for RPC requests.

--saved-caches-directory=savedcachesdirectory
  Optional. The saved caches directory.
  Default: /var/lib/dse-nodeId/saved_caches

--search
  Optional. Enable DSE Search.

--seeds=IP_address1,IP_address2,...
  Optional. A comma-separated list of IP addresses of the nodes to be used as seed
  nodes.

--spark-local-directory=sparklocaldirectory
  Optional. The local directory for Spark Worker.
  Default: /var/lib/dse-nodeId/spark/rdd

--spark-log-directory=sparklogdirectory
  Optional. The log directory for Spark Worker.
  Default: /var/log/dse-nodeId/spark/worker

--spark-worker-cores=number_of_cores
  Optional. The maximum number of cores used by Spark executors.

--spark-worker-directory=sparkworkerdirectory
  Optional. The data directory for Spark Worker.
  Default: /var/lib/dse-nodeId/spark/worker

--spark-worker-memory=memory
  Optional. The maximum amount of memory used by Spark executors. Specify unit
  of measure with k (kilobytes), m (megabytes), g (gigabytes).

--tomcat-logs=tomcatlogsdirectory
  Optional. The log directory for tomcat logs.
  Default: logs-directory/tomcat

--unix-group=groupname
  Optional. The UNIX group that owns the node configuration.
  Default: cassandra

--unix-username=username
  Optional. The UNIX user that owns the node configuration.
  Default: cassandra

Examples

Add node1

$ dse add-node node1

The dse-node1 is created on the local machine.

Add a node that will join the cluster payroll on startup

$ dse add-node payrollnode --cluster payroll --listen-address 192.168.0.0
--rpc-address 192.168.0.1 --seeds 192.168.0.2

The payroll node is created with the specified configuration options.

**dse advrep**

**dse advrep commands**

A list of commands for DSE Advanced Replication.

**About the dse advrep command**

The command line tool provides commands and options for configuring and using DSE Advanced Replication.

**Synopsis**

```bash
$ dse advrep [connection_options] [command] [sub_command] [sub_command_options]
```

The default port for DSE Advanced Replication is 9042.

**Table 166: Legend**

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td><em>Italics</em></td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( ( ) ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ' ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>Syntax conventions</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------</td>
</tr>
<tr>
<td><code>&lt;datatype1,datatype2&gt;</code></td>
<td>Set, list, map, or tuple. Angle brackets ( <code>&lt;</code> ) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td><code>cql_statement;</code></td>
<td>End CQL statement. A semicolon ( <code>;</code> ) terminates all CQL statements.</td>
</tr>
<tr>
<td><code>[ -- ]</code></td>
<td>Separate the command line options from the command arguments with two hyphens ( <code>--</code> ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td><code>' &lt;schema&gt; ... &lt;/schema&gt;'</code></td>
<td>Search CQL only: Single quotation marks ( <code>‘</code> ) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td><code>@xml_entity='xml_entity_type'</code></td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

Using dse advrep command line help

To view a listing of dse advrep commands:

```
$ dse advrep help
```

To view help for a specific command:

```
$ dse advrep help command [sub_command]
```

Connection options

JMX authentication is supported by some dse commands. Other dse commands authenticate with the user name and password of the configured user. The connection option short form and long form are comma separated.

**Note:** You can provide authentication credentials in several ways, see Credentials for authentication.

General connection options:

- **--separator field_separator**
  The field separator for use with the `--no-pretty-print` command.
- **--verbose**
  Print verbose messages for command.
- **--verbose**
  Displays which arguments are recognized as Spark configuration options and which arguments are forwarded to the Spark shell.
- **--no-pretty-print**
  If not specified, data is printed using tabular output. If specified, data is printed as a comma separated list unless a separator is specified.
- **--cipher-suites ssl_cipher_suites**
Comma-separated list of SSL cipher suites for connection to DSE when SSL is enabled. For example, --cipher-suites c1,c2,c3.

--host hostname
The DSE node hostname or IP address.

--jmx-port jmx_port
The remote JMX agent port number. Default: 7199.

--jmx-pwd jmx_password
The password for authenticating with secure local JMX. If you do not provide a password, you are prompted to enter one.

--jmx-user jmx_username
The user name for authenticating with secure local JMX.

--kerberos-enabled true | false
Whether Kerberos authentication is enabled for connections to DSE. For example, --kerberos-enabled true.

--keystore-password keystore_password
Keystore password for connection to DSE when SSL client authentication is enabled.

--keystore-path ssl_keystore_path
Path to the keystore for connection to DSE when SSL client authentication is enabled.

--keystore-type ssl_keystore_type
Keystore type for connection to DSE when SSL client authentication is enabled. JKS is the type for keys generated by the Java keytool binary, but other types are possible, depending on user environment.

-p password
The password to authenticate for database access. Can use the DSE_PASSWORD environment variable.

--ssl
Whether SSL is enabled for connection to DSE. --ssl-enabled true is the same as --ssl.

--ssl-protocol ssl_protocol
SSL protocol for connection to DSE when SSL is enabled. For example, --ssl-protocol ssl4.

-t delegation_token
The delegation token to use at login. Or alternatively, DSE_TOKEN environment variable can be used.

--truststore-password ssl_truststore_password
Truststore password to use for connection to DSE when SSL is enabled.

--truststore-path ssl_truststore_path
Path to the truststore to use for connection to DSE when SSL is enabled. For example, --truststore-path /path/to/ts.

--truststore-type ssl_truststore_type
Truststore type for connection to DSE when SSL is enabled. JKS is the type for keys generated by the Java keytool binary, but other types are possible, depending on user environment. For example, --truststore-type jks2.

-u username
User name of a DSE authentication account. Can use the DSE_USERNAME environment variable.
Examples

This connection example specifies that Kerberos is enabled and lists the replication channels:

```
$ dse advrep --host ip-10-200-300-138.example.lan --kerberos-enabled=true conf list
```

To use the server YAML files:

```
$ dse advrep --use-server-config conf list
```

To list output without pretty-print with a specified separator:

```
dse advrep --no-pretty-print --separator "|" destination list-conf
```

This output will result:

```
destination|name|value
mydest|addresses|192.168.200.100
mydest|transmission-enabled|true
mydest|driver-ssl-cipher-suites|TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256,TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256,TLS_RSA_WITH_AES_128_CBC_SHA256,TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA,TLS_RSA_WITH_AES_128_CBC_SHA,TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256,TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
mydest|driver-ssl-enabled|false
mydest|driver-ssl-protocol|TLS
mydest|name|mydest
mydest|driver-connect-timeout|15000
mydest|driver-max-requests-per-connection|1024
mydest|driver-connections-max|8
mydest|driver-connections|1
mydest|driver-compression|lz4
mydest|driver-consistency-level|ONE
mydest|driver-allow-remote-dcs-for-local-cl|false
mydest|driver-used-hosts-per-remote-dc|0
mydest|driver-read-timeout|15000
```

dse advrep channel create

Creates a replication channel for change data to flow between source clusters and destination clusters.

A replication channel is a defined channel of change data between source clusters and destination clusters.

**Restriction:** Command is supported only on nodes configured for DSE Advanced Replication.

Synopsis

```
$ dse advrep channel create
 --source-keyspace keyspace_name
 --source-table source_table_name
```
--source-id source_id_name
--source-id-column source_id_column_name
--destination destination
--destination-keyspace destination_keyspace_name
--destination-table destination_table_name
[ --fifo-order | --lifo-order ] [ --collection-enabled (true|false) ]
[ --priority channel_priority ] [ --transmission-enabled (true|false) ]

Table 167: Legend

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td>Italics</td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( ( ) ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ’ ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets (&lt; &gt;) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td>cql_statement;</td>
<td>End CQL statement. A semicolon (;) terminates all CQL statements.</td>
</tr>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td>' &lt;schema&gt; ... &lt;/schema&gt; '</td>
<td>Search CQL only: Single quotation marks ( ’ ) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td>@xml_entity='xml_entity_type'</td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

--source-keyspace keyspace_name (required)
The source cluster keyspace to replicate.

--source-table source_table_name *(required)*
The source table to replicate.

--source-id id
A unique identifier for all data that comes from a particular source node.

--source-id-column source_id
The column that identifies the source id in the destination table.

--destination destination *(required)*
The destination where the replication will be sent; the user names the destination.

--destination-keyspace keyspace_name
The destination keyspace to which replication will be sent.

--destination-table table_name
The destination table to which replication will be sent.

--fifo-order
First in, first out channel (FIFO) replication order. Default.

--lifo-order
Last in, last out (LIFO) channel replication order.

--collection-enabled (true | false)
Whether to enable the source table for replication collection on creation.

--transmission-enabled (true | false)
Whether to replicate data collector for the table to the destination.

--priority channel_priority
The order in which the source table log files are transmitted.

Examples

To create a replication source channel:

```
$ dse advrep channel create --source-keyspace foo --source-table bar --source-id source1 --source-id-column source_id --destination mydest --destination-keyspace foo --destination-table bar --collection-enabled true --priority 1
```

with a result:

```
$ Created channel dc=Cassandra keyspace=foo table=bar to mydest
```

The source datacenter will be the datacenter in which the command is run. The keyspace and table names on the destination can be different than on the source, but in this example they are the same. You can also set the source-id and source-id-column differently from the global setting.

**dse advrep channel update**

Updates a replication channel configuration.

A replication channel is a defined channel of change data between source clusters and destination clusters.
To update a channel, specify a new value for one or more options.

**Restriction:** Command is supported only on nodes configured for DSE Advanced Replication.

### Synopsis

```
$ dse advrep channel update
 --source-keyspace keyspace_name
 --source-table source_table_name
 --source-id source_id_name
 --source-id-column source_id_column_name
 --destination destination
 --destination-keyspace destination_keyspace_name
 --destination-table destination_table_name
[--fifo-order | --lifo-order]
[--collection-enabled (true|false)] [--transmission-enabled (true|false)]
[--priority channel_priority]
```

### Table 168: Legend

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td><strong>Italics</strong></td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>&quot;Literal string&quot;</td>
<td>Single quotation ( ‘ ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets (&lt; &gt;) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
</tbody>
</table>
## Syntax conventions

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cql_statement;</code></td>
<td>End CQL statement. A semicolon (<code>;</code>) terminates all CQL statements.</td>
</tr>
<tr>
<td><code>[ -- ]</code></td>
<td>Separate the command line options from the command arguments with two hyphens (<code>--</code>). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td><code>' &lt;schema&gt; ... &lt;/schema&gt; '</code></td>
<td>Search CQL only: Single quotation marks (<code>'</code>) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td><code>@xml_entity='xml_entity_type'</code></td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

### --source-keyspace keyspace_name (required)
The source cluster keyspace to replicate.

### --source-table source_table_name (required)
The source table to replicate.

### --source-id id
A unique identifier for all data that comes from a particular source node.

### --source-id-column source_id
The column that identifies the source id in the destination table.

### --destination destination (required)
The destination where the replication will be sent; the user names the destination.

### --destination-keyspace keyspace_name
The destination keyspace to which replication will be sent.

### --destination-table table_name
The destination table to which replication will be sent.

### --fifo-order
First in, first out channel (FIFO) replication order. Default.

### --lifo-order
Last in, last out (LIFO) channel replication order.

### --collection-enabled ( true | false )
Whether to enable the source table for replication collection on creation.

### --transmission-enabled ( true | false )
Whether to replicate data collector for the table to the destination.

### --priority channel_priority
The order in which the source table log files are transmitted.

## Examples

**To update a replication source channel configuration:**

```
$ dse advrep --verbose channel update --source-keyspace demo --source-table sensor_readings --destination mydest --lifo-order
```

with a result as seen using `dse advrep channel status`:
The source datacenter will be the datacenter in which the command is run. The keyspace and table names on the destination can be different than on the source, but in this example they are the same. You can also set the source-id and source-id-column differently from the global setting.

**dse advrep channel delete**

Deletes a replication channel.

A replication channel is a defined channel of change data between source clusters and destination clusters.

To delete a channel, you must specify source information and the destination and datacenter for the channel.

**Restriction:** Command is supported only on nodes configured for DSE Advanced Replication.

**Synopsis**

```
$ dse advrep channel delete
 --source-keyspace keyspace_name
 --source-table source_table_name
 --destination destination
 --data-center-id data_center_id
```

**Table 169: Legend**

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td>Italics</td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ( [ ] ) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( ( ) ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td>Syntax conventions</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Or. A vertical bar (</td>
<td>) separates alternative elements. Type any one of the elements. Do not type the vertical bar.</td>
</tr>
<tr>
<td>Repeatably. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
<td></td>
</tr>
<tr>
<td>Single quotation ( ' ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
<td>'Literal string'</td>
</tr>
<tr>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
<td>{ key:value }</td>
</tr>
<tr>
<td>Set, list, map, or tuple. Angle brackets ( &lt; &gt; ) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
<td>&lt;datatype1,datatype2&gt;</td>
</tr>
<tr>
<td>End CQL statement. A semicolon ( ; ) terminates all CQL statements.</td>
<td>cql_statement;</td>
</tr>
<tr>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
<td>[ -- ]</td>
</tr>
<tr>
<td>Search CQL only: Single quotation marks ( ' ) surround an entire XML schema declaration.</td>
<td>' &lt;schema&gt; ... &lt;/schema&gt;'</td>
</tr>
<tr>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
<td>@xml_entity='xml_entity_type'</td>
</tr>
</tbody>
</table>

--source-keyspace **keyspace_name** *(required)*  
The source cluster keyspace to replicate.

--source-table **source_table_name** *(required)*  
The source table to replicate.

--destination **destination** *(required)*  
The destination where the replication will be sent; the user names the destination.

--data-center-id **data_center_id**  
The datacenter for this channel.

**Examples**

**To create a replication source channel:**

```
$ dse advrep channel delete --source-keyspace foo --source-table bar --destination mydest --data-center-id Cassandra
```

with a result:

```
Deleted channel dc=Cassandra keyspace=foo table=bar to mydest
```
The source datacenter will be the datacenter in which the command is run. The keyspace and table names on the destination can be different than on the source, but in this example they are the same.

**dse advrep channel pause**

Pauses replication for a channel for change data to flow from a source cluster to a destination cluster.

A replication channel is a defined channel of change data between source clusters and destination clusters.

Pause collection of data or transmission of data between a source cluster and destination cluster.

**Restriction:** Command is supported only on nodes configured for DSE Advanced Replication.

**Synopsis**

```
$ dse advrep channel pause
 --source-keyspace keyspace_name
 --source-table source_table_name
 --destinations destination [, destination]
 --data-center-ids data_center_id [, data_center_id]
 --collection
 --transmission
```

**Table 170: Legend**

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td>Italics</td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( ( ) ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ' ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>Syntax conventions</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------</td>
</tr>
<tr>
<td><code>{ key:value }</code></td>
<td>Map collection. Braces ({} ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td><code>&lt;datatype1,datatype2&gt;</code></td>
<td>Set, list, map, or tuple. Angle brackets (&lt; &gt; ) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td><code>cql_statement;</code></td>
<td>End CQL statement. A semicolon (; ) terminates all CQL statements.</td>
</tr>
<tr>
<td><code>[ -- ]</code></td>
<td>Separate the command line options from the command arguments with two hyphens (-- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td><code>' &lt;schema&gt; ... &lt;/schema&gt;</code></td>
<td>Search CQL only: Single quotation marks (’ ) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td><code>@xml_entity='xml_entity_type'</code></td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

---

###--source-keyspace keyspace_name
The source cluster keyspace to replicate.

###--source-table source_table_name
The source table to replicate.

###--destinations destination [, destination ]
The destinations where the replication are sent.

###--data-center-ids data_center_id [, data_center_id ]
The datacenters for this channel, which must exist.

###--collection
No data for the source table is collected.

###--transmission
No data for the source table is sent to the configured destinations.

###Examples

####To pause a replication source channel:

```
$ dse advrep channel pause --source-keyspace foo --source-table bar --destinations mydest --data-center-ids Cassandra
```

with a result:

```
Channel dc=Cassandra keyspace=foo table=bar collection to mydest was paused
```
The source datacenter will be the datacenter in which the command is run. The keyspace and table names on the destination can be different than on the source, but in this example they are the same.

**dse advrep channel resume**

Resumes replication for a channel.

A replication channel is a defined channel of change data between source clusters and destination clusters.

A channel can resume either the collection or transmission of replication between a source cluster and destination cluster.

**Restriction:** Command is supported only on nodes configured for DSE Advanced Replication.

**Synopsis**

```
$ dse advrep channel resume
 --source-keyspace keyspace_name
 --source-table source_table_name
 --destinations destination [, destination]
 --data-center-ids data_center_id [, data_center_id]
 --collection
 --transmission
```

**Table 171: Legend**

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td>Italic</td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>()</td>
<td>Group. Parentheses ( () ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td>Or. A vertical bar (</td>
</tr>
<tr>
<td>...</td>
<td>Repeateble. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ' ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
</tbody>
</table>
## Syntax conventions

<table>
<thead>
<tr>
<th>Syntax Convention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets ( &lt; &gt; ) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td>cql_statement;</td>
<td>End CQL statement. A semicolon ( ; ) terminates all CQL statements.</td>
</tr>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td>' &lt;schema&gt; ... &lt;/schema&gt;</td>
<td>Search CQL only: Single quotation marks ( ’ ) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td>@xml_entity='xml_entity_type'</td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

---

### --source-keyspace keyspace_name

The source cluster keyspace to replicate.

### --source-table source_table_name

The source table to replicate.

### --destinations destination [ , destination ]

The destinations where the replication are sent.

### --data-center-ids data_center_id [ , data_center_id ]

The datacenters for this channel, which must exist.

### --collection

No data for the source table is collected.

### --transmission

No data for the source table is sent to the configured destinations.

### Examples

#### To resume a replication source channel:

```bash
$ dse advrep channel resume --source-keyspace foo --source-table bar --destinations mydest --data-center-ids Cassandra
```

with a result:

```
Channel dc=Cassandra keyspace=foo table=bar collection to mydest was resumed
```
The source datacenter will be the datacenter in which the command is run. The keyspace and table names on the destination can be different than on the source, but in this example they are the same.

**dse advrep channel status**

Prints status of a replication channel.

A replication channel is a defined channel of change data between source clusters and destination clusters.

**Restriction:** Command is supported only on nodes configured for DSE Advanced Replication.

**Synopsis**

```
$ dse advrep channel status
 --data-center-id data_center_id
 --source-keyspace keyspace_name
 --source-table source_table_name
 --destination destination
```

**Table 172: Legend**

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td><strong>Italics</strong></td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ( [ ] ) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( ( ) ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ' ' ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
</tbody>
</table>
### Syntax conventions

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>&lt;datatype1,datatype2&gt;</code></td>
<td>Set, list, map, or tuple. Angle brackets ( <code>&lt;</code> &gt;) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td><code>cql_statement;</code></td>
<td>End CQL statement. A semicolon ( <code>;</code> ) terminates all CQL statements.</td>
</tr>
<tr>
<td><code>[ -- ]</code></td>
<td>Separate the command line options from the command arguments with two hyphens ( <code>--</code> ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td><code>' &lt;schema&gt; ... &lt;/schema&gt;' </code></td>
<td>Search CQL only: Single quotation marks ( <code>’</code> ) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td><code>@xml_entity='xml_entity_type'</code></td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

---

#### --source-keyspace keyspace_name

The source cluster keyspace to replicate.

#### --source-table source_table_name

The source table to replicate.

#### --destination destination

The destination where the replication will be sent; the user names the destination.

#### --data-center-id data_center_id

The datacenter for this channel.

### Examples

To print the status of a replication channel:

```bash
$ dse advrep channel status --source-keyspace foo --source-table bar --destination mydest --data-center-id Cassandra
```

with a result:

```
+-----------------+----------+-----------------+------------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+---------------+
<table>
<thead>
<tr>
<th>dc</th>
<th>keyspace</th>
<th>table</th>
<th>collecting</th>
<th>transmitting</th>
<th>replication</th>
<th>order</th>
<th>priority</th>
<th>dest ks</th>
<th>dest table</th>
<th>src id</th>
<th>src id col</th>
<th>dest</th>
<th>dest enabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cassandra</td>
<td>foo</td>
<td>bar</td>
<td>true</td>
<td>true</td>
<td>FIFO</td>
<td>2</td>
<td>foo</td>
<td>bar</td>
<td>source1</td>
<td>source_id</td>
<td>mydest</td>
<td>true</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
```
The source datacenter will be the datacenter in which the command is run. The keyspace and table names on the destination can be different than on the source, but in this example they are the same.

**dse advrep channel truncate**

Truncates a channel to prevent replicating all messages that are currently in the replication log.

A replication channel is a defined channel of change data between source clusters and destination clusters.

**Restriction:** Command is supported only on nodes configured for DSE Advanced Replication.

**Synopsis**

```
$ dse advrep channel truncate
 --source-keyspace keyspace_name
 --source-table source_table_name
 --destinations destination [, destination]
 --data-center-ids data_center_id [, data_center_id]
```

---

**Table 173: Legend**

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td><em>italics</em></td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( () ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ' ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
</tbody>
</table>
### Syntax conventions

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>&lt;datatype1,datatype2&gt;</code></td>
<td>Set, list, map, or tuple. Angle brackets ( <code>&lt;</code> ) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td><code>cql_statement;</code></td>
<td>End CQL statement. A semicolon ( <code>;</code> ) terminates all CQL statements.</td>
</tr>
<tr>
<td><code>[ -- ]</code></td>
<td>Separate the command line options from the command arguments with two hyphens ( <code>--</code> ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td>'&lt; &lt;schema&gt; ... &lt;/schema&gt;'</td>
<td>Search CQL only: Single quotation marks ( <code>‘</code> ) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td><code>@xml_entity='xml_entity_type'</code></td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

#### --source-keyspace keyspace_name

The source cluster keyspace to replicate.

#### --source-table source_table_name

The source table to replicate.

#### --destinations destination [ , destination ]

The destinations where the replication are sent.

#### --data-center-ids data_center_id [ , data_center_id ]

The datacenters for this channel, which must exist.

### Examples

To truncate a replication channel to prevent replicating all messages that are currently in the replication log:

```
$ dse advrep channel status --source-keyspace foo --source-table bar --destinations mydest --data-center-ids Cassandra
```

with a result:

```
Channel dc=Cassandra keyspace=foo table=bar to mydest was truncated
```

The source datacenter will be the datacenter in which the command is run. The keyspace and table names on the destination can be different than on the source, but in this example they are the same.

#### dse advrep conf list

Lists configuration settings for advanced replication.

A replication channel is a defined channel of change data between source clusters and destination clusters.
**Restriction:** Command is supported only on nodes configured for DSE Advanced Replication.

**Synopsis**

```
$ dse advrep conf list
```

**Table 174: Legend**

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td><em>Italics</em></td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( ( ) ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ’ ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td><code>&lt;datatype1,datatype2&gt;</code></td>
<td>Set, list, map, or tuple. Angle brackets ( &lt; &gt; ) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td>cql_statement;</td>
<td>End CQL statement. A semicolon (;) terminates all CQL statements.</td>
</tr>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td><code> </code>&lt;schema&gt; ... &lt;/schema&gt; `</td>
<td>Search CQL only: Single quotation marks ( ’ ) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td>@xml_entity='xml_entity_type'</td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>
Examples

To list configuration settings:

```
$ dse advrep conf list
```

The result:

```
<table>
<thead>
<tr>
<th>name</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>audit_log_file</td>
<td>auditLog</td>
</tr>
<tr>
<td>permits</td>
<td>8</td>
</tr>
<tr>
<td>audit_log_enabled</td>
<td>true</td>
</tr>
</tbody>
</table>
```

The number of permits is 8, audit logging is enabled, and the audit log file name is auditLog.

**dse advrep conf remove**

Removes configuration settings for advanced replication.

A replication channel is a defined channel of change data between source clusters and destination clusters.

**Synopsis**

```
$ dse advrep conf remove
 --separator field_separator
 --audit-log-enabled true|false
 --audit-log-compression none|gzip
 --audit-log-file log_file_name
 --audit-log-max-life-span-mins number_of_minutes
 --audit-log-rotate-mins number_of_minutes
 --permits number_of_permits
 --collection-max-open-files number_of_files
 --collection-time-slice-count number_of_files
 --collection-time-slice-width time_period_in_seconds
 --collection-expire-after-write
 --invalid-message-log
```

**Table 175: Legend**

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Italics</strong></td>
<td>Variable value. Replace with a user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ( [ ] ) surround optional command arguments. Do not type the square brackets.</td>
</tr>
</tbody>
</table>
**Syntax conventions**

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>( )</td>
<td>Group. Parentheses ( ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td>Or. A vertical bar (</td>
</tr>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
</tbody>
</table>

---

--audit-log-compression **true|false**

Enable or disable audit logging.

--audit-log-compression **none|gzip**

Enable audit log compression. Default: none

--audit-log-file **log_file_name**

Define the audit log filename.

--audit-log-rotate-max **number_of_minutes**

Define the maximum number of minutes for the audit log lifespan.

--audit-log-rotate-mins **number_of_minutes**

Define the number of minutes before the audit log will rotate.

--permits **number_of_permits**

Maximum number of messages that can be replicated in parallel over all destinations. Default: 1024

--collection-max-open-files **number_of_files**

Number of open files kept.

--collection-time-slice-count **number_of_files**

Specify the number of files which are open in the ingestor simultaneously.

--collection-time-slice-width **time_period_in_seconds**

Specify the time period in seconds for each data block ingested. Smaller time widths mean more files, whereas larger timer widths mean larger files, but more data to resend on CRC mismatches.

--collection-expire-after-write

Specify if the collection expires after the write occurs.

--invalid-message-log **none|system_log|channel_log**

Specify where error information is stored for messages that could not be replicated. Default: channel_log

Examples

**To remove advanced replication configuration:**

```
$ dse advrep conf remove --permits 8
```

with a result:
dse advrep conf update

Updates configuration settings for advanced replication.

A replication channel is a defined channel of change data between source clusters and destination clusters.

**Restriction:** Command is supported only on nodes configured for DSE Advanced Replication.

**Synopsis**

```
$ dse advrep conf update
 --audit-log-enabled true|false
 --audit-log-compression none|gzip
 --audit-log-file log_file_name
 --audit-log-max-life-span-mins number_of_minutes
 --audit-log-rotate-mins number_of_minutes
 --permits number_of_permits
 --collection-max-open-files number_of_files
 --collection-time-slice-count number_of_files
 --collection-time-slice-width time_period_in_seconds
 --collection-expire-after-write
 --invalid-message-log
```

**Table 176: Legend**

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td><strong>Italics</strong></td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>()</td>
<td>Group. Parentheses ( () ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td>Or. A vertical bar (</td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation (' ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
</tbody>
</table>
### Syntax conventions

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>{key:value}</td>
<td>Map collection. Braces ( {} ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets ( &lt; &gt; ) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td>cql_statement;</td>
<td>End CQL statement. A semicolon ( ; ) terminates all CQL statements.</td>
</tr>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td>' &lt;schema&gt; ... &lt;/schema&gt;'</td>
<td>Search CQL only: Single quotation marks ( ‘ ) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td>@xml_entity='xml_entity_type'</td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

---

**--audit-log-compression true|false**
- Enable or disable audit logging.

**--audit-log-compression none|gzip**
- Enable audit log compression. Default: none

**--audit-log-file log_file_name**
- Define the audit log filename.

**--audit-log-rotate-max number_of_minutes**
- Define the maximum number of minutes for the audit log lifespan.

**--audit-log-rotate-mins number_of_minutes**
- Define the number of minutes before the audit log will rotate.

**--permits number_of_permits**
- Maximum number of messages that can be replicated in parallel over all destinations. Default: 1024

**--collection-max-open-files number_of_files**
- Number of open files kept.

**--collection-time-slice-count number_of_files**
- Specify the number of files which are open in the ingestor simultaneously.

**--collection-time-slice-width time_period_in_seconds**
- Specify the time period in seconds for each data block ingested. Smaller time widths mean more files, whereas larger timer widths mean larger files, but more data to resend on CRC mismatches.

**--collection-expire-after-write**
- Specify if the collection expires after the write occurs.

**--invalid-message-log none|system_log|channel_log**
- Specify where error information is stored for messages that could not be replicated. Default: channel_log
Examples

To update configuration settings:

```
$ dse advrep conf update --permits 8 --audit-log-enabled true --audit-log-file auditLog
```

with a result:

```
Updated audit_log_file from null to auditLog
Updated permits from null to 8
Updated audit_log_enabled from null to true
```

dse advrep destination create

Creates a replication destination.

A replication channel is a defined channel of change data between source clusters and destination clusters.

**Restriction:** Command is supported only on nodes configured for DSE Advanced Replication.

Synopsis

```
$ dse advrep destination create
 --name destination_name
 --addresses address_name [, address_name]
 [--transmission-enabled (true|false)]
 --driver-user user_name
 --driver-pwd password
 --driver-used-hosts-per-remote-dc number_of_hosts
 --driver-connections number_of_connections
 --driver-connections-max number_of_connections
 --driver-local-dc data_center_name
 --driver-allow-remote-dcs-for-local-cl true|false
 --driver-consistency-level [ANY|ONE|TWO|THREE|QUORUM|ALL|LOCAL_QUORUM|EACH_QUORUM|SERIAL|LOCAL_SERIAL|LOCAL_ONE]
 --driver-compression [snappy|lz4]
 --driver-connect-timeout timeout_in_milliseconds
 --driver-read-timeout timeout_in_milliseconds
 --driver-max-requests-per-connection number_of_requests
 --driver-ssl-enabled true|false
 --driver-ssl-cipher-suites
 --driver-ssl-protocol
 --driver-ssl-keystore-path
 --driver-ssl-keystore-password
 --driver-ssl-keystore-type
 --driver-ssl-truststore-path
 --driver-ssl-truststore-password
```
Table 177: Legend

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td>Italics</td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ' ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets ( &lt; &gt; ) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td>cql_statement;</td>
<td>End CQL statement. A semicolon ( ; ) terminates all CQL statements.</td>
</tr>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td>' &lt;schema&gt; ... &lt;/schema&gt; '</td>
<td>Search CQL only: Single quotation marks ( ' ) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td>@xml_entity='xml_entity_type'</td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

--name destination_name (required)
Designate the name of the destination.

--addresses address_name [ , address_name ] (required)
Identify the IP addresses of the destinations.

--transmission-enabled true | false
Specify if data collector for the table should be replicated to the destination.
--driver-user user_name
    Specify the username for the destination.

--driver-pwd password
    Specify the password for the destination.

--driver-used-hosts-per-remote-dc number_of_hosts
    Define the number of hosts per remote datacenter that the datacenter-aware round robin policy considers available for use.

--driver-connections number_of_connections
    Specify the number of connections that the driver creates.

--driver-connections-max number_of_connections
    Specify the maximum number of connections that the driver creates.

--driver-local-dc data_center_name
    Specify the name of the datacenter that is considered local.

--driver-consistency-level ANY|ONE|TWO|THREE|QUORUM|ALL|LOCAL_QUORUM|EACH_QUORUM|SERIAL|LOCAL_SERIAL|LOCAL_ONE
    Specify the consistency level for the destination.

--driver-compression snappy|lz4
    Specify a compression algorithm for data files.

--driver-connect-timeout timeout_in_milliseconds
    Specify the timeout for the driver connection.

--driver-read-timeout timeout_in_milliseconds
    Specify the timeout for the driver reads.

--driver-max-requests-per-connection number_of_requests
    Specify the maximum number of requests per connection.

--driver-ssl-enabled true|false
    Enable SSL connection for the destination.

--driver-ssl-cipher-suites
    Specify the SSL cipher suites to use for driver connections.

--driver-ssl-protocol
    Specify the SSL protocol to use for driver connections.

--driver-keystore-path
    Specify the SSL keystore path to use for driver connections.

--driver-keystore-password
    Specify the SSL keystore password to use for driver connections.

--driver-keystore-type
    Specify the SSL keystore type to use for driver connections.

--driver-truststore-path
    Specify the SSL truststore path to use for driver connections.

--driver-truststore-password
    Specify the SSL truststore password to use for driver connections.

--driver-truststore-type
    Specify the SSL truststore type to use for driver connections.

Examples

To update a replication destination:
$ dse advrep --verbose destination update --name mydest --addresses 10.200.182.148 --transmission-enabled true

with a result:

Destination mydest created

dse advrep destination create

Creates a replication destination.

A replication channel is a defined channel of change data between source clusters and destination clusters.

**Restriction:** Command is supported only on nodes configured for DSE Advanced Replication.

**Synopsis**

```
$ dse advrep destination update
 --name destination_name
 --addresses address_name [, address_name]
 [--transmission-enabled (true|false)]
 --driver-user user_name
 --driver-pwd password
 --driver-used-hosts-per-remote-dc
 --driver-connections
 --driver-connections-max
 --driver-local-dc
 --driver-allow-remote-dcs-for-local-cl true|false
 --driver-consistency-level [ANY|ONE|TWO|THREE|QUORUM|ALL]
 LOCAL_QUORUM|EACH_QUORUM|SERIAL|LOCAL_SERIAL|LOCAL_ONE]
 --driver-compression [snappy|lz4]
 --driver-connect-timeout timeout_in_milliseconds
 --driver-read-timeout timeout_in_milliseconds
 --driver-max-requests-per-connection number_of_requests
 --driver-ssl-enabled true|false
 --driver-ssl-cipher-suites
 --driver-ssl-protocol
 --driver-ssl-keystore-path
 --driver-ssl-keystore-password
 --driver-ssl-keystore-type
 --driver-ssl-truststore-path
 --driver-ssl-truststore-password
 --driver-ssl-truststore-type
```

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Syntax conventions</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td>Italics</td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( ( ) ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ' ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets ( &lt; &gt; ) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td>cql_statement;</td>
<td>End CQL statement. A semicolon ( ; ) terminates all CQL statements.</td>
</tr>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td>' &lt;schema&gt; ... &lt;/schema&gt; '</td>
<td>Search CQL only: Single quotation marks ( ' ) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td>@xml_entity='xml_entity_type'</td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

--name destination name (required)
Designate the name of the destination.

--addresses address name [, address name] (required)
Identify the IP addresses of the destinations.

--transmission-enabled true | false
Specify if data collector for the table should be replicated to the destination.

--driver-user user name
Specify the username for the destination.

--driver-pwd password
Specify the password for the destination.

--driver-used-hosts-per-remote-dc number_of_hosts
Define the number of hosts per remote datacenter that the datacenter-aware round robin policy considers available for use.

--driver-connections number_of_connections
Specify the number of connections that the driver creates.

--driver-connections-max number_of_connections
Specify the maximum number of connections that the driver creates.

--driver-local-dc data_center_name
Specify the name of the datacenter that is considered local.

--driver-consistency-level ANY|ONE|TWO|THREE|QUORUM|ALL|LOCAL_QUORUM|EACH_QUORUM|SERIAL|LOCAL_SERIAL|LOCAL_ONE
Specify the consistency level for the destination.

--driver-compression snappy|lz4
Specify a compression algorithm for data files.

--driver-connect-timeout timeout_in_milliseconds
Specify the timeout for the driver connection.

--driver-read-timeout timeout_in_milliseconds
Specify the timeout for the driver reads.

--driver-max-requests-per-connection number_of_requests
Specify the maximum number of requests per connection.

--driver-ssl-enabled true|false
Enable SSL connection for the destination.

--driver-ssl-cipher-suites
Specify the SSL cipher suites to use for driver connections.

--driver-ssl-protocol
Specify the SSL protocol to use for driver connections.

--driver-keystore-path
Specify the SSL keystore path to use for driver connections.

--driver-keystore-password
Specify the SSL keystore password to use for driver connections.

--driver-keystore-type
Specify the SSL keystore type to use for driver connections.

--driver-truststore-path
Specify the SSL truststore path to use for driver connections.

--driver-truststore-password
Specify the SSL truststore password to use for driver connections.

--driver-truststore-type
Specify the SSL truststore type to use for driver connections.

Examples

To create a replication destination:

```
$ dse advrep --verbose destination update --name mydest --addresses 10.200.182.148 --driver-consistency-level ANY
```

with a result:

```
Destination mydest updated
Updated addresses from 10.200.182.148 to 10.200.182.1648
```
Updated driver_consistency_level from ONE to ANY
Updated name from mydest to mydest

Notice that any option included causes a change to occur.

**dse advrep destination delete**

Deletes a given replication destination.

A replication channel is a defined channel of change data between source clusters and destination clusters.

**Restriction:** Command is supported only on nodes configured for DSE Advanced Replication.

**Synopsis**

```
$ dse advrep destination delete
 --name destination_name
```

**Table 179: Legend**

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td><em>Italics</em></td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( () ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ' ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets ( &lt; &gt; ) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
</tbody>
</table>
### Syntax conventions

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cql_statement;</code></td>
<td>End CQL statement. A semicolon ( ; ) terminates all CQL statements.</td>
</tr>
<tr>
<td><code>[ -- ]</code></td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td><code>' &lt;schema&gt; ... &lt;/schema&gt;'</code></td>
<td>Search CQL only: Single quotation marks ( ‘ ) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td><code>@xml_entity='xml_entity_type'</code></td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

### --name destination_name (required)

Designate the name of the destination.

### Examples

#### To delete a replication destination:

```
$ dse advrep destination delete --name mydest
```

with a result:

```
Destination mydest removed
```

### dse advrep destination list

Lists all replication destinations.

A replication channel is a defined channel of change data between source clusters and destination clusters.

**Restriction:** Command is supported only on nodes configured for DSE Advanced Replication.

### Synopsis

```
$ dse advrep destination list
```

### Table 180: Legend

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td>Italics</td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
</tbody>
</table>
## Syntax conventions

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses (( )) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ' ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets (&lt; &gt;) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td>cql_statement;</td>
<td>End CQL statement. A semicolon (;) terminates all CQL statements.</td>
</tr>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td>' &lt;schema&gt; ... &lt;/schema&gt;'</td>
<td>Search CQL only: Single quotation marks ( ' ) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td>@xml_entity='xml_entity_type'</td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

## Examples

**To list all replication destinations:**

```bash
$ dse advrep destination list
```

with a result:

```

<table>
<thead>
<tr>
<th>name</th>
<th>enabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>mydest</td>
<td>true</td>
</tr>
</tbody>
</table>
```
dse advrep destination list-conf

Lists all configuration for a given replication destination.

A replication channel is a defined channel of change data between source clusters and destination clusters.

**Restriction:** Command is supported only on nodes configured for DSE Advanced Replication.

**Synopsis**

```
$ dse advrep destination list-conf
 --separator field_separator
 --name destination_name
```

**Table 181: Legend**

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td>Italic</td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses (( )) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ' ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets ( &lt; &gt; ) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td>cql_statement;</td>
<td>End CQL statement. A semicolon ( ; ) terminates all CQL statements.</td>
</tr>
</tbody>
</table>
**Syntax conventions**

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td>' &lt;schema&gt; ... &lt;/schema&gt; '</td>
<td>Search CQL only: Single quotation marks ( ‘ ) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td>@xml_entity='xml_entity_type'</td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

---

**--name destination_name (required)**

Designate the name of the destination.

**Examples**

**To list the configuration for a replication destination:**

```
$ dse advrep destination list-conf --name mydest
```

with a result:

```
KEYS: ---- [addresses, transmission-enabled, driver-ssl-cipher-suites, driver-ssl-enabled, driver-ssl-protocol, name, driver-connect-timeout, driver-max-requests-per-connection, driver-connections-max, driver-connections, driver-compression, driver-consistency-level, driver-allow-remote-dcs-for-local-cl, driver-used-hosts-per-remote-dc, driver-read-timeout]

<table>
<thead>
<tr>
<th>destination</th>
<th>name</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>mydest</td>
<td>addresses</td>
<td>10.200.180.162</td>
</tr>
<tr>
<td>mydest</td>
<td>transmission-enabled</td>
<td>true</td>
</tr>
<tr>
<td>mydest</td>
<td>driver-ssl-cipher-suites</td>
<td>TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384, TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384, TLS_RSA_WITH_AES_256_CBC_SHA256, TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384, TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384, TLS_DHE_RSA_WITH_AES_256_CBC_SHA256, TLS_DHE_DSS_WITH_AES_256_CBC_SHA256,</td>
</tr>
</tbody>
</table>
```
| TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, |
| TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA, |
| TLS_RSA_WITH_AES_256_CBC_SHA, |
| TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA, |
| TLS_ECDH_RSA_WITH_AES_256_CBC_SHA, |
| TLS_DHE_RSA_WITH_AES_256_CBC_SHA, |
| TLS_DHE_DSS_WITH_AES_256_CBC_SHA, |
| TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256, |
| TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256, |
| TLS_RSA_WITH_AES_128_CBC_SHA256, |
| TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256, |
| TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256, |
| TLS_DHE_RSA_WITH_AES_128_CBC_SHA256, |
| TLS_DHE_DSS_WITH_AES_128_CBC_SHA256, |
| TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, |
| TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, |
| TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384, |
| TLS_RSA_WITH_AES_256_GCM_SHA384, |
| TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384, |
| TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384, |
| TLS_DHE_RSA_WITH_AES_256_GCM_SHA384, |
| TLS_DHE_DSS_WITH_AES_256_GCM_SHA384, |
| TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, |
| TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384, |
| TLS_DHE_RSA_WITH_AES_256_GCM_SHA384, |
| TLS_DHE_DSS_WITH_AES_256_GCM_SHA384, |
| TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, |
| TLS_RSA_WITH_AES_128_GCM_SHA256, |
| TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256, |
| TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256, |
| TLS_DHE_RSA_WITH_AES_128_GCM_SHA256, |
| TLS_DHE_DSS_WITH_AES_128_GCM_SHA256, |
| TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA, |
| TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA, |
| SSL_RSA_WITH_3DES_EDE_CBC_SHA, |
| TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA, |
| TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA, |
| SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA, |
| SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA, |
| TLS_ECDHE_ECDSA_WITH_RC4_128_SHA, |
| TLS_ECDHE_RSA_WITH_RC4_128_SHA, |
| SSL_RSA_WITH_RC4_128_SHA, |
| TLS_ECDH_ECDSA_WITH_RC4_128_SHA, |
| TLS_ECDH_RSA_WITH_RC4_128_SHA, |
| SSL_RSA_WITH_RC4_128_MD5, |
| TLS_EMPTY_RENEGOTIATION_INFO_SCSV |

<table>
<thead>
<tr>
<th>mydest</th>
<th>driver-ssl-enabled</th>
<th>false</th>
</tr>
</thead>
<tbody>
<tr>
<td>mydest</td>
<td>driver-ssl-protocol</td>
<td>TLS</td>
</tr>
<tr>
<td>mydest</td>
<td>name</td>
<td>mydest</td>
</tr>
</tbody>
</table>
DataStax Enterprise tools

<table>
<thead>
<tr>
<th>mydest</th>
<th>driver-connect-timeout</th>
<th>15000</th>
</tr>
</thead>
<tbody>
<tr>
<td>mydest</td>
<td>driver-max-requests-per-connection</td>
<td>1024</td>
</tr>
<tr>
<td>mydest</td>
<td>driver-connections-max</td>
<td>8</td>
</tr>
<tr>
<td>mydest</td>
<td>driver-connections</td>
<td>1</td>
</tr>
<tr>
<td>mydest</td>
<td>driver-compression</td>
<td>lz4</td>
</tr>
<tr>
<td>mydest</td>
<td>driver-consistency-level</td>
<td>ONE</td>
</tr>
<tr>
<td>mydest</td>
<td>driver-allow-remote-dcs-for-local-cl</td>
<td>false</td>
</tr>
<tr>
<td>mydest</td>
<td>driver-used-hosts-per-remote-dc</td>
<td>0</td>
</tr>
<tr>
<td>mydest</td>
<td>driver-read-timeout</td>
<td>15000</td>
</tr>
</tbody>
</table>

**dse advrep destination remove-conf**

Removes configuration for a destination.

A replication channel is a defined channel of change data between source clusters and destination clusters.

**Restriction:** Command is supported only on nodes configured for DSE Advanced Replication.

**Synopsis**

```
$ dse advrep destination remove-conf
 --name destination_name
 --addresses address_name [, address_name]
 [--transmission-enabled (true|false)]
 --driver-user user_name
 --driver-pwd password
 --driver-used-hosts-per-remote-dc
 --driver-connections
 --driver-connections-max
 --driver-local-dc
 --driver-allow-remote-dcs-for-local-cl true|false
 --driver-consistency-level [ANY|ONE|TWO|THREE|QUORUM|ALL|
LOCAL_QUORUM|EACH_QUORUM|SERIAL|LOCAL_SERIAL|LOCAL_ONE]
```
DataStax Enterprise tools

```
--driver-compression [snappy|lz4]
--driver-connect-timeout timeout_in_milliseconds
--driver-read-timeout timeout_in_milliseconds
--driver-max-requests-per-connection number_of_requests
--driver-ssl-enabled true|false
--driver-ssl-cipher-suites
--driver-ssl-protocol
--driver-ssl-keystore-path
--driver-ssl-keystore-password
--driver-ssl-keystore-type
--driver-ssl-truststore-path
--driver-ssl-truststore-password
--driver-ssl-truststore-type
```

Table 182: Legend

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>UPPERCASE</strong></td>
<td>Literal keyword.</td>
</tr>
<tr>
<td><strong>Lowercase</strong></td>
<td>Not literal.</td>
</tr>
<tr>
<td><strong>Italics</strong></td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( () ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ' ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets ( &lt; &gt; ) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td>cql_statement;</td>
<td>End CQL statement. A semicolon ( ; ) terminates all CQL statements.</td>
</tr>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
</tbody>
</table>
### Syntax conventions

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'&lt; &lt;schema&gt; ... &lt;/schema&gt;'</td>
<td>Search CQL only: Single quotation marks (' ') surround an entire XML schema declaration.</td>
</tr>
<tr>
<td>'@xml_entity='xml_entity_type'</td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

--name destination_name (required)
Designate the name of the destination.

--addresses address_name [, address_name] (required)
Identify the IP addresses of the destinations.

--transmission-enabled true | false
Specify if data collector for the table should be replicated to the destination.

--driver-user user_name
Specify the username for the destination.

--driver-pwd password
Specify the password for the destination.

--driver-used-hosts-per-remote-dc number_of_hosts
Define the number of hosts per remote datacenter that the datacenter-aware round robin policy considers available for use.

--driver-connections number_of_connections
Specify the number of connections that the driver creates.

--driver-connections-max number_of_connections
Specify the maximum number of connections that the driver creates.

--driver-local-dc data_center_name
Specify the name of the datacenter that is considered local.

--driver-consistency-level ANY|ONE|TWO|THREE|QUORUM|ALL|LOCAL QUORUM| EACH QUORUM| SERIAL| LOCAL_SERIAL| LOCAL_ONE
Specify the consistency level for the destination.

--driver-compression snappy|lz4
Specify a compression algorithm for data files.

--driver-connect-timeout timeout_in_milliseconds
Specify the timeout for the driver connection.

--driver-read-timeout timeout_in_milliseconds
Specify the timeout for the driver reads.

--driver-max-requests-per-connection number_of_requests
Specify the maximum number of requests per connection.

--driver-ssl-enabled true|false
Enable SSL connection for the destination.

--driver-ssl-cipher-suites
Specify the SSL cipher suites to use for driver connections.

--driver-ssl-protocol
Specify the SSL protocol to use for driver connections.

--driver-keystore-path
Specify the SSL keystore path to use for driver connections.

--driver-keystore-password
Specify the SSL keystore password to use for driver connections.

--driver-keystore-type
Specify the SSL keystore type to use for driver connections.

---driver-truststore-path
Specify the SSL truststore path to use for driver connections.

---driver-truststore-password
Specify the SSL truststore password to use for driver connections.

---driver-truststore-type
Specify the SSL truststore type to use for driver connections.

Examples

To remove configuration for a replication destination:

```
$ dse advrep --verbose destination remove-conf --transmission-enabled true
```

with a result:

```
Removed config transmission-enabled
```

**dse advrep metrics list**

Lists advanced replication JMX metrics.

A replication channel is a defined channel of change data between source clusters and destination clusters.

**Restriction:** Command is supported only on nodes configured for DSE Advanced Replication.

**Synopsis**

```
$ dse advrep metrics list
 --metric group metric_group
 --metric-type metric_type
```

**Table 183: Legend**

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td>Italics</td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( () ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
</tbody>
</table>
### Syntax conventions

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Or. A vertical bar (</td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ' ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets ( &lt; &gt; ) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td>cql_statement;</td>
<td>End CQL statement. A semicolon ( ; ) terminates all CQL statements.</td>
</tr>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td>' &lt;schema&gt; ... &lt;/schema&gt; '</td>
<td>Search CQL only: Single quotation marks ( ' ) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td>@xml_entity='xml_entity_type'</td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

#### --metric group metric_group
The source cluster keyspace for which to show count.

#### --metric-type metric_type
The source table for which to show count.

### Examples

To display the JMX metrics:

```bash
$ dse advrep --host localhost --port 7199 metrics list
```

with a result:

<table>
<thead>
<tr>
<th>Group</th>
<th>Type</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tables</td>
<td>MessagesDelivered</td>
<td>3000</td>
</tr>
<tr>
<td>ReplicationLog</td>
<td>CommitLogsToConsume</td>
<td>1</td>
</tr>
<tr>
<td>Tables</td>
<td>MessagesReceived</td>
<td>3000</td>
</tr>
<tr>
<td>ReplicationLog</td>
<td>MessageAddErrors</td>
<td>0</td>
</tr>
<tr>
<td>----------------</td>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>ReplicationLog</td>
<td>CommitLogsDeleted</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group</th>
<th>Type</th>
<th>Count</th>
<th>RateUnit</th>
<th>MeanRate</th>
</tr>
</thead>
<tbody>
<tr>
<td>FifteenMinuteRate</td>
<td>OneMinuteRate</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| ReplicationLog | MessagesAdded        | 3000 | events/second| 0.020790532589851248| 4.569533277209345E-28| 2.964393875E-314| 2.3185964029982446E-82 |

| ReplicationLog | MessagesDeleted      | 0    | events/second| 0.0 |

| ReplicationLog | MessagesAcknowledged | 3000 | events/second| 0.020790529428089743| 4.569533277209345E-28| 2.964393875E-314| 2.3185964029982446E-82 |

| ReplicationLog | CommitLogMessagesRead| 30740| events/second| 0.21303361656215317 | 0.13538523143065767 | 0.01686330377344829 | 0.11519609320406245 |

<table>
<thead>
<tr>
<th>Group</th>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmission</td>
<td>AvailablePermits</td>
<td>30000</td>
</tr>
</tbody>
</table>

To display JMX metrics for a particular metric group:

```
$ dse advrep --host localhost --port 7199 metrics list --metric-group Tables
```

with a result:

<table>
<thead>
<tr>
<th>Group</th>
<th>Type</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tables</td>
<td>MessagesDelivered</td>
<td>3000</td>
</tr>
<tr>
<td>Tables</td>
<td>MessagesReceived</td>
<td>3000</td>
</tr>
</tbody>
</table>

To display JMX metrics for a particular metric type:

```
$ dse advrep --host localhost --port 7199 metrics list --metric-type MessagesAdded
```
with a result:

```plaintext
<table>
<thead>
<tr>
<th>Group</th>
<th>Type</th>
<th>Count</th>
<th>RateUnit</th>
<th>MeanRate</th>
</tr>
</thead>
<tbody>
<tr>
<td>FifteenMinuteRate</td>
<td>OneMinuteRate</td>
<td>FiveMinuteRate</td>
<td>MeanRate</td>
<td></td>
</tr>
<tr>
<td>ReplicationLog</td>
<td>MessagesAdded</td>
<td>3000</td>
<td>events/second</td>
<td>0.020827685267120057</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.100068258619765E-28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.964393875E-314</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.515866021410421E-82</td>
</tr>
</tbody>
</table>
```

dse advrep replog count

Returns the messages that have not been replicated.

A replication channel is a defined channel of change data between source clusters and destination clusters.

**Restriction:** Command is supported only on nodes configured for DSE Advanced Replication.

**Synopsis**

```
$ dse advrep replog count
 --source-keyspace keyspace_name
 --source-table source_table_name
 --destination destination
 --data-center-id data_center_id
```

**Table 184: Legend**

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td><em>Italics</em></td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( () ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>…</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>Syntax conventions</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>--------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation (‘) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets ( &lt; &gt; ) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td>cql_statement;</td>
<td>End CQL statement. A semicolon (;) terminates all CQL statements.</td>
</tr>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td>' &lt;schema&gt; ... &lt;/schema&gt; '</td>
<td>Search CQL only: Single quotation marks ( ‘ ) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td>@xml_entity='xml_entity_type'</td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

**Examples**

To verify the record count held in a replication log:

```
$ dse advrep replog count --destination mydest --source-keyspace foo --source-table bar
```

with a result:

```
2
```

**dse advrep replog analyze-audit-log**

Reads the audit log and prints a summary.

A replication channel is a defined channel of change data between source clusters and destination clusters.
**Restriction:** Command is supported only on nodes configured for DSE Advanced Replication.

**Synopsis**

```
$ dse advrep replog analyze-audit-log
 --file audit_log_filename
```

### Table 185: Legend

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td>Italics</td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ’ ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets ( &lt; &gt; ) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td>cql_statement;</td>
<td>End CQL statement. A semicolon (;) terminates all CQL statements.</td>
</tr>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td>'&lt;schema&gt; ... &lt;/schema&gt;'</td>
<td>Search CQL only: Single quotation marks ( ’ ) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td>@xml_entity='xml_entity_type'</td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>
DataStax Enterprise tools

--file audit_log_filename
   The audit log file to create.

Examples

To analyze the data in a replication log:

```
$ dse advrep replog analyze-audit-log --file auditLog
```

with a result:

```
foo, bar : inserts = 1000, insertErrors = 0
foo, bar : reads = 1000, sent = 0, deletes = 1000, readingErrors = 0, deletingErrors = 0
```

**dse beeline**

Starts the Beeline shell. See Enabling SSL for the Spark SQL Thrift Server (page 372).

Restriction: Command is supported only on nodes with analytics workloads.

Synopsis

```
$ dse beeline
```

This command takes no arguments.

**dse cassandra**

Starts the database in transactional mode. Command options start the database in other modes and enable advanced features on a node. See Starting DataStax Enterprise (page 1278).

To change the DSE system properties on start up, see DataStax Enterprise start-up parameters (page 284).

Synopsis

```
dse cassandra [-k] [-s] [-g]
 [-Dparameter_name=value]
 [-f] [-h] [-p pidfile]
 [-H JVM_dumpfile]
 [-E JVM_errorfile]
```

Note: When multiple flags are used, list them separately on the command line. For example, ensure there is a space between -k and -s in dse cassandra -k -s.
### Table 186: Legend

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>UPPERCASE</strong></td>
<td>Literal keyword.</td>
</tr>
<tr>
<td><strong>Lowercase</strong></td>
<td>Not literal.</td>
</tr>
<tr>
<td><strong>Italics</strong></td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ’ ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets ( &lt; &gt; ) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td>cql_statement;</td>
<td>End CQL statement. A semicolon ( ; ) terminates all CQL statements.</td>
</tr>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td>' &lt;schema&gt; ... &lt;/schema&gt; '</td>
<td>Search CQL only: Single quotation marks ( ’ ) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td>@xml_entity='xml_entity_type'</td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

#### Options

**-k**  
Start the node in analytics mode. The first time the node starts up the analytics workload type is configured.

**-g**  
Start the node in graph mode. The first time the node starts up the graph workload type is configured.

**-s**  

Start the node in search mode. The first time the node starts up the search workload type is configured.

-E
Change JVM error file.

-f
Start a real-time transactional node in the foreground.

-h
Display the usage and listing of the dse commands.

-H
Change JVM HeapDumpPath.

-p pidfilepath
Create the pid file. The pid file is typically used by monitoring processes and init scripts. Not compatible with -f option.

Examples

Start a node in transactional mode

$ dse cassandra

In the foreground, start a node in transactional mode

$ dse cassandra -f

Start a node in DSE Analytics mode

$ dse cassandra -k

Start a node in SearchAnalytics mode

$ dse cassandra -k -s

Ensure there is a space between -k and -s in dse cassandra -k -s.

Start a node in DSE Analytics, DSE Graph, and DSE Search modes

$ dse cassandra -k -g -s

Ensure there is a space between -k, -g, and -s in dse cassandra -k -g -s.

Start a node in DSE Search mode and change the location of the search index data on the server

$ dse cassandra -s -Ddse.solr.data.dir=filepath

See Managing the location of DSE Search data.
Start a node in transactional mode without joining the ring

$ dse cassandra -Dcassandra.join_ring=false

Start a node in transactional mode to test compaction and compression strategies

$ dse cassandra -Dcassandra.write_survey=true

Experiment with different strategies and benchmark write performance differences without affecting the production workload. See Testing compaction and compression (page 1356).

Start a node in transactional mode and pass the dead node IP address

$ dse cassandra -Dcassandra.replace_address=10.91.176.160

Start a node in transactional mode and create pid.txt

$ dse cassandra -p pid.txt
dse cassandra-stop

Stops the DataStax Enterprise process.

See Stopping a node (page 1280).

Synopsis

$ cassandra-stop -p pid

**Table 187: Legend**

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td>Italics</td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>()</td>
<td>Group. Parentheses ( () ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
</tbody>
</table>
### Syntax conventions

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Literal string'</td>
<td>Single quotation (‘’) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ({ }) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets (&lt;&gt;) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td>cql_statement;</td>
<td>End CQL statement. A semicolon (;) terminates all CQL statements.</td>
</tr>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens (--). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td>' &lt;schema&gt; ... &lt;/schema&gt; '</td>
<td>Search CQL only: Single quotation marks (‘’) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td>@xml_entity='xml_entity_type'</td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

### pid

DataStax Enterprise (cassandra) process id.

### Examples

**Stop by process id**

```bash
cassandra-stop -p 41234
```

### dse exec

Sets the environment variables required to run third-party tools that integrate with Spark:

- `SPARK_HOME` to point to the DSE Spark directory
- `HADOOP_CONF_DIR` to point to the Hadoop configuration directory within DSE
- Sets other environment variables required by DSE Spark to enable custom DSE
- Executes the given shell command

This command is typically used for third-party tools that integrate with Spark (page 332).

### Synopsis

```
$ exec [-cl] [-a name] [command [arguments ...]] [redirection ...]
```
Table 188: Legend

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td>Italic</td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( ( ) ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ’ ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets ( &lt; &gt; ) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td>cql_statement;</td>
<td>End CQL statement. A semicolon ( ; ) terminates all CQL statements.</td>
</tr>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td>' &lt;schema&gt; ... &lt;/schema&gt; '</td>
<td>Search CQL only: Single quotation marks ( ’ ) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td>@xml_entity='xml_entity_type'</td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

Examples
See Using DSE Spark with third party tools and integrations (page 332).

dse fs

Starts the DSE File System (DSEFS). The DSEFS prompt shows the current working directory, which is the default DSEFS search directory.

See DSEFS (DataStax Enterprise file system) (page 398).
DataStax Enterprise tools

Synopsis

$ dse fs subcommand
[--prefer-contact-points -h IP_address1,IP_address2]

--prefer-contact-points -h IP_address1,IP_address2,...
Give precedence to the specified hosts, regardless of proximity, when issuing DSEFS commands. As long as the specified hosts are available, DSEFS will not switch to other DSEFS nodes in the cluster.

Without these options, DSEFS will switch to the closest available DSEFS node automatically.

Examples

Start DSEFS

$ dse fs

Connected to DataStax Enterprise File System 6.0.2 at DSE cluster Test Cluster
Type help to get the list of available commands.
dsefs dsefs://127.0.0.1:5598/ >

DSEFS starts on the closest available DSEFS node.

Start DSEFS

$ dse fs 10.0.0.2,10.0.0.5

DSEFS starts with precedence to the specified hosts, regardless of proximity.

See DSEFS (DataStax Enterprise file system) (page 398).

dse hadoop fs

Invokes DSEFS operations using the HDFS interface to DSEFS. DseFileSystem has partial support of the Hadoop FileSystem interface.

See Hadoop FileSystem interface implemented by DseFileSystem (page 421) and DSEFS (page 398).

Synopsis

$ dse hadoop fs

Examples

Use Hadoop interface to DSEFS
$ dse hadoop fs

Connected to DataStax Enterprise File System 6.0.2 at DSE cluster Test Cluster
Type help to get the list of available commands.
dsefs dsefs://127.0.0.1:5598/ >

See DSEFS command line tool (page 406).

**dse list-nodes**

Lists the nodes that are configured for the DSE Multi-Instance host machine.

Since the default DataStax Enterprise node is called dse, the **dse list-nodes** command always returns at least the dse node, even if nodes were not added with the **dse add-node** command.

**Restriction:** DSE Multi-Instance commands are supported only on package installations.

**Synopsis**

$ dse list-nodes

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td><em>Italics</em></td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses (( )) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis (... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ’ ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ({ }) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
</tbody>
</table>
## Syntax conventions

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>&lt;datatype1,datatype2&gt;</code></td>
<td>Set, list, map, or tuple. Angle brackets (<code>&lt; &gt;</code>) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td><code>cql_statement;</code></td>
<td>End CQL statement. A semicolon (<code>;</code>) terminates all CQL statements.</td>
</tr>
<tr>
<td><code>[ -- ]</code></td>
<td>Separate the command line options from the command arguments with two hyphens (<code>--</code>). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td><code>'&lt;schema&gt; ... &lt;/schema&gt;'</code></td>
<td>Search CQL only: Single quotation marks (<code>'</code>) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td><code>@xml_entity='xml_entity_type'</code></td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

This command takes no arguments and lists the nodes that are configured for the DSE Multi-Instance host machine.

### Examples

**List the nodes**

```
$ dse list-nodes
```

**dse pyspark**

Starts the Spark Python shell.

See the DataFrames documentation *(page 369)* for an example of using PySpark, and the PySpark API documentation.

### Synopsis

```
$ dse pyspark
```

**Table 190: Legend**

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td>Italics</td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td><code>[ ]</code></td>
<td>Optional. Square brackets (<code>[ ]</code>) surround optional command arguments. Do not type the square brackets.</td>
</tr>
</tbody>
</table>
### Syntax conventions

( )	Group. Parentheses ( ( ) ) identify a group to choose from. Do not type the parentheses.	
	Or. A vertical bar (	) separates alternative elements. Type any one of the elements. Do not type the vertical bar.
...	Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.	
'Literal string'	Single quotation ( ‘ ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.	
{ key:value }	Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.	
<datatype1,datatype2>	Set, list, map, or tuple. Angle brackets (< >) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.	
cql_statement;	End CQL statement. A semicolon (;) terminates all CQL statements.	
[ -- ]	Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.	
' <schema> ... </schema> '	Search CQL only: Single quotation marks ( ‘ ) surround an entire XML schema declaration.	
@xml_entity='xml_entity_type'	Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.	

This command takes no arguments.

**dse remove-node**

Removes a node that is configured for the DSE Multi-Instance host machine.

**Important:** The user running the command must have permissions for writing to the directories that DSE uses, or use sudo.

**Restriction:** DSE Multi-Instance commands are supported only on package installations.

**Synopsis**

```bash
$ dse remove-node nodeId [--yes]
```
Table 191: Legend

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td>Italics</td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td>Or. A vertical bar (</td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ’ ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets (&lt; &gt;) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td>cql_statement;</td>
<td>End CQL statement. A semicolon (;) terminates all CQL statements.</td>
</tr>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td>' &lt;schema&gt; ... &lt;/schema&gt;'</td>
<td>Search CQL only: Single quotation marks ( ’ ) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td>@xml_entity='xml_entity_type'</td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

nodeId

Required. Because the node name is always prepended with dse- the remove-node command works if you specify dse-nodeID or just nodeID.

--yes

Confirms node deletion. Files are deleted and are not recoverable. When not specified, you are prompted to confirm node deletion.
Examples

Remove the node payrollnode

$ dse remove-node payrollnode

or the equivalent command with the prepended dse-:

$ dse remove-node dse-payrollnode

The prompt for node deletion is displayed:

```
###
WARNING
You're trying to remove node dse-payrollnode
This means that all configuration files for dse-payrollnode will be deleted
###

Do you wish to continue?
1) Yes
2) No
#?
```

Remove the node dse-payrollnode with explicit confirmation

$ dse remove-node dse-payrollnode --yes

dse spark

Enters interactive Spark shell and offers basic auto-completion.

**Restriction:** Command is supported only on nodes with analytics workloads.

For details on using Spark with DSE, see:

- Accessing database data from Spark (page 307)
- BYOS (Bring Your Own Spark) (page 378)
- Importing graphs using DseGraphFrame (page 840)
- Starting Spark (page 302)

Synopsis

$ dse connection_options spark
   [-framework dse|spark-2.0] [--help] [--verbose]
   [--conf name=spark.value|sparkproperties.conf]
   [--executor-memory mem]
   [--jars additional-jars]
DataStax Enterprise tools

[--master dse://?appReconnectionTimeoutSeconds=secs]
[--properties-file path_to_properties_file]
[--total-executor-cores cores]
[-i app_script_file]

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td>Italics</td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>()</td>
<td>Group. Parentheses ( () ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ' ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets ( &lt; &gt; ) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td>cql_statement;</td>
<td>End CQL statement. A semicolon ( ; ) terminates all CQL statements.</td>
</tr>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td>' &lt;schema&gt; ... &lt;/schema&gt; '</td>
<td>Search CQL only: Single quotation marks ( ' ) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td>@xml_entity='xml_entity_type'</td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

In general, Spark submission arguments (--submission_args) are translated into system properties -Dname=value and other VM parameters like classpath. The application arguments (--app_args) are passed directly to the application.

Configure the Spark shell with these arguments:
--conf name=spark.value|sparkproperties.conf
  An arbitrary Spark option to the Spark configuration prefixed by spark.
  • name-spark.value
  • sparkproperties.conf - a configuration

--executor-memory mem
  The amount of memory that each executor can consume for the application. Spark uses a 512 MB default. Specify the memory argument in JVM format using the k, m, or g suffix.

-framework dse|spark-2.0
  The classpath for the Spark shell. When not set, the default is dse.
  • dse - Sets the Spark classpath to the same classpath that is used by the DSE server.
  • spark-2.0 - Sets a classpath that is used by the open source Spark (OSS) 2.0 release to accommodate applications originally written for open source Apache Spark. Uses a BYOS (Bring Your Own Spark) JAR with shaded references to internal dependencies to eliminate complexity when porting an app from OSS Spark.

  **Note:** If the code works on DSE, applications do not require the spark-2.0 framework. Full support in the spark-2.0 framework might require specifying additional dependencies. For example: hadoop-aws is included on the dse server path but is not present on the OSS Spark-2.0 classpath. In this example, applications that use S3 or other AWS APIs must include their own aws-sdk on the runtime classpath. This additional runtime classpath is required only for applications that cannot run on the DSE classpath.

--help
  Shows a help message that displays all options except DataStax Enterprise Spark shell options.

-i app_script_file
  Spark shell application argument that runs a script from the specified file.

--jars path_to_additional_jars
  A comma-separated list of paths to additional JAR files.

--master dse://?appReconnectionTimeoutSeconds=secs
  A custom timeout value when submitting the application, useful for troubleshooting Spark application failures. The default timeout value is 5 seconds.

--properties-file path_to_properties_file
  The location of the properties file that has the configuration settings. By default, Spark loads the settings from spark-defaults.conf.

--total-executor-cores cores
  The total number of cores the application uses.

--verbose
  Displays which arguments are recognized as Spark configuration options and which arguments are forwarded to the Spark shell.
DataStax Enterprise tools

Examples

Start the Spark shell

$ dse spark

Start the Spark shell with case-sensitivity

DseGraphFrame and Spark SQL are case insensitive by default. Column names that differ only in case will result in conflicts. The Spark property `spark.sql.caseSensitive=true` avoids case conflicts.

$ dse spark --conf spark.sql.caseSensitive=true

Set the timeout value to 10 seconds

$ dse spark --master dse://?appReconnectionTimeoutSeconds=10

Useful for troubleshooting, see Detecting Spark application failures (page 306).

dse spark-beeline

Starts the Spark-Beeline (page 376) shell.

Restriction: Command is supported only on nodes with analytics workloads.

Synopsis

$ dse spark-beeline

This command takes no arguments.

dse spark-jobserver

Starts and stops the Spark Jobserver that is bundled with DSE.

Restriction: Command is supported only on nodes with analytics workloads.

See Spark Jobserver (page 382).

Synopsis

$ dse spark-jobserver start
[--properties-file path_to_properties_file]
[--executor-memory memory] [--total-executor-cores cores]
[--conf name=spark.value] [--jars path_to_additional_jars]
[--help] [--verbose] | stop
### Table 193: Legend

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td>Italics</td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ‘ ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets (&lt; &gt;) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td>cql_statement;</td>
<td>End CQL statement. A semicolon ( ; ) terminates all CQL statements.</td>
</tr>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td>' &lt;schema&gt; ... &lt;/schema&gt; '</td>
<td>Search CQL only: Single quotation marks ( ‘ ) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td>@xml_entity='xml_entity_type'</td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

#### start
Starts the Spark Jobserver.

#### help
Displays options and usage instructions. Use `nodesync help subcommand` for more information on a specific command.

#### --verbose
Displays which arguments are recognized as Spark configuration options and which arguments are forwarded to the Spark shell.

#### stop
Stops the Spark Jobserver.

For the dse spark-jobserver start command, apply one or more valid spark-submit options.

--properties-file path_to_properties_file
   The location of the properties file that has the configuration settings. By default, Spark loads the settings from spark-defaults.conf.

--executor-memory mem
   The amount of memory that each executor can consume for the application. Spark uses a 512 MB default. Specify the memory argument in JVM format using the k, m, or g suffix.

--total-executor-cores cores
   The total number of cores the application uses.

--conf name=spark.value|sparkproperties.conf
   An arbitrary Spark option to the Spark configuration prefixed by spark.
      • name-spark.value
      • sparkproperties.conf - a configuration

--jars path_to_additional_jars
   A comma-separated list of paths to additional JAR files.

Examples

Start the Spark Jobserver without submit options

dse spark-jobserver start

Start the Spark Jobserver with submit option

dse spark-jobserver start --properties-file spark.conf

See spark-submit options (page 353).

Stop the Spark Jobserver

dse spark-jobserver stop

**dse spark-history-server**

Starts and stops the Spark history server, the front-end application that displays logging data from all nodes in the Spark cluster.

**Restriction:** Configuration is required for the Spark history server. See Spark history server (page 351).

**Synopsis**

$ dse spark-history-server
Table 194: Legend

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td>Italics</td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses (() ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis (... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ('') marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ({ }) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets (&lt; &gt;) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td>cql_statement;</td>
<td>End CQL statement. A semicolon (;) terminates all CQL statements.</td>
</tr>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens (-- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td>' &lt;schema&gt; ... &lt;/schema&gt; ' '</td>
<td>Search CQL only: Single quotation marks (') surround an entire XML schema declaration.</td>
</tr>
<tr>
<td>@xml_entity='xml_entity_type'</td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

**start**

Starts the Spark history server to load the event logs from Spark jobs that were run with event logging enabled. The Spark history server can be started from any node in the cluster.

**--properties-file properties_file**

The properties file to overwrite the default Spark configuration in conf/spark- defaults.conf. The properties file can include settings like the authentication method and credentials and event log location.
DataStax Enterprise tools

**stop**

Stops the Spark history server.

**Examples**

**Start the Spark history server on the local node**

```
dse spark-history-server start
```

The Spark history server is started with the default configuration in `conf/spark-defaults.conf`.

**Start the Spark history server with a properties file**

```
dse spark-history-server start --properties-file sparkproperties.conf
```

The Spark history server is started with the configuration specified in `sparkproperties.conf`.

**dse spark-sql**

Starts the Spark SQL shell in DSE to interactively perform Spark SQL queries.

The Spark SQL shell in DSE automatically creates a Spark session and connects to the Spark SQL Thrift server (page 370) to handle the underlying JDBC connections. See Using Spark SQL to query data (page 362).

**Synopsis**

```
$ dse spark-sql
```

**Table 195: Legend**

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td><em>Italics</em></td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td><code>[ ]</code></td>
<td>Optional. Square brackets ( [ ] ) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td><code>( )</code></td>
<td>Group. Parentheses ( ( ) ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td>`</td>
<td>`</td>
</tr>
<tr>
<td><code>...</code></td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
</tbody>
</table>
### Syntax conventions

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Literal string'</td>
<td>Single quotation (‘) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets (&lt; &gt;) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td>cql_statement;</td>
<td>End CQL statement. A semicolon (;) terminates all CQL statements.</td>
</tr>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens (-- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td>' &lt;schema&gt; ... &lt;/schema&gt;'</td>
<td>Search CQL only: Single quotation marks (‘) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td>@xml_entity='xml_entity_type'</td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

This command accepts no parameters.

### Examples

**Start the Spark SQL shell**

```
$ dse spark-sql
```

The log file is at /home/ubuntu/.spark-sql-shell.log

```
spark-sql>
```

At the spark-sql prompt, you can interactively perform Spark SQL queries.

**dse spark-sql-thriftserver**

Starts and stops the Spark SQL Thriftserver. The Spark SQL Server uses a JDBC and an ODBC interface for client connections to DSE.

Configuration is required for the Spark SQL Thriftserver. See Using the Spark SQL Thrift server (page 370).

**Synopsis**

```
$ dse spark-sql-thriftserver
start [--conf spark_prop] [--hiveconf hive_prop] stop
```
### Table 196: Legend

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td>Italic</td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( () ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td><code>Literal string</code></td>
<td>Single quotation ( ’ ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets ( &lt; &gt; ) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td>cql_statement;</td>
<td>End CQL statement. A semicolon ( ; ) terminates all CQL statements.</td>
</tr>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td><code>&lt;schema&gt; ... &lt;/schema&gt;</code></td>
<td>Search CQL only: Single quotation marks ( ’ ) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td>@xml_entity='xml_entity_type'</td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

**start**
- Starts the Spark SQL Thriftserver. The user who runs the command to start the Spark SQL Thriftserver requires permissions to write to the Spark directories.
  
**--conf spark_prop**
- Pass in general Spark configuration settings, like spark.cores.max=4.

**-hiveconf config_file**
- Pass in a hive configuration property, like hive.server2.thrift.port=10001.

**stop**
- Stops the Spark SQL Thriftserver.
Examples

**Start the Spark SQL Thriftserver with default Spark and Hive options**

```
$ dse spark-sql-thriftserver start
```

**Start the Spark SQL Thriftserver with a Spark configuration option**

```
$ dse spark-sql-thrift-server start --conf spark.cores.max=4
```

**Start the Spark SQL Thriftserver with a Hive configuration option**

```
$ dse spark-sql-thrift-server start --hiveconf
 hive.server2.thrift.port=10001
```

**Stop the Spark SQL Thriftserver**

```
$ dse spark-sql-thriftserver stop
```

### dse spark-submit

Launches applications on a cluster to enable use of Spark cluster managers through a uniform interface. This command supports the same options as Apache Spark `spark-submit`.

**Restriction:** Command is supported only on nodes with analytics workloads.

**Synopsis**

```
$ dse spark-submit
 --class class_name
 jar_file other_options[
 [--master master_ip_address]
```

**Table 197: Legend**

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td>Italics</td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( ( ) ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td>Syntax conventions</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>Or. A vertical bar (</td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ’ ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets ( &lt; &gt; ) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td>cql_statement;</td>
<td>End CQL statement. A semicolon ( ; ) terminates all CQL statements.</td>
</tr>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td>' &lt;schema&gt; ... &lt;/schema&gt; '</td>
<td>Search CQL only: Single quotation marks ( ’ ) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td>@xml_entity='xml_entity_type'</td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

This command supports the same options as Apache Spark spark-submit. Unlike the standard behavior for the Spark status and kill options, in DSE deployments these options do not require the Spark Master IP address.

**master master_ip_address**

The IP address of the Spark Master running in the DSE cluster.

Examples

To write a class that defines an option named d

```
$ dse spark-submit --class com.datastax.HttpSparkStream target/HttpSparkStream.jar -d $NUM_SPARK_NODES
```

To submit an application using cluster mode using the supervise option to restart in case of failure

```
$ dse spark-submit --deploy-mode cluster --supervise --class com.datastax.HttpSparkStream target/HttpSparkStream.jar -d $NUM_SPARK_NODES
```
To submit an application using cluster mode when TLS is enabled

Pass the SSL configuration with standard Spark commands to use secure HTTPS on port 4440.

```
$ dse spark-submit --conf spark.ssl.ui.enabled=true --conf
 spark.ssl.ui.keyPassword=ctool_keystore
 spark.ssl.ui.keyStore=/home/automaton/ctool_security/
 ctool_keystore
 spark.ssl.ui.keyStore=/home/automaton/ctool_security/
 ctool_keystore
```

To set the driver host to a publicly accessible IP address

```
$ dse spark-submit --conf spark.driver.host=203.0.113.0 myApplication.jar
```

To get the status of a driver

Unlike the Apache Spark option, you do not have to specify the Spark Master IP address.

```
$ dse spark-submit --status driver-20180726160353-0019
```

Result when the driver exists:

```
Driver driver-20180726160353-0019 found: state=<state>, worker=<workerId>
(<workerHostPort>)
```

To kill a driver

Unlike the Apache Spark option, you do not have to specify the Spark Master IP address.

```
$ dse spark-submit --kill driver-20180726160353-0019
```

**dse SparkR**

Starts the R shell configured with DSE Spark to automatically set the Spark session within R. See Using SparkR with DataStax Enterprise *(page 377)*.

**Restriction:** Command is supported only on nodes with analytics workloads.

**Synopsis**

```
$ dse SparkR
```
### Table 198: Legend

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td><em>Italics</em></td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>()</td>
<td>Group. Parentheses ( () ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ’ ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets ( &lt; &gt; ) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td>cql_statement;</td>
<td>End CQL statement. A semicolon ( ; ) terminates all CQL statements.</td>
</tr>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td>' &lt;schema&gt; ... &lt;/schema&gt;'</td>
<td>Search CQL only: Single quotation marks ( ’ ) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td>@xml_entity='xml_entity_type'</td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

This command accepts no parameters.

**Examples**

**Starts the R shell configured with DSE Spark**
$ dse sparkR

dse -v
Sends the DataStax Enterprise version number to standard output.
This command does not require authentication.

Synopsis

$ dse -v

Example

Run DSE version

$ dse -v
5.1.15

dse client-tool

About dse client-tool
The dse client-tool command line interface connects an external client to a DataStax
Enterprise node and performs common utility tasks.

dse client-tool connection options
You must authenticate connections to an external client for dse client-tool commands.

JMX authentication is supported by some dsetool commands. Other dsetool commands
authenticate with the user name and password of the configured user. The connection option
short form and long form are comma separated.

Note:
You can provide authentication credentials in several ways, see Credentials for
authentication.

To enable dsetool to use Kerberos authentication, see Using dsetool with Kerberos
enabled cluster.

Different sources of configuration properties are used to connect external clients to a DSE
node: DSE configuration in dse.yaml and cassandra.yaml.
DataStax Enterprise tools

**Note:** You can provide authentication credentials in several ways, see Credentials for authentication. The dse client-tool subcommands use DSE Unified Authentication, like the Java and other language drivers, not JMX authentication like dsetool.

RPC permissions over the native protocol leverage DSE authentication and role-based access abilities. To configure external client access to DataStax Enterprise commands, see Authorizing remote procedure calls for CQL execution.

DSE proxy authentication can be used with dse client-tool, and delegation tokens can be generated for the proxy authenticated role. If the role alice is authenticated, and alice uses proxy authorization to the role bob, alice's delegation token can be used authenticate as alice and authorize as bob. If bob loses login permissions, the token can still be used to login as alice, because the token reflects alice’s authentication. If alice loses authorization permissions for bob, the token cannot be used to login.

**Synopsis**

```
$ dse client-tool
[-a proxy_auth_username] [-u username] [-p password]
[--port port] [--host hostname]
[--sasl-protocol-name dse_service_principal]
[--keystore-path ssl_keystore_path]
[--keystore-password keystore_password]
[--keystore-type ssl_keystore_type]
[--truststore-path ssl_truststore_path]
[--truststore-password ssl_truststore_password]
[--truststore-type ssl_truststore_type]
[--cipher-suites ssl_cipher_suites]
[--kerberos-enabled (true | false)]
[--ssl-enabled (true | false)]
[--use-server-config]
[-t delegation token]
[--ssl-protocol ssl_protocol]
command [options]
```

**Table 199: Legend**

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td><em>Italics</em></td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses (( )) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Syntax conventions</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ’ ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets ( &lt; &gt; ) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td>cql_statement;</td>
<td>End CQL statement. A semicolon ( ; ) terminates all CQL statements.</td>
</tr>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td>' &lt;schema&gt; ... &lt;/schema&gt; '</td>
<td>Search CQL only: Single quotation marks ( ’ ) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td>@xml_entity='xml_entity_type'</td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

--cipher-suites ssl_cipher_suites
Comma-separated list of SSL cipher suites for connection to DSE when SSL is enabled. For example, --cipher-suites c1,c2,c3.

--host hostname
The DSE node hostname or IP address.

--kerberos-enabled true | false
Whether Kerberos authentication is enabled for connections to DSE. For example, --kerberos-enabled true.

--keystore-password keystore_password
Keystore password for connection to DSE when SSL client authentication is enabled.

--keystore-path ssl_keystore_path
Path to the keystore for connection to DSE when SSL client authentication is enabled.

--keystore-type ssl_keystore_type
Keystore type for connection to DSE when SSL client authentication is enabled. JKS is the type for keys generated by the Java keytool binary, but other types are possible, depending on user environment.

-p password
The password to authenticate for database access. Can use the DSE_PASSWORD environment variable.

--port port
The native protocol RPC connection port (Thrift).

--sasl-protocol-name dse_service_principal
SASL protocol name, that is, the DSE service principal name.

--ssl
Whether SSL is enabled for connection to DSE. --ssl-enabled true is the same as --ssl.

--ssl-protocol ssl_protocol
SSL protocol for connection to DSE when SSL is enabled. For example, --ssl-protocol ssl4.

-t delegation_token
The delegation token to use at login. Or alternatively, DSE_TOKEN environment variable can be used.

--truststore-password ssl_truststore_password
Truststore password to use for connection to DSE when SSL is enabled.

--truststore-path ssl_truststore_path
Path to the truststore to use for connection to DSE when SSL is enabled. For example, --truststore-path /path/to/ts.

--truststore-type ssl_truststore_type
Truststore type for connection to DSE when SSL is enabled. JKS is the type for keys generated by the Java keytool binary, but other types are possible, depending on user environment. For example, --truststore-type jks2.

-u username
User name of a DSE authentication account. Can use the DSE_USERNAME environment variable.

-a proxy_auth_username
DSE authorization username if proxy authentication is used.

--use-server-config
Read parameters from server YAML configuration files. Assumes the local DSE node is properly configured.

dse client-tool cassandra

Performs token management and partitioner discovery.

Restriction: Token management commands require Kerberos authentication mode.

Synopsis

dse connection_options client-tool cassandra
(cancel-token token |
generate-token [username] |
renew-token token |
partitioner)

Table 200: Legend

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
</tbody>
</table>
### Syntax conventions

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Italic</td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( ( ) ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ’ ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets (&lt; &gt;) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td>cql_statement;</td>
<td>End CQL statement. A semicolon (;) terminates all CQL statements.</td>
</tr>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td>' &lt;schema&gt; ... &lt;/schema&gt; '</td>
<td>Search CQL only: Single quotation marks ( ’ ) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td>@xml_entity='xml_entity_type'</td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

**cancel-token**
Cancel the specified token.

**generate-token [username]**
Generate delegation token (page 336) to access Kerberos DSE from non-Kerberos clusters.
- When the username is not specified, the current user is the token renewer. Only DSE processes can renew a token.
- When the username is specified as the token renewer, that user can renew and cancel the token.

**partitioner**
Returns the partitioner that is being used by the node.

**renew-token**
Renew the specified token.
Examples

Generate token with the current user as the token renewer

dse client-tool cassandra generate-token

Generate token with user AdminAlicia as the token renewer

dse client-tool cassandra generate-token --token-renewer AdminAlicia

Return the current partitioner

dse client-tool cassandra partitioner

Cancel specified token

dse client-tool cassandra cancel-token token

Renew specified token

dse client-tool cassandra renew-token token

dse client-tool configuration export

Exports the DataStax Enterprise client configuration from a remote node.

To run Spark commands against a remote cluster, you must copy the exported file from the remote node to the local client machine.

Synopsis

dse client-tool connection_options configuration export filename

Table 201: Legend

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td>Italics</td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
</tbody>
</table>
### Syntax conventions

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>( )</td>
<td>Group. Parentheses ( ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td>Or. A vertical bar (</td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ’ ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets ( &lt; &gt; ) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td>cql_statement;</td>
<td>End CQL statement. A semicolon ( ; ) terminates all CQL statements.</td>
</tr>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td>' &lt;schema&gt; ... &lt;/schema&gt;'</td>
<td>Search CQL only: Single quotation marks ( ’ ) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td>@xml_entity='xml_entity_type'</td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

### Examples

**To export the DataStax Enterprise client configuration from the remote node:**

```
dse client-tool configuration export dse-config.jar
```

**dse client-tool configuration byos-export**

Exports the DSE node configuration to a Spark-compatible file that can be copied to a node in the external Spark cluster and used with the Spark shell.

See Generating the BYOS configuration file (page 378).

**Synopsis**

```
dse client-tool connection_options configuration byos-export
[--default-properties path_to_existing_properties_file]
```
DataStax Enterprise tools

[--export-credentials]  
[--generate-token [--token-renewer username]]

Table 202: Legend

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td>Italics</td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( () ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ' ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets ( &lt; &gt; ) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td>cql_statement;</td>
<td>End CQL statement. A semicolon ( ; ) terminates all CQL statements.</td>
</tr>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td>' &lt;schema&gt; ... &lt;/schema&gt; '</td>
<td>Search CQL only: Single quotation marks ( ' ) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td>@xml_entity='xml_entity_type'</td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

--default-properties spark_propfile_path
dse_spark_propfile_path

The path to the default Spark properties file and the DataStax Enterprise Spark properties file to merge properties from both.

--export-credentials

Store current DSE user and password in the generated configuration file.

file
The file name for the generated Spark-compatible file. For example, byos.properties.

--generate-token
Generates digest authentication token to support access to DSE clusters secured with Kerberos from non-Kerberos clusters.

--set-keystore-password password
The keystore password for connection to the database when SSL client authentication is enabled.

--set-keystore-path path
The path to the SSL keystore when SSL client authentication is enabled. All nodes must store the keystore in the same location.

--set-keystore-type type
The keystore type when SSL client authentication is enabled. If not specified, the default is JKS.

--set-truststore-password password
Include the specified truststore password in the configuration file.

--set-truststore-path path
Path to SSL truststore on Spark nodes. All nodes must store the truststore in the same location.

--set-truststore-type type
The truststore type when SSL client authentication is enabled. If not specified, the default is JKS.

--token-renewer userid
User with permission to renew or cancel the token. When not specified, only the DSE process can renew the generated token.

Examples

You can export the DSE node configuration to a Spark-compatible file with various options.

Generate the byos.properties file in your home directory

dse client-tool configuration byos-export ~/byos.properties

Merge the default Spark properties with the DSE Spark properties

dse client-tool configuration byos-export --default-properties /usr/lib/spark/conf/spark-defaults.conf /home/user1/.dse/byos.conf

**dse client-tool configuration import**

Imports configuration file and generates local configuration files and a cqlshrc file with settings from the imported file so the DSE client applications can remotely access the running DSE cluster.

Run this command on a client node to set up the local DSE installation for integrated client applications.
Synopsis

dse client-tool connection_options configuration import file
[--cqlshrc [file]]
[--force]

Table 203: Legend

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td><em>Italics</em></td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ( [ ] ) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( ( ) ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( . . . ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ' ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets ( &lt; &gt; ) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td>cql_statement;</td>
<td>End CQL statement. A semicolon ( ; ) terminates all CQL statements.</td>
</tr>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td>' &lt;schema&gt; ... &lt;/schema&gt; '</td>
<td>Search CQL only: Single quotation marks ( ' ) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td>@xml_entity='xml_entity_type'</td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

--cqlshrc
Generate a cqlshrc file for the DSE client node.

file
Path to cqlshrc file to be generated. When a file is not specified, the default file is the ~/.cassandra/cqlshrc file.

--force
Force an overwrite of existing configuration files. By default, the import command fails if the configuration files already exist.

--set-keystore-password password
The keystore password for connection to the database when SSL client authentication is enabled.

--set-keystore-path path
The path to the SSL keystore when SSL client authentication is enabled. All nodes must store the keystore in the same location.

--set-keystore-type type
The keystore type when SSL client authentication is enabled. If not specified, the default is JKS.

--set-truststore-password password
Include the specified truststore password in the configuration file.

--set-truststore-path path
Path to SSL truststore on Spark nodes. All nodes must store the truststore in the same location.

--set-truststore-type type
The truststore type when SSL client authentication is enabled. If not specified, the default is JKS.

Examples

Run the import command on the client node.

Import the configuration file with default values:

dse client-tool configuration import dse-config.jar

Create a local cqlshrc file with the default name:

dse client-tool configuration import dse-config.jar --cqlshrc

Force an overwrite of the existing configuration file:

dse client-tool configuration import dse-config.jar --force

**dse client-tool spark**

Perform operations related to integrated Spark.

**Synopsis**

dse client-tool connection_options spark
(master-address | leader-address | version | sql-schema (--exclude | --keyspace | --table | --decimal | --all)
Table 204: Legend

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td>Italic</td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ’ ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets ( &lt; &gt; ) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td>cql_statement;</td>
<td>End CQL statement. A semicolon ( ; ) terminates all CQL statements.</td>
</tr>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td>' &lt;schema&gt; ... &lt;/schema&gt;'</td>
<td>Search CQL only: Single quotation marks ( ’ ) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td>@xml_entity='xml_entity_type'</td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

**leader-address**

Returns the IP address of the currently selected Spark Master for the datacenter.

**master-address**

Returns the address used to configure Spark applications.

The address is returned as URI: dse://ip:port?

connection.local_dc=dc_name;connection.host=cs_list_contactpoints
The `connection.host=cs_list_contactpoints` option is a comma separated list of IP addresses of additional contact points. The additional contact points are up to five randomly selected nodes from the datacenter.

**Note:** DSE automatically connects Spark applications to the Spark Master. You do not need to use the IP address of the current Spark Master in the connection URI.

### metastore-migrate --from_version --to_version
Migrate Spark SQL metastore from one DSE version to another DSE version.

- **--from_version** - the version to migrate metastore from
- **--to_version** - the version to migrate metastore to

### version
Returns the version of Spark that is bundled with DataStax Enterprise.

### sql-schema (--exclude | --keyspace | --table | --decimal | --all)
Exports the SQL table creation query with these options:

- **--table tablename** - comma-separated list of tables to include
- **--exclude csvlist** - comma-separated list of tables to exclude
- **--all** - includes all keyspaces
- **--keyspace csvlist** - comma-separated list of keyspaces to include

### Examples

**View the Spark connection URL for this datacenter:**

```bash
$ dse client-tool spark master-address
dse://10.200.181.62:9042?
connection.local_dc=Analytics;connection.host=10.200.181.63
```

**View the IP address of the current Spark Master in this datacenter:**

```bash
$ dse client-tool spark leader-address 10.200.181.62
```

**Generate Spark SQL schema files**

You can use the generated schema files with Spark SQL on external Spark clusters.

```bash
$ dse client-tool --use-server-config spark sql-schema --all > output.sql
```

**Migrate Spark metastore**

To map custom external tables from DSE 5.0.11 to the DSE 6.0.0 release format of the Hive metastore used by Spark SQL after upgrading:
dsetool

About dsetool

dsetool is a command line interface for DSE operations.

Synopsis

dsetool [connection_options] command command_args

Table 205: Legend

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td>Italics</td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ] ) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( ( ) ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ' ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets ( &lt; &gt; ) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td>cql_statement;</td>
<td>End CQL statement. A semicolon ( ; ) terminates all CQL statements.</td>
</tr>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
</tbody>
</table>
Using dsetool command line help

To view a listing of dsetool commands:

\[\texttt{dsetool help}\]

To view help for a specific command:

\[\texttt{dsetool command help}\]

dsetool commands for DSE Search

Search CQL commands (page 461) are distributed to the entire data center. The dsetool commands for DSE Search distribute search index changes to the data center by default, and are node-specific only when the distributed flag is set to false.

**dsetool connection options**

Options for connecting to your cluster with the dsetool utility. Using dsetool with SSL requires some JMX setup. See Setting up SSL for nodetool, dsetool, and dse advrep.

**Synopsis**

\[\texttt{dsetool [connection_options]}\]

**Table 206: Legend**

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td><em>italics</em></td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>Syntax conventions</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation (‘’) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ({ }) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets (&lt;&gt;) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td>cql_statement;</td>
<td>End CQL statement. A semicolon (;) terminates all CQL statements.</td>
</tr>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens (--). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td>' &lt;schema&gt; ... &lt;/schema&gt;'</td>
<td>Search CQL only: Single quotation marks (‘’) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td>@xml_entity='xml_entity_type'</td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

JMX authentication is supported by some dsetool commands. Other dsetool commands authenticate with the user name and password of the configured user. The connection option short form and long form are comma separated.

**Note:** Authentication credentials can be provided in several ways, see Connecting to authentication enabled clusters.

To enable dsetool to use Kerberos authentication, see Using dsetool with Kerberos enabled cluster.

Specify how to connect and authenticate the dsetool command.

This list shows short form (-f filename) and long form (--config-file=filename):

- **-a jmx_username, --jmxusername jmx_username**  
  User name for authenticating with secure local JMX.

- **-b jmx_password, --jmxpassword jmx_password**  
  Password for authenticating with secure local JMX. If you do not provide a password, you are prompted to enter one.

- **-c dse_port, --cassandra_port dse_port**  
  DSE port number.

- **--cipher-suites ssl_cipher_suites**  
  Specify comma-separated list of SSL cipher suites for connection to DSE when SSL is enabled. For example, --cipher-suites c1,c2,c3.

- **-f filename, --config-file filename**  
  File path to configuration file that stores credentials. The credentials in this configuration file override the ~/.dserc credentials.
-h IP_address, --host IP_address
   Connect to the specified hostname or IP address. Do not specify to connect to the
   local node.
-j jmx_port, --jmxport jmx_port
   Remote JMX agent port number.
--keystore-path ssl_keystore_path
   Path to the keystore for connection to DSE when SSL client authentication is
   enabled.
--keystore-password keystore_password
   Keystore password for connection to DSE when SSL client authentication is
   enabled.
--keystore-type ssl_keystore_type
   Keystore type for connection to DSE when SSL client authentication is enabled.
   JKS is the type for keys generated by the Java keytool binary, but other types are
   possible, depending on user environment.
-l username, --username username
   Role to authenticate for database access.
-p password, --password password
   Password to authenticate for database access.
-s solr_port, --port solr_port
   Solr port.
--ssl ( true | false )
   Whether to use SSL for native connections.
--ssl-protocol ssl_protocol
   SSL protocol for connection to DSE when SSL is enabled. For example, --ssl-
   protocol ssl4.
--sslauth ( true | false )
   Whether to use SSL client authentication.
--truststore_password ssl_truststore_password
   Truststore password to use for connection to DSE when SSL is enabled.
--truststore-path ssl_truststore_path
   Path to the truststore to use for connection to DSE when SSL is enabled. For
   example, --truststore-path /path/to/ts.
--truststore-type ssl_truststore_type
   Truststore type for connection to DSE when SSL is enabled. JKS is the type for
   keys generated by the Java keytool binary, but other types are possible, depending
   on user environment. For example, --truststore-type jks2.

**dsetool autojt (deprecated)**

This command is deprecated. Job Trackers are managed automatically.

**dsetool checkcfs**

Scans a single Cassandra File System (CFS) file, or the whole CFS, for corrupted files.

**Restriction:** Command is supported only on nodes with analytics workloads.
DataStax Enterprise tools

Synopsis

dsetool checkcfs filepath|cfs:///  

Table 207: Legend

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td>Italics</td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>()</td>
<td>Group. Parentheses ( () ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ‘ ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets ( &lt; &gt; ) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td>cql_statement;</td>
<td>End CQL statement. A semicolon ( ; ) terminates all CQL statements.</td>
</tr>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td>' &lt;schema&gt; ... &lt;/schema&gt; '</td>
<td>Search CQL only: Single quotation marks ( ‘ ) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td>@xml_entity='xml_entity_type'</td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

**cfs:///**
Checks the default Cassandra File System (CFS).

**filepath**
Get details about a particular file that has been corrupted.
Examples

Scan the Cassandra File System (CFS) for corrupted files:

```bash
$ dsetool checkcfs cfs:///
```

Get details about a particular file that has been corrupted:

```bash
$ dsetool checkcfs /tmp/myhadoop/mapred/system/jobtracker.info
```

dsetool core_indexing_status

Retrieves the dynamic indexing status of a search index on a DSE Search node, and optionally displays the percent complete and an estimated completion time in milliseconds.

**Restriction:** Command is supported only on nodes with DSE Search workloads.

**Synopsis**

```bash
dsetool core_indexing_status [keyspace_name.]table_name [--all] [--progress]
```

**Table 208: Legend**

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td><em>Italics</em></td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( ( ) ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td><em>Literal string</em></td>
<td>Single quotation ( ’ ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets ( &lt; &gt; ) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
</tbody>
</table>
DataStax Enterprise tools

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cql_statement;</code></td>
<td>End CQL statement. A semicolon ( ; ) terminates all CQL statements.</td>
</tr>
<tr>
<td><code>[ -- ]</code></td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td><code>' &lt;schema&gt; ... &lt;/schema&gt;</code></td>
<td>Search CQL only: Single quotation marks ( ‘ ) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td><code>@xml_entity='xml_entity_type'</code></td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

Retrieves the dynamic indexing status (INDEXING, FINISHED, or FAILED) of the specified index or indexes, where:

**[keyspace_name.]table_name**

The search index table name is required. The keyspace name is optional. The case of keyspace and table names is preserved. You must use the correct case for the keyspace and table names.

--all

Retrieve the dynamic indexing status of the specified search index on all nodes.

--progress

Display the percent complete and an estimated completion time in milliseconds.

See Verifying indexing status (page 547).

Examples

To view the indexing status for the local node:

```
dsetool core_indexing_status demo.health_data
```

The local node wiki.solr is currently indexing:

```
[demo.health_data]: INDEXING
```

To view the indexing status for a search index on a specified node:

```
dsetool -h 200.192.10.11 core_indexing_status demo.health_data
```

To view indexing status of all search indexes in the data center:

```
dsetool -h 200.192.10.11 core_indexing_status --all
```

To view the indexing status with the progress and estimated time of completion:

```
dsetool core_indexing_status demo.health_data --progress
```
The results are displayed:

```
[demo.health_data]: INDEXING, 38% complete, ETA 452303 milliseconds (7 minutes 32 seconds)
```

**dsetool create_core**

Creates the search index table on the local node.

Supports DSE authentication with `[-l username -p password]`.

The CQL command to create a search index is `CREATE SEARCH INDEX`.

**Restriction:** Command is supported only on nodes with DSE Search workloads.

Auto-generated schemas have default DocValues enabled. See Creating a search index with default values (page 463) for details on docValues.

**Note:** If one or more nodes fail to create the search index in distributed operations, an error message indicates the failing node or nodes. If it failed to create the search index immediately, issue the create again. If it failed to create on some nodes, issue a reload for those nodes to load the newly created search index.

**Synopsis**

```
dsetool create_core keyspace_name.table_name
[coreOptions=yamlFile | coreOptionsInline=key1:value1#key2:value2#...]
[distributed=true|false]
[(generateResources=true|false] | schema=path solrconfig=path]
[recovery=(true|false)
[reindex=(true|false]]=
```

**Table 209: Legend**

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td><em>Italics</em></td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[     ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>(     )</td>
<td>Group. Parentheses ( ( ) ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>Syntax conventions</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation (‘’) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ({ }) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets (&lt;&gt;) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td>cql_statement;</td>
<td>End CQL statement. A semicolon (;) terminates all CQL statements.</td>
</tr>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens (--) This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td>' &lt;schema&gt; ... &lt;/schema&gt; '</td>
<td>Search CQL only: Single quotation marks (‘’) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td>@xml_entity='xml_entity_type'</td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

**keyspace_name.table_name**

Required. The keyspace and table names of the search index. Keyspace and table names are case-sensitive. Enclose names that contain uppercase in double quotation marks.

**coreOptions=yamlFile**

When generateResources=true, specify a customized YAML-formatted file of options. The contents of the file are the same options that can be specified with coreOptionsInline.

**coreOptionsInline=key1:value1#key2:value2#...**

Use this key-value pair syntax key1:value1#key2:value2# to specify values for these settings:

- auto_soft_commit_max_time:ms
- default_query_field:field
- distributed=( true | false )
- enable_string_copy_fields:( true | false )
- exclude_columns: col1, col2, col3, ...
- generate_DocValues_for_fields:( * | field1, field2, ... )
- generateResources=( true | false )

See Changing auto-generated search index settings (page 457).

**recovery=( true | false )**

Whether to delete and recreate the search index if it is not able to load due to corruption.

Valid values:
• true - If search index is unable to load, recover the index by deleting and recreating it.
• false - Default. No recovery.

**reindex=( true | false )**
Whether to reindex the data when search indexes are auto-generated with generateResources=true. Reindex works on a datacenter (DC) level. Reindex only once per search-enabled DC. Repeat the reindex command on other data centers as required.

Valid values:
• true - Default. Reindexes the data. Accepts reads and keeps the current search index while the new index is building.
• false - Does not reindex the data. You can check and customize search index resources before indexing.

**schema=path**
Path of the UTF-8 encoded search index schema file. Cannot be specified when generateResources=true.

**solrconfig=path**
Path of the UTF-8 encoded search index configuration file. Cannot be specified when generateResources=true.

**Examples**
Automatically generate search index for the health_data table in the demo keyspace:

```bash
dsetool create_core demo.health_data generateResources=true
```

Override the default and reindex existing data, specify the reindex=false option:

```bash
dsetool create_core demo.health_data generateResources=true reindex=false
```

The generateResources=true option generates resources only if resources do not exist in the solr_resources table.

Use options in a YAML-formatted file

To turn on live indexing, also known as real-time (RT) indexing, the contents of the rt.yaml are rt: true:

```bash
$ dsetool create_core udt_ks.users generateResources=true coreOptions=rt.yaml
```

Enable encryption with inline options

Specify the class for directoryFactory to solr.EncryptedFSDirectoryFactory:
DataStax Enterprise tools

$ dsetool create_core keyspace_name.table_name generateResources=true
coreOptionsInline="directory_factory_class:solr.EncryptedFSDirectoryFactory"

dsetool create_core demo.health_data generateResources=true
coreOptionsInline="directory_factory_class:solr.EncryptedFSDirectoryFactory"

Use options in a YAML-formatted file

dsetool create_core demo.health_data
coreOptions="directory_factory_class:solr.EncryptedFSDirectoryFactory"

dsetool createsystemkey

Creates an encryption/decryption key for transparent data encryption (TDE). You can specify a file name to create a local key or KMIP options to create a remote key.

See Transparent data encryption.

Synopsis

$ dsetool createsystemkey
[cipher_algorithm[/mode/padding]
[length] [key_name]
[-d filepath] [-k=kmip_groupname]
[-t kmip_template] [-n namespace]]

Table 210: Legend

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td>Italics</td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( () ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ’ ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
</tbody>
</table>
### Syntax conventions

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets ( &lt; &gt; ) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td>cql_statement;</td>
<td>End CQL statement. A semicolon ( ; ) terminates all CQL statements.</td>
</tr>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td>' &lt;schema&gt; ... &lt;/schema&gt;'</td>
<td>Search CQL only: Single quotation marks ( ’ ) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td>@xml_entity='xml_entity_type'</td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

---

### cipher_algorithm[/mode/padding]

DSE supports the following JCE cipher algorithms and corresponding length:

- AES/CBC/PKCS5Padding (valid with length 128, 192, or 256).
- AES/ECB/PKCS5Padding (valid with length 128, 192, or 256)
- DES/CBC/PKCS5Padding (valid with length 56)
- DESede/CBC/PKCS5Padding (valid with length 112 or 168)
- Blowfish/CBC/PKCS5Padding (valid with length 32-448)
- RC2/CBC/PKCS5Padding (valid with length 40-128)

Default value: AES/CBC/PKCS5Padding (with length 128)

---

### `-d filepath, --directory filepath`

Key file output directory. Enables creating key files before DSE is installed. This option is typically used by IT automation tools like Ansible. When no directory is specified, keys are saved to the value of `system_key_directory` (page 242) in dse.yaml.

---

### `length`

Required if cipher_algorithm is specified. Key length is not required for HMAC algorithms. Default value: 128 (with the default cipher algorithm AES/CBC/ PKCS5Padding)

---

### `file_name`

Unique file name for the generated system key file. Encryption key files can have any valid Unix name. If no name is specified, the default file name is system_key. The default key file name is not configurable. The location of the key is specified with `system_key_directory` (page 242) in dse.yaml.

---

### `-k=kmip_groupname`

The name of the KMIP group that is defined in the `kmip_hosts` (page 243) section of dse.yaml.

---

### `-l kmip_template`

DSE 5.1 Developer Guide Earlier version, latest patch 5.1.15
DataStax Enterprise tools

The key template on the specified KMIP provider.

-\texttt{\textasciitilde n namespace}\newline Namespace on the specified KMIP provider.

Examples

To create an on-server key file:

$ dsetool createsystemkey 'AES/ECB/PKCS5Padding' 128 system_key2

where system_key2 is the unique file name for the generated on-server key file.

To create an off-server key file:

$ dsetool createsystemkey 'AES/ECB/PKCS5Padding' 128 system_key2 -\texttt{kmip=group2}

where group2 is the key server group defined in the \texttt{kmip_hosts (page 243)} section of \texttt{dse.yaml}.

To create a local key file in a specific directory:

$ dsetool createsystemkey 'AES/ECB/PKCS5Padding' 128 -\texttt{d /mydir}

\texttt{dse.yaml}
The location of the \texttt{dse.yaml} file depends on the type of installation:

<table>
<thead>
<tr>
<th>Package installations</th>
<th>/etc/dse/dse.yaml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer-Services installations</td>
<td>installation_location/ resources/dse/conf/dse.yaml</td>
</tr>
</tbody>
</table>

\texttt{dsetool encryptconfigvalue}

Encrypts sensitive configuration information. This command takes no arguments and prompts for the value to encrypt.

Example

$ dsetool encryptconfigvalue

\texttt{dsetool get_core_config}

Displays the XML for the specified search index config. Supports DSE authentication with \texttt{[-l username -p password]}.

\textbf{Restriction}: Command is supported only on nodes with DSE Search workloads.
Synopsis

dsetool get_core_config keyspace_name.table_name [current=true|false]

Table 211: Legend

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td>*</td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( () ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ' ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( {} ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets (&lt; &gt;) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td>cql_statement;</td>
<td>End CQL statement. A semicolon (;) terminates all CQL statements.</td>
</tr>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td>' &lt;schema&gt; ... &lt;/schema&gt;'</td>
<td>Search CQL only: Single quotation marks ( ' ) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td>'@xml_entity=&quot;xml_entity_type&quot;'</td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

keyspace_name.table_name
  Required. The keyspace and table names of the search index. Keyspace and table names are case-sensitive. Enclose names that contain uppercase in double quotation marks.

current=true|false
  Optionally specify to view the current (active) configuration.
DataStax Enterprise tools

- true - Returns the active live search index config.
- false - Default. Returns the pending (latest uploaded) search index configuration.

Examples

The following examples view the search index config for the demo keyspace and health_data table.

To view the pending (latest uploaded) configuration:

```
dsetool get_core_config demo.health_data
```

The XML for the auto-generated configuration is displayed:

```xml
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<config>
 <abortOnConfigurationError>${solr.abortOnConfigurationError:true}</abortOnConfigurationError>
 <luceneMatchVersion>LUCENE_6_0_0</luceneMatchVersion>
 <dseTypeMappingVersion>2</dseTypeMappingVersion>
 <directoryFactory class="solr.StandardDirectoryFactory" name="DirectoryFactory"/>
 <indexConfig>
 <rt>false</rt>
 <rtOffheapPostings>true</rtOffheapPostings>
 <useCompoundFile>false</useCompoundFile>
 <ramBufferSizeMB>512</ramBufferSizeMB>
 ...
 </requestHandler>
 <admin>
 <defaultQuery>*:*</defaultQuery>
 </admin>
</config>
```

To view the pending (latest uploaded) search index configuration:

```
$ dsetool get_core_config demo.health_data current=true
```

To save the XML output to a file:

```
$ dsetool get_core_config demo.health_data > /Users/maryjoe/Documents/search/health_data_config.xml
```

The health_data_config.xml file is created.

**dsetool get_core_schema**

Displays the XML for the pending or active search index schema. Supports DSE authentication with [-l *username* -p *password*].
**Restriction:** Command is supported only on nodes with DSE Search workloads.

**Synopsis**

```
dsetool get_core_schema keyspace_name.table_name [current=true|false]
```

**Table 212: Legend**

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td><em>Italics</em></td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( () ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td><code>'Literal string'</code></td>
<td>Single quotation ( ' ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td><code>{ key:value }</code></td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td><code>&lt;datatype1,datatype2&gt;</code></td>
<td>Set, list, map, or tuple. Angle brackets (&lt; &gt;) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td>cql_statement;</td>
<td>End CQL statement. A semicolon ( ; ) terminates all CQL statements.</td>
</tr>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td><code>' &lt;schema&gt; ... &lt;/schema&gt; </code>&lt;</td>
<td>Search CQL only: Single quotation marks ( ' ) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td><code>@xml_entity='xml_entity_type'</code></td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

**keyspace_name.table_name**

Required. The keyspace and table names of the search index. Keyspace and table names are case-sensitive. Enclose names that contain uppercase in double quotation marks.
**current=true|false**

Optionally specify to view the current (active) schema.

- true - Returns the current live search index schema.
- false - Default. Returns the latest uploaded search index schema.

**Examples**

The following examples view the search index schema for the demo keyspace and health_data table.

To save the XML output to a file:

```
dsetool get_core_schema demo.health_data > /Users/maryjoe/Documents/search/health_data_schema.xml
```

The health_data_schema.xml file is created.

To view the pending (latest uploaded) search index schema:

```
dsetool get_core_schema demo.health_data
```

To view the active (currently loaded) search index schema:

```
dsetool get_core_schema demo.health_data current=true
```

The XML for the schema is displayed:

```xml
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<schema name="autoSolrSchema" version="1.5">
 <types>
 <fieldType class="org.apache.solr.schema.TextField" name="TextField">
 <analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 </analyzer>
 </fieldType>
 <fieldType class="org.apache.solr.schema.TrieIntField" name="TrieIntField"/>
 </types>
 <fields>
 <field indexed="true" multiValued="false" name="grade_completed" stored="true" type="TextField"/>
 ...
 <field indexed="true" multiValued="false" name="fips" stored="true" type="TextField"/>
 </fields>
 <uniqueKey>(id,age)</uniqueKey>
</schema>
```
**dsetool help**

Provides a listing of dsetool commands and parameters.

**Synopsis**

```
$ dsetool help
```

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td><em>Italics</em></td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( () ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ' ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets ( &lt; &gt; ) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td>cql_statement;</td>
<td>End CQL statement. A semicolon ( ; ) terminates all CQL statements.</td>
</tr>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td>' &lt;schema&gt; ... &lt;/schema&gt; '</td>
<td>Search CQL only: Single quotation marks ( ' ) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td>'@xml_entity='xml_entity_type'</td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>
Typing `dsetool` or `dsetool help` provides a listing of dsetool commands and parameters.

**Note:** Help is not available on a single command.

**dsetool index_checks (experimental)**

Optional and experimental. Reads the full index and optionally performs sanity checks. No repairs or fixes occur. Run only when index is inactive. No writes are allowed while index check is running.

**Note:** Running this index check is time consuming and implies a hard commit.

**Restriction:** Command is supported only on nodes with DSE Search workloads.

**Synopsis**

```
dsetool index_checks keyspace_name.table_name
[coreOptions=yamlFilepath]|
[coreOptionsInline=key1:value1#key2:value2#...]
--index_checks=true|false
--index_checks_stop=true|false
```

**Table 214: Legend**

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td>Italics</td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>()</td>
<td>Group. Parentheses ( () ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ‘ ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ({ }) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets (&lt; &gt;) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
</tbody>
</table>
### Syntax conventions

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cql_statement;</code></td>
<td>End CQL statement. A semicolon ( ; ) terminates all CQL statements.</td>
</tr>
<tr>
<td><code>[ -- ]</code></td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td><code>' &lt;schema&gt; ... &lt;/schema&gt;</code></td>
<td>Search CQL only: Single quotation marks ( ‘ ’ ) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td><code>@xml_entity='xml_entity_type'</code></td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

#### keyspace_name.table_name

Required. The keyspace and table names of the search index. Keyspace and table names are case-sensitive. Enclose names that contain uppercase in double quotation marks.

#### coreOptions=yamlFilepath

When auto-generation is on with `generateResources=true`, the file path to a customized YAML-formatted file of options. See Changing auto-generated search index settings (page 457).

#### coreOptionsInline=key1:value1#key2:value2#...

Use this key-value pair syntax `key1:value1#key2:value2#` to specify values for these settings:

- `auto_soft_commit_max_time:ms`
- `default_query_field:field`
- `distributed=( true | false )`
- `enable_string_copy_fields:( true | false )`
- `exclude_columns: col1, col2, col3, ...`
- `generate_DocValues_for_fields:( * | field1, field2, ... )`
- `generateResources=( true | false )`

See Changing auto-generated search index settings (page 457).

#### --index_checks=true|false

Specify to run the index check.

- `true` - Runs the index check to verify index integrity. Reads the full index and has performance impact.
- `false` - Default. Does not run the index check.

#### --index_checks_stop=true|false

Specify to stop the index check.

- `true` - Requests the index check to stop.
- `false` - Does not stop the index check.
Examples

**Important:** Ensure that indexing is inactive before doing an index check.

To do an index check:

```
dsetool index_checks demo.health_data
```

The LUKE handler information is displayed:

```
LUKE handler info:

numDocs:0
maxDoc:0
deletedDocs:0
indexHeapUsageBytes:0
version:2
segmentCount:0
current:true
hasDeletions:false
 lockFactory=org.apache.lucene.store.NativeFSLockFactory@5c94e0dd
 segmentsFile:segments_1
 segmentsFileSizeInBytes:71
 userData: {}
```

**dsetool infer_solr_schema**

Automatically infers and proposes a schema that is based on the specified keyspace and table. Search indexes are not modified. Supports DSE authentication with `-l username -p password`.

**Restriction:** Command is supported only on nodes with DSE Search workloads.

**Synopsis**

```
dsetool infer_solr_schema keyspace_name.table_name
[coreOptions=yamlFilepath]|
[coreOptionsInline=key1:value1#key2:value2#...]
```

**Table 215: Legend**

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td>Italics</td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>Syntax conventions</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( () ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ’ ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets ( &lt; &gt; ) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td>cql_statement;</td>
<td>End CQL statement. A semicolon ( ; ) terminates all CQL statements.</td>
</tr>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td>' &lt;schema&gt; ... &lt;/schema&gt; '</td>
<td>Search CQL only: Single quotation marks ( ’ ) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td>@xml_entity='xml_entity_type'</td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

**keyspace_name.table_name**

Required. The keyspace and table names of the search index. Keyspace and table names are case-sensitive. Enclose names that contain uppercase in double quotation marks.

**coreOptions=yamlFilepath**

When auto-generation is on with generateResources=true, the file path to a customized YAML-formatted file of options. See Changing auto-generated search index settings (page 457).

**coreOptionsInline=key1:value1#key2:value2#...**

Use this key-value pair syntax key1:value1#key2:value2# to specify values for these settings:

- auto_soft_commit_max_time:ms
- default_query_field:field
- distributed=( true | false )
- enable_string_copy_fields:( true | false )
DataStax Enterprise tools

- exclude_columns: col1, col2, col3, ...
- generate_DocValues_for_fields: ( * | field1, field2, ... )
- generateResources = ( true | false )

See Changing auto-generated search index settings (page 457).

Examples

To automatically infer and propose a schema that is based on the specified keyspace and table with the tuples and UDTs, specify the keyspace and table that contains tuples and UDTs:

dsetool infer_solr_schema demo.health_data_udt

dsetool inmemorystatus

Provides the memory size, capacity, and percentage for this node and the amount of memory each table is using. The unit of measurement is MB. Bytes are truncated.

Synopsis

dsetool inmemorystatus [keyspace_name.table_name]

Table 216: Legend

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td>Italics</td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ( [ ] ) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( ( ) ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ’ ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets ( &lt; &gt; ) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
</tbody>
</table>
### Syntax conventions

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cql_statement;</code></td>
<td>End CQL statement. A semicolon (;) terminates all CQL statements.</td>
</tr>
<tr>
<td><code>[ -- ]</code></td>
<td>Separate the command line options from the command arguments with two hyphens (--) This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td><code>' &lt;schema&gt; ... &lt;/schema&gt; '</code></td>
<td>Search CQL only: Single quotation marks (‘) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td><code>@xml_entity='xml_entity_type'</code></td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

### Examples

To view the status for all tables:

```bash
dsetool inmemorystatus
```

The results for all tables are displayed:

```
Max Memory to Lock: 3276MB
Current Total Memory Locked: 0MB
Current Total Memory Not Able To Lock: 0MB
No MemoryOnlyStrategy tables found.
```

To view the status for a specific table:

```bash
dsetool inmemorystatus demo.health_data
```

### dsetool insights_config

Enables DSE Metrics Collector metrics reporting to facilitate problem resolution and remediation, and configures reporting frequency and storage options.

#### Synopsis

```
$ dsetool insights_config
 --show_config | --mode [DISABLED|ENABLED_NO_STORAGE|ENABLED_WITH_LOCAL_STORAGE]
 --metric_sampling_interval_in_seconds seconds
 --config_refresh_interval_in_seconds seconds
 --data_dir_max_size_in_mb dir_size
 --node_system_info_report_period ISO-8601_duration_string
```
Table 217: Legend

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td>Italic</td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( ( ) ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ' ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets ( &lt; &gt; ) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td>cql_statement;</td>
<td>End CQL statement. A semicolon ( ; ) terminates all CQL statements.</td>
</tr>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td>' &lt;schema&gt; ... &lt;/schema&gt; '</td>
<td>Search CQL only: Single quotation marks ( ' ) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td>@xml_entity='xml_entity_type'</td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

--config_refresh_interval_in_seconds seconds

How often the DSE Metrics Collector configuration changes are pushed to all nodes in the cluster. If nodes are down when a change is made, the change will propagate when the node is back up.
Default: 30

--data_dir_max_size_in_mb mb

When local storage is enabled, the limit on how much DSE Metrics Collector data will be stored on disk. The maximum size of the data directory cannot exceed 2 GB.
Default: 1024 (1 GB)

--metric_sampling_interval_in_seconds seconds
The frequency that metrics are reported to DSE Metrics Collector.
Default: 30

--mode
Enables DSE Metrics Collector (page 937) metrics data to be collected and reported to facilitate problem resolution and remediation, and configures storage options:
- DISABLED - disables metrics collection. Default.
- ENABLED_NO_STORAGE - enables metrics collection and starts reporting metrics. Typically used when collectd is configured to report to a real-time monitoring system.
- ENABLED_WITH_LOCAL_STORAGE - enables metrics collection and reporting with local storage on disk.

--node_system_info_report_period duration
The repeating time interval, in ISO-8601 format, for gathering diagnostic information about the node. For example, PT1H is 1 hour, PT5M is 5 minutes, and PTM200S is 200 seconds.
Default: PT1H (1 hour)

--show_config
Prints the current configuration for DSE Metrics Collector.

Examples

To view the current DSE Metrics Collector configuration

```bash
$ dsetool insights_config --show_config
```

The results of the default configuration:

```json
{
 "mode" : "DISABLED",
 "config_refresh_interval_in_seconds" : 30,
 "metric_sampling_interval_in_seconds" : 30,
 "data_dir_max_size_in_mb" : 1024,
 "node_system_info_report_period" : "PT1H"
}
```

To enable metrics collection when collectd is configured to report to a real-time monitoring system

```bash
$ dsetool insights_config --mode ENABLED_NO_STORAGE
```

To enable metrics collection with local storage

```bash
$ dsetool insights_config --mode ENABLED_WITH_LOCAL_STORAGE
```

To configure 1500 MB for the DSE Metrics Collector local data directory

```bash
$ dsetool insights_config --data_dir_max_size_in_mb 1500
```
$ dsetool insights_config --data_dir_max_size_in_mb 1500

**Note:** The maximum size of the local data directory must not exceed 2 GB.

**To change the node system reporting duration to 1 week**

Use a ISO-8601 time duration string.

$ dsetool insights_config --node_system_info_report_period P1W

**To disable metrics collection**

$ dsetool insights_config --mode DISABLED

**To configure the metric sampling interval for 60 seconds**

$ dsetool insights_config --metric_sampling_interval_in_seconds 60

**To configure 120 seconds for the configuration refresh interval**

Push configuration changes to all nodes in the cluster every 2 minutes:

$ dsetool insights_config --config_refresh_interval_in_seconds 120

**dsetool insights_filters**

Configures filters to include and exclude specific metrics for DSE Metrics Collector.

By default, the following metrics are always excluded:

- Thread Per Core (TPC) metrics at each core level
- Keyspace level metrics
- DSE internal table metrics (except system_auth, paxos, and batchlog metrics)

Use a regular expression (regex) to specify which metrics to include or exclude from the filter. See Filtering metrics *(page 941).*

**Synopsis**

```
$ dsetool insights_filters
 --show_filters | --remove_all_filters |
 --add --global|--insights_only --allow regex | --deny regex|
 --remove --global | --insights_only --allow regex | --deny regex
```
### Table 218: Legend

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td>Italics</td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ’ ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve uppercase.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets (&lt; &gt;) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td>cql_statement;</td>
<td>End CQL statement. A semicolon (;) terminates all CQL statements.</td>
</tr>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens (-- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td>' &lt;schema&gt; ... &lt;/schema&gt; '</td>
<td>Search CQL only: Single quotation marks ( ’ ) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td>@xml_entity='xml_entity_type'</td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

---

**--show_filters**  
Prints the current filters for DSE Metrics Collector.

**--remove_all_filters**  
Remove all metrics filters for DSE Metrics Collector.

**--add --global|--insights_only regex**  
Include metrics that match this regular expression and apply the filter with scope of --global or --insights_only.

**--deny --global|--insights_only regex**  
Exclude metrics that match this regular expression and apply the filter with scope of --global or --insights_only.
DataStax Enterprise tools

--global
Metrics filter scope includes metrics reported locally and insights data files.

--insights_only
Limit metrics filter scope to insights data files only. Appropriate for diagnostic use.

Example: Example filters

Show all active filters

$ dsetool insights_filters --show_filters

Remove all active filters

$ dsetool insights_filters --remove_all_filters

Add a global filter to deny all metrics matching KeyspaceMetrics


Remove a global filter to deny metrics for a specific keyspace

$ dsetool insights_filters --remove --global --deny "org\.apache\.cassandra\.metrics\.(keyspace|table).*(*name_of_keyspace).*"'

Add a filter to insights data files that deny grace period metrics

$ dsetool insights_filters --add --insights_only --deny .+gc.+

dsetool list_core_properties

Lists the properties and values in the dse-search.properties resource for the search index. Applies to Datastax Enterprise 5.1.15 and later.

Tip: See Load balancing for distributed search queries.

Synopsis

$ dsetool list_core_properties

Table 219: Legend

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
</tbody>
</table>
### Syntax conventions

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td><em>Italics</em></td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( ( ) ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ’ ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets (&lt; &gt;) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td>cql_statement;</td>
<td>End CQL statement. A semicolon (;) terminates all CQL statements.</td>
</tr>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td><code>&lt;schema&gt; ... &lt;/schema&gt;</code></td>
<td>Search CQL only: Single quotation marks ( ’ ) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td>@xml_entity='xml_entity_type'</td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

### keyspace_name.table_name

Required. The keyspace and table names of the search index. Keyspace and table names are case-sensitive. Enclose names that contain uppercase in double quotation marks.

### Examples

To view properties set in the dse-search.properties resource:

```
$ dsetool list_core_properties demo.health_data
```

Example result, assuming the shard shuffling strategy has already been set to RANDOM:
dsetool list_index_files

Lists all index files for a search index on the local node. The results show file name, encryption, disk usage, decrypted size, and encryption overhead. The index file is encrypted only when the backing CQL table is encrypted and the search index uses EncryptedFSDirectoryFactory; otherwise, the index file is decrypted.

Restriction: Command is supported only on nodes with DSE Search workloads.

Synopsis

$ dsetool list_index_files keyspace_name.table_name [--index directory]

Table 220: Legend

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td>Italic</td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ( [ ] ) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( ( ) ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( . . . ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ' ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets ( &lt; &gt; ) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td>cql_statement;</td>
<td>End CQL statement. A semicolon ( ; ) terminates all CQL statements.</td>
</tr>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
</tbody>
</table>
### Syntax conventions

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>&lt;schema&gt; ... &lt;/schema&gt;</code></td>
<td>Search CQL only: Single quotation marks (') surround an entire XML schema declaration.</td>
</tr>
<tr>
<td><code>@xml_entity='xml_entity_type'</code></td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

### keyspace_name.table_name

Required. The keyspace and table names of the search index. Keyspace and table names are case-sensitive. Enclose names that contain uppercase in double quotation marks.

### --index

The data directory that contains the index files.

- If not specified, the default directory is inferred from the search index name.
- `directory` - A specified file path to the solr.data directory that contains the search index files.

### Examples

**To list the index files:**

```bash
$ dsetool list_index_files demo.health_data
```

The results show file name, encryption, disk usage, decrypted size, and encryption overhead:

<table>
<thead>
<tr>
<th>Filename</th>
<th>Encryption</th>
<th>Disk usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>segments_1</td>
<td>N/A</td>
<td>7124 bytes</td>
</tr>
<tr>
<td>write.lock</td>
<td>N/A</td>
<td>3240 bytes</td>
</tr>
</tbody>
</table>

**To list the index files in a specified directory:**

```bash
$ dsetool list_index_files demo.health_data /My_data_dir
```

### dsetool list_subranges

Lists the subranges of data in a keyspace by dividing a token range into a number of smaller subranges. Useful when the specified range is contained in the target node’s primary range.

**Synopsis**

```
dsetool list_subranges keyspace_name table_name
```
### Table 221: Legend

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td><em>Italics</em></td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( ( ) ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( . . . ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ' ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets ( &lt; &gt; ) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td>cql_statement;</td>
<td>End CQL statement. A semicolon ( ; ) terminates all CQL statements.</td>
</tr>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td>' &lt;schema&gt; ... &lt;/schema&gt; '</td>
<td>Search CQL only: Single quotation marks ( ' ) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td>@xml_entity='xml_entity_type'</td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

**keyspace_name table_name**  
Keyspace table pair.

**keys_per_range**  
The approximate number of rows per subrange.

**start_token**  
The start token of a specified range of tokens.

**end_token**
The end token of a specified range of tokens.

Example
To run the command:

```
dsetool list_subranges demo health_data 10000
 113427455640312821154458202477256070485 0
```

The subranges are output and can be used as input to the `nodetool repair` (page 1020) command.

```
Start Token End Token

113427455640312821154458202477256070485
132425442795624521227151664615147681247 11264
132425442795624521227151664615147681247 11136
151409576048389227347257997936583470460 11264
```

dsetool managekmip list

Verifies communication with the specified Key Management Interoperability Protocol (KMIP) server and lists the encryption/decryption keys on that server.

Synopsis

```
dsetool managekmip list kmip_group_name [namespace=key_namespace]
```

Table 222: Legend

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td><strong>Italics</strong></td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( ( ) ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ’ ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
</tbody>
</table>
### Syntax conventions

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>{ key:value }</code></td>
<td>Map collection. Braces ( <code>{ }</code> ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td><code>&lt;datatype1,datatype2&gt;</code></td>
<td>Set, list, map, or tuple. Angle brackets ( <code>&lt; &gt;</code> ) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td><code>cql_statement;</code></td>
<td>End CQL statement. A semicolon ( <code>;</code> ) terminates all CQL statements.</td>
</tr>
<tr>
<td><code>[ -- ]</code></td>
<td>Separate the command line options from the command arguments with two hyphens ( <code>--</code> ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td><code>' &lt;schema&gt; ... &lt;/schema&gt; '</code></td>
<td>Search CQL only: Single quotation marks ( <code>'</code> ) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td><code>@xml_entity='xml_entity_type'</code></td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

#### kmip_groupname

The user-defined name of the KMIP group that is configured in the kmip_hosts (page 243) section of dse.yaml.

#### namespace=key_namespace

Namespace on the specified KMIP provider.

### Examples

Get a list of the available keys and states from the KMIP server:

```
dsetool managekmip list kmipgrouptwo
```

The results show that the KMIP server named vormetricgroup has two keys:

<table>
<thead>
<tr>
<th>Keys on vormetricgroup:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
</tr>
<tr>
<td>02-449</td>
</tr>
<tr>
<td>Deactivated</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>02-540</td>
</tr>
<tr>
<td>Active</td>
</tr>
</tbody>
</table>

#### dsetool managekmip expirekey

Expires encryption/decryption keys on a Key Management Interoperability Protocol (KMIP) server. Database stops using the key for encryption at the specified time and continues to use the expired key to decrypt existing data. Data re-keying is not required. Use this command to satisfy security policies that require periodically switching the encryption key.
DataStax recommends following best practices for key management permission policies. See Expiring an encryption key.

Synopsis

```
dsetool managekmip expirekey kmip_group_name kmip_key_id [date_time]
```

Table 223: Legend

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td>Italics</td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ] ) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( () ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ' ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets ( &lt; &gt; ) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td>cql_statement;</td>
<td>End CQL statement. A semicolon ( ; ) terminates all CQL statements.</td>
</tr>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td>' &lt;schema&gt; ... &lt;/schema&gt; '</td>
<td>Search CQL only: Single quotation marks ( ' ) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td>@xml_entity='xml_entity_type'</td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

**kmip_groupname**

The user-defined name of the KMIP group that is configured in the `kmip_hosts` (page 243) section of `dse.yaml`. 
**kmip_key_id**

The key id on the KMIP provider.

**date_time**

After the specified date_time, new data will not be encrypted with the key. Data can be decrypted with the key after this expire date/time. Format of datetime is YYYY-MM-DD HH:MM:SS:T. For example, use 2016-04-13 20:05:00:0 to expire the encryption key at 8:05 p.m. on 13 April 2016.

**Examples**

To immediately expire an encryption key:

```bash
dsetool managekmip expirekey kmipgrouptwo 02-540
```

Encryption for new data is prevented, but decryption with the key is still allowed. Because the expire date/time is not specified, the key is expired immediately.

To expire an encryption key at a specific date and time:

```bash
dsetool managekmip expirekey kmipgrouptwo 02-540 2017-04-13 20:05:00:0
```

**dsetool managekmip revoke**

Permanently disables the key on the KMIP server. Database can no longer use the key for encryption, but continues to use the key for decryption of existing data. Re-encrypt existing data before completely removing the key from the KMIP server. Use this command as the first step when replacing a compromised key.

**Synopsis**

```bash
dsetool managekmip revoke kmip_group_name kmip_key_id
```

### Table 224: Legend

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td><em>Italics</em></td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ] ) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( () ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Syntax conventions

<table>
<thead>
<tr>
<th>Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
<td></td>
</tr>
<tr>
<td>Single quotation ( ’ ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
<td></td>
</tr>
<tr>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
<td></td>
</tr>
<tr>
<td>Set, list, map, or tuple. Angle brackets ( &lt; &gt; ) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
<td></td>
</tr>
<tr>
<td>End CQL statement. A semicolon ( ; ) terminates all CQL statements.</td>
<td></td>
</tr>
<tr>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
<td></td>
</tr>
<tr>
<td>Search CQL only: Single quotation marks ( ’ ) surround an entire XML schema declaration.</td>
<td></td>
</tr>
<tr>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
<td></td>
</tr>
</tbody>
</table>

### kmip_groupname

The user-defined name of the KMIP group that is configured in the `kmip_hosts` section of `dse.yaml`.

### kmip_key_id

The key id on the KMIP provider.

### Examples

To revoke a key to prevent decryption:

```
dsetool managekmip revoke kmipgrouptwo 02-540
```

### dsetool managekmip destroy

Completely removes the key from the KMIP server. Database can no longer use the key for encryption or decryption. Existing data that has not been re-encrypted becomes inaccessible.

**Important:** Use this command only after revoking a key and re-encrypting existing data.

### Synopsis

```
dsetool managekmip destroy kmip_group_name kmip_key_id
```
Table 225: Legend

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td>Italics</td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( () ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ’ ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets ( &lt; &gt; ) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td>cql_statement;</td>
<td>End CQL statement. A semicolon ( ; ) terminates all CQL statements.</td>
</tr>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td>' &lt;schema&gt; ... &lt;/schema&gt;'</td>
<td>Search CQL only: Single quotation marks ( ’ ) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td>@xml_entity='xml_entity_type'</td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

**kmip_groupname**

The user-defined name of the KMIP group that is configured in the kmip_hosts (page 243) section of dse.yaml.

**kmip_key_id**

The key id on the KMIP provider.

**Examples**

To revoke a key to prevent decryption:
After you revoke a key, you can destroy it:

```
dsetool managekmip revoke kmipgrouptwo 02-540
```

**dsetool node_health**

Retrieves a dynamic score between 0 and 1 that describes the health of a DataStax Enterprise node. Node health is a score-based representation of how fit a node is to handle search queries. The node health composite score is based on dropped mutations and uptime. A higher score indicates better node health. Nodes that have a large number of dropped mutations and nodes that are just started have a lower health score.

See Collecting node health and indexing status scores *(page 1357).*

**Synopsis**

```
dsetool node_health [--all]
```

**Table 226: Legend**

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td><em>Italics</em></td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ’ ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets ( &lt; &gt; ) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
</tbody>
</table>
### Syntax conventions

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cql_statement;</code></td>
<td>End CQL statement. A semicolon ( ; ) terminates all CQL statements.</td>
</tr>
<tr>
<td><code>[ -- ]</code></td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td><code>' &lt;schema&gt; ... &lt;/schema&gt; '</code></td>
<td>Search CQL only: Single quotation marks ( ‘ ）surround an entire XML schema declaration.</td>
</tr>
<tr>
<td><code>@xml_entity='xml_entity_type'</code></td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

---

**Examples**

To retrieve the health score of the local node:

```bash
dsetool node_health
```

The result displays a number between 0 and 1:

```
Node Health [0,1]: 0.7
```

To retrieve the health score of a specified node:

```bash
dsetool -h 200.192.10.11 node_health
```

To retrieve the health score of all nodes:

```bash
dsetool node_health --all
```

**dsetool partitioner**

Returns the fully qualified classname of the IPartitioner that is used by the cluster.

**Synopsis**

```
dsetool partitioner
```

**Table 227: Legend**

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td>Syntax conventions</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------</td>
</tr>
<tr>
<td><em>Italics</em></td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation (' ') marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets ( &lt; &gt; ) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td>cql_statement;</td>
<td>End CQL statement. A semicolon ( ; ) terminates all CQL statements.</td>
</tr>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td>' &lt;schema&gt; ... &lt;/schema&gt; '</td>
<td>Search CQL only: Single quotation marks ( ’ ) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td>@xml_entity='xml_entity_type'</td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

This command takes no arguments.

**Examples**

```bash
dsetool partitioner
```

The partitioner in use is displayed:

```bash
org.apache.cassandra.dht.Murmur3Partitioner
```

**dsetool perf**

Temporarily changes the running parameters for the CQL Performance Service. Histogram tables provide DSE statistics that can be queried with CQL.
Changes made with performance object subcommands do not persist between restarts and are useful only for short-term diagnostics.

**Note:** To make these changes permanent, change the CQL Performance Service options *(page 250)* in dse.yaml.

**Synopsis**

```bash
dsetool perf subcommand values
```

### Table 228: Legend

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td>Italics</td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>()</td>
<td>Group. Parentheses ( () ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ‘ ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets ( &lt; &gt; ) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td>cql_statement;</td>
<td>End CQL statement. A semicolon ( ; ) terminates all CQL statements.</td>
</tr>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td>'&lt;schema&gt; ... &lt;/schema&gt;'</td>
<td>Search CQL only: Single quotation marks ( ‘ ) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td>'@xml_entity=&quot;xml_entity_type&quot;'</td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

`clustersummary enable|disable`
Whether to enable the collection of database-level statistics for the cluster.

**cqlslowlog enable|disable**
Whether to enable the collection of CQL queries that exceed the specified time threshold.

**cqlslowlog threshold**
The CQL slow log threshold as a percentile of the actual request times:

- [0,1] is a percentile threshold
- >1 is an absolute threshold in milliseconds
- 1.0 logs no queries
- 99.9 logs 0.1% of the slowest queries
- 95.0 logs 5% of the slowest queries
- 50.0 logs 50% of the slowest queries
- 0.0 logs all queries

**cqlslowlog skip_writing_to_db**
Keeps slow queries in-memory only.

**cqlslowlog write_to_db**
Writes data to the database. When data writes to the database, the threshold must be >= 2000 ms to prevent a high load on database.

Temporary equivalent of `cql_slow_log_options.skip_writing_to_db (page 252): false` setting in `dse.yaml`.

**cqlslowlog set_num_slowest_queries**
The number of slow queries to keep in-memory.

**cqlslowlog recent_slowest_queries**
The specified number of the most recent slow queries to retrieve.

**cqlsysteminfo enable|disable**
Whether to collect CQL system performance information statistics.

**dbsummary enable|disable**
Whether to collect database summary statistics.

**histograms enable|disable**
Whether to collect table histograms that measure the distribution of values in a stream of data. Histogram tables provide DSE statistics that can be queried with CQL. The data in the diagnostic histogram tables is cumulative since the DSE server was started.

**resourcelatencytracking enable|disable**
Whether to collect resource latency tracking statistics.

**solrcachestats enable|disable**
Whether to collect Solr cache statistics.

**solrindexingerrorlog enable|disable**
Whether to log Solr indexing errors.

**solrindexstats enable|disable**
Whether to collect Solr indexing statistics.

**solrlatencysnapshots enable|disable**
Whether to collect Solr latency snapshots.

**solrrequesthandlerstats enable|disable**
Whether to collect Solr request handler statistics.
DataStax Enterprise tools

**solrslowlog threshold enable|disable**
Whether to log the Solr slow sub-query log and set the Solr slow log threshold in milliseconds.

**solrupdatehandlerstats enable|disable**
Whether to collect Solr update handler statistics.

**userlatencytracking enable|disable**
Whether to enable user latency tracking.

**Examples**

These example commands make temporarily changes only. Changes made with performance object subcommands do not persist between restarts and are useful only for short-term diagnostics.

See **Collecting database summary diagnostics**.

To enable the collection of database-level statistics data:

```
dsetool perf clustersummary enable
```

To disable the collection of database-level statistics data:

```
dsetool perf clustersummary disable
```

See **Collecting slow queries**.

To keep slow queries in-memory only:

```
dsetool perf cqlslowlog skip_writing_to_db
```

To set the number of slow queries to keep in-memory:

```
dsetool perf cqlslowlog set_num_slowest_queries 5
```

To write slow queries to the database:

```
dsetool perf cqlslowlog write_to_db
```

To disable collecting information on slow queries:

```
dsetool perf cqlslowlog disable
```

To change the threshold to collect information on 5% of the slowest queries:

```
dsetool perf cqlslowlog 95.0
```

To enable collecting information to identify slow search queries:

```
dsetool perf solrslowlog enable
```
To change the threshold value (in milliseconds) at which a sub-query is slow enough to be reported:

```bash
dsetool perf solrslowlog 200
```

dse.yaml

The location of the dse.yaml file depends on the type of installation:

<table>
<thead>
<tr>
<th>Package installations</th>
<th>/etc/dse/dse.yaml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer-Services installations</td>
<td>installation_location/ resources/dse/conf/dse.yaml</td>
</tr>
</tbody>
</table>

**dsetool read_resource**

Reads the specified search index config or schema. Supports DSE authentication with `[-l username -p password]`.

**Restriction:** Command is supported only on nodes with DSE Search workloads.

**Synopsis**

```bash
dsetool read_resource keyspace_name.table_name name=res_filename
```

### Table 229: Legend

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td><em>Italics</em></td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td><code>'Literal string'</code></td>
<td>Single quotation ( ’ ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td><code>{ key:value }</code></td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
</tbody>
</table>
### Syntax conventions

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>&lt;datatype1,datatype2&gt;</code></td>
<td>Set, list, map, or tuple. Angle brackets (<code>&lt;</code>) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td><code>cql_statement;</code></td>
<td>End CQL statement. A semicolon (<code>;</code>) terminates all CQL statements.</td>
</tr>
<tr>
<td><code>[ -- ]</code></td>
<td>Separate the command line options from the command arguments with two hyphens (<code>--</code>). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td><code>' &lt;schema&gt; ... &lt;/schema&gt;'</code></td>
<td>Search CQL only: Single quotation marks (<code>'</code>) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td><code>@xml_entity='xml_entity_type'</code></td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

### keyspace_name.table_name

Required. The keyspace and table names of the search index. Keyspace and table names are case-sensitive. Enclose names that contain uppercase in double quotation marks.

### res_filename

The name of the search index resource file to read.

### Examples

To read the resource:

```plaintext
dsetool read_resource demo.health_data stopwords.xml
```

After reading the resource, then upload the search index.

**dsetool rebuild_indexes**

Rebuilds secondary indexes.

**Restriction:** Command is supported only on nodes with DSE Search workloads.

### Synopsis

```plaintext
dsetool rebuild_indexes keyspace_name.table_name [index1,index2,...]
```

### Table 230: Legend

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td>Italics</td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>Syntax conventions</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( () ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ‘ ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets ( &lt; &gt; ) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td>cql_statement;</td>
<td>End CQL statement. A semicolon ( ; ) terminates all CQL statements.</td>
</tr>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td>' &lt;schema&gt; ... &lt;/schema&gt; '</td>
<td>Search CQL only: Single quotation marks ( ‘ ) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td>@xml_entity=&quot;xml_entity_type&quot;</td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

**keyspace_name.table_name**
- Required. The keyspace and table names of the search index. Keyspace and table names are case-sensitive. Enclose names that contain uppercase in double quotation marks.

**index1,index2,...**
- Include one or a comma-separated list of secondary indexes to rebuild. If indexes are not specified, rebuilds all indexes.

**Examples**

To rebuild all secondary indexes:

```
dsetool rebuild_indexes demo.health_data
```

To rebuild only the specified secondary indexes:
dsetool rebuild_indexes demo.health_data index1, index2

dsetool repaircfs

Repairs the CFS file system from orphan blocks.

Synopsis

dsetool repaircfs [file_system]

Restriction: Command is supported only on nodes with analytics workloads.

Table 231: Legend

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td>Italics</td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>’Literal string’</td>
<td>Single quotation ( ’ ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets (&lt; &gt;) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td>cql_statement;</td>
<td>End CQL statement. A semicolon ( ; ) terminates all CQL statements.</td>
</tr>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td>’&lt;schema&gt; ... &lt;/schema&gt;’</td>
<td>Search CQL only: Single quotation marks ( ’ ) surround an entire XML schema declaration.</td>
</tr>
</tbody>
</table>
**Syntax conventions** | **Description**
---|---
@xml_entity='xml_entity_type' | Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.

### file_system

A CFS file system other than the default CFS file system.

**Examples**

To repair the default CFS file system:

```
dsetool repaircfs
```

To repair a specific file system other than CFS:

```
dsetool repaircfs othercfs:
```

### dsetool reload_core

Reloads the search index to recognize changes to schema or configuration. Supports DSE authentication with `[-l username -p password]`.

**Note:** To reload the core and prevent reindexing, accept the default values `reindex=false` and `deleteAll=false`.

**Synopsis**

```
dsetool reload_core keyspace_name.table_name
[coreOptions=yamlFile | coreOptionsInline=key1:value1#key2:value2#...]
[deleteAll=true|false]
[distributed=true|false]
[recovery=true|false]
[reindex=true|false]
[schema=path]
[solrconfig=path]
```

**Table 232: Legend**

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td>Italic</td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ] ) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( ( ) ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
</tbody>
</table>
### Syntax conventions

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Or. A vertical bar (</td>
<td>) separates alternative elements. Type any one of the elements. Do not type the vertical bar.</td>
</tr>
<tr>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ' ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>Set, list, map, or tuple. Angle brackets ( &lt; &gt; ) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
<td>Set, list, map, or tuple. Angle brackets ( &lt; &gt; ) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td>End CQL statement. A semicolon ( ; ) terminates all CQL statements.</td>
<td>End CQL statement. A semicolon ( ; ) terminates all CQL statements.</td>
</tr>
<tr>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td>Search CQL only: Single quotation marks ( ' ) surround an entire XML schema declaration.</td>
<td>Search CQL only: Single quotation marks ( ' ) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

**keyspace_name.table_name**

Required. The keyspace and table names of the search index. Keyspace and table names are case-sensitive. Enclose names that contain uppercase in double quotation marks.

**schema=path**

Path of the UTF-8 encoded search index schema file. Cannot be specified when generateResources=true.

**solrconfig=path**

Path of the UTF-8 encoded search index configuration file. Cannot be specified when generateResources=true.

**distributed=( true | false )**

Whether to distribute and apply the operation to all nodes in the local datacenter.

- True applies the operation to all nodes in the local datacenter.
- False applies the operation only to the node it was sent to. False works only when recovery=true.

**Warning**: Distributing a re-index to an entire datacenter degrades performance severely in that datacenter.

**recovery=( true | false )**
Whether to delete and recreate the search index if it is not able to load due to corruption.

Valid values:
- true - If search index is unable to load, recover the index by deleting and recreating it.
- false - Default. No recovery.

**reindex=(true | false)**

Whether to reindex the data when search indexes are auto-generated with generateResources=true. Reindex works on a datacenter (DC) level. Reindex only once per search-enabled DC. Repeat the reindex command on other data centers as required.

Valid values:
- true - Default. Reindexes the data. Accepts reads and keeps the current search index while the new index is building.
- false - Does not reindex the data. You can check and customize search index resources before indexing.

**deleteAll (true|false)**

- true - deletes the already existing index before reindexing; search results will return either no or partial data while the index is rebuilding.
- false - does not delete the existing index, causing the reindex to happen in-place; search results will return partially incorrect results while the index is updating. Default.

During reindexing, a series of criteria routes sub-queries to the nodes most capable of handling them. See [Shard routing for distributed queries](#).

**Examples**

To make the pending search index active:

```
$ dsetool reload_core demo.health_data
 coreOptionsInline="directory_factory_class:solr.EncryptedFSDirectoryFactory"
```

To upload the changed resource file:

```
$ dsetool reload_core demo.health_data
 coreOptionsInline="directory_factory_class:solr.EncryptedFSDirectoryFactory"
```

**dsetool ring**

Lists the nodes in the ring. For more readable output, use dsetool status.

**Synopsis**

dsetool ring
Table 233: Legend

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td><em>Italics</em></td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>()</td>
<td>Group. Parentheses ( () ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ’ ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { }) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets ( &lt; &gt; ) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td>cql_statement;</td>
<td>End CQL statement. A semicolon ( ; ) terminates all CQL statements.</td>
</tr>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td>'&lt;&lt;schema&gt; ... &lt;/schema&gt;'</td>
<td>Search CQL only: Single quotation marks ( ’ ) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td>@xml_entity=&quot;xml_entity_type&quot;</td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

This command requires no input.

Examples

dsetool ring

dsetool set_core_property

Sets the properties and values in the dse-search.properties resource for the search index. Applies to Datastax Enterprise 5.1.15 and later.
Tip: See Load balancing for distributed search queries.

Synopsis

$ dsetool set_core_property keyspace_name.table_name
shard.set.cover.finder=DYNAMIC|STATIC |
shard.shuffling.strategy=HOST|QUERY|HOST_QUERY|RANDOM|SEED |
shard.set.cover.finder.inertia=inertia_integer

Table 234: Legend

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td>Italic</td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( ( ) ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ’ ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets ( &lt; &gt; ) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td>cql_statement;</td>
<td>End CQL statement. A semicolon ( ; ) terminates all CQL statements.</td>
</tr>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td>' &lt;schema&gt; ... &lt;/schema&gt; '</td>
<td>Search CQL only: Single quotation marks ( ’ ) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td>@xml_entity='xml_entity_type'</td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

keyspace_name.table_name
DataStax Enterprise tools

Required. The keyspace and table names of the search index. Keyspace and table names are case-sensitive. Enclose names that contain uppercase in double quotation marks.

For shard.set.cover.finder:

**DYNAMIC**

Use randomization in token range and endpoint selection for load balancing. DYNAMIC is the default.

**STATIC**

Requires load balanced client. Suitable for 8+ vnodes. The same query on a node uses the same token ranges and endpoints. Creates fewer token filters, and has better performance than DYNAMIC.

When shard.set.cover.finder=DYNAMIC, values for shard.shuffling.strategy:

**HOST**

Shards are selected based on the host that received the query.

**QUERY**

Shards are selected based on the query string.

**HOST_QUERY**

Shards are selected by host x query.

**RANDOM**

Suitable only for 8 or fewer vnodes. Different random set of shards are selected with each request (default).

**SEED**

Selects the same shard from one query to another.

When shard.set.cover.finder=STATIC, values for shard.set.cover.finder.inertia:

**inertia_integer**

Increasing the inertia value from the default of 1 may improve performance for clusters with more than 1 vnode and more than 20 nodes. The default is appropriate for most workloads.

Examples

**To not use randomization to select token ranges and endpoints:**

```
$ dsetool set_core_property demo.health_data shard.set.cover.finder=STATIC
```

**To use default randomization to select token ranges and endpoints:**

```
$ dsetool set_core_property demo.health_data shard.set.cover.finder=RANDOM
```

**dsetool sparkmaster cleanup**

Drops and recreates the Spark Master recovery table.
Synopsis

dsetool sparkmaster cleanup [datacenter]

Table 235: Legend

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td>Italic</td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( () ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>' Literal string'</td>
<td>Single quotation ( ’ ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( {} ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets ( &lt;&gt; ) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td>cql_statement;</td>
<td>End CQL statement. A semicolon (;) terminates all CQL statements.</td>
</tr>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td>' &lt;schema&gt; ... &lt;/schema&gt;'</td>
<td>Search CQL only: Single quotation marks ( ’ ) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td>@xml_entity='xml_entity_type'</td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

This command has an optional argument datacenter. If a datacenter is specified, it will remove the recovery data for that datacenter.
DataStax Enterprise tools

Examples

$ dsetool sparkmaster cleanup

$ dsetool sparkmaster cleanup dc1

dsetool sparkworker restart

Manually restarts the Spark Worker on the selected node, without restarting the node.

Synopsis

dsetool sparkworker restart

Table 236: Legend

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td>Italics</td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ( [ ] ) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( ( ) ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ‘ ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets ( &lt; &gt; ) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td>cql_statement;</td>
<td>End CQL statement. A semicolon ( ; ) terminates all CQL statements.</td>
</tr>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
</tbody>
</table>
### Syntax conventions

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>&lt;schema&gt; ... &lt;/schema&gt;</code></td>
<td>Search CQL only: Single quotation marks (‘ ’) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td><code>@xml_entity='xml_entity_type'</code></td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

This command accepts no parameters.

**Examples**

```
 dsetool sparkworker restart
```

### dsetool status

Lists the nodes in their ring, including the node type and node health. When the datacenter workloads are the same type, the workload type is listed. When the datacenter workloads are heterogeneous, the workload type is shown as mixed.

**Synopsis**

```
dsetool status
```

**Table 237: Legend**

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td>Italic</td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( ( ) ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ‘ ’ ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
</tbody>
</table>
### Syntax conventions

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>&lt;datatype1,datatype2&gt;</code></td>
<td>Set, list, map, or tuple. Angle brackets (<code>&lt; &gt;</code>) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td><code>cql_statement;</code></td>
<td>End CQL statement. A semicolon (<code>;</code>) terminates all CQL statements.</td>
</tr>
<tr>
<td><code>[ -- ]</code></td>
<td>Separate the command line options from the command arguments with two hyphens (<code>--</code>). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td><code>' &lt;schema&gt; ... &lt;/schema&gt;'</code></td>
<td>Search CQL only: Single quotation marks (`) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td><code>@xml_entity='xml_entity_type'</code></td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

This command accepts no parameters.

### Examples

```
dsetool status
```

### dsetool stop_core_reindex

Stops reindexing for the specified search index on the node where the command is run. Optionally, specify a timeout in minutes so that the core waits to stop reindexing until the specified timeout is reached, then gracefully stops the indexing. The default timeout is 1 minute.

### Synopsis

```
dsetool stop_core_reindex keyspace_name.table_name [timeout_min]
```

### Table 238: Legend

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td>Italic</td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td><code>[ ]</code></td>
<td>Optional. Square brackets (<code>[ ]</code>) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td><code>( )</code></td>
<td>Group. Parentheses (<code>( )</code>) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td>`</td>
<td>`</td>
</tr>
</tbody>
</table>
### Syntax conventions

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ' ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets ( &lt; &gt; ) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td>cql_statement;</td>
<td>End CQL statement. A semicolon ( ; ) terminates all CQL statements.</td>
</tr>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td>' &lt;schema&gt; ... &lt;/schema&gt; '</td>
<td>Search CQL only: Single quotation marks ( ' ) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td>@xml_entity='xml_entity_type'</td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

#### keyspace_name.table_name

**Required.** The keyspace and table names of the search index. Keyspace and table names are case-sensitive. Enclose names that contain uppercase in double quotation marks.

#### timeout_min

The number of minutes to wait to gracefully stop the indexing.

### Examples

**To stop reindexing after the default 1 minute timeout:**

```
dsetool stop_core_reindex demo.health_data
```

**To reindexing after 6 minutes:**

```
dsetool stop_core_reindex demo.health_data 6
```

### dsetool tieredtablestats

Outputs tiered storage information, including SSTables, tiers, timestamps, and sizes. Provides information on every table that uses tiered storage.
Synopsis

dsetool tieredtablestats keyspace_name.table_name [-v]

Table 239: Legend

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td>Italics</td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( () ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ‘ ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets ( &lt; &gt; ) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td>cql_statement;</td>
<td>End CQL statement. A semicolon (; ) terminates all CQL statements.</td>
</tr>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td>' &lt;schema&gt; ... &lt;/schema&gt;'</td>
<td>Search CQL only: Single quotation marks ( ‘ ) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td>@xml_entity='xml_entity_type'</td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

keyspace_name.table_name

Required. The keyspace and table names of the search index. Keyspace and table names are case-sensitive. Enclose names that contain uppercase in double quotation marks.

-v
Output statistics for each SSTable, in addition to the tier summaries.

Examples

To monitor all tables using tiered storage:

```bash
dsetool tieredtablestats
```

Output of command:

```plaintext
ks.tbl
Tier 0:
 Summary:
 max_data_age: 1449178580284
 max_timestamp: 1449168678515945
 min_timestamp: 1449168678515945
 reads_120_min: 5.218811717294537E-5
 reads_15_min: 4.415612774014863E-7
 size: 4839
SSTables:
 /mnt2/ks.tbl-257cecf1988311e58be1ff4e6f1f6740/ma-3-big-Data.db:
 estimated_keys: 256
 level: 0
 max_data_age: 1449178580284
 max_timestamp: 1449168678515945
 min_timestamp: 1449168678515945
 reads_120_min: 5.218811717294537E-5
 reads_15_min: 4.415612774014863E-7
 rows: 1
 size: 4839
 /mnt3/ks.tbl-257cecf1988311e58be1ff4e6f1f6740/ma-4-big-Data.db:
 estimated_keys: 256
 level: 0
 max_data_age: 1449178580284
 max_timestamp: 1449168749912092
 min_timestamp: 1449168749912092
 reads_120_min: 0.0
 reads_15_min: 0.0
 size: 4839
SSTables:
 /mnt3/ks.tbl-257cecf1988311e58be1ff4e6f1f6740/ma-4-big-Data.db:
 estimated_keys: 256
 level: 0
 max_data_age: 1449178580284
 max_timestamp: 1449168749912092
 min_timestamp: 1449168749912092
 reads_120_min: 0.0
 reads_15_min: 0.0
 rows: 1
 size: 4839
```

To monitor the health_data table using tiered storage:

```bash
dsetool tieredtablestats demo.health_data
```
To monitor the health_data table with output for each SSTable:

```
dsetool tieredtablestats demo.health_data -v
```

**dsetool tsreload**

Reloads the truststores without a restart. Specify client or server.

**Synopsis**

```
dsetool tsreload client|server
```

**Table 240: Legend**

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td><strong>Italics</strong></td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( () ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ’ ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets (&lt; &gt;) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td>cql_statement;</td>
<td>End CQL statement. A semicolon ( ; ) terminates all CQL statements.</td>
</tr>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td>' &lt;schema&gt; ... &lt;/schema&gt;'</td>
<td>Search CQL only: Single quotation marks ( ’ ) surround an entire XML schema declaration.</td>
</tr>
</tbody>
</table>
### Syntax conventions

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td>Italic</td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ( [ ] ) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( ( ) ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ‘ ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
</tbody>
</table>

### dsetool unload_core

Removes a search index. Supports DSE authentication with [-l username -p password].

To drop a search index from a table and delete all related data for the entire cluster, see search index.

The removal of the secondary index from the table schema is always distributed.

**Restriction:** Command is supported only on nodes with DSE Search workloads.

### Synopsis

```plaintext
dsetool unload_core keyspace_name.table_name
[deleteDataDir=(true|false)]
[deleteResources=(true|false)]
[distributed=(true|false)]
```

Table 241: Legend
### Syntax conventions

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>{ key:value }</code></td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td><code>&lt;datatype1,datatype2&gt;</code></td>
<td>Set, list, map, or tuple. Angle brackets ( &lt; &gt; ) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td><code>cql_statement;</code></td>
<td>End CQL statement. A semicolon ( ; ) terminates all CQL statements.</td>
</tr>
<tr>
<td><code>[ -- ]</code></td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td><code>' &lt;schema&gt; ... &lt;/schema&gt; '</code></td>
<td>Search CQL only: Single quotation marks ( ' ) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td><code>@xml_entity='xml_entity_type'</code></td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

### deleteDataDir=( true | false )

Whether to delete index data and any other artifacts in the solr.data directory.

Valid values:
- true - Deletes index data and any other artifacts in the solr.data directory. It does not delete DataStax Enterprise data.
- false - Default. Does not delete index data or other artifacts.

### deleteResources=( true | false )

Whether to delete the resources associated with the search index. For example, solrconfig.xml and schema.xml.

Valid values:
- true - Deletes index resources.
- false - Default. Does not delete index resources.

### distributed=( true | false )

Whether to distribute and apply the operation to all nodes in the local datacenter.

- True applies the operation to all nodes in the local datacenter.
- False applies the operation only to the node it was sent to. False works only when recovery=true.

Default: true
Warning: Distributing a re-index to an entire datacenter degrades performance severely in that datacenter.

**dsetool upgrade_index_files**

Upgrades all DSE Search index files.

Requirements:
- The remote node that contains the encryption configuration must be running.
- The local node is offline.
- The user that runs this command must have read and write permissions to the directory that contains the index files.

Synopsis

```
dsetool upgrade_index_files keyspace_name.table_name
-h IP_address [-c port]
[--backup] [--workspace directory] [--index directory]
```

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td>Italic</td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis (...) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ’ ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets (&lt; &gt;) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td>cql_statement;</td>
<td>End CQL statement. A semicolon (;) terminates all CQL statements.</td>
</tr>
</tbody>
</table>
DataStax Enterprise tools

### Syntax conventions

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td>' &lt;schema&gt; ... &lt;/schema&gt; '</td>
<td>Search CQL only: Single quotation marks ( ’ ) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td>@xml_entity='xml_entity_type'</td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

### keyspace_name.table_name

Required. The keyspace and table names of the search index. Keyspaces and table names are case-sensitive. Enclose names that contain uppercase in double quotation marks.

### -h IP_address

Required. Node hostname or IP address of the remote node that contains the encryption configuration that is used for index encryption. The remote node must be running.

### -c port

The DSE port on the remote node that contains the encryption configuration.

### --backup

Preserves the index files from the current index as a backup after successful upgrade. The preserved index file backup is moved to the --workspace directory. When not specified, index files from the current index are deleted.

### --workspace directory

The workspace directory for the upgrade process. The upgraded index is created in this directory. When not specified, the default directory is the same directory that contains the search index files.

### --index directory

The data directory that contains the search index files. When not specified, the default directory is inferred from the search index name.

### Examples

To perform offline index encryption:

```
dsetool upgrade_index_files demo.health_data
```

See Migrating encrypted tables from earlier versions and Encrypting new Search indexes.

### dsetool write_resource

Uploads the specified search index config or schema.

**Restriction:** Command is supported only on nodes with DSE Search workloads.
Resource files are stored internally in the database. You can configure the maximum resource file size or disable resource upload with the `resource_upload_limit` (page 248) option in `dse.yaml`.

Supports DSE authentication with `[-l username -p password]`.

**Synopsis**

```
dsetool write_resource keyspace_name.table_name name=res_filename file=path_to_file_to_upload
```

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td>Italics</td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[]</td>
<td>Optional. Square brackets ([]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>()</td>
<td>Group. Parentheses (()) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis (...) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation (’) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ({}) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets (&lt;&gt;) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td>cql_statement;</td>
<td>End CQL statement. A semicolon (;) terminates all CQL statements.</td>
</tr>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens (--). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td>'&lt;schema&gt; ... &lt;/schema&gt;'</td>
<td>Search CQL only: Single quotation marks (’) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td>'@xml_entity='xml_entity_type'</td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>
DataStax Enterprise tools

`keyspace_name.table_name`
Required. The keyspace and table names of the search index. Keyspace and table names are case-sensitive. Enclose names that contain uppercase in double quotation marks.

`res_filename`
The name of the search index resource file to upload.

`file`
The file path of the file to upload.

Examples

To write the resource:

```
dsetool write_resource demo.health_data stopwords.xml
```

To specify the uploaded resource file and the path to the resource file:

```
dsetool write_resource demo.health_data name=ResourceFile.xml file=/myPath1/myPath2/schemaFile.xml
```

DataStax Enterprise stress tools

The `cassandra-stress` tool

The `cassandra-stress` tool is a Java-based stress testing utility for basic benchmarking and load testing a Cassandra cluster.

Data modeling choices can greatly affect application performance. Significant load testing over several trials is the best method for discovering issues with a particular data model. The `cassandra-stress` tool is an effective tool for populating a cluster and stress testing CQL tables and queries. Use `cassandra-stress` to:

- Quickly determine how a schema performs.
- Understand how your database scales.
- Optimize your data model and settings.
- Determine production capacity.

The `cassandra-stress` tool also supports a YAML-based profile for defining specific schemas with various compaction strategies, cache settings, and types. Sample files are located in the tools directory:

- `cqlstress-counter-example.yaml`
- `cqlstress-example.yaml`
- `cqlstress-insanity-example.yaml`

The location of the `cassandra-stress` example files depends on the type of installation:
DataStax Enterprise tools

<table>
<thead>
<tr>
<th>Package installations</th>
<th>/usr/share/dse/cassandra/tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer-Services installations</td>
<td>/usr/share/dse/cassandra/tools</td>
</tr>
<tr>
<td>Tarball installations</td>
<td>installation_location/dse/resources/cassandra/tools</td>
</tr>
<tr>
<td>Installer-No Services installations</td>
<td>installation_location/dse/resources/cassandra/tools</td>
</tr>
</tbody>
</table>

The YAML file supports user-defined keyspace, tables, and schema. The YAML file can be used to design tests of reads, writes, and mixed workloads.

When started without a YAML file, cassandra-stress creates a keyspace, keyspace1, and tables, standard1 or counter1, depending on what type of table is being tested. These elements are automatically created the first time you run a stress test and reused on subsequent runs. You can drop keyspace1 using DROP KEYSSPACE. You cannot change the default keyspace and tables names without using a YAML file (page 1249).

Usage:

- Package and Installer-Services installations:
  
  $ cassandra-stress command [options]

- Tarball and Installer-No Services installations:
  
  $ install_location/dse/resources/cassandra/tools/bin/cassandra-stress command [options]

cassandra-stress options

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>counter_read</td>
<td>Multiple concurrent reads of counters. The cluster must first be populated by a counter_write test.</td>
</tr>
<tr>
<td>counter_write</td>
<td>Multiple concurrent updates of counters.</td>
</tr>
<tr>
<td>help</td>
<td>Display help: cassandra-stress help</td>
</tr>
<tr>
<td>legacy</td>
<td>Legacy support mode.</td>
</tr>
<tr>
<td>mixed</td>
<td>Interleave basic commands with configurable ratio and distribution. The cluster must first be populated by a write test.</td>
</tr>
<tr>
<td>print</td>
<td>Inspect the output of a distribution definition.</td>
</tr>
<tr>
<td>read</td>
<td>Multiple concurrent reads. The cluster must first be populated by a write test.</td>
</tr>
<tr>
<td>user</td>
<td>Interleave user provided queries with configurable ratio and distribution.</td>
</tr>
<tr>
<td>version</td>
<td>Print the cassandra-stress version.</td>
</tr>
</tbody>
</table>
## DataStax Enterprise tools

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>write</td>
<td>Multiple concurrent writes against the cluster.</td>
</tr>
</tbody>
</table>

**Important:** Additional sub-options are available for each option in the following table. To get more detailed information on any of these, enter:

```
$cassandra-stress help option
```

When entering the `help` command, be sure to precede the option name with a hyphen, as shown.

### Cassandra-stress sub-options

<table>
<thead>
<tr>
<th>Sub-option</th>
<th>Description</th>
</tr>
</thead>
</table>
| -col       | Column details, such as size and count distribution, data generator, names, and comparator.  
**Usage:**  
- `col names=? [slice] [super=?] [comparator=?] [timestamp=?] [size=DIST(?)]`  
or  
- `col [n=DIST(?)] [slice] [super=?] [comparator=?] [timestamp=?] [size=DIST(?)]` |
| -errors    | How to handle errors when encountered during stress testing.  
**Usage:**  
- `errors [retries=N] [ignore] [skip-read-validation]`  
  - `retries=N` Number of times to try each operation before failing.  
  - `ignore` Do not fail on errors.  
  - `skip-read-validation` Skip read validation and message output. |
| -graph     | Graph results of cassandra-stress tests. Multiple tests can be graphed together.  
**Usage:**  
- `graph file=? [revision=?] [title=?] [op=?]` |
<table>
<thead>
<tr>
<th>Sub-option</th>
<th>Description</th>
</tr>
</thead>
</table>
| **-insert** | Insert specific options relating to various methods for batching and splitting partition updates.  
**Usage:**  
- insert [revisit=DIST(?)] [visits=DIST(?)] partitions=DIST(?) [batchtype=?] select-ratio=DIST(?) row-population-ratio=DIST(?) |
| **-log** | Where to log progress and the interval to use.  
**Usage:**  
- log [level=?] [no-summary] [file=?] [hdrfile=?] [interval=?] [no-settings] [no-progress] [show-queries] [query-log-file=?] |
| **-mode** | Thrift or CQL with options.  
**Usage:**  
- mode thrift [smart] [user=?] [password=?]  
  or  
- mode native [unprepared] cql3 [compression=?] [port=?] [user=?] [password=?] [auth-provider=?] [maxPending=?] [connectionsPerHost=?] [protocolVersion=?]  
  or  
- mode simplenative [prepared] cql3 [port=?] |
| **-node** | Nodes to connect to.  
**Usage:**  
- node [datacenter=?] [whitelist] [file=?] [] |
| **-pop** | Population distribution and intra-partition visit order.  
**Usage:**  
- pop seq=? [no-wrap] [read-lookback=DIST(?)] [contents=?]  
  or  
- pop [dist=DIST(?)] [contents=?] |
| **-port** | Specify port for connecting Cassandra nodes. Port can be specified for Cassandra native protocol, Thrift protocol or a JMX port for retrieving statistics.  
**Usage:**  
- port [native=?] [thrift=?] [jmx=?] |
### DataStax Enterprise tools

<table>
<thead>
<tr>
<th>Sub-option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-rate</td>
<td>Set the rate using the following options:</td>
</tr>
<tr>
<td></td>
<td>-rate threads=N [throttle=N] [fixed=N]</td>
</tr>
<tr>
<td></td>
<td>where</td>
</tr>
<tr>
<td></td>
<td>• threads=N number of clients to run concurrently.</td>
</tr>
<tr>
<td></td>
<td>• throttle=N throttle operations per second across all clients to a maximum rate (or less) with no implied schedule. Default is 0.</td>
</tr>
<tr>
<td></td>
<td>• fixed=N expect fixed rate of operations per second across all clients with implied schedule. Default is 0.</td>
</tr>
<tr>
<td></td>
<td>OR</td>
</tr>
<tr>
<td></td>
<td>-rate [threads&gt;=N] [threads&lt;=N] [auto]</td>
</tr>
<tr>
<td></td>
<td>Where</td>
</tr>
<tr>
<td></td>
<td>• threads&gt;=N run at least this many clients concurrently. Default is 4.</td>
</tr>
<tr>
<td></td>
<td>• threads&lt;=N run at most this many clients concurrently. Default is 1000.</td>
</tr>
<tr>
<td></td>
<td>• auto stop increasing threads once throughput saturates.</td>
</tr>
</tbody>
</table>

| -schema    | Replication settings, compression, compaction, and so on. |
| Usage:     | -schema [replication(?)] [keyspace=?] [compaction(?)] [compression=?] |

| -sendto    | Specify a server to send the stress command to. |
| Usage:     | -sendto <host> |

| -tokenrange | Token range settings. |
| Usage:      | -tokenrange [no-wrap] [split-factor=?] [savedata=?] |

| -transport  | Custom transport factories. |
| Usage:      | -transport [factory=?] [truststore=?] [truststore-password=?] [keystore=?] [keystore-password=?] [ssl-protocol=?] [ssl-alg=?] [store-type=?] [ssl-ciphers=?] |

Additional command-line parameters can modify how cassandra-stress runs:

Additional cassandra-stress parameters
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cl=?</td>
<td>Set the consistency level to use during <code>cassandra-stress</code>. Options are ONE, QUORUM, LOCAL_QUORUM, EACH_QUORUM, ALL, and ANY. Default is LOCAL_ONE.</td>
</tr>
<tr>
<td>clustering=DIST(?)</td>
<td>Distribution clustering runs of operations of the same kind.</td>
</tr>
<tr>
<td>duration=?</td>
<td>Specify the time to run, in seconds, minutes or hours.</td>
</tr>
<tr>
<td>err&lt;?</td>
<td>Specify a standard error of the mean; when this value is reached, <code>cassandra-stress</code> will end. Default is 0.02.</td>
</tr>
<tr>
<td>n&gt;?</td>
<td>Specify a minimum number of iterations to run before accepting uncertainly convergence.</td>
</tr>
<tr>
<td>n&lt;?</td>
<td>Specify a maximum number of iterations to run before accepting uncertainly convergence.</td>
</tr>
<tr>
<td>n=?</td>
<td>Specify the number of operations to run.</td>
</tr>
<tr>
<td>no-warmup</td>
<td>Do not warmup the process, do a cold start.</td>
</tr>
<tr>
<td>ops(?)</td>
<td>Specify what operations to run and the number of each. (only with the user option)</td>
</tr>
<tr>
<td>profile=?</td>
<td>Designate the YAML file to use with <code>cassandra-stress</code>. (only with the user option)</td>
</tr>
<tr>
<td>truncate=?</td>
<td>Truncate the table created during <code>cassandra-stress</code>. Options are never, once, or always. Default is never.</td>
</tr>
</tbody>
</table>

Example: Simple read and write examples

```bash
Insert (write) one million rows
$ cassandra-stress write n=1000000 -rate threads=50

Read two hundred thousand rows.
$ cassandra-stress read n=200000 -rate threads=50

Read rows for a duration of 3 minutes.
$ cassandra-stress read duration=3m -rate threads=50

Read 200,000 rows without a warmup of 50,000 rows first.
$ cassandra-stress read n=200000 no-warmup -rate threads=50
```

Example: View schema help

```bash
$ cassandra-stress help -schema
```
replication([strategy=?][factor=?][<option 1..N>=?]):
   Define the replication strategy and any parameters
   strategy=?(default=org.apache.cassandra.locator.SimpleStrategy) The replication strategy to use
   factor=? (default=1) The number of replicas
   keyspace=? (default=keyspace1) The keyspace name to use

compaction([strategy=?][<option 1..N>=?]):
   Define the compaction strategy and any parameters
   strategy=? The compaction strategy to use
   compression=? Specify the compression to use for SSTable, default:no compression

Example: Populate the database

Generally it is easier to let cassandra-stress create the basic schema and then modify it in CQL:

#Load one row with default schema
$ cassandra-stress write n=1 cl=one -mode native cql3 -log file=create_schema.log

#Modify schema in CQL
$ cqlsh

#Run a real write workload
$ cassandra-stress write n=1000000 cl=one -mode native cql3 -schema keyspace="keyspace1" -log file=load_1M_rows.log

Example: Change the replication strategy

Changes the replication strategy to NetworkTopologyStrategy and targets one node named existing.

$ cassandra-stress write n=500000 no-warmup -node existing -schema "replication(strategy=NetworkTopologyStrategy, existing=2)"
Example: Run a mixed workload

When running a mixed workload, you must escape parentheses, greater-than and less-than signs, and other such things. This example invokes a workload that is one-quarter writes and three-quarters reads.

```
$ cassandra-stress mixed ratio\(write=1, read=3\) n=100000 cl=ONE
 -pop dist=UNIFORM\(1..1000000\) -schema keyspace="keyspace1" -mode native cql3 -rate threads\(\>=16\) threads\(<=256\) -log file=~/
mixed_autorate_50r50w_1M.log
```

Notice the following in this example:

1. The `ratio` parameter requires backslash-escaped parenthesis.

2. The value of `n` used in the read phase is different from the value used in write phase. During the write phase, `n` records are written. However in the read phase, if `n` is too large, it is inconvenient to read all the records for simple testing. Generally, `n` does not need be large when validating the persistent storage systems of a cluster.

   The `-pop dist=UNIFORM\(1..1000000\)` portion says that of the `n=100,000` operations, select the keys uniformly distributed between 1 and 1,000,000. Use this when you want to specify more data per node than what fits in DRAM.

3. In the `rate` section, the greater-than and less-than signs are escaped. If not escaped, the shell attempts to use them for IO redirection: the shell tries to read from a non-existent file called `-=<256` and create a file called `-=<16`. The `rate` section tells cassandra-stress to automatically attempt different numbers of client threads and not test less that 16 or more than 256 client threads.

Example: Standard mixed read/write workload keyspace for a single node

```sql
CREATE KEYSPACE "keyspace1" WITH replication = {
 'class': 'SimpleStrategy',
 'replication_factor': '1'
};
USE "keyspace1";
CREATE TABLE "standard1" (
 key blob,
 "C0" blob,
 "C1" blob,
 "C2" blob,
 "C3" blob,
 "C4" blob,
 PRIMARY KEY (key)
) WITH
```
bloom_filter_fp_chance=0.010000 AND
caching='KEYS_ONLY' AND
comment='' AND
dclocal_read_repair_chance=0.000000 AND
gc_grace_seconds=864000 AND
index_interval=128 AND
read_repair_chance=0.100000 AND
replicate_on_write='true' AND
default_time_to_live=0 AND
speculative_retry='99.0PERCENTILE' AND
memtable_flush_period_in_ms=0 AND
compaction={'class': 'SizeTieredCompactionStrategy'} AND
compression={'class': 'LZ4Compressor'};

Example: Split up a load over multiple cassandra-stress instances on different nodes

This example demonstrates loading into large clusters, where a single cassandra-stress load generator node cannot saturate the cluster. In this example, $NODES is a variable whose value is a comma delimited list of IP addresses such as 10.0.0.1, 10.0.0.2, and so on.

#On Node1
$ cassandra-stress write n=1000000 cl=one -mode native cql3 -
schema keyspace="keyspace1" -pop seq=1..1000000 -log file=~/
node1_load.log -node $NODES

#On Node2
$ cassandra-stress write n=1000000 cl=one -mode native cql3 -
schema keyspace="keyspace1" -pop seq=1000001..2000000 -log file=~/
nodem2_load.log -node $NODES

Example: Run cassandra-stress with authentication

The following example shows using the -mode option to supply a username and password:

$ cassandra-stress -mode native cql3 user=cassandra
password=cassandra no-warmup cl=QUORUM

**Note:** Check the documentation of the transport (page ) option for SSL authentication.
Example: Run cassandra-stress with authentication and SSL encryption
The following example shows using the -mode option to supply a username and password, and the -transportation option for SSL parameters:

```bash
$ cassandra-stress write n=100k cl=ONE no-warmup -mode native cql3 user=cassandra password=cassandra
-transport truststore=/usr/local/lib/dsc-cassandra/conf/server-truststore.jks truststore-password=truststorePass
factory=org.apache.cassandra.thrift.SSLTransportFactory
keystore=/usr/local/lib/dsc-cassandra/conf/server-keystore.jks
keystore-password=myKeyPass
```

**Note:** Cassandra authentication and SSL encryption must already be configured before executing `cassandra-stress` with these options. The example shown above uses self-signed CA certificates.

Example: Run cassandra-stress using the truncate option
This option must be inserted before the mode option, otherwise the cassandra-stress tool won't apply truncation as specified.

The following example shows the truncate command:

```bash
$ cassandra-stress write n=100000000 cl=QUORUM truncate=always -schema keyspace=keyspace-rate threads=200 -log file=write_$NOW.log
```

Example: Use a YAML file to run cassandra-stress
This example uses a YAML file named `cqlstress-example.yaml`, which contains the keyspace and table definitions, and a query definition. The keyspace name and definition are the first entries in the YAML file:

```yaml
keyspace: perftesting
keyspace_definition:
 CREATE KEYSPACE perftesting WITH replication = { 'class': 'SimpleStrategy', 'replication_factor': 3};
```

The table name and definition are created in the next section using CQL:

```cql
table: users
table_definition:
 CREATE TABLE users (
```
In the `extra_definitions` section you can add secondary indexes or materialized views to the table:

```sql
extra_definitions:
 - CREATE MATERIALIZED VIEW perftesting.users_by_first_name AS
 SELECT * FROM perftesting.users WHERE first_name IS NOT NULL and
 username IS NOT NULL PRIMARY KEY (first_name, username);
 - CREATE MATERIALIZED VIEW perftesting.users_by_first_name2 AS
 SELECT * FROM perftesting.users WHERE first_name IS NOT NULL and
 username IS NOT NULL PRIMARY KEY (first_name, username);
 - CREATE MATERIALIZED VIEW perftesting.users_by_first_name3 AS
 SELECT * FROM perftesting.users WHERE first_name IS NOT NULL and
 username IS NOT NULL PRIMARY KEY (first_name, username);
```

The population distribution can be defined for any column in the table. This section specifies a uniform distribution between 10 and 30 characters for `username` values in generated rows, that the values in the generated rows will create, a uniform distribution between 20 and 40 characters for generated `startdate` over the entire Cassandra cluster, and a Gaussian distribution between 100 and 500 characters for `description` values.

```yaml
columnspec:
 - name: username
 size: uniform(10..30)
 - name: first_name
 size: fixed(16)
 - name: last_name
 size: uniform(1..32)
 - name: password
 size: fixed(80) # sha-512
 - name: email
 size: uniform(16..50)
 - name: startdate
 cluster: uniform(20...40)
 - name: description
 size: gaussian(100...500)
```

After the column specifications, you can add specifications for how each batch runs. In the following code, the `partitions` value directs the test to use the column definitions above to insert a fixed number of rows in the partition in each batch:

```yaml
insert:
 partitions: fixed(10)
```
batchtype: UNLOGGED

The last section contains a query, `read1`, that can be run against the defined table.

```
queries:
 read1:
 cql: select * from users where username = ? and startdate = ?
 fields: samerow # samerow or multirow (select arguments from the same row, or randomly from all rows in the partition)
```

The following example shows using the `user` option and its parameters to run Cassandra-stress tests from `cqlstress-example.yaml`:

```
$ cassandra-stress user profile=tools/cqlstress-example.yaml
 n=1000000 ops\(insert=3,read1=1\) no-warmup cl=QUORUM
```

Notice that:

- The `user` option is required for the `profile` and `opt` parameters.
- The value for the `profile` parameter is the path and filename of the .yaml file.
- In this example, `-n` specifies the number of `batches` that run.
- The values supplied for `ops` specifies which operations run and how many of each. These values direct the command to `insert` rows into the database and run the `read1` query.

How many times? Each insert or query counts as one batch, and the values in `ops` determine how many of each type are run. Since the total number of batches is 1,000,000, and `ops` says to run three inserts for each query, the result will be 750,000 inserts and 250,000 of the `read1` query.

Use escaping backslashes when specifying the `ops` value.

For more information, see Improved Cassandra 2.1 Stress Tool: Benchmark Any Schema – Part 1.

Example: Use the `-graph` option

In Cassandra 3.2 and later, the `-graph` option provides visual feedback for Cassandra-stress tests. A file must be named to build the resulting HTML file. A `title` and `revision` are optional, but `revision` must be used if multiple stress tests are graphed on the same output.

```
$ cassandra-stress user profile=tools/cqlstress-example.yaml ops
 \(insert=1\) -graph file=test.html title=test revision=test1
```

An interactive graph can be displayed with a web browser:
Interpreting the output of cassandra-stress

Each line reports data for the interval between the last elapsed time and current elapsed time.

Created keyspaces. Sleeping 1s for propagation.
Sleeping 2s...
Warming up WRITE with 50000 iterations...
Running WRITE with 200 threads for 1000000 iteration

<table>
<thead>
<tr>
<th>type</th>
<th>total ops</th>
<th>op/s</th>
<th>pk/s</th>
<th>row/s</th>
<th>mean</th>
<th>med</th>
<th>.95</th>
<th>.99</th>
<th>.999</th>
<th>max</th>
<th>time</th>
<th>stderr</th>
<th>errors</th>
<th>gc: #</th>
<th>max ms</th>
<th>sum ms</th>
<th>sdv ms</th>
<th>mb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>43148</td>
<td>42991</td>
<td>42991</td>
<td>42991</td>
<td>4.6</td>
<td>1.5</td>
<td>10.9</td>
<td>.95</td>
<td>.99</td>
<td>.999</td>
<td>106.1</td>
<td>239.3</td>
<td>255.4</td>
<td>1.0</td>
<td>0.00000</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>98715</td>
<td>43857</td>
<td>43857</td>
<td>43857</td>
<td>4.6</td>
<td>1.7</td>
<td>8.5</td>
<td>4.6</td>
<td>4.6</td>
<td>4.6</td>
<td>98.6</td>
<td>204.6</td>
<td>264.5</td>
<td>2.3</td>
<td>0.00705</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>157777</td>
<td>47283</td>
<td>47283</td>
<td>47283</td>
<td>4.1</td>
<td>1.4</td>
<td>8.3</td>
<td>70.6</td>
<td>7.58</td>
<td>7.58</td>
<td>45</td>
<td>45</td>
<td>0</td>
<td>0</td>
<td>619</td>
<td>619</td>
<td>619</td>
<td></td>
</tr>
</tbody>
</table>

Results:
op rate : 46751 [WRITE:46751]
partition rate : 46751 [WRITE:46751]
row rate : 46751 [WRITE:46751]
latency mean : 4.3 [WRITE:4.3]
### Table 244: Output of cassandra-stress

<table>
<thead>
<tr>
<th>Data</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>total ops</td>
<td>Running total number of operations during the run.</td>
</tr>
<tr>
<td>op/s</td>
<td>Number of operations per second performed during the run.</td>
</tr>
<tr>
<td>pk/s</td>
<td>Number of partition operations per second performed during the run.</td>
</tr>
<tr>
<td>row/s</td>
<td>Number of row operations per second performed during the run.</td>
</tr>
<tr>
<td>mean</td>
<td>Average latency in milliseconds for each operation during that run.</td>
</tr>
<tr>
<td>med</td>
<td>Median latency in milliseconds for each operation during that run.</td>
</tr>
<tr>
<td>.95</td>
<td>95% of the time the latency was less than the number displayed in the column.</td>
</tr>
<tr>
<td>.99</td>
<td>99% of the time the latency was less than the number displayed in the column.</td>
</tr>
<tr>
<td>.999</td>
<td>99.9% of the time the latency was less than the number displayed in the column.</td>
</tr>
<tr>
<td>max</td>
<td>Maximum latency in milliseconds.</td>
</tr>
<tr>
<td>time</td>
<td>Total operation time.</td>
</tr>
<tr>
<td>stderr</td>
<td>Standard error of the mean. It is a measure of confidence in the average throughput number; the smaller the number, the more accurate the measure of the cluster’s performance.</td>
</tr>
<tr>
<td>gc: #</td>
<td>Number of garbage collections.</td>
</tr>
<tr>
<td>max ms</td>
<td>Longest garbage collection in milliseconds.</td>
</tr>
<tr>
<td>sum ms</td>
<td>Total of garbage collection in milliseconds.</td>
</tr>
<tr>
<td>sdv ms</td>
<td>Standard deviation in milliseconds.</td>
</tr>
</tbody>
</table>
### DataStax Enterprise tools

<table>
<thead>
<tr>
<th>Data</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mb</td>
<td>Size of the garbage collection in megabytes.</td>
</tr>
</tbody>
</table>

**cfs-stress tool**

**Synopsis**

```plaintext
cfs-stress [options] cfs_directory listen_address
```

The default IP address is the `listen_address (page 200)` property in the `cassandra.yaml` file. If not using localhost, specify the correct IP address.

**Table 245: Legend**

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>Italics</em></td>
<td>Variable value. Replace with a user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ([ ]) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( ( ) ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
</tbody>
</table>

**Description**

The `cfs-stress` tool performs stress testing of the Cassandra File System (CFS) layer.

<table>
<thead>
<tr>
<th>Data</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>progress</td>
<td>Total progress of the stress operation.</td>
</tr>
<tr>
<td>bytes</td>
<td>Total bytes written/read.</td>
</tr>
<tr>
<td>curr rate</td>
<td>Current rate of bytes being written/read per second.</td>
</tr>
<tr>
<td>avg rate</td>
<td>Average rate of bytes being written/read per second.</td>
</tr>
</tbody>
</table>
### DataStax Enterprise tools

#### SSTable utilities

**sstabledump**

This tool outputs the contents of the specified SSTable in the JSON format.

Depending on your task, you may wish to flush the table to disk (using `nodetool flush (page 979)` before dumping its contents.

**Usage:**

```
$ sstabledump [options] sstable_file
```

**Tarball and Installer No-Services path:**

`installation_location/resources/cassandra/tools/bin`

The output file is located in the `/var/lib/cassandra/data` directory and has a `.db` extension.

**Table 246: Options**

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-d</td>
<td>Outputs an internal representation, one CQL row per line.</td>
</tr>
<tr>
<td>-e</td>
<td>Limits output to the list of keys.</td>
</tr>
<tr>
<td>-k key</td>
<td>Limits output to information about the row identified by the specified key.</td>
</tr>
<tr>
<td>-x key</td>
<td>Excludes information about the row identified by the specified key from output.</td>
</tr>
</tbody>
</table>

**sstableexpiredblockers**

During compaction, the database can drop entire SSTables when they contain only expired tombstones and if it is guaranteed to not cover any data in other SSTables. This diagnostic tool outputs all SSTables that are blocking other SSTables from being dropped.

**Usage:**

```
$ sstableexpiredblockers [--dry-run] keyspace table
```

**Tarball and Installer No-Services path:**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
</table>
DataStax Enterprise tools

installation_location/resources/cassandra/tools/bin

1. Choose a keyspace and table to check for any SSTables that are blocking the specified table from dropping.

   $ sstableexpiredblockers cycling cyclist_name

sstablelevelreset

Reset level to zero on a set of SSTables using LeveledCompactionStrategy.

Usage:

   $ sstablelevelreset [--really-reset] keyspace table

The option --really-reset is a warning that DataStax Enterprise (DSE) is stopped before the tool is run.

Tarball and Installer No-Services path:

installation_location/resources/cassandra/tools/bin

- Stop DSE on the node. Choose a keyspace and table to reset to level 0.

   $ sstablelevelreset --really-reset cycling cyclist_name

   If the designated table is already at level 0, then no change occurs. If the SSTable is releveled, the metadata is rewritten to designate the level to 0.

sstableloader

The sstableloader provides the ability to:

- Bulk load external data into a cluster.
- Load existing SSTables into another cluster with a different number of nodes or replication strategy.
- Restore snapshots.

The sstableloader streams a set of SSTable data files to a live cluster. It does not simply copy the set of SSTables to every node, but transfers the relevant part of the data to each node, conforming to the replication strategy of the cluster. The table into which the data is loaded does not need to be empty.

   Warning: Running the sstableloader against the live data directory can cause snapshots to fail. Specify the snapshots directory when running the sstableloader.

In the /var/lib/cassandra/data directory, select a keyspace and a table to access the associated snapshots directory, as shown in the following example.
Run `sstableloader` specifying the path to the SSTables and passing it the location of the target cluster. When using the sstableloader be aware of the following:

- Repairing tables that have been loaded into a different cluster does not repair the source tables.
- If required, upgrade the SSTable version to a version that is compatible with the current version of DataStax Enterprise.

For SSTable compatibility and upgrading, see **SSTable compatibility**.

**Prerequisites:**

- The source data loaded by `sstableloader` must be in SSTables.
- Because `sstableloader` uses the streaming protocol, it requires a direct connection over port 7000 (storage port) to each connected node.

Generating SSTables

When using `sstableloader` to load external data, you must first put the external data into SSTables.

SSTableWriter is the API to create raw data files locally for bulkloading into your cluster. The source code includes the CQLSSTableWriter implementation for creating SSTable files from external data without needing to understand the details of how those map to the underlying storage engine. Import the `org.apache.cassandra.io.sstable.CQLSSTableWriter` class, and define the schema for the data you want to import, a writer for the schema, and a prepared insert statement.

Taking snapshots

If restoring from a snapshot, use the `nodetool snapshot` (**page 1051**) command to take a snapshot, which you can use `sstableloader` to load into a cluster.

A snapshot first flushes all in-memory writes to disk, then makes a hard link of the SSTable files for each keyspace. You must have enough free disk space on the node to accommodate making snapshots of your data files. A single snapshot requires little disk space. However, snapshots can cause your disk usage to grow more quickly over time because a snapshot prevents old obsolete data files from being deleted. After the snapshot is complete, you can move the backup files to another location if needed, or you can leave them in place.

**Note:** Restoring from a snapshot requires the table schema.

See **Taking a snapshot** (**page 1318**) for more information.
Restoring DataStax Enterprise snapshots

For information about preparing snapshots for `sstableloader` import, see Restoring from centralized backups (page 1321).

Importing SSTables from an existing cluster

Before importing existing SSTables, run `nodetool flush (page 979)` on each source node to assure that any data in memtables is written out to the SSTables on disk.

Preparing the target environment

Before loading the data, you must define the schema of the target tables with **CQL**.

Usage

```bash
$ sstableloader -d host_url (,host_url ...) [options] sstable_directory
```

Table and Installer No-Services path:

`installation_location/resources/cassandra/bin`

<table>
<thead>
<tr>
<th>Short option</th>
<th>Long option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-alg</td>
<td>--ssl-alg &lt;ALGORITHM&gt;</td>
<td>Client SSL algorithm (default: SunX509).</td>
</tr>
<tr>
<td>-ap</td>
<td>--auth-provider &lt;auth provider class name&gt;</td>
<td>Allows the use of a third party auth provider. Can be combined with -u &lt;username&gt; and -pw &lt;password&gt; if the auth provider supports plain text credentials.</td>
</tr>
<tr>
<td>-ciphers</td>
<td>--ssl-ciphers &lt;CIPHER-SUITES&gt;</td>
<td>Client SSL. Comma-separated list of encryption suites.</td>
</tr>
<tr>
<td>-cph</td>
<td>--connections-per-host &lt;connectionsPerHost&gt;</td>
<td>Number of concurrent connections-per-host.</td>
</tr>
<tr>
<td>-d</td>
<td>--nodes &lt;initial_hosts&gt;</td>
<td><strong>Required.</strong> Connect to a list of (comma separated) hosts for initial cluster information.</td>
</tr>
<tr>
<td>-df</td>
<td>--dse-conf-path &lt;path_to_dseconfig_file&gt;</td>
<td>Path to the <code>dse.yaml</code> path for streaming throughput and client/server SSL.</td>
</tr>
<tr>
<td>-f</td>
<td>--conf-path &lt;path_to_config_file&gt;</td>
<td>Path to the <code>cassandra.yaml</code> path for streaming throughput and client/server SSL.</td>
</tr>
<tr>
<td>-h</td>
<td>--help</td>
<td>Display help.</td>
</tr>
<tr>
<td>-i</td>
<td>--ignore &lt;NODES&gt;</td>
<td>Do not stream to this comma separated list of nodes.</td>
</tr>
<tr>
<td>-idct</td>
<td>--inter_dc_throttle_mbits &lt;MBPS&gt;</td>
<td>Inter-datacenter throttle speed in Megabits per second (default unlimited).</td>
</tr>
<tr>
<td>Short option</td>
<td>Long option</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>-ks</td>
<td>--keystore &lt;KEYSTORE&gt;</td>
<td>Client SSL. Full path to the keystore.</td>
</tr>
<tr>
<td>-kspw</td>
<td>--keystore-password &lt;KEYSTORE-PASSWORD&gt;</td>
<td>Client SSL. Password for the keystore. Overrides the <code>client_encryption_options</code> option in <code>cassandra.yaml</code> (page 229)</td>
</tr>
<tr>
<td></td>
<td>--no-progress</td>
<td>Do not display progress.</td>
</tr>
<tr>
<td>-p</td>
<td>--port &lt;rpc port&gt;</td>
<td>RPC port (default: 9160 [Thrift]).</td>
</tr>
<tr>
<td>-prtcl</td>
<td>--ssl-protocol &lt;PROTOCOL&gt;</td>
<td>Client SSL. Connections protocol to use (default: TLS). Overrides the <code>server_encryption_options</code> option in <code>cassandra.yaml</code> (page 228)</td>
</tr>
<tr>
<td>-pw</td>
<td>--password &lt;password&gt;</td>
<td>Authentication password.</td>
</tr>
<tr>
<td>-sp</td>
<td>--storage_port &lt;port_num&gt;</td>
<td>Port used for inter-node communication (default 7000).</td>
</tr>
<tr>
<td>-ssp</td>
<td>--ssl_storage_port</td>
<td>Port used for TLS inter-node communication (default 7001).</td>
</tr>
<tr>
<td>-st</td>
<td>--store-type &lt;STORE-TYPE&gt;</td>
<td>Client SSL. Type of store.</td>
</tr>
<tr>
<td>-t</td>
<td>--throttle &lt;throttle&gt;</td>
<td>Throttle speed in megabits (Mb) per second (default: unlimited). Overrides the <code>stream_throughput_outbound_megabits_per_sec</code> option in <code>cassandra.yaml</code> (page 212)</td>
</tr>
<tr>
<td>-ts</td>
<td>--truststore &lt;TRUSTSTORE&gt;</td>
<td>Client SSL. Full path to truststore.</td>
</tr>
<tr>
<td>-tspw</td>
<td>--truststore-password &lt;TRUSTSTORE-PASSWORD&gt;</td>
<td>Client SSL. Password of the truststore.</td>
</tr>
<tr>
<td>-u</td>
<td>--username &lt;username&gt;</td>
<td>User name for authentication.</td>
</tr>
<tr>
<td>-v</td>
<td>--verbose</td>
<td>Verbose output.</td>
</tr>
</tbody>
</table>

**Loading files**
The `sstableloader` bulk loads the SSTables found in the specified directory, where the parent directories of the path are used for the target keyspace and table name, to the indicated target cluster.

The location of the SSTables to be streamed must end with directories named for the keyspace and table, including the files to load. For example:

```
$ ls /var/lib/cassandra/data/keyspace_name/table_name/file_names
```

In the following path, the keyspace is `cycling`, the table name is `cyclist_name-9e516080f30811e689e40725f37c761d`, and the file name is `mc-1-big-Data.db`.

```
$ ls /var/lib/cassandra/data/cycling/
cyclist_name-9e516080f30811e689e40725f37c761d/mc-1-big-Data.db
```

**Loading snapshots**

The `sstableloader` bulk loads the SSTables found in the specified directory, where the parent directories of the path are used for the target keyspace and table name, to the indicated target cluster.

For snapshots, the location of the SSTables to be streamed must end with directories named for the keyspace and table, including the snapshot name. By default, snapshots are created in the `/var/lib/cassandra/data/keyspace_name/table_name-UUID/snapshots/` directory.

```
$ ls /var/lib/cassandra/data/keyspace_name/table_name/snapshots/snapshot_name
```

In the following path, the keyspace is `cycling`, the table name is `cyclist_name-9e516080f30811e689e40725f37c761d`, and the snapshot is `1527686840030`.

```
$ ls /var/lib/cassandra/data/cycling/
cyclist_name-9e516080f30811e689e40725f37c761d/snapshots/1527686840030
```

For more `sstableloader` options, see `sstableloader options` (page 1258)

**Using sstableloader**

1. Go to the location of the SSTables and view the contents of the table.

```
$ cd /var/lib/cassandra/data/cycling/
cyclist_name-9e516080f30811e689e40725f37c761d/

$ ls
```
2. To bulk load the files or snapshots, indicate one or more nodes in the target cluster with the \(-d\) flag, which takes a comma-separated list of IP addresses or hostnames. Additionally, specify the path to the files or snapshot in the **source machine**:

**Loading files**

If loading files, ensure that the files are in the following directory, whose names match those of the same target directory.

```
../keyspace_name/table_name/file_names
```

In this example, ensure the files are in the following directory.

```
../cycling/cyclist_name-9e516080f30811e689e40725f37c761d/mc-1-big-Data.db
```

**Loading snapshots**

If restoring snapshot data from some other source, ensure that the snapshot files are in the following directory, whose names match those of the same target directory.

```
../keyspace_name/table_name/snapshots/snapshot_name
```

In this example, ensure the snapshot files are in the following directory.

```
../cycling/cyclist_name-9e516080f30811e689e40725f37c761d/snapshots
```

**Note:** To get the best throughput from SSTable loading, you can use multiple instances of sstableloader to stream across multiple machines. No hard limit exists on the number of SSTables that sstableloader can run at the same time, so you can add additional loaders until you see no further improvement.

**Example:**

**Package installation**

```
$ sstableloader -d 110.82.155.1 /var/lib/cassandra/data/cycling/cyclist_name-9e516080f30811e689e40725f37c761d/snapshots/1527686840030
```
DataStax Enterprise tools

Tarball installation

```bash
$ installation_location/bin/sstableloader -d
 110.82.155.1 /var/lib/cassandra/data/cycling/
cyclist_name-9e516080f30811e689e40725f37c761d/
snapshots/1527686840030
```

sstablemetadata

The `sstablemetadata` utility prints metadata about a specified SSTable, including:

- SSTable name
- Partitioner
- SSTable level (for LeveledCompactionStrategy (LCS) only)
- Timestamps (in epoch time) indicating the number of tombstones that are estimated to be dropped at that time
- Information on row sizes and number of cells in a row, where Count is either the size in bytes when correlated with the Row Size column (number of rows with the size in Count), or number of cells when correlated with the value in the Cell Count column (number of rows with that number of cells). For example, given the following output, for the Count column value of 45, 2148 rows are 45 bytes in size, and 6467 rows have 45 cells:

<table>
<thead>
<tr>
<th>Count</th>
<th>Row Size</th>
<th>Cell Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>10237522</td>
</tr>
<tr>
<td>22</td>
<td>0</td>
<td>189</td>
</tr>
<tr>
<td>24</td>
<td>0</td>
<td>636</td>
</tr>
<tr>
<td>45</td>
<td>2148</td>
<td>6467</td>
</tr>
<tr>
<td>56</td>
<td>1256</td>
<td>5679</td>
</tr>
<tr>
<td>78</td>
<td>570</td>
<td>15803</td>
</tr>
</tbody>
</table>

**Note:** The Row Size and Cell Count columns are independent and unrelated.

Use this report to troubleshoot wide rows or performance-degrading tombstones.

1. Enter the command `sstablemetadata` followed by the filenames of one or more SSTables.

```bash
$ sstablemetadata sstable_name filenames
```

Tarball and Installer No-Services path:

`installation_location/resources/cassandra/tools/bin`

```
tools/bin/sstablemetadata data/data/autogeneratedtest/
transaction_by_retailer-f27e4d5078dc11e59d629d03f52e8a2b/ma-203-
big-Data.db
```
SSTable: data/data/autogeneratedtest/transaction_by_retailer-f27e4d5078dc11e59d629d03f52e8a2b/ma-203-big
Partitioner: org.apache.cassandra.dht.Murmur3Partitioner
Bloom Filter FP chance: 0.010000
Minimum timestamp: 1445871871053006
Maximum timestamp: 1445871953354005
SSTable max local deletion time: 2147483647
Compression ratio: -1.0
Estimated droppable tombstones: 0.0
SSTable Level: 0
Repaired at: 0
ReplayPosition(segmentId=1445871179392, position=18397674)
Estimated tombstone drop times:
2147483647:   7816721
Count               Row Size        Cell Count
1                          0                 0
2                          0                 0
3                          0                 0
4                          0            710611
5                          0                 0
6                          0                 0
7                          81                 0
8                     710530                 0
10                         0                 0
12                         0                 0
... 1179032288322              0
1414838745986              0
Estimated cardinality: 722835

**sstableofflinerelevel**

This tool runs offline. When using the [LevelledCompactionStrategy](https://datastax.github.io/cassandra/2.2/topics/compression.html), the number of SSTables in level L0 can become excessively large, degrading the read latency. This often occurs during an atypical write load, such as bulk import of data and node bootstrapping. This tool optimally relevels the SSTables. Use the `--dry run` flag to run in test mode and examine the tools results.

**Usage:**

```bash
$ sstableofflinerelevel [--dry-run] keyspace table
```

**Tarball and Installer No-Services path:**

`installation_location/resources/cassandra/tools/bin`

1. Choose a keyspace and table to relevel.
$ sstableofflinerelevel cycling cyclist_name

### sstablepartitions

Identifies large partitions of SSTables and generate output in JSON format. The output includes the partition size, row count, cell count, and tombstone count.

#### Synopsis

```
$ sstablepartitions
[-b] [-c cell_count_threshold] [-k partition_keys] [-m]
[-o tombstone_count_threshold] [-r] [-t partition_count_threshold]
[-u] [-x partition_keys] [-y]

sstable_name| sstable_directory
```

#### Table 248: Legend

<table>
<thead>
<tr>
<th>Syntax conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Literal keyword.</td>
</tr>
<tr>
<td>Lowercase</td>
<td>Not literal.</td>
</tr>
<tr>
<td>Italic</td>
<td>Variable value. Replace with a valid option or user-defined value.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Optional. Square brackets ( [ ] ) surround optional command arguments. Do not type the square brackets.</td>
</tr>
<tr>
<td>( )</td>
<td>Group. Parentheses ( ( ) ) identify a group to choose from. Do not type the parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Repeatable. An ellipsis ( ... ) indicates that you can repeat the syntax element as often as required.</td>
</tr>
<tr>
<td>'Literal string'</td>
<td>Single quotation ( ‘ ) marks must surround literal strings in CQL statements. Use single quotation marks to preserve upper case.</td>
</tr>
<tr>
<td>{ key:value }</td>
<td>Map collection. Braces ( { } ) enclose map collections or key value pairs. A colon separates the key and the value.</td>
</tr>
<tr>
<td>&lt;datatype1,datatype2&gt;</td>
<td>Set, list, map, or tuple. Angle brackets ( &lt; &gt; ) enclose data types in a set, list, map, or tuple. Separate the data types with a comma.</td>
</tr>
<tr>
<td>cql_statement;</td>
<td>End CQL statement. A semicolon ( ; ) terminates all CQL statements.</td>
</tr>
<tr>
<td>Syntax conventions</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>[ -- ]</td>
<td>Separate the command line options from the command arguments with two hyphens ( -- ). This syntax is useful when arguments might be mistaken for command line options.</td>
</tr>
<tr>
<td>' &lt;schema&gt; ... &lt;/schema&gt; '</td>
<td>Search CQL only: Single quotation marks ( ’ ) surround an entire XML schema declaration.</td>
</tr>
<tr>
<td>@xml_entity='xml_entity_type'</td>
<td>Search CQL only: Identify the entity and literal value to overwrite the XML element in the schema and solrconfig files.</td>
</tr>
</tbody>
</table>

Identifies large partitions of the specified SSTable or directory and outputs the partition size, row count, cell count, and tombstone count, where:

- **sstable_name**
  - The name of the SSTable file. Specify `sstable_name` or `sstable_directory`.

- **sstable_directory**
  - The data directory.

- **-b,--backups**
  - Include backups in the data directories (recursive scans).

- **-c cell_count_threshold,--min-cells cell_count_threshold**
  - Partition cell count threshold. When this threshold for cell count is exceeded, identify as a large partition.

- **-k partition_keys,--key partition_keys**
  - Include partition keys.

- **-m,--csv**
  - Instead of JSON formatted output, produce CSV machine-readable output.

- **-o tombstone_count_threshold,--min-tombstones tombstone_count_threshold**
  - Partition tombstone count threshold.

- **-r,--recursive**
  - Scan for SSTables recursively.

- **-s,--snapshots**
  - Include snapshots present in data directories (recursive scans).

- **-t partition_count_threshold,--min-size partition_count_threshold**
  - Partition size threshold.

- **-u,--current-timestamp**
  - Include timestamp in output. Timestamp is the number seconds since epoch, unit time for TTL expired calculation.

- **-x partition_keys,--exclude-key partition_keys**
  - Exclude partition key or keys from partition detailed row/cell/tombstone information. Does not apply if -y option is given.

- **-y,--partitions-only**
  - Provide brief partition information only. Exclude per-partition detailed row/cell/tombstone information from process and output.

**Examples**

Analyze partition statistics for all SSTables a single table
DataStax Enterprise tools

```
$ sstablepartitions -r /var/lib/cassandra/data/stresscql/
blogposts-7dd6dfc289b511e8a4a329556a9391cc/
```

<table>
<thead>
<tr>
<th>Tombstone count</th>
<th>Partition size</th>
<th>Row count</th>
<th>Cell count</th>
</tr>
</thead>
<tbody>
<tr>
<td>p50</td>
<td>124</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>p75</td>
<td>149</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>p90</td>
<td>149</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>p95</td>
<td>179</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>p99</td>
<td>215</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>p999</td>
<td>258</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>min</td>
<td>51</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>max</td>
<td>8239</td>
<td>179</td>
<td>179</td>
</tr>
<tr>
<td>count</td>
<td>56696</td>
<td></td>
<td></td>
</tr>
<tr>
<td>time</td>
<td>137676</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Processing stresscql.blogposts-7dd6dfc289b511e8a4a329556a9391cc #3 (bti-aa) (6445137 bytes uncompressed, 5416338 bytes on disk)

```
<table>
<thead>
<tr>
<th>Tombstone count</th>
<th>Partition size</th>
<th>Row count</th>
<th>Cell count</th>
</tr>
</thead>
<tbody>
<tr>
<td>p50</td>
<td>124</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>p75</td>
<td>149</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>p90</td>
<td>149</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>p95</td>
<td>179</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>p99</td>
<td>215</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>p999</td>
<td>258</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>min</td>
<td>51</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>max</td>
<td>8239</td>
<td>179</td>
<td>179</td>
</tr>
<tr>
<td>count</td>
<td>56696</td>
<td></td>
<td></td>
</tr>
<tr>
<td>time</td>
<td>137676</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Output only partitions with cell count threshold equal to or greater than 10
$ sstablepartitions -c 10 /var/lib/cassandra/data/stresscql/blogposts-7dd6dfc289b511e8a4a329556a9391cc/aa-4-bti-Data.db

Processing stresscql.blogposts-7dd6dfc289b511e8a4a329556a9391cc #4 (bti-aa) (230134 bytes uncompressed, 192999 bytes on disk)
   Partition: 'FwlCc xD06iw_.]Q[t[KzCI&$
     live, position: 208502, size: 434, rows: 10, cells: 10, tombstones: 0
     (row:0, range:0, complex:0, cell:0, row-TTLd:0, cell-TTLd:0)
Summary of stresscql.blogposts-7dd6dfc289b511e8a4a329556a9391cc #4 (bti-aa):
   File: /home/dimitarndimitrov/.ccm/c13529-master/node1/data0/stresscql/blogposts-7dd6dfc289b511e8a4a329556a9391cc/aa-4-bti-Data.db
   1 partitions match
   Keys: FwlCc xD06iw_.]Q[t[KzCI&$

<table>
<thead>
<tr>
<th>Tombstone count</th>
<th>Partition size</th>
<th>Row count</th>
<th>Cell count</th>
</tr>
</thead>
<tbody>
<tr>
<td>p50</td>
<td>124</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>p75</td>
<td>124</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>p90</td>
<td>149</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>p95</td>
<td>149</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>p99</td>
<td>149</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>p999</td>
<td>179</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>min</td>
<td>51</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>max</td>
<td>446</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>count</td>
<td>2169</td>
<td></td>
<td></td>
</tr>
<tr>
<td>time</td>
<td>4875</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Output CSV machine-readable output

$ sstablepartitions -c 10 -m /var/lib/cassandra/data/stresscql/blogposts-7dd6dfc289b511e8a4a329556a9391cc/aa-4-bti-Data.db

key,keyBinary,live,offset,size,rowCount,cellCount,tombstoneCount,rowTombstoneCount,rangeTombstoneCount,complexTombstoneCount,cellTombstoneCount,rowTtlExpired,cellTtlExpired,directory,keyspace,table,index,snapshot,backup,generation,format,version
"FwlCc xD06iw_.]Q[t[KzCI&$
   "$",46776c0b4363097815114430361169775f7f5d511b3b08177c5b745b4b1306007a434926091a24,true,208502,434,10,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
sstablerepairedset

This tool is intended to mark specific SSTables as **repaired** or **unrepaired**. It is used to set the `repairedAt` status on a given set of SSTables. This metadata facilitates incremental repairs. It can take in the path to an individual SSTable or the path to a file containing a list of SSTables paths.

**Warning:** Do not run this command until you have stopped DataStax Enterprise on the node.

Use this tool in the process of migrating an installation to incremental repair *(page 1332)*.

**Usage:**

```
sstablerepairedset [--really-set] [--is-repaired | --is-unrepaired]
[-f sstable-list | sstables]
```

**Tarball and Installer No-Services path:**

`installation_location/resources/cassandra/tools/bin`

- Choose SSTables to mark as repaired.

  ```
 $ sstablerepairedset --really-set --is-repaired data/data/cycling/
cyclist_name-a882dca02aaf11e58c7b8b496c707234/la-1-big-Data.db
  ```

- Use a file to list the SSTable to mark as unrepaired.

  ```
 $ /sstablerepairedset --is-unrepaired -f repairSetSSTables.txt
  ```

A file like `repairSetSSTables.txt` would contain a list of SSTable (.db) files, as in the following example:

```
/data/cycling/cyclist_by_country-82246fc065ff11e5a4c58b496c707234/ma-1-big-Data.db
/data/cycling/cyclist_by_birthday-8248246065ff11e5a4c58b496c707234/ma-1-big-Data.db
/data/cycling/cyclist_by_birthday-8248246065ff11e5a4c58b496c707234/ma-2-big-Data.db
/data/cycling/cyclist_by_age-8201305065ff11e5a4c58b496c707234/ma-1-big-Data.db
/data/cycling/cyclist_by_age-8201305065ff11e5a4c58b496c707234/ma-2-big-Data.db
```

Use the following command to list all the Data.db files in a keyspace:
sstablescrub

The sstablescrub utility is an offline version of nodetool scrub (page 1030). It attempts to remove the corrupted parts while preserving non-corrupted data. Because sstablescrub runs offline, it can correct errors that nodetool scrub cannot. If an SSTable cannot be read due to corruption, it will be left on disk.

If scrubbing results in dropping rows, new SSTables become unrepaired. However, if no bad rows are detected, the SSTable keeps its original repairedAt field, which denotes the time of the repair.

1. Before using sstablescrub, try rebuilding the tables using nodetool scrub. If nodetool scrub does not fix the problem, use sstablescrub.

2. Shut down the node (page 1275).

3. Run the utility:

```
find '/home/user/datastax-ddc-3.2.0/data/keyspace1/' -iname "*Data.db*"
```

```
sstablescrub [options] keyspace table
```

--debug
Display stack traces.

-h, --help
Display help.

-m, --manifest-check
Only check and repair the leveled manifest, without actually scrubbing the SSTables.

--reinsert-overflowed-ttl
Rewrites SSTables containing rows with overflowed expiration time with the maximum expiration date of 2038-01-19T03:14:06+00:00 using the original timestamp + 1 (ms).

-s, --skip-corrupted
Skip corrupt rows in counter tables.

-v, --verbose
Verbose output.

sstablesplit

Use this tool to split SSTables files into multiple SSTables of a maximum designated size. For example, if SizeTieredCompactionStrategy was used for a major compaction and results in a excessively large SSTable, it's a good idea to split the table because won't get compacted again until the next huge compaction.
DataStax Enterprise tools

DataStax Enterprise must be stopped (page 1280) to use this tool.

Usage:

```
$ sstablesplit [options] <filename> [<filename>]*
```

Tarball and Installer No-Services path:

```
installation_location/resources/cassandra/tools/bin
```

Example:

```
$ sstablesplit -s 40 /var/lib/cassandra/data/Keyspace1/Standard1/*
```

<table>
<thead>
<tr>
<th>Flag</th>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>--debug</td>
<td></td>
<td>Display stack traces.</td>
</tr>
<tr>
<td>-h</td>
<td>--help</td>
<td>Display help.</td>
</tr>
<tr>
<td>--no-snapshot</td>
<td></td>
<td>Do not snapshot the SSTables before splitting.</td>
</tr>
<tr>
<td>-s</td>
<td>--size &lt;size&gt;</td>
<td>Maximum size in megabytes (MB) for the output SSTables (default: 50).</td>
</tr>
<tr>
<td>-v</td>
<td>--verbose</td>
<td>Verbose output.</td>
</tr>
</tbody>
</table>

**sstableupgrade**

Rewrite the SSTables in the specified snapshot to match the currently installed version of the DataStax Enterprise (DSE) database.

To restore a table from a snapshot with sstableloader (page 1256), upgrade to a compatible SSTable version. SSTable versions are incremented when the format changes (not with each release of the database).

Use the version number in the SSTable file name to determine compatibility and upgrade requirements. The first two letters of the file name is the version, where the first letter indicates a major version and the second letter indicates a minor version. For example, the following SSTable version is mc:

```
data/cycling/cyclist_expenses-2d955621194c11e7a38d9504a063a84e/mc-6-big-Data.db
```

For SSTable compatibility and upgrading, see SSTable compatibility.
Note: To upgrade from SSTables created with DSE 4.6 and earlier, you must first upgrade the SSTables you want to restore to version ka (using DSE version 4.7 or 4.8); SSTables created with DSE version 4.7 and higher are compatible with all DSE 5.x versions.

Usage:

```
sstableupgrade [options] keyspace_name table_name [snapshot_filename]
```

Tarball and Installer No-Services path:

```
installation_location/resources/cassandra/bin
```

The `snapshot` option upgrades the specified snapshot only.

Table 250: Options

<table>
<thead>
<tr>
<th>Flag</th>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>--debug</td>
<td></td>
<td>Display stack traces.</td>
</tr>
<tr>
<td>-h</td>
<td>--help</td>
<td>Display help.</td>
</tr>
</tbody>
</table>

**sstableutil**

The `sstableutil` utility lists the SSTable files for a designated table.

Usage:

```
$ sstableutil [--cleanup | --debug | --help | --opslog | --type <arg> | --verbose] keyspace | table
```

Note: Arguments for `--type` option are: all, tmp, or final.

Tarball and Installer No-Services path:

```
installation_location/resources/cassandra/bin
```

1. Choose a table for which to list SSTables files.

```
$ sstableutil --all cycling cyclist_name
```

**sstableverify**

The `sstableverify` utility verifies the SSTable for a designated table and look for errors or data corruption.

Usage:
### DataStax Enterprise tools

<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>-help</td>
<td>Show help and exit.</td>
</tr>
<tr>
<td>-f</td>
<td>-fix</td>
<td>Attempt to fix issues.</td>
</tr>
<tr>
<td>--yaml=YAML_LOCATION</td>
<td></td>
<td>Location of cassandra.yaml file</td>
</tr>
<tr>
<td>--devices=DEVICES</td>
<td></td>
<td>Comma separated lists of HDDs: /dev/sda, /dev/sdb,...</td>
</tr>
<tr>
<td>--disk-duration=DISK_DURATION</td>
<td></td>
<td>Time (in seconds) for each test disk benchmark. Set to simulate a normal load.</td>
</tr>
</tbody>
</table>

#### Preflight check tool

The preflight check tool is a collection of tests that can be run on a DataStax Enterprise node to detect and fix node configurations. The tool can detect and optionally fix many invalid or suboptimal configuration settings, such as user resource limits, swap, and disk settings.

The preflight check tool is included in the following location based on your installation type:

<table>
<thead>
<tr>
<th>Installation type</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package installation</td>
<td>/usr/share/dse/tools/pfc</td>
</tr>
<tr>
<td>Tarball installation</td>
<td>install_location/tools/pfc</td>
</tr>
</tbody>
</table>

#### Usage

Run the preflight check without options to run all tests.

```
$ sudo ./preflight_check
```

#### Table 251: Options
<table>
<thead>
<tr>
<th>Short</th>
<th>Long</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>--disk-threads=DISK_THREADS</td>
<td>Number of threads for each disk benchmark. Set to simulate a normal load.</td>
<td></td>
</tr>
<tr>
<td>--ssd=SSD</td>
<td>Comma separated lists of SSDs: /dev/sda, /dev/sdb, ...</td>
<td></td>
</tr>
<tr>
<td>--nossd</td>
<td>The node does not have SSDs.</td>
<td></td>
</tr>
</tbody>
</table>

Creating a new test

Complete the following steps to create your own test:

1. Create a new Python file in /checks:

   ```
 $ cd /checks
 $ touch my_test.py
   ```

2. Add the new test to the `__all__` section of /checks/init.py:

   ```
 __all__ = ['my_test', 'disk', 'blockdev', ...]
   ```

3. Add your test to the preflight_check script.

4. Run the preflight check script with the new test:

   ```
 $ sudo ./preflight_check options
   ```

**cluster_check and yaml_diff tools**

The `cluster_check` and `yaml_diff` tools check the differences between cassandra.yaml or dse.yaml files. This check is particularly useful during upgrades.

**Prerequisites:**

PyYAML must be installed. To install:

```
$ pip install pyyaml
$ pip install termcolor ## Optional. Install for colored output.
```

These examples check the differences between `cassandra.yaml` files.

- To check differences between YAML files:

  ```
 $ cd /usr/share/dse/tools/yamls
  ```
DataStax Enterprise tools

$ ./yaml_diff path/to/cassandra.yaml path/to/cassandra.yaml.new

The Missing Settings section of the report lists both missing and deprecated settings.

- To check the differences between each node’s YAML in a datacenter:
  
  For ease of use, use password-less SSH access from the current node to all other nodes.

  $ cd /usr/share/dse/tools/yamls
  $ ./cluster_check /path/to/cassandra.yaml [/path/to/nodelist]

  The nodelist parameter is optional since the script checks for the list of IP addresses contained in nodetool status. The format for the nodelist file is one address per line.
Starting and stopping DataStax Enterprise

After you install and configure DataStax Enterprise on one or more nodes, start your cluster beginning with the seed nodes. In a mixed-workload DataStax Enterprise cluster, you must start the analytics seed node first.

Packaged installations include start-up and stop scripts for running DataStax Enterprise as a service. Binary tarballs do not.

Starting DataStax Enterprise as a service

Steps for starting the DataStax Enterprise (DSE) service when DataStax Enterprise was installed from RHEL or Debian packages and from the DataStax Installer with the Services option.

All nodes types are DataStax Enterprise nodes and run the database.

Considerations for starting a cluster

Be aware of the following when starting a DataStax Enterprise cluster:

Nodes must be segregated by datacenters

Transactional, DSE Search, DSE Analytics, and SearchAnalytics (page 295) nodes must be in separate datacenters. For example, in a cluster with both DSE Search and transactional nodes, all DSE Search nodes must be in a one or more search datacenters and all transactional nodes must be in one or more datacenters.

Note: DSE Graph can be enabled on any node in any datacenter. It no longer needs to be enabled on every node within a datacenter.

Deploying a mixed-workload cluster

When deploying one or more datacenters for each type of node, first determine which nodes to start as transactional, analytic, DSE Graph only, DSE Graph plus other types, DSE Search, and SearchAnalytics nodes. Deploy in this order:

1. Analytic seed nodes.
2. Transactional or DSE Graph only seed nodes.
3. DSE Search seed nodes.
4. SearchAnalytics nodes.
5. Remaining nodes one at a time. See Initializing multiple datacenters per workload type.
DSE Analytics nodes

Before starting DSE Analytics nodes, ensure that the replication factor (page 294) is configured correctly for the analytics keyspaces. Every time you add a new datacenter, you must manually increase the replication factor of the dse_leases keyspace for the new DSE Analytics datacenter.

Start up commands

Set the type of node in the /etc/default/dse file. (Start-up scripts are also available in /etc/init.d.)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRAPH_ENABLED=1</td>
<td>Starts the node as a DSE Graph node.</td>
</tr>
<tr>
<td>SPARK_ENABLED=1</td>
<td>Starts the node as a Spark node and starts the Spark Master service.</td>
</tr>
<tr>
<td>SOLR_ENABLED=1</td>
<td>Starts the node as a DSE Search node.</td>
</tr>
</tbody>
</table>

| Transactional-only, BYOH, or BYOS nodes | NODE_TYPES=0 or not present. |

Table 252: Examples

<table>
<thead>
<tr>
<th>Node type</th>
<th>Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spark Analytics node</td>
<td>SPARK_ENABLED=1&lt;br&gt;SOLR_ENABLED=0&lt;br&gt;GRAPH_ENABLED=0</td>
</tr>
<tr>
<td>Note: No entry is the same as disabling it.</td>
<td></td>
</tr>
<tr>
<td>Spark Analytics, DSE Graph, and DSE Search node</td>
<td>SPARK_ENABLED=1&lt;br&gt;GRAPH_ENABLED=1&lt;br&gt;SOLR_ENABLED=1</td>
</tr>
<tr>
<td>BYOS (Bring Your Own Spark)</td>
<td>Set BYOS nodes as transactional nodes: &lt;br&gt;All_NODE_TYPES=0 or not present.</td>
</tr>
<tr>
<td>Spark nodes run in separate Spark cluster from a vendor other than DataStax.</td>
<td></td>
</tr>
<tr>
<td>DSE Graph and BYOS</td>
<td>GRAPH_ENABLED=1</td>
</tr>
</tbody>
</table>
An integrated DSE SearchAnalytics cluster allows analytics jobs to be performed using Search index filter syntax (page 496).

<table>
<thead>
<tr>
<th>Node type</th>
<th>Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>SearchAnalytics (page 295) nodes</td>
<td>SPARK_ENABLED=1</td>
</tr>
<tr>
<td></td>
<td>SOLR_ENABLED=1</td>
</tr>
</tbody>
</table>

**Prerequisites:** Be sure to read the Considerations for starting a cluster (page 1275).

You can also use OpsCenter to start and stop nodes.

1. If DataStax Enterprise is running, stop the node (page 1280).

2. Set the node type in the /etc/default/dse file. For example, to a Spark node:

   ```
 SPARK_ENABLED=1
 SOLR_ENABLED=0
 GRAPH_ENABLED=0

 Note: Alternately, you can omit the other start up entries and just use
 SPARK_ENABLED=1.
   ```

3. Start DataStax Enterprise:

   ```
 $ sudo service dse start

 If the following error appears, see DataStax Enterprise times out when starting.

 WARNING: Timed out while waiting for DSE to start.
   ```

4. To verify that the cluster is running:

   ```
 $ nodetool status

 Note: If DSE has problems starting DSE, see Troubleshooting starting and installing DataStax Enterprise.

 The nodetool command shows the node type and the status. For a transactional node running in a normal state (UN) with virtual nodes (vnodes) enabled shows:

   ```
   Datacenter: Cassandra
   ===============
   Status=Up/Down
   |/ State=Normal/Leaving/Joining/Moving
   -- Address Load Tokens Owns Host ID
   Rack
   UN 127.0.0.1 82.43 KB 128 ?
   40725dc8-7843-43ae-9c98-7c532b1f51?e rack1
   ```
For example, a running node in a normal state (UN) with DSE Analytics without vnodes enabled shows:

<table>
<thead>
<tr>
<th>Datacenter: Analytics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status=Up/Down</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>-- Address</td>
</tr>
<tr>
<td>Token</td>
</tr>
<tr>
<td>UN</td>
</tr>
</tbody>
</table>

Starting DataStax Enterprise as a stand-alone process

Steps for starting the DataStax Enterprise (DSE) process when DataStax Enterprise was installed from a tarball or from the DataStax Installer with the No Services option.

All nodes types are DataStax Enterprise nodes and run the database.

Considerations for starting a cluster

Be aware of the following when starting a DataStax Enterprise cluster:

Nodes must be segregated by datacenters

Transactional, DSE Search, DSE Analytics, and SearchAnalytics (page 295) nodes must be in separate datacenters. For example, in a cluster with both DSE Search and transactional nodes, all DSE Search nodes must be in a one or more search datacenters and all transactional nodes must be in one or more datacenters.

Note: DSE Graph can be enabled on any node in any datacenter. It no longer needs to be enabled on every node within a datacenter.

Deploying a mixed-workload cluster

When deploying one or more datacenters for each type of node, first determine which nodes to start as transactional, analytic, DSE Graph only, DSE Graph plus other types, DSE Search, and SearchAnalytics nodes. Deploy in this order:

1. Analytic seed nodes.
2. Transactional or DSE Graph only seed nodes.
3. DSE Search seed nodes.
4. SearchAnalytics nodes.
5. Remaining nodes one at a time. See Initializing multiple datacenters per workload type.

DSE Analytics nodes
Before starting DSE Analytics nodes, ensure that the replication factor (page 294) is configured correctly for the analytics keyspaces. Every time you add a new datacenter, you must manually increase the replication factor of the dse_leases keyspace for the new DSE Analytics datacenter.

Start up commands

1. Start the node from the `installation_location`.

2. Set the type.

<table>
<thead>
<tr>
<th>Node/datacenter</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transactional only</td>
<td><code>$ bin/dse cassandra</code></td>
</tr>
<tr>
<td>DSE Graph</td>
<td><code>$ bin/dse cassandra -g</code></td>
</tr>
<tr>
<td>DSE Analytics with Spark</td>
<td><code>$ bin/dse cassandra -k</code></td>
</tr>
<tr>
<td>DSE Search</td>
<td><code>$ bin/dse cassandra -s</code></td>
</tr>
</tbody>
</table>

Note: When multiple flags are used, list them separately on the command line. For example, ensure there is a space between `-k` and `-s` in `dse cassandra -k -s`.

Table 253: Starting examples

<table>
<thead>
<tr>
<th>Node type</th>
<th>Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>From the <code>installation_location:</code></td>
<td></td>
</tr>
<tr>
<td>Spark Analytics, DSE Graph, and DSE Search node</td>
<td><code>$ bin/dse cassandra -k -g -s</code></td>
</tr>
<tr>
<td>BYOS (Bring Your Own Spark)</td>
<td></td>
</tr>
<tr>
<td>Spark nodes run in separate Spark cluster from a vendor other than DataStax.</td>
<td><code>$ bin/dse cassandra</code></td>
</tr>
<tr>
<td>DSE Graph and BYOS</td>
<td></td>
</tr>
<tr>
<td>$ bin/dse cassandra -g</td>
<td></td>
</tr>
<tr>
<td>SearchAnalytics (page 295) nodes</td>
<td></td>
</tr>
<tr>
<td>An integrated DSE SearchAnalytics datacenter allows analytics jobs to be performed using search queries (page 496).</td>
<td><code>$ bin/dse cassandra -k -s</code></td>
</tr>
</tbody>
</table>

Prerequisites: Be sure to read the Considerations for starting a cluster *(page 1278)*.

You can also use OpsCenter to start and stop nodes.

1. If DataStax Enterprise is running, stop the node *(page 1281)*.
2. From the install directory, start the node. For example, to set a Spark node:

 $ bin/dse cassandra -k

3. To check that your ring is up and running:

 $ cd installation_location
 $ bin/nodetool status

 \textbf{where the installation_location is either:}

 - /usr/share/dse
 - the directory where you installed DataStax Enterprise.

 \textbf{Note:} If DSE has problems starting DSE, see \textit{Troubleshooting starting and installing DataStax Enterprise.}

 The nodetool command shows the node type and the status. For a transactional node running in a normal state (UN) with virtual nodes (vnodes) enabled shows:

 \begin{verbatim}
 Datacenter: Cassandra
 =====================
 Status=Up/Down
 |\ State=Normal/Leaving/Joining/Moving
 -- Address Load Tokens Owns Host ID
 Rack
 UN 127.0.0.1 82.43 KB 128 ? 40725dc8-7843-43ae-9c98-7c532b1f517e rack1
 \end{verbatim}

 For example, a running node in a normal state (UN) with DSE Analytics without vnodes enabled shows:

 \begin{verbatim}
 Datacenter: Analytics
 =====================
 Status=Up/Down
 |\ State=Normal/Leaving/Joining/Moving
 -- Address Load Owns Host ID
 Rack
 UN 172.16.222.136 103.24 KB ? 3c1d0657-0990-4f78-a3c0-3e0c37fc3a06 1647352612226902707 rack1
 \end{verbatim}

 \textbf{Stopping a DataStax Enterprise node}

 To speed up the restart process, before stopping the dse service, run \texttt{nodetool drain} (page 973). This step writes the current memtables to disk. When you restart the node, the commit log is not read which speeds the restart process. If you have durable writes set to false, which is unlikely, there is no commit log and you must drain the node to prevent losing data.

 \textbf{To stop DataStax Enterprise running as a service:}
To stop DataStax Enterprise (DSE) running as a stand-alone process:

Note: Running nodetool drain before using the `cassandra-stop` command to stop a stand-alone process is not necessary because the `cassandra-stop` command drains the node before stopping it.

From the installation location:

```
$ bin/dse cassandra-stop ## Use sudo if needed
```

In the unlikely event that the `cassandra-stop` command fails because it cannot find the DSE Java process ID (PID), the output instructs you to find the DSE Java process ID (PID) manually, and stop the process using its PID number.

```
$ ps auwx | grep dse
$ bin/dse cassandra-stop -p PID ## Use sudo if needed
```

Note: If you have trouble, see Troubleshooting DataStax Enterprise.

Adding or removing nodes, datacenters, or clusters

Adding vnodes to an existing cluster

Virtual nodes (vnodes) greatly simplify adding nodes to an existing cluster:

- Calculating tokens and assigning them to each node is no longer required.
- Rebalancing the nodes within a datacenter is no longer necessary because a node joining the datacenter assumes responsibility for an even portion of the data.

For a detailed explanation about how vnodes work, see Virtual nodes.

Note: If you do not use vnodes, see Adding single-token nodes to a cluster (page 1311).

Caution: When adding multiple nodes to the cluster using the allocation algorithm, ensure that nodes are added one at a time. If nodes are added concurrently, the algorithm assigns the same tokens to different nodes.

Be sure to use the same version of DataStax Enterprise (DSE) on all nodes in the cluster. See Installing DataStax Enterprise 5.1.x patch releases (page 174).
1. **Install DataStax Enterprise** *(page 145)* on the new nodes, but do not start DSE.

 Warning: If your DSE installation started automatically, you must **stop** *(page 1275)* the node and **clear** *(page 1359)* the data.

2. Copy the snitch properties file from another node in the same center datacenter to the node you are adding.
 - **cassandra-topology.properties** file is used by the *PropertyFileSnitch*.

 Add an entry for the new node, *IP_address=dc_name:rack_name*

 - **cassandra-rackdc.properties** file is used by the *GossipingPropertyFileSnitch* *(page 276)*, *Ec2Snitch* *(page 279)*, *Ec2MultiRegionSnitch* *(page 280)*, and *GoogleCloudSnitch* *(page 283)* adjust the rack number if required.

3. Set the following properties in the **cassandra.yaml** file:
 - Dynamically allocating tokens based on the keyspace replication factors in the datacenter:

     ```
     auto_bootstrap (page 212): true
     cluster_name (page 200): 'cluster_name'
     listen_address (page 200):
     endpoint_snitch: snitch_name
     num_tokens (page 214): 8
     allocate_tokens_for_local_replication_factor (page 214): RF_number
     seed_provider (page 205):
       - class_name: seedprovider_name
         parameters:
           - seeds: "IP_address_list"
     ```

 Note: For *RF_number* if the keyspaces in the datacenter have different replication factors (RF), use the factor of the most data intensive keyspace, or when multiple keyspaces with equal data intensity exist, use the highest RF. When adding multiple nodes alternate between the different RF.

 - Randomly assign tokens:

     ```
     auto_bootstrap (page 212): true
     cluster_name (page 200): 'cluster_name'
     listen_address (page 200):
     endpoint_snitch: snitch_name
     num_tokens (page 214): 128
     seed_provider (page 205):
       - class_name: seedprovider_name
         parameters:
           - seeds: "IP_address_list"
     ```
Manually add the auto_bootstrap (page 212) setting if it does not exist in the cassandra.yaml. The other settings should exist in the default cassandra.yaml file, ensure that you uncomment and set.

Warning: Seed nodes cannot bootstrap. Make sure the new node is not listed in the -seeds list. Do not make all nodes seed nodes. See Internode communications (gossip).

4. Change any other non-default settings you have made to your existing cluster in the cassandra.yaml file and cassandra-topology.properties or cassandra-rackdc.properties files. Use the diff command to find and merge any differences between existing and new nodes.

5. Start the bootstrap node, see Starting DataStax Enterprise as a service (page 1275) or Starting DataStax Enterprise as a stand-alone process (page 1278).

6. Verify that the node is fully bootstrapped using nodetool status (page 1055). All other nodes must be up (UN) and not in any other state.

7. After all new nodes are running, run nodetool cleanup (page 954) on each of the previously existing nodes to remove the keys that no longer belong to those nodes. Wait for cleanup to complete on one node before running nodetool cleanup on the next node.

 Cleanup can be safely postponed for low-usage hours.

Adding a datacenter to a cluster

Complete the following steps to add a datacenter to an existing cluster.

Prerequisites:

Important: Complete the prerequisite tasks outlined in Initializing a cluster to prepare the environment.

If the new datacenter uses existing nodes from another datacenter or cluster, complete the following steps to ensure that old data will not interfere with the new cluster:

1. If the nodes are behind a firewall, open the required portsopen the required ports for internal/external communication.

2. Decommission each node (page 1305) that will be added to the new datacenter.

3. Clear the data from DataStax Enterprise (DSE) (page 1359) to completely remove application directories.

4. Install DSE (page 145) on each node.
1. Complete the following steps to prevent client applications from prematurely connecting to the new datacenter, and to ensure that the consistency level for reads or writes does not query the new datacenter:

 Warning: If client applications, including DSE Search and DSE Analytics, are not properly configured, they might connect to the new datacenter before it is online. Incorrect configuration results in connection exceptions, timeouts, and/or inconsistent data.

 a. Configure client applications to use the [DCAwareRoundRobinPolicy](#) (page 877).
 b. Direct clients to an existing datacenter. Otherwise, clients might try to access the new datacenter, which might not have any data.
 c. If using the **QUORUM** consistency level, change to **LOCAL_QUORUM**.
 d. If using the **ONE** consistency level, set to **LOCAL_ONE**.

 See the programming instructions for your driver.

2. Configure every keyspace using SimpleStrategy to use the [NetworkTopologyStrategy](#) replication strategy, including (but not restricted to) the following keyspaces.

 If SimpleStrategy was used previously, this step is required to configure NetworkTopologyStrategy.

 a. Use `ALTER KEYSPACE` to change the keyspace replication strategy (page 1309) to NetworkTopologyStrategy for the following keyspaces.

   ```sql
   ALTER KEYSPACE keyspace_name WITH REPLICATION = 
   {'class' : 'NetworkTopologyStrategy', 'ExistingDC1' : 3};
   ```

 - **DSE security**: system_auth, dse_security
 - **DSE performance**: dse_perf
 - **DSE analytics (page 294)**: dse_leases, dsefs
 - **System resources**: system_traces, system_distributed
 - **OpsCenter** (if installed)
 - All keyspaces created by users

 b. Use `DESCRIBE SCHEMA` to check the replication strategy of keyspaces in the cluster. Ensure that any existing keyspaces use the NetworkTopologyStrategy replication strategy.

   ```sql
   DESCRIBE SCHEMA ;
   ```

   ```sql
   CREATE KEYSPACE dse_perf WITH replication =
   ```
3. In the new datacenter, install DSE (page 145) on each new node. Do not start the service or restart the node.

 Important: Use the same version of DSE on all nodes in the cluster.

4. Configure properties in cassandra.yaml on each new node, following the configuration of the other nodes in the cluster.

 Tip: Use the yaml_diff tool (page 1273) to review and make appropriate changes to the cassandra.yaml and dse.yaml configuration files.

 a. Configure node properties:

 - **-seeds:** `internal_IP_address` of each seed node

 Important: Include at least one seed node from each datacenter. DataStax recommends more than one seed node per datacenter, in more than one rack. **Do not make all nodes seed nodes.**

 - **auto_bootstrap:** `true`

 This setting has been removed from the default configuration, but, if present, should be set to `true`.

 - **listen_address:** `empty`

 If not set, DSE asks the system for the local address, which is associated with its host name. In some cases, DSE does not produce the correct address, which requires specifying the `listen_address`.

 - **endpoint_snitch:** `snitch`
See endpoint_snitch (page 203) and snitches.

Important: Do not use the DseSimpleSnitchSimpleSnitch (default). The DseSimpleSnitch (default) is used only for single-datacenter deployments (or single-zone deployments in public clouds), and does not recognize datacenter or rack information.

<table>
<thead>
<tr>
<th>Snitch</th>
<th>Configuration file</th>
</tr>
</thead>
<tbody>
<tr>
<td>GossipingPropertyFileSnitch (page 276)</td>
<td>cassandra-rackdc.properties file (page 276)</td>
</tr>
<tr>
<td>Amazon EC2 single-region snitch (page 279)</td>
<td></td>
</tr>
<tr>
<td>Amazon EC2 multi-region snitch (page 280)</td>
<td></td>
</tr>
<tr>
<td>Google Cloud Platform snitch (page 283)</td>
<td></td>
</tr>
<tr>
<td>PropertyFileSnitch</td>
<td>cassandra-topology.properties file (page 277)</td>
</tr>
</tbody>
</table>

- If using a cassandra.yaml or dse.yaml file from a previous version, check the Upgrade Guide for removed settings.

b. Configure node architecture (all nodes in the datacenter must use the same type):

Virtual node (vnode) allocation algorithm settings
- Set `num_tokens` (page 214) to 8 (recommended).
- Set `allocate_tokens_for_local_replication_factor` (page 214) to the target replication factor for keyspaces in the new datacenter. If the keyspace RF varies, alternate the settings to use all the replication factors.
- Comment out the `initial_token` (page 213) property.

Note: See Virtual node (vnode) configuration (page 290) for more details.

Single-token architecture settings
- Generate the initial token for each node and set this value for the `initial_token` (page 213) property.

See Adding or replacing single-token nodes (page 1311) for more information.
5. In the cassandra-rackdc.properties (GossipingPropertyFileSnitch) or cassandra-topology.properties (PropertyFileSnitch) file, assign datacenter and rack names to the IP addresses of each node, and assign a default datacenter name and rack name for unknown nodes.

 Note: Migration information: The GossipingPropertyFileSnitch always loads cassandra-topology.properties when the file is present. Remove the file from each node on any new cluster, or any cluster migrated from the PropertyFileSnitch.

 # Transactional Node IP=Datacenter:Rack
 110.82.155.0=DC_Transactional:RAC1
 110.82.155.1=DC_Transactional:RAC1
 110.54.125.1=DC_Transactional:RAC2
 110.54.125.2=DC_Analytics:RAC1
 110.54.155.2=DC_Analytics:RAC2
 110.82.155.3=DC_Analytics:RAC1
 110.54.125.3=DC_Search:RAC1
 110.82.155.4=DC_Search:RAC2

 # default for unknown nodes
 default=DC1:RAC1

 Note: After making any changes in the configuration files, you must the restart the node for the changes to take effect.

6. Make the following changes in the existing datacenters.

 a. On nodes in the existing datacenters, update the -seeds property in cassandra.yaml to include the seed nodes in the new datacenter.

 b. Add the new datacenter definition to the cassandra.yaml properties file for the type of snitch used in the cluster. If changing snitches, see Switching snitches (page 1307).

7. After you have installed and configured DSE on all nodes, start the seed nodes one at a time, and then start the rest of the nodes:

 • Package installations: Starting DataStax Enterprise as a service (page 1275)
 • Tarball installations: Starting DataStax Enterprise as a stand-alone process (page 1278)

8. Rotate starting DSE through the racks until all the nodes are up.
9. After all nodes are running in the cluster and the client applications are datacenter aware, use cqlsh to alter the keyspaces to add the desired replication in the new datacenter.

```
ALTER KEYSPACE keyspace_name WITH REPLICATION =
{'class' : 'NetworkTopologyStrategy', 'ExistingDC1' : 3, 'NewDC2' : 2};
```

Warning: If client applications, including DSE Search and DSE Analytics, are not properly configured, they might connect to the new datacenter before it is online. Incorrect configuration results in connection exceptions, timeouts, and/or inconsistent data.

10. Run `nodetool rebuild` *(page 1009)* on each node in the new datacenter, specifying the datacenter to rebuild from. This step replicates the data to the new datacenter in the cluster.

```
$ nodetool rebuild -- datacenter_name
```

Caution: You must specify an existing datacenter in the command line, or the new nodes will appear to rebuild successfully, but might not contain all anticipated data.

Requests to the new datacenter with `LOCAL_ONE` or `ONE` consistency levels can fail if the existing datacenters are not completely in-sync.

a. Use `nodetool rebuild` on one or more nodes at the same time. Run on one node at a time to reduce the impact on the existing cluster.

b. Alternatively, run the command on multiple nodes simultaneously when the cluster can handle the extra I/O and network pressure.

11. Check that your cluster is up and running:

```
$ dsetool status
```

Note: If DSE has problems starting, see *Troubleshooting starting and installing DSE.*

The datacenters in the cluster are now replicating with each other.
Operations

Status=Up/Down

<table>
<thead>
<tr>
<th>State=Normal/Leaving/Joining/Moving</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Address</th>
<th>Load</th>
<th>Tokens</th>
<th>Owns</th>
<th>Host ID</th>
<th>Rack</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN 110.82.155.0</td>
<td>21.33 KB</td>
<td>256</td>
<td>33.3%</td>
<td>a9fa31c7-f3c0-...</td>
<td>RAC1</td>
</tr>
<tr>
<td>UN 110.82.155.1</td>
<td>21.33 KB</td>
<td>256</td>
<td>33.3%</td>
<td>f5bb416c-db51-...</td>
<td>RAC1</td>
</tr>
<tr>
<td>UN 110.54.125.1</td>
<td>21.33 KB</td>
<td>256</td>
<td>16.7%</td>
<td>b836748f-c94f-...</td>
<td>RAC1</td>
</tr>
</tbody>
</table>

DC: Analytics

Status=Up/Down

<table>
<thead>
<tr>
<th>State=Normal/Leaving/Joining/Moving</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Address</th>
<th>Load</th>
<th>Owns</th>
<th>Host ID</th>
<th>Tokens</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN 110.54.125.2</td>
<td>28.44 KB</td>
<td>13.0%</td>
<td>e2451cdf-f070-...</td>
<td>-922337... RAC1</td>
</tr>
<tr>
<td>UN 110.82.155.2</td>
<td>44.47 KB</td>
<td>16.7%</td>
<td>f9fa4276-a2c5-...</td>
<td>30745512... RAC1</td>
</tr>
<tr>
<td>UN 110.82.155.3</td>
<td>54.33 KB</td>
<td>23.6%</td>
<td>b9fc31c7-3bc0-...</td>
<td>45674488... RAC1</td>
</tr>
</tbody>
</table>

DC: Solr

Status=Up/Down

<table>
<thead>
<tr>
<th>State=Normal/Leaving/Joining/Moving</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Address</th>
<th>Load</th>
<th>Owns</th>
<th>Host ID</th>
<th>Tokens</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN 110.54.125.3</td>
<td>15.44 KB</td>
<td>50.2%</td>
<td>e2451cdf-f070-...</td>
<td>9243578... RAC1</td>
</tr>
<tr>
<td>UN 110.82.155.4</td>
<td>18.78 KB</td>
<td>49.8%</td>
<td>e2451cdf-f070-...</td>
<td>10000 RAC1</td>
</tr>
</tbody>
</table>

cassandra-topology.properties

The location of the `cassandra-topology.properties` file depends on the type of installation:

<table>
<thead>
<tr>
<th>Type of Installation</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package installations</td>
<td><code>/etc/dse/cassandra/cassandra-topology.properties</code></td>
</tr>
<tr>
<td>Installer-Services installations</td>
<td><code>/etc/dse/cassandra/cassandra-topology.properties</code></td>
</tr>
<tr>
<td>Tarball installations</td>
<td><code>installation_location/resources/cassandra/conf/cassandra-topology.properties</code></td>
</tr>
<tr>
<td>Installer-No Services installations</td>
<td><code>installation_location/resources/cassandra/conf/cassandra-topology.properties</code></td>
</tr>
</tbody>
</table>

cassandra-rackdc.properties

The location of the `cassandra-rackdc.properties` file depends on the type of installation:

<table>
<thead>
<tr>
<th>Type of Installation</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package installations</td>
<td><code>/etc/dse/cassandra/cassandra-rackdc.properties</code></td>
</tr>
<tr>
<td>Installer-Services installations</td>
<td><code>/etc/dse/cassandra/cassandra-rackdc.properties</code></td>
</tr>
</tbody>
</table>
Operations

<table>
<thead>
<tr>
<th>Tarball installations</th>
<th>installation_location/resources/cassandra/conf/cassandra-rackdc.properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer-No Services installations</td>
<td>installation_location/resources/dse/conf/dse.yaml</td>
</tr>
</tbody>
</table>

dse.yaml

The location of the dse.yaml file depends on the type of installation:

<table>
<thead>
<tr>
<th>Package installations</th>
<th>/etc/dse/dse.yaml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer-Services installations</td>
<td>installation_location/resources/dse/conf/dse.yaml</td>
</tr>
</tbody>
</table>

Adding a datacenter to a cluster using a designated datacenter as a data source

Complete the following steps to add a datacenter to an existing cluster using a designated datacenter as a data source. In this procedure, a new datacenter, DC4, is added to an existing cluster with existing datacenters DC1, DC2, and DC3.

Prerequisites:

Important: Complete the prerequisite tasks outlined in Initializing a cluster to prepare the environment.

1. Configure every keyspace using SimpleStrategy to use the NetworkTopologyStrategy replication strategy, including (but not restricted to) the following keyspaces.

 If SimpleStrategy was used previously, this step is required to configure NetworkTopologyStrategy.

 a. Use `ALTER KEYSPACE` to change the keyspace replication strategy *(page 1309)* to NetworkTopologyStrategy for the following keyspaces.

   ```sql
   ALTER KEYSPACE keyspace_name WITH REPLICACTION =
   {'class' : 'NetworkTopologyStrategy', 'ExistingDC1' : 3};
   ```

 - **DSE security:** system_auth, dse_security
 - **DSE performance:** dse_perf
 - **DSE analytics** *(page 294)*: dse_leases, dsefs
 - **System resources:** system_traces, system_distributed
 - **OpsCenter** (if installed)
 - All keyspaces created by users

 b. Use `DESCRIBE SCHEMA` to check the replication strategy of keyspaces in the cluster. Ensure that any existing keyspaces use the NetworkTopologyStrategy replication strategy.

   ```sql
   DESCRIBE SCHEMA ;
   ```
CREATE KEYSPACE dse_perf WITH replication =
('class': 'NetworkTopologyStrategy, 'DC1': '3') AND
durable_writes = true;
...
CREATE KEYSPACE dse_leases WITH replication =
('class': 'NetworkTopologyStrategy, 'DC1': '3') AND
durable_writes = true;
...
CREATE KEYSPACE dsefs WITH replication =
('class': 'NetworkTopologyStrategy, 'DC1': '3') AND
durable_writes = true;
...
CREATE KEYSPACE dse_security WITH replication =
('class': 'NetworkTopologyStrategy, 'DC1': '3') AND
durable_writes = true;

2. Stop the OpsCenter Repair Service if it is running in the cluster. See Turning the Repair Service off.

3. In the new datacenter, install DSE (page 145) on each new node. Do not start the service or restart the node.

 Important: Use the same version of DSE on all nodes in the cluster.

4. Configure properties in cassandra.yaml on each new node, following the configuration of the other nodes in the cluster.

 Tip: Use the yaml_diff tool (page 1273) to review and make appropriate changes to the cassandra.yaml and dse.yaml configuration files.

 a. Configure node properties:

 • `-seeds:internal_IP_address` of each seed node

 Important: Include at least one seed node from each datacenter. DataStax recommends more than one seed node per datacenter, in more than one rack. **Do not make all nodes seed nodes.**

 • `auto_bootstrap: true`

 This setting has been removed from the default configuration, but, if present, should be set to `true`.

 • `listen_address: empty`
If not set, DSE asks the system for the local address, which is associated with its host name. In some cases, DSE does not produce the correct address, which requires specifying the `listen_address`.

- **endpoint_snitch:** `snitch`

See [endpoint_snitch (page 203)] and [snitches].

Important: Do not use the DseSimpleSnitchSimpleSnitch (default). The DseSimpleSnitch (default) is used only for single-datacenter deployments (or single-zone deployments in public clouds), and does not recognize datacenter or rack information.

<table>
<thead>
<tr>
<th>Snitch</th>
<th>Configuration file</th>
</tr>
</thead>
<tbody>
<tr>
<td>GossipingPropertyFileSnitch</td>
<td>cassandra-rackdc.properties file (page 276)</td>
</tr>
<tr>
<td>Amazon EC2 single-region snitch</td>
<td></td>
</tr>
<tr>
<td>Amazon EC2 multi-region snitch</td>
<td></td>
</tr>
<tr>
<td>Google Cloud Platform snitch</td>
<td></td>
</tr>
<tr>
<td>PropertyFileSnitch</td>
<td>cassandra-topology.properties file (page 277)</td>
</tr>
</tbody>
</table>

- If using a `cassandra.yaml` or `dse.yaml` file from a previous version, check the [Upgrade Guide](page) for removed settings.

b. Configure node architecture (all nodes in the datacenter must use the same type):

Virtual node (vnode) allocation algorithm settings

- Set `num_tokens` (page 214) to 8 (recommended).
- Set `allocate_tokens_for_local_replication_factor` (page 214) to the target replication factor for keyspaces in the new datacenter. If the keyspace RF varies, alternate the settings to use all the replication factors.
- Comment out the `initial_token` (page 213) property.

Note: See [Virtual node (vnode) configuration (page 290)] for more details.

Single-token architecture settings
• Generate the initial token for each node and set this value for the initial_token (page 213) property.

See Adding or replacing single-token nodes (page 1311) for more information.

• Comment out both num_tokens (page 214) and allocate_tokens_for_local_replication_factor (page 214).

5. In the cassandra-rackdc.properties (GossipingPropertyFileSnitch) or cassandra-topology.properties (PropertyFileSnitch) file, assign datacenter and rack names to the IP addresses of each node, and assign a default datacenter name and rack name for unknown nodes.

 Note: Migration information: The GossipingPropertyFileSnitch always loads cassandra-topology.properties when the file is present. Remove the file from each node on any new cluster, or any cluster migrated from the PropertyFileSnitch.

 # Transactional Node IP=Datacenter:Rack
 110.82.155.0=DC_Transactional:RAC1
 110.82.155.1=DC_Transactional:RAC1
 110.54.125.1=DC_Transactional:RAC2
 110.54.125.2=DC_Analytics:RAC1
 110.54.155.2=DC_Analytics:RAC2
 110.82.155.3=DC_Analytics:RAC1
 110.54.125.3=DC_Search:RAC1
 110.82.155.4=DC_Search:RAC2

 # default for unknown nodes
 default=DC1:RAC1

 Note: After making any changes in the configuration files, you must the restart the node for the changes to take effect.

6. Make the following changes in the existing datacenters.

 a. On nodes in the existing datacenters, update the -seeds property in cassandra.yaml to include the seed nodes in the new datacenter.

 b. Add the new datacenter definition to the cassandra.yaml properties file for the type of snitch used in the cluster. If changing snitches, see Switching snitches (page 1307).

7. After you have installed and configured DSE on all nodes, start the seed nodes one at a time, and then start the rest of the nodes:

 • Package installations: Starting DataStax Enterprise as a service (page 1275)
Operations

- Tarball installations: Starting DataStax Enterprise as a stand-alone process
 (page 1278)

8. Install and configure DataStax Agents on each node in the new datacenter if necessary: Installing DataStax Agents

9. Run `nodetool status` (page 1055) to ensure that new datacenter is up and running.

```plaintext
nodetool status

Datacenter: DC1
============
Status=Up/Down
|/ State=Normal/Leaving/Joining/Moving
-- Address   Load  Owns   Host ID
  Token       Rack
UN 10.200.175.11  474.23 KiB ? 7297d21e-a04e-4bb1-91d9-8149b03fb60a -9223372036854775808 rack1

Datacenter: DC2
============
Status=Up/Down
|/ State=Normal/Leaving/Joining/Moving
-- Address   Load  Owns   Host ID
  Token       Rack
UN 10.200.175.113  518.36 KiB ? 2ff7d46c-f084-477e-aa53-0f4791c71dbc -9223372036854775798 rack1

Datacenter: DC3
============
Status=Up/Down
|/ State=Normal/Leaving/Joining/Moving
-- Address   Load  Owns   Host ID
  Token       Rack
UN 10.200.175.111  961.56 KiB ? ac43e602-ef09-4d0d-a455-3311f444198c -9223372036854775788 rack1

Datacenter: DC4
============
Status=Up/Down
|/ State=Normal/Leaving/Joining/Moving
-- Address   Load  Owns   Host ID
  Token       Rack
UN 10.200.175.114  361.56 KiB ? ac43e602-ef09-4d0d-a455-3322f444198c -9223372036854775688 rack1
```

10. After all nodes are running in the cluster and the client applications are datacenter aware, use cqlsh to alter the keyspaces to add the desired replication in the new datacenter.

```plaintext
ALTER KEYSPACE keyspace_name WITH REPLICACTION =
{"class" : 'NetworkTopologyStrategy', 'ExistingDC1' : 3, 'NewDC2' : 2};
```
Warning: If client applications, including DSE Search and DSE Analytics, are not properly configured, they might connect to the new datacenter before it is online. Incorrect configuration results in connection exceptions, timeouts, and/or inconsistent data.

11. Run `nodetool rebuild (page 1009)` on each node in the new datacenter, specifying the corresponding datacenter/rack from the source datacenter.

```
$ nodetool rebuild -
dc source_datacenter_name:source_datacenter_rack_name
```

The following commands replicate data from an existing datacenter DC1 to the new datacenter DC2 on each DC2 node. The rack specifications correspond with the rack specifications in DC1:

On DC2:RACK1 nodes run:

```
$ nodetool rebuild -dc DC1:RACK1
```

On DC2:RACK2 nodes run:

```
$ nodetool rebuild -dc DC1:RACK2
```

On DC2:RACK3 nodes run:

```
$ nodetool rebuild -dc DC1:RACK3
```

a. Use `nodetool rebuild -dc` on one or more nodes at the same time. Run on one node at a time to reduce the impact on the source datacenter.

b. Alternatively, run the command on multiple nodes simultaneously when the cluster can handle the extra I/O and network pressure.

Tutorial Info: Rebuild can be safely run in parallel, but has potential performance tradeoffs. The nodes in in the source datacenter will be streaming data, so application performance involving that datacenter’s data will be potentially impacted. Run tests within a the environment, adjusting various levels of parallelism and streaming throttling to strike the optimal balance of speed and performance.

12. Monitor the rebuild progress for the new datacenter using `nodetool netstats` and examining the size of each node.

Tutorial Info: The `nodetool rebuild` command issues a JMX call to the DSE node and waits for rebuild to finish before returning to the command line. Once the JMX call is invoked, the rebuild process will continue on the server regardless of the nodetool rebuild process (the rebuild will continue to run if nodetool dies.) There is not typically significant output from the nodetool rebuild command itself. Instead, rebuild progress should be monitored via `nodetool netstats`, as well as examining the data size of each node.
Note: The data load shown in `nodetool status` will only be updated after a given source node is done streaming, so it will appear to lag behind bytes reported on disk (e.g. `du`). If any streaming errors occur, `ERROR` messages will be logged to `system.log` and the rebuild will stop. In the event of temporary failure, `nodetool rebuild` can be re-run and skips any ranges that were already successfully streamed.

13. Adjust stream throttling on the source datacenter as required to balance out network traffic. See `nodetool setstreamthroughput` (page 1041).

14. Confirm that all rebuilds are successful by searching for `finished rebuild` in the `system.log` of each node in the new datacenter.

 Note: In rare cases the communication between two streaming nodes may hang, leaving the rebuild operation alive but with no data streaming. Monitor streaming progress using `nodetool netstats`, and, if the streams are not making any progress, restart the node where `nodetool rebuild` was executed and re-run `nodetool rebuild` with the same parameters used originally.

15. Start the DataStax Agent on each node in the new datacenter if necessary.

16. Start the OpsCenter Repair Service if necessary. See Turning the Repair Service on.

Replacing a dead node or dead seed node

Steps to replace a node that has died for some reason, such as hardware failure.

The procedure for replacing a dead node is the same for vnodes and single-token nodes. Extra steps are required for replacing dead seed nodes.

Warning: Only add new nodes to the cluster. A new node is a system in which DataStax Enterprise (DSE) has never started. The node must have absolutely NO PREVIOUS DATA in the data directory, `saved_caches`, `commitlog`, and `hints`. Adding nodes previously used for testing or that have been removed from another cluster, merges the older data into the cluster and may cause data loss or corruption.

1. Run `nodetool status` (page 1055) to verify that the node is dead (`DN`).
2. Record the datacenter, address, and rack settings of the dead node; you will use these later.

3. Add the replacement node (page 145) to the network and record its IP address.

4. If the dead node was a seed node, change the cluster's seed node configuration on each node:

 a. In the cassandra.yaml file for each node, remove the IP address of the dead node from the – seeds list in the seed-provider (page 205) property.

 b. If the cluster needs a new seed node to replace the dead node, add the new node's IP address to the – seeds list of the other nodes.

 Attention: Making every node a seed node is not recommended because of increased maintenance and reduced gossip performance. Gossip optimization is not critical, but it is recommended to use a small seed list (approximately three nodes per datacenter).

5. On an existing node, gather setting information for the new node from the cassandra.yaml file:

 • cluster_name
 • endpoint_snitch
 • Other non-default settings: Use the diff tool to compare current settings with default settings.

6. Gather rack and datacenter information:

 • If the cluster uses the PropertyFileSnitch, record the rack and data assignments listed in the cassandra-topology.properties file, or copy the file to the new node.
 • If the cluster uses the GossipingPropertyFileSnitch (page 276), Ec2Snitch (page 279), Ec2MultiRegionSnitch (page 280), or GoogleCloudSnitch (page 283), record the rack and datacenter assignments in the dead node’s cassandra-rackdc.properties file.

7. Make sure that the new node meets all prerequisites and then install DSE (page 145) on the new node, but do not start DSE.
Operations

Note: Be sure to install the same version of DSE as is installed on the other nodes in the cluster. If not using the latest version, see [Installing DataStax Enterprise 5.1.x patch releases](page 174).

8. If DSE automatically started on the node, [stop](page 1275) and [clear](page 1359) the data that was added automatically on startup.

9. Add values to the following properties in cassandra.yaml file from the information you gathered earlier:
 - `auto_bootstrap` ([page 212]): If this setting exists and is set to `false`, set it to `true`. (This setting is not included in the default cassandra.yaml configuration file.)
 - `cluster_name` ([page 200])
 - `seed list` ([page 205])
 Warning: If the new node is a seed node, make sure it is not listed in its own – seeds list.

10. Add the rack and datacenter configuration:
 - If the cluster uses the GossipingPropertyFileSnitch ([page 276]), Ec2Snitch ([page 279]), and Ec2MultiRegionSnitch ([page 280]) or GoogleCloudSnitch ([page 283]):
 a. Add the dead node’s rack and datacenter assignments to the cassandra-rackdc.properties file on the replacement node.
 Note: Do not remove the entry for the dead node’s IP address yet.
 b. Delete the cassandra-topology.properties file.
 - If the cluster uses the PropertyFileSnitch:
 a. Copy the cassandra-topology.properties file from an existing node, or add the settings to the local copy.
 b. Edit the file to add an entry with the new node’s IP address and the dead node’s rack and datacenter assignments.

11. Start the new node with the replace_address ([page 286]) option, passing in the IP address of the dead node.
 - Package and Installer-Services installations:
 a. Add the following option to cassandra-env.sh file:
b. Start the node (page 1275).

c. After the node bootstraps, remove the replace-address parameter from cassandra-env.sh.

d. Restart the node (page 1275).

• Tarball and Installer-No Services installations:

 # Start DataStax Enterprise from the installation_location with this option:

 $ sudo bin/dse cassandra -
 Dcassandra.replace_address=address_of_dead_node

Start DataStax Enterprise from the installation_location with this option:

 $ sudo bin/dse cassandra -
 Dcassandra.replace_address=address_of_dead_node

12. Run nodetool status to verify that the new node has bootstrapped successfully.

13. In environments that use the PropertyFileSnitch, wait at least 72 hours and then remove the old node’s IP address from the cassandra-topology.properties file.

 Caution: This ensures that old node’s information is removed from gossip. If removed from the property file too soon, problems may result. Use nodetool gossipinfo (page 993) to check the gossip status. The node is still in gossip until LEFT status disappears.

 Note: The cassandra-rackdc.properties file (page 276) does not contain IP information; therefore this step is not required when using other snitches, such as GossipingPropertyFileSnitch.

cassandra-topology.properties

The location of the cassandra-topology.properties file depends on the type of installation:

<table>
<thead>
<tr>
<th>Package installations</th>
<th>/etc/dse/cassandra/cassandra-topology.properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer-Services installations</td>
<td>/etc/dse/cassandra/cassandra-topology.properties</td>
</tr>
</tbody>
</table>
Tarball installations
Installer-No Services installations
installation_location/resources/cassandra/conf/cassandra-topology.properties

The location of the `cassandra-rackdc.properties` file depends on the type of installation:

<table>
<thead>
<tr>
<th>Package installations</th>
<th>/etc/dse/cassandra/cassandra-rackdc.properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer-Services installations</td>
<td>/etc/dse/cassandra/cassandra-rackdc.properties</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tarball installations</th>
<th>installation_location/resources/cassandra/conf/cassandra-rackdc.properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer-No Services installations</td>
<td>installation_location/resources/cassandra/conf/cassandra-rackdc.properties</td>
</tr>
</tbody>
</table>

The location of the `cassandra-env.sh` file depends on the type of installation:

<table>
<thead>
<tr>
<th>Package installations</th>
<th>/etc/dse/cassandra/cassandra-env.sh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer-Services installations</td>
<td>/etc/dse/cassandra/cassandra-env.sh</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tarball installations</th>
<th>installation_location/resources/cassandra/conf/cassandra-env.sh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer-No Services installations</td>
<td>installation_location/resources/cassandra/conf/cassandra-env.sh</td>
</tr>
</tbody>
</table>

Replacing a running node

Steps to replace a node with a new node, such as when updating to newer hardware or performing proactive maintenance.

Warning: Only add new nodes to the cluster. A new node is a system in which DataStax Enterprise (DSE) has never started. The node must have absolutely NO PREVIOUS DATA in the data directory, saved_caches, commitlog, and hints. Adding nodes previously used for testing or that have been removed from another cluster, merges the older data into the cluster and may cause data loss or corruption.

You can replace a running node in two ways:

- Adding a node and then decommissioning the old node *(page 1300)*
- Replacing a running node *(page 1301)*

Adding a node and then decommissioning the old node

You must prepare and start the replacement node, integrate it into the cluster, and then decommission the old node.

Be sure to use the same version of DataStax Enterprise (DSE) on all nodes in the cluster. See Installing DataStax Enterprise 5.1.x patch releases *(page 174).*
1. Prepare and start the replacement node, as described in Adding nodes to an existing cluster (page 1281).

 Note: If not using vnodes, see Adding single-token nodes to a cluster (page 1311).

2. Confirm that the replacement node is alive:
 - Run `nodetool ring (page 1028)` if not using vnodes.
 - Run `nodetool status (page 1055)` if using vnodes.

 Tarball and Installer No-Services path:

   ```
   installation_location/resources/cassandra/bin
   ```

 The status should show:
 - `nodetool ring: up`
 - `nodetool status: UN`

3. Note the Host ID of the original node; it is used in the next step.

4. Using the Host ID of the original node, decommission the original node from the cluster using the `nodetool decommission (page 963)` command.

5. Run `nodetool cleanup (page 954)` on all the other nodes in the same datacenter.

Replacing a running node

You can replace a node that is currently running and avoid streaming the data twice or running cleanup using these steps.

 Caution: If you've written data using a consistency level of ONE, you risk losing data because the node might contain the only copy of a record. Be absolutely sure that no application uses consistency level ONE.

1. Stop DataStax Enterprise (page 1275) on the node to be replaced.

2. Follow the instructions for replacing a dead node (page 1296) using the old node's IP address for `-Dcassandra.replace_address`.

3. Ensure that consistency level ONE is not used on this node.

Related information:
Operations

Removing a node \[Reduce the size of a datacenter.\] (page 1305)

Moving a node from one rack to another

A common task is moving a node from one rack to another. For example, when using GossipPropertyFileSnitch, a common error is mistakenly placing a node in the wrong rack. To correct the error, use one of the following procedures:

- The preferred method is to decommission the node \(\text{(page 963)}\) and re-add it to the correct rack and datacenter.

 This method takes longer than the alternative method (below) because unneeded data is first removed from the decommissioned node and then the node gets new data during bootstrapping. The alternative method does both operations simultaneously.

- An alternative method is to update the node’s topology \(\text{(page 1307)}\) and restart the node. Once the node is up, run a full repair \(\text{(page 1326)}\) on the cluster.

 Caution: This method has risks because until the repair is completed, the node may blindly handle requests for data the node doesn’t yet have. To mitigate this problem with request handling, start the node with -Dcassandra.join_ring=false after repairing once, then fully join the node to the cluster using the JMX method \(\text{(page 1334)}\) org.apache.cassandra.db.StorageService.joinRing(). The node will be less likely to be out of sync with other nodes before it serves any requests. After joining the node to the cluster, repair the node again, so that any writes missed during the first repair will be captured.

Decommissioning a datacenter

Steps to properly remove a datacenter so no information is lost.

DSE OpsCenter provides connection and activity monitoring and allows you to run full repairs.

1. Make sure no clients are still writing to any nodes in the datacenter.

 When not using OpsCenter, the following JMX MBeans provide details on client connections and pending requests:

 - **Active connections**: org.apache.cassandra.metrics/Client/connectedNativeClients and org.apache.cassandra.metrics/Client/connectedThriftClients
 - **Pending requests**: org.apache.cassandra.metrics/ClientRequests/viewPendingMutations or use nodetool tpstats \(\text{(page 1072)}\).

2. Run a full repair with nodetool repair --full \(\text{(page 1020)}\) or use OpsCenter Starting a repair service.

 This ensures that all data is propagated from the datacenter being decommissioned.
Note: If using OpsCenter ensure that the repair has completed, see Checking the repair progress.

3. Shutdown the OpsCenter Repair Service if in use.

4. Change all keyspaces so they no longer reference the datacenter being removed.

5. Shutdown all nodes in the datacenter.

6. Stop the DataStax Agent on each node if in use.

7. Run `nodetool assassinate (page 952)` on every node in the datacenter being removed:

   ```
   nodetool assassinate remote_IP_address
   ```

 If the RF (replication factor) on any keyspace has not been properly updated:

 a. Note the name of the keyspace that needs to be updated.

 b. Remove the datacenter from the keyspace RF (using ALTER KEYSSPACE).

 c. If the keyspace had RF simple strategy also run a full repair on the keyspace:

   ```
   $ nodetool repair --full keyspace_name
   ```

8. Run `nodetool status (page 1055)` to ensure that the nodes in the datacenter were removed.

Removing DC3 from the cluster:

1. Check the status of the cluster:

   ```
   nodetool status
   ```

 Status shows that there are three datacenters with 1 node in each:

   ```
   Datacenter: DC1
   ==============
   Status=Up/Down
   |  State=Normal/Leaving/Joining/Moving
   -- Address Load Owns Host ID
   Token Rack
   UN 10.200.175.11 474.23 KiB ? 7297d21e-a04e-4bb1-91d9-8149b03fb60a -9223372036854775808 rack1
   Datacenter: DC2
   ==============  
   Status=Up/Down
   |  State=Normal/Leaving/Joining/Moving
   ```
2. Run a full repair:

 $ nodetool repair --full

3. Using JConsole, check the following JMX Beans to make sure there are no active connections:
 - org.apache.cassandra.metrics/Client/connectedNativeClients
 - org.apache.cassandra.metrics/Client/connectedThriftClients

4. Verify that there are no pending write requests on each node that is being removed (The Pending column should read 0 or N/A):

 nodetool tpstats

<table>
<thead>
<tr>
<th>Pool Name</th>
<th>Active</th>
</tr>
</thead>
<tbody>
<tr>
<td>BackgroundIoStage</td>
<td></td>
</tr>
<tr>
<td>Delayed</td>
<td></td>
</tr>
<tr>
<td>Completed...</td>
<td></td>
</tr>
<tr>
<td>0 (N/A)</td>
<td>N/A</td>
</tr>
<tr>
<td>0</td>
<td>640...</td>
</tr>
<tr>
<td>CompactionExecutor</td>
<td></td>
</tr>
<tr>
<td>Delayed</td>
<td></td>
</tr>
<tr>
<td>Completed...</td>
<td></td>
</tr>
<tr>
<td>0 (N/A)</td>
<td>N/A</td>
</tr>
<tr>
<td>0</td>
<td>1039...</td>
</tr>
<tr>
<td>GossipStage</td>
<td></td>
</tr>
<tr>
<td>Delayed</td>
<td></td>
</tr>
<tr>
<td>Completed...</td>
<td></td>
</tr>
<tr>
<td>0 (N/A)</td>
<td>N/A</td>
</tr>
<tr>
<td>0</td>
<td>4580...</td>
</tr>
<tr>
<td>HintsDispatcher</td>
<td></td>
</tr>
<tr>
<td>Delayed</td>
<td></td>
</tr>
<tr>
<td>Completed...</td>
<td></td>
</tr>
<tr>
<td>0 (N/A)</td>
<td>N/A</td>
</tr>
<tr>
<td>0</td>
<td>2...</td>
</tr>
</tbody>
</table>

5. Start cqlsh and remove DC3 from all keyspace configurations. Repeat for each keyspace that has a RF set for DC3:

 ALTER KEYSPACE cycling WITH REPLICATION = {'class': 'NetworkTopologyStrategy', 'DC1':1,'DC2':2};

6. Shutdown the OpsCenter Repair Service if in use.

7. Shutdown all nodes in the datacenter.
8. Stop the DataStax Agent on each node if in use.

9. Run nodetool assassinate on each node in the DC3 (datacenter that is being removed):

 nodetool assassinate remote_IP_address

10. In a remaining datacenter verify that the DC3 has been removed:

 nodetool status

```
Datacenter: DC1
==============
Status=Up/Down
 |-- State=Normal/Leaving/Joining/Moving
   -- Address Load Owns Host ID Token                     Rack
    UN 10.200.175.11 503.54 KiB ? 7297d21e-a04e-4bb1-91d9-8149b03fb60a -9223372036854775808 rack1

Datacenter: DC2
==============
Status=Up/Down
 |-- State=Normal/Leaving/Joining/Moving
   -- Address Load Owns Host ID Token                     Rack
    UN 10.200.175.113 522.47 KiB ? 2ff7d46c-f084-477e-aa53-0f4791c71dbc -9223372036854775798 rack1
```

Removing a node

Use these instructions when you want to remove nodes to reduce the size of your cluster, not for replacing a dead node (page 1296).

Attention: If you are not using Virtual nodes (vnodes), you must rebalance the cluster.

- Check whether the node is up or down using nodetool status (page 1055):

 The nodetool command shows the status of the node (UN=up, DN=down):

```
Datacenter: datacenter1
==============
Status=Up/Down
 |-- State=Normal/Leaving/Joining/Moving
   -- Address Load Tokens Owns Host ID Token                     Rack
    UN 10.194.171.160 53.98 KB 256 6.8% a9fa31c-f3c0-44d1-b8e7-a2628687840c -9223372036854775808 rack1
    UN 10.196.14.148 93.62 KB 256 9.9% f5bb146c-dbsl-475c-a44f-9facc2ffad4e7 rack1
    DN 10.196.14.239  ? 256 8.2% null
```

- If the node is up, run nodetool decommission (page 963).
This assigns the ranges that the node was responsible for to other nodes and replicates the data appropriately.

Use `nodetool netstats (page 1005)` to monitor the progress.

Note: Decommission does not shutdown the node, shutdown the node after decommission has completed.

- If the node is down, choose the appropriate option:

 # If the cluster uses vnodes, remove the node using the `nodetool removenode (page 1018)` command.

 # If the cluster does not use vnodes, before running the `nodetool removenode (page 1018)` command, adjust your tokens to evenly distribute the data across the remaining nodes to avoid creating a hot spot.

- If `removenode` fails, run `nodetool assassinate (page 952)`.

Changing the IP address of a node

To change the IP address of a node, simply change the IP of node and then restart DataStax Enterprise (DSE) *(page 1275).*

1. Stop DSE *(page 1275).*

 Tip: If running DataStax Enterprise as a service, be sure to drain *(page 973)* the node.

2. Replace the old IP address in the `cassandra.yaml` with the new one.

 - `listen_address (page 200)`
 - `broadcast_address (page 213)`
 - (Optional if already set) `rpc_address (page 205)`

3. If the node is a seed node, update the `-seeds` parameter in the `seed_provider (page 205)` list `cassandra.yaml` file on all nodes.

4. If the `endpoint_snitch (page 203)` is `PropertyFileSnitch`, add an entry for the new IP address in the `cassandra-topology.properties` file *(page 277)* on all nodes.

 Note: Do NOT remove the entry for the old IP address.

5. Update the DNS and the local host IP settings.

6. Start DSE on the local host.

7. If the using the `PropertyFileSnitch`, then perform a rolling restart.
Switching snitches

Because snitches determine how the database distributes replicas, the procedure to switch
snitches depends on whether the topology of the cluster changes:

• If data has not been inserted into the cluster, there is no change in the network
topology. This means that you only need to set the snitch; no other steps are necessary.
• If data has been inserted into the cluster, it's possible that the topology has changed
and you will need to perform additional steps.

A change in topology means that there is a change in the datacenters and/or racks where
the nodes are placed. Topology changes may occur when the replicas are placed in different
places by the new snitch. Specifically, the replication strategy places the replicas based
on the information provided by the new snitch. The following examples demonstrate the
differences:

• No topology change
 Change from five nodes using the DseSimpleSnitch (default)SimpleSnitch (default) in a
 single datacenter
 To five nodes in one datacenter and 1 rack using a network snitch such as the
 GossipingPropertyFileSnitch (page 276).

• Topology changes
 # Change from 5 nodes using the DseSimpleSnitch (default)SimpleSnitch (default) in a
 single datacenter
 To 5 nodes in 2 datacenters using the GossipingPropertyFileSnitch (add a
datacenter).
 Note: If splitting one datacenter into two, create a new datacenter (page
 1283) with new nodes. Alter the keyspace replication settings for the
 keyspace that originally existed to reflect that two datacenters now exist.
 Once data is replicated to the new datacenter, remove the number of nodes
 from the original datacenter that have "moved" to the new datacenter.

 # Change from 5 nodes using the DseSimpleSnitch (default)SimpleSnitch (default) in
 a single datacenter
 To 5 nodes in 1 datacenter and 2 racks using the GossipingPropertyFileSnitch
 (page 276) (add rack information).

1. Create a properties file with datacenter and rack information.
 • cassandra-rackdc.properties
Operations

GossipingPropertyFileSnitch (page 276), Ec2Snitch (page 279), and Ec2MultiRegionSnitch (page 280) only.

- cassandra-topology.properties

All other network snitches.

2. Copy the cassandra-rackdc.properties or cassandra-topology.properties file to the configuration directory on all the cluster's nodes. They won't be used until the new snitch is enabled.

<table>
<thead>
<tr>
<th>cassandra-topology.properties</th>
<th>The location of the cassandra-topology.properties file depends on the type of installation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package installations</td>
<td>/etc/dse/cassandra/cassandra-topology.properties</td>
</tr>
<tr>
<td>Installer-Services installations</td>
<td>installation_location/resources/cassandra/conf/cassandra-topology.properties</td>
</tr>
<tr>
<td>Tarball installations</td>
<td>/etc/dse/cassandra/cassandra-rackdc.properties</td>
</tr>
<tr>
<td>Installer-No Services installations</td>
<td>installation_location/resources/cassandra/conf/cassandra-rackdc.properties</td>
</tr>
</tbody>
</table>

3. Change the snitch for each node in the cluster in the node’s cassandra.yaml file. For example:

 `endpoint_snitch: GossipingPropertyFileSnitch`

4. If the topology has not changed, you can restart each node one at a time.

 Any change in the cassandra.yaml file requires a node restart.

5. If the topology of the network has changed, but no datacenters are added:

 a. Shut down all the nodes, then restart them.
b. Run a sequential repair (page 1020) and nodetool cleanup (page 954) on each node.

6. If the topology of the network has changed and a datacenter is added:
 a. Create a new datacenter. (page 1283)
 b. Replicate data into new datacenter. Remove nodes (page 1305) from old datacenter.
 c. Run a sequential repair (page 1020) and nodetool cleanup (page 954) on each node.

 Important: DataStax recommends stopping repair operations during topology changes; the Repair Service does this automatically. Repairs running during a topology change are likely to error when it involves moving ranges.

7. If migrating from the PropertyFileSnitch to the GossipingPropertyFileSnitch, remove the cassandra-topology.properties file from each node on any new cluster after the migration is complete.

Changing keyspace replication strategy

A keyspace is created with a replication strategy. For development, the SimpleStrategy class is acceptable. For production, you must use NetworkTopologyStrategy. To change the strategy, alter the distribution of nodes within multiple datacenters by adding a datacenter, and then add data to the new nodes in the new datacenter and remove nodes from the old datacenter.

1. If necessary, change the snitch (page 1307) to a network-aware setting.

2. Alter the keyspace properties using `ALTER KEYSPACE`:
 - **Example 1:** Switch the keyspace cycling from SimpleStrategy to NetworkTopologyStrategy for a single datacenter:

     ```
     cqlsh> ALTER KEYSPACE cycling WITH REPLICATION = {'class' : 'NetworkTopologyStrategy', 'DC1' : 3};
     ```

 - **Example 2:** Switch the keyspace cycling from SimpleStrategy to NetworkTopologyStrategy for two datacenters:

     ```
     cqlsh> ALTER KEYSPACE cycling WITH REPLICATION = {'class' : 'NetworkTopologyStrategy', 'DC1' : 3, 'DC2' : 2 };
     ```

 Simply altering the keyspace may lead to faulty data replication.
3. Run `nodetool repair` (page 1020) using the `-full` option on each node affected by the change.

```bash
$ nodetool repair -full keyspace
```

It is possible to restrict the replication of a keyspace to selected datacenters or a single datacenter. To do this, use the `NetworkTopologyStrategy` and set the replication factors of the excluded datacenters to 0 (zero):

```cql
ALTER KEYSPACE cycling WITH REPLICATION = {'class': 'NetworkTopologyStrategy', 'DC1': 0, 'DC2': 3, 'DC3': 0};
```

See Modifying the replication factor.

Migrating or renaming a cluster

The information on this page is intended for the following types of scenarios:

- Migrating a cluster, including transitioning an EC2 cluster to Amazon virtual private cloud (VPC), moving a cluster, or upgrading from an early version cluster to a recent major version.
- Renaming a cluster. You cannot change the name of an existing cluster; you must create a new cluster and migrate your data to the new cluster.

The following method migrates a cluster without service interruption and ensures that if a problem occurs in the new cluster, you still have an existing cluster as a fallback.

1. Set up and configure the new cluster as described in Initializing a cluster.

 Note: If you're not using vnodes, be sure to configure the token ranges in the new nodes to match the ranges in the old cluster. See Initializing single-token architecture datacenters.

2. Set up the schema for the new cluster using CQL.

3. Configure your client to write to both clusters.

 Note: Depending on how the writes are implemented, code changes may be required. Be sure to use identical consistency levels.

4. Ensure that the data is flowing to the new nodes so you won't have any gaps when you copy the snapshots to the new cluster in 6 (page 1311).
5. **Snapshot (page 1318)** the old cluster.

6. Copy the data files from your keyspaces to the nodes.
 - You can copy the data files to their matching nodes in the new cluster, which is simpler and more efficient, if:
 - You are not using vnodes.
 - Both clusters use the same version of DataStax Enterprise.
 - The node ratio is 1:1.
 - If the clusters are different sizes or if you are using vnodes, use the **sstableloader (page 1256)** (sstableloader).

7. You can either switch to the new cluster all at once or perform an incremental migration.

 For example, to perform an incremental migration, you can set your client to designate a percentage of the reads that go to the new cluster. This allows you to test the new cluster before decommissioning the old cluster.

8. Ensure that the new cluster is operating properly and then decommission the old cluster. See **Decommissioning a datacenter (page 1302)**.

Adding single-token nodes to a cluster

Steps for adding nodes in single-token architecture clusters, not clusters using **Virtual nodes**.

To add capacity to a cluster, introduce new nodes in stages or by adding an entire datacenter (page 1313). Use one of the following methods:

- **Add capacity by doubling the cluster size**: Adding capacity by doubling (or tripling or quadrupling) the number of nodes is less complicated when assigning tokens. Using this method, existing nodes keep their existing token assignments, and the new nodes are assigned tokens that bisect (or trisect) the existing token ranges.

- **Add capacity for a non-uniform number of nodes**: When increasing capacity with this method, you must recalculate tokens for the entire cluster, and assign the new tokens to the existing nodes.

Warning: Only add **new nodes** to the cluster. A new node is a system in which DataStax Enterprise (DSE) has never started. The node must have absolutely NO PREVIOUS DATA in the data directory, saved_caches, commitlog, and hints. Adding nodes previously used for testing or that have been removed from another cluster, merges the older data into the cluster and may cause data loss or corruption.

For DataStax Enterprise clusters, you can use OpsCenter to **rebalance a cluster**.

1. Calculate the tokens for the nodes based on your expansion strategy using the **Token Generating Tool**.
2. **Install DSE (page 145)** and configure DataStax Enterprise on each new node.

3. If DataStax Enterprise starts automatically, **stop (page 1275)** the node and **clear (page 1359)** the data.

4. Configure cassandra.yaml on each new node:
 - **auto_bootstrap (page 212)**: If **false**, set it to **true**.

 This option is not listed in the default cassandra.yaml configuration file and defaults to **true**.
 - **cluster_name (page 200)**
 - **listen_address (page 200)/broadcast_address (page 213)**: Usually leave blank. Otherwise, use the IP address or host name that other nodes use to connect to the new node.
 - **endpoint_snitch**
 - **initial_token (page 213)**: Set according to your token calculations.

 Caution: If this property has no value, the database assigns the node a random token range and results in a badly unbalanced ring.
 - **seed_provider (page 205)**: Make sure that the new node lists at least one seed node in the existing cluster.

 Warning: Seed nodes cannot **bootstrap**. Make sure the new nodes are not listed in the **-seeds** list. **Do not make all nodes seed nodes**. See Internode communications (gossip).

 - Change any other non-default settings in the new nodes to match the existing nodes. Use the **diff** command to find and merge any differences between the nodes.

5. Depending on the snitch, assign the datacenter and rack names in the cassandra-topology.properties or cassandra-rackdc.properties for each node.

6. **Start DSE (page 1275)** on each new node in two minutes intervals with **cassandra.consistent.rangemovement** turned off:

 $ dse cassandra -Dcassandra.consistent.rangemovement=false

 The following operations are resource intensive and should be done during low-usage times.

7. After the new nodes are fully bootstrapped, use **nodetool move (page 1004)** to assign the new **initial_token** value to each node that requires one, one node at a time.

8. After all nodes have their new tokens assigned, run **nodetool cleanup (page 954)** on each node in the cluster and wait for cleanup to complete on each node before doing the next node.
This step removes the keys that no longer belong to the previously existing nodes.

Adding a datacenter to a single-token architecture cluster

Steps for adding a datacenter to single-token architecture clusters, not clusters using Virtual nodes.

Warning: Only add *new nodes* to the cluster. A new node is a system in which DataStax Enterprise (DSE) has never started. The node must have absolutely NO PREVIOUS DATA in the data directory, saved_caches, commitlog, and hints. Adding nodes previously used for testing or that have been removed from another cluster, merges the older data into the cluster and may cause data loss or corruption.

1. Ensure that you are using *NetworkTopologyStrategy* for all keyspaces.

2. For each new node, edit the configuration properties in the cassandra.yaml file:
 - Set `auto_bootstrap` to `False`.
 - Set the `initial_token`. Be sure to offset the tokens in the new datacenter, see *Initializing single-token architecture datacenters*.
 - Set the `cluster name`.
 - Set any other non-default settings.
 - Set the seed lists (*page 205*). Every node in the cluster must have the same list of seeds and include at least one node from each datacenter. Typically one to three seeds are used per datacenter.

3. Update either the properties file on all nodes to include the new nodes. You do not need to restart.
 - GossipingPropertyFileSnitch: cassandra-rackdc.properties
 - PropertyFileSnitch: cassandra-topology.properties

4. Ensure that your client does not auto-detect the new nodes so that they aren’t contacted by the client until explicitly directed.

5. If using a QUORUM consistency level for reads or writes, check the LOCAL QUORUM or EACH QUORUM consistency level to make sure that the level meets the requirements for multiple datacenters.

6. **Start the new nodes (*page 1275*)**.

7. The GossipingPropertyFileSnitch always loads cassandra-topology.properties when that file is present. Remove the file from each node on any new cluster or any cluster migrated from the PropertyFileSnitch.
8. After all nodes are running in the cluster:
 a. Change the replication factor for your keyspace for the expanded cluster.
 b. Run nodetool rebuild (page 1009) on each node in the new datacenter.

Replacing a dead node in a single-token architecture cluster

Steps for replacing nodes in single-token architecture clusters, not vnodes.

Warning: Only add new nodes to the cluster. A new node is a system in which DataStax Enterprise (DSE) has never started. The node must have absolutely NO PREVIOUS DATA in the data directory, saved_caches, commitlog, and hints. Adding nodes previously used for testing or that have been removed from another cluster, merges the older data into the cluster and may cause data loss or corruption.

1. Run nodetool status (page 1055) to verify that the node is dead (DN).

2. Record the datacenter, address, and rack settings of the dead node; you will use these later.

3. Record the existing initial_token setting from the dead node's cassandra.yaml.

4. Add the replacement node (page 145) to the network and record its IP address.

5. If the dead node was a seed node, change the cluster's seed node configuration on each node:
 a. In the cassandra.yaml file for each node, remove the IP address of the dead node from the -seeds list in the seed-provider (page 205) property.
 b. If the cluster needs a new seed node to replace the dead node, add the new node's IP address to the -seeds list of the other nodes.

 Attention: Making every node a seed node is not recommended because of increased maintenance and reduced gossip performance.
Gossip optimization is not critical, but it is recommended to use a small seed list (approximately three nodes per datacenter).

6. On an existing node, gather setting information for the new node from the cassandra.yaml file:
 - cluster_name
 - endpoint_snitch
 - Other non-default settings: Use the diff tool to compare current settings with default settings.

7. Gather rack and datacenter information:
 - If the cluster uses the PropertyFileSnitch, record the rack and data assignments listed in the cassandra-topology.properties file, or copy the file to the new node.
 - If the cluster uses the GossipingPropertyFileSnitch (page 276), Ec2Snitch (page 279), Ec2MultiRegionSnitch (page 280), or GoogleCloudSnitch (page 283), record the rack and datacenter assignments in the dead node’s cassandra-rackdc.properties file.

8. Make sure that the new node meets all prerequisites and then install DSE (page 145) on the new node, but do not start DSE.

 Note: Be sure to install the same version of DSE as is installed on the other nodes in the cluster. If not using the latest version, see Installing DataStax Enterprise 5.1.x patch releases (page 174).

9. If DSE automatically started on the node, stop (page 1275) and clear (page 1359) the data that was added automatically on startup.

10. Add values to the following properties in cassandra.yaml file from the information gathered earlier:
 - auto_bootstrap (page 212): If this setting exists and is set to false, set it to true. (This setting is not included in the default cassandra.yaml configuration file.)
 - cluster_name (page 200)
 - initial token (page 213)
 - seed list (page 205)

 Warning: If the new node is a seed node, make sure it is not listed in its own - seeds list.

11. Add the rack and datacenter configuration:
 - If the cluster uses the GossipingPropertyFileSnitch (page 276), Ec2Snitch (page 279), and Ec2MultiRegionSnitch (page 280) or GoogleCloudSnitch (page 283):
a. Add the dead node's rack and datacenter assignments to the cassandra-rackdc.properties file on the replacement node.

 Note: Do not remove the entry for the dead node's IP address yet.

b. Delete the cassandra-topology.properties file.

 • If the cluster uses the PropertyFileSnitch:

 a. Copy the cassandra-topology.properties file from an existing node, or add the settings to the local copy.

 b. Edit the file to add an entry with the new node's IP address and the dead node's rack and datacenter assignments.

12. Start the new node with the replace_address (page 286) option, passing in the IP address of the dead node.

 • Package and Installer-Services installations:

 a. Add the following option to cassandra-env.sh file:

         ```
         JVM_OPTS="${JVM_OPTS} -Dcassandra.replace_address=address_of_dead_node
         ```

 b. Start the node (page 1275).

 c. After the node bootstraps, remove the replace-address parameter from cassandra-env.sh.

 d. Restart the node (page 1275).

 • Tarball and Installer-No Services installations:

 # Start DataStax Enterprise from the installation_location with this option:

      ```
      $ sudo bin/dse cassandra -Dcassandra.replace_address=address_of_dead_node
      ```

 Start DataStax Enterprise from the installation_location with this option:

      ```
      $ sudo bin/dse cassandra -Dcassandra.replace_address=address_of_dead_node
      ```

13. Run nodetool status to verify that the new node has bootstrapped successfully.
Tarball and Installer No-Services path:

installation_location/resources/cassandra/bin

14. In environments that use the PropertyFileSnitch, wait at least 72 hours and then remove the old node's IP address from the cassandra-topology.properties file.

Caution: This ensures that old node's information is removed from gossip. If removed from the property file too soon, problems may result. Use nodetool gossipinfo (page 993) to check the gossip status. The node is still in gossip until LEFT status disappears.

Note: The cassandra-rackdc.properties file (page 276) does not contain IP information; therefore this step is not required when using other snitches, such as GossipingPropertyFileSnitch.

cassandra-topology.properties
The location of the cassandra-topology.properties file depends on the type of installation:

<table>
<thead>
<tr>
<th>Type of Installation</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package installations</td>
<td>/etc/dse/cassandra/cassandra-topology.properties</td>
</tr>
<tr>
<td>Installer-Services installations</td>
<td></td>
</tr>
<tr>
<td>Tarball installations</td>
<td>installation_location/resources/cassandra/conf/cassandra-topology.properties</td>
</tr>
<tr>
<td>Installer-No Services installations</td>
<td></td>
</tr>
</tbody>
</table>

cassandra-rackdc.properties
The location of the cassandra-rackdc.properties file depends on the type of installation:

<table>
<thead>
<tr>
<th>Type of Installation</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package installations</td>
<td>/etc/dse/cassandra/cassandra-rackdc.properties</td>
</tr>
<tr>
<td>Installer-Services installations</td>
<td></td>
</tr>
<tr>
<td>Tarball installations</td>
<td>installation_location/resources/cassandra/conf/cassandra-rackdc.properties</td>
</tr>
<tr>
<td>Installer-No Services installations</td>
<td></td>
</tr>
</tbody>
</table>

cassandra-env.sh
The location of the cassandra-env.sh file depends on the type of installation:

<table>
<thead>
<tr>
<th>Type of Installation</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package installations</td>
<td>/etc/dse/cassandra/cassandra-env.sh</td>
</tr>
<tr>
<td>Installer-Services installations</td>
<td></td>
</tr>
</tbody>
</table>
Back up and restore data

DSE OpsCenter provides automated backup and restore functionality, see Backup Service.

About snapshots

DataStax Enterprise backs up data by taking a snapshot of all on-disk data files (SSTable files) stored in the data directory. You can take a snapshot of all keyspaces, a single keyspace, or a single table while the system is online.

Using a parallel ssh tool (such as pssh), you can snapshot an entire cluster. This provides an *eventually consistent* backup. Although no one node is guaranteed to be consistent with its replica nodes at the time a snapshot is taken, a restored snapshot resumes consistency using built-in consistency mechanisms.

After a system-wide snapshot is performed, you can enable incremental backups on each node to backup data that has changed since the last snapshot. Each time a memtable is flushed to disk and an SSTable is created, a hard link is copied into a `/backups` subdirectory of the data directory (provided JNA is enabled). Compacted SSTables do not create hard links in `/backups` because these SSTables do not contain any data that has not already been linked.

Taking a snapshot

Snapshots are taken per node using the *nodetool snapshot* (page 1051) command. To take a global snapshot, run the *nodetool snapshot* command with a parallel ssh utility, such as pssh.

A snapshot first flushes all in-memory writes to disk, then makes a hard link of the SSTable files for each keyspace. You must have enough free disk space on the node to accommodate making snapshots of your data files. A single snapshot requires little disk space. However, snapshots can cause your disk usage to grow more quickly over time because a snapshot prevents old obsolete data files from being deleted. After the snapshot is complete, you can move the backup files to another location if needed, or you can leave them in place.

Note: Restoring from a snapshot requires the table schema.

1. Run *nodetool cleanup* (page 954) to ensure that invalid replicas are removed.

 $ nodetool cleanup cycling

2. Run the *nodetool snapshot* command, specifying the hostname, JMX port, and keyspace. For example:
$ nodetool snapshot -t cycling_2017-3-9 cycling

The name of the snapshot directory appears:

Requested creating snapshot(s) for [cycling] with snapshot name
 [2015.07.17]
Snapshot directory: cycling_2017-3-9

The snapshot files are created in `data/keyspace_name/table_name-UUID/
snapshots/snapshot_name` directory.

$ ls -l data/cycling/cyclist_name-9e516080f30811e689e40725f37c761d/
snapshots/cycling_2017-3-9

For all installations, the default location of the `data` directory is `/var/lib/cassandra/data`.

The data files extension is `.db` and the full CQL to create the table is in the `schema.cql` file.

manifest.json
mc-1-big-CompressionInfo.db
mc-1-big-Data.db
mc-1-big-Digest.crc32
mc-1-big-Filter.db
mc-1-big-Index.db
mc-1-big-Statistics.db
mc-1-big-Summary.db
mc-1-big-TOC.txt
schema.cql

Deleting snapshot files

When taking a snapshot, previous snapshot files are not automatically deleted. You should remove old snapshots that are no longer needed.

The `nodetool clearsnapshot (page 955)` command removes all existing snapshot files from the snapshot directory of each keyspace. You should make it part of your back-up process to clear old snapshots before taking a new one.

1. To delete all snapshots for a node, run the `nodetool clearsnapshot` command. For example:

 $ nodetool -h localhost -p 7199 clearsnapshot

Tarball and Installer No-Services path:

/resources/cassandra/bin
To delete snapshots on all nodes at once, run the nodetool clearsnapshot command using a parallel ssh utility.

2. To delete a single snapshot, run the clearsnapshot command with the snapshot name:

```
$ nodetool clearsnapshot -t <snapshot_name>
```

The file name and path vary according to the type of snapshot. See nodetools snapshot (page 1051) for details about snapshot names and paths.

Enabling incremental backups

When incremental backups are enabled (disabled by default), DataStax Enterprise (DSE) hard-links each memtable-flushed SSTable to a backups directory under the keyspace data directory. This allows storing backups offsite without transferring entire snapshots. Also, incremental backups combined with snapshots to provide a dependable, up-to-date backup mechanism. Compacted SSTables do not create hard links in /backups because these SSTables do not contain any data that has not already been linked. A snapshot at a point in time, plus all incremental backups and commit logs since that time form a complete backup.

As with snapshots, DSE does not automatically clear incremental backup files. DataStax recommends setting up a process to clear incremental backup hard-links each time a new snapshot is created.

1. Edit the cassandra.yaml configuration file on each node in the cluster and change the value of incremental_backups (page 207) to true.

Restoring from a snapshot

Restoring a keyspace from a snapshot requires all snapshot files for the table, and if using incremental backups, any incremental backup files created after the snapshot was taken. Streamed SSTables (from repair, decommission, and so on) are also hard-linked and included.

Note: Restoring from snapshots and incremental backups temporarily causes intensive CPU and I/O activity on the node being restored.

Restoring from local nodes

This method copies the SSTables from the snapshots directory into the correct data directories.

1. Make sure the table schema exists and is the same as when the snapshot was created.

 The nodetool snapshot command creates a table schema in the output directory. If the table does not exist, recreate it using the schema.cql file.

2. If necessary, truncate the table.
Note: You may not need to truncate under certain conditions. For example, if a node lost a disk, you might restart before restoring so that the node continues to receive new writes before starting the restore procedure.

Truncating is usually necessary. For example, if there was an accidental deletion of data, the tombstone from that delete has a later write timestamp than the data in the snapshot. If you restore without truncating (removing the tombstone), the database continues to shadow the restored data. This behavior also occurs for other types of overwrites and causes the same problem.

3. Locate the most recent snapshot folder. For example:

```
/var/lib/cassandra/data/keyspace_name/table_name-UUID/
  snapshots/snapshot_name
```

4. Copy the most recent snapshot SSTable directory to the `/var/lib/cassandra/
data/keyspace/table_name-UUID` directory.

 For all installations, the default location of the `data` directory is `/var/lib/
cassandra/data`.

5. Run `nodetool refresh` *(page 1013)*.

Restoring from centralized backups

This method uses `sstableloader` *(page 1256)* to restore snapshots.

1. Verify that the SSTable version is compatible with the current version of DataStax Enterprise (DSE):

 a. Locate the version in the file names.

 Use the version number in the SSTable file name to determine compatibility and upgrade requirements. The first two letters of the file name is the version, where the first letter indicates a major version and the second letter indicates a minor version. For example, the following SSTable version is `mc`:

      ```
      data/cycling/cyclist_expenses-2d955621194c11e7a38d9504a063a84e/
      mc-6-big-Data.db
      ```

 b. Using the correct DSE version of `sstableupgrade`, create a compatible version:

 For SSTable compatibility and upgrading, see `SSTable compatibility`.

2. Make sure the table schema exists and is the same as when the snapshot was created.
The nodetool snapshot command creates a table schema in the output directory. If the table does not exist, recreate it using the `schema.cql` file.

3. If necessary, truncate the table.

 Note: You may not need to truncate under certain conditions. For example, if a node lost a disk, you might restart before restoring so that the node continues to receive new writes before starting the restore procedure.

 Truncating is usually necessary. For example, if there was an accidental deletion of data, the tombstone from that delete has a later write timestamp than the data in the snapshot. If you restore without truncating (removing the tombstone), the database continues to shadow the restored data. This behavior also occurs for other types of overwrites and causes the same problem.

4. Restore the most recent snapshot using the `sstableloader` tool on the backed-up SSTables.

 The sstableloader streams the SSTables to the correct nodes. You do not need to remove the commitlogs or drain or restart the nodes.

Restoring a snapshot into a new cluster

Suppose you want to copy a snapshot of SSTable data files from a three node DataStax Enterprise cluster with vnodes enabled (128 tokens) and recover it on another newly created three node cluster (128 tokens). The token ranges will not match, because the token ranges cannot be exactly the same in the new cluster. You need to specify the tokens for the new cluster that were used in the old cluster.

Note: This procedure assumes you are familiar with restoring a snapshot and configuring and initializing a cluster.

To recover the snapshot on the new cluster:

1. From the old cluster, retrieve the list of tokens associated with each node’s IP:

   ```bash
   $ nodetool ring | grep -w ip_address_of_node | awk '{print $NF ","}' | xargs
   ```

2. In the `cassandra.yaml` file for each node in the new cluster, add the list of tokens you obtained in the previous step to the `initial_token` parameter using the same `num_tokens` setting as in the old cluster.
Warning: If nodes are assigned to racks, make sure the token allocation and rack assignments in the new cluster are identical to those of the old.

3. Make any other necessary changes in the new cluster’s cassandra.yaml and property files so that the new nodes match the old cluster settings. Make sure the seed nodes are set for the new cluster.

4. Clear the system table data from each new node:

   ```
   $ sudo rm -rf /var/lib/cassandra/data/system/*
   ```

 This allows the new nodes to use the initial tokens defined in the cassandra.yaml when they restart.

5. Start each node using the specified list of token ranges in new cluster’s cassandra.yaml:

   ```
   initial_token: -9211270970129494930, -9138351317258731895, -8980763462514965928, ...
   ```

6. Create schema in the new cluster. All the schemas from the old cluster must be reproduced in the new cluster.

7. Stop the node (page 1275). Using nodetool refresh is unsafe because files within the data directory of a running node can be silently overwritten by identically named just-flushed SSTables from memtable flushes or compaction. Copying files into the data directory and restarting the node will not work for the same reason.

8. Restore the SSTable files snapshotted (page 1320) from the old cluster onto the new cluster using the same directories, while noting that the UUID component of target directory names has changed. Without restoration, the new cluster will not have data to read upon restart.

9. Restart the node (page 1275).

Recovering from a single disk failure using JBOD

Steps for recovering from a single disk failure in a disk array using JBOD (just a bunch of disks).

DataStax Enterprise might not fail from the loss of one disk in a JBOD array, but some reads and writes may fail when:

- The operation’s consistency level is ALL.
- The data being requested or written is stored on the defective disk.
- The data to be compacted is on the defective disk.
It's possible that you can simply replace the disk, restart DSE, and run `nodetool repair`. However, if the disk crash corrupted system table, you must remove the incomplete data from the other disks in the array. The procedure for doing this depends on whether the cluster uses vnodes or single-token architecture.

If a disk fails on a node in a cluster using DSE 5.0 or earlier, replace the node (page 1296).

1. Verify that the node has a defective disk and identify the disk, by checking the logs on the affected node.

 Disk failures are logged in `FILE NOT FOUND` entries, which identifies the mount point or disk that has failed.

2. If the node is still running, stop DSE (page 1275) and shut down the node.

3. Replace the defective disk and restart the node.

4. If the node cannot restart:

 a. Try restarting DSE without bootstrapping the node:

 Package and Installer-Services installations:

 a. Add the following option to `cassandra-env.sh` file:

      ```
      JVM_OPTS="$JVM_OPTS -Dcassandra.allow_unsafe_replace=true"
      ```

 b. **Starting DataStax Enterprise as a service (page 1275).**

 c. After the node bootstraps, remove the `-Dcassandra.allow_unsafe_replace=true` parameter from `cassandra-env.sh`.

 d. **Starting DataStax Enterprise as a service (page 1275).**

 Tarball and Installer-No Services installations:

 • Start DataStax Enterprise with this option:

      ```
      $ sudo bin/dse cassandra
      Dcassandra.allow_unsafe_replace=true
      ```

 Tarball and Installer No-Services path:

      ```
      installation_location
      ```
5. If DSE restarts, run `nodetool repair (page 1020)` on the node. If not, replace the node (page 1296).

6. If the repair succeeds, the node is restored to production. Otherwise, go to 7 (page 1325) or 8 (page 1325).

7. For a cluster using vnodes:
 a. On the affected node, clear the system directory on each functioning drive.

 Example for a node with a three disk JBOD array:

   ```
   $ -/mnt1/cassandra/data
   $ -/mnt2/cassandra/data
   $ -/mnt3/cassandra/data
   ```

 If mnt1 has failed:

   ```
   $ rm -fr /mnt2/cassandra/data/system
   $ rm -fr /mnt3/cassandra/data/system
   ```

 b. Restart DSE without bootstrapping as described in 4 (page 1324):

   ```
   $ -Dcassandra.allow_unsafe_replace=true
   ```

 c. Run `nodetool repair (page 1020)` on the node.

 If the repair succeeds, the node is restored to production. If not, replace the dead node (page 1296).

8. For a cluster single-token nodes:
 a. On one of the cluster’s working nodes, run `nodetool ring (page 1028)` to retrieve the list of the repaired node’s tokens:

   ```
   $ nodetool ring | grep ip_address_of_node | awk '{print $NF ","}'} xargs
   ```

 b. Copy the output of the nodetool ring into a spreadsheet (space-delimited).

 c. Edit the output, keeping the list of tokens and deleting the other columns.

 d. On the node with the new disk, open the cassandra.yaml file and add the tokens (as a comma-separated list) to the initial_token (page 213) property.
e. Change any other non-default settings in the new nodes to match the existing nodes. Use the `diff` command to find and merge any differences between the nodes.

If the repair succeeds, the node is restored to production. If not, replace the node (page 1296).

f. On the affected node, clear the `system` directory on each functioning drive.

Example for a node with a three disk JBOD array:

```
$ -/mnt1/cassandra/data
$ -/mnt2/cassandra/data
$ -/mnt3/cassandra/data
```

If `mnt1` has failed:

```
$ rm -fr /mnt2/cassandra/data/system
$ rm -fr /mnt3/cassandra/data/system
```

g. Restart DSE without bootstrapping as described in 4 (page 1324):

```
$ -Dcassandra.allow_unsafe_replace=true
```

h. Run `nodetool repair` (page 1020) on the node.

If the repair succeeds, the node is restored to production. If not, replace the node (page 1296).

Repairing nodes

For conceptual information about repairing nodes, see Anti-entropy repair.

Manual repair: Anti-entropy repair

A manual repair is run using `nodetool repair` (page 1020). This tool provides many options for configuring repair. This topic provides guidance for choosing certain parameters.

On this page:
- Partitioner range (-pr) (page 1327)
- Local (-local) vs datacenter (-dc) vs cluster-wide repair (page 1327)
- One-way targeted repair from a remote node (--pull, --hosts, -st, -et) (page 1328)
- Endpoint range vs Subrange repair (-st, -et) (page 1328)
Partitioner range (-pr)

Within a cluster, the database stores a particular range of data on multiple nodes. If you run `nodetool repair` on one node at a time, the database may repair the same range of data several times (depending on the replication factor used in the keyspace). If you use the partitioner range option, `nodetool repair -pr` only repairs a specified range of data once, rather than repeating the repair operation. This option decreases the strain on network resources, although `nodetool repair -pr` still builds Merkle trees for each replica.

DataStax Enterprise allows you to use the partitioner range option with incremental repair; however it is not recommended because incremental repair already avoids re-repairing data by marking data as repaired. The most efficient way to run incremental repair is without the `-pr` parameter since it can skip anti-compaction by marking whole SSTables as repaired.

Note: If you use this option, run the repair on every node in the cluster to repair all data. Otherwise, some ranges of data will not be repaired.

DataStax recommends using the partitioner range parameter when running full repairs during routine maintenance. Do not use it to repair a downed node.

Important: In the DSE 5.1.3 release, default repair type changed to full (from incremental). To run a full repair by partition range:

- On DSE 5.1.3 and later, use `nodetool repair -pr`.
- On DSE 5.1.0-5.1.2, use `nodetool repair -full -pr`.

Local (-local) vs datacenter (-dc) vs cluster-wide repair

Consider carefully before using `nodetool repair` across datacenters, instead of within a local datacenter. When you run repair locally on a node using `-local` or `--in-local-dc`, the command runs only on nodes within the same datacenter as the node that runs it. Otherwise, the command runs cluster-wide repair processes on all nodes that contain replicas, even those in different datacenters. For example, if you start `nodetool repair` over two datacenters, DC1 and DC2, each with a replication factor of 3, `repair` builds Merkle tables for 6 nodes. The number of Merkle Tree increases linearly for additional datacenters. Cluster-wide repair also increases network traffic between datacenters tremendously, and can cause cluster issues.

If the local option is too limited, use the `-dc` or `--in-dc`, which limits repairs to a specific datacenter. This does not repair replicas on nodes in other datacenters, but it can decrease network traffic while repairing more nodes than the local options.

The `nodetool repair -pr` option is good for repairs across multiple datacenters.

Additional guidance for nodetool repair options:

- Does not support the use of `-local` with the `-pr` option unless the datacenter's nodes have all the data for all ranges.
- Does not support the use of `-local` with `-inc` (incremental repair).
Note: For DataStax Enterprise 5.0 and later, a recommended option for repairs across datacenters: use the
-dcpar or --dc-parallel to repair datacenters in parallel.

One-way targeted repair from a remote node (--pull, --hosts, -st, -et)

Runs a repair directly from another node, which has a replica in the same token range. This option minimizes performance impact when cross-datacenter repairs are required.

```
nodetool repair --pull -hosts target,remote keyspace_name
```

Endpoint range vs Subrange repair (-st, -et)

A repair operation runs on all partition ranges on a node, or endpoint range, unless using
-st and -et (or -start-token and -end-token) options to run subrange repairs. When you specify a start token and end token, nodetool repair works between these tokens, repairing only those partition ranges.

Subrange repair is not a good strategy because it requires generated token ranges. However, if you know which partition has an error, you can target that partition range precisely for repair. This approach can relieve the problem known as overstreaming, which ties up resources by sending repairs to a range over and over.

Subrange repair involves more than just the nodetool repair command. A Java describe_splits call to ask for a split containing 32k partitions can be iterated throughout the entire range incrementally or in parallel to eliminate the overstreaming behavior. Once the tokens are generated for the split, they are passed to nodetool repair -st start_token -et end_token. The -local option can be used to repair only within a local datacenter to reduce cross datacenter transfer.

Full repair vs incremental repair (-full vs -inc)

Full repair builds a full Merkle tree and compares it the data against the data on other nodes. For a complete explanation of full repair, see How does anti-entropy repair work?.

Incremental repair compares all SSTables on the node and makes necessary repairs. An incremental repair persists data that has already been repaired, and only builds Merkle trees for unrepaired SSTables. Incremental repair marks the rows in an SSTable as repaired or unrepaired.
Incremental repairs work like full repairs, with an initiating node requesting Merkle trees from peer nodes with the same unrepaired data, and then comparing the Merkle trees to discover mismatches. Once the data has been reconciled and new SSTables built, the initiating node issues an anti-compaction command. Anti-compaction is the process of segregating repaired and unrepaired ranges into separate SSTables, unless the SSTable fits entirely within the repaired range. In the latter case, the SSTable metadata `repairedAt` is updated to reflect its repaired status.

Anti-compaction is handled differently, depending on the compaction strategy assigned to the data.

- Size-tiered compaction (STCS) splits repaired and unrepaired data into separate pools for separate compactions. A major compaction generates two SSTables, one for each pool of data.
- Leveled compaction (LCS) performs size-tiered compaction on unrepaired data. After repair completes, Cassandra moves data from the set of unrepaired SSTables to L0.
Operations

- Date-tiered (DTCS) splits repaired and unrepaired data into separate pools for separate compactions. A major compaction generates two SSTables, one for each pool of data. DTCS compaction should not use incremental repair.

Parallel vs Sequential repair (default, -seq, -dc-par)

Parallel runs repair on all nodes with the same replica data at the same time. (Default behavior in DataStax Enterprise (DSE) 5.0 and later.) Sequential (-seq, --sequential (page 1023)) runs repair on one node after another. (Default behavior in DSE 4.8 and earlier.) Datacenter parallel (-dcpar, --dc-parallel (page 1022)) combines sequential and parallel by simultaneously running a sequential repair in all datacenters; a single node in each datacenter runs repair, one after another until the repair is complete.

Sequential repair takes a snapshot of each replica. Snapshots are hardlinks to existing SSTables. They are immutable and require almost no disk space. The snapshots are active while the repair proceeds, then the database deletes them. When the coordinator node finds discrepancies in the Merkle trees, the coordinator node makes required repairs from the snapshots. For example, for a table in a keyspace with a Replication factor RF=3 and replicas A, B and C, the repair command takes a snapshot of each replica immediately and then repairs each replica from the snapshots sequentially (using snapshot A to repair replica B, then snapshot A to repair replica C, then snapshot B to repair replica C).

Parallel repair works on nodes A, B, and C all at once. During parallel repair, the dynamic snitch processes queries for this table using a replica in the snapshot that is not undergoing repair.

Sequential repair is the default in DSE 4.8 and earlier. Parallel repair is the default for DSE 5.0 and later.

When to run anti-entropy repair

When to run anti-entropy repair is dependent on the characteristics of the cluster. General guidelines are presented here, and should be tailored to each particular case.

Note: An understanding of how repair works is required to fully understand the information presented on this page, see Anti-entropy repair.

On this page:
- When is repair needed? (page 1330)
- Guidelines for running routine node repair (page 1331)
- Guideline for running repair on a downed node (page 1331)

When is repair needed?

Run repair in these situations:

- Routinely to maintain node health.

 Note: Even if deletions never occur, schedule regular repairs. Setting a column to null is a delete.
• When recovering a node after a failure while bringing it back into the cluster.
• To update data on a node containing infrequently read data, and subsequently does not get read repair.
• To update data on a downed node.
• When recovering missing data or corrupted SSTables. You must run non-incremental repair.

Guidelines for running routine node repair

• Run full repairs weekly to monthly. Monthly is generally sufficient, but run more frequently if warranted.
 Important: Full repair is useful for maintaining data integrity, even if deletions never occur.

• Use the parallel and partitioner range options, unless precluded by the scope of the repair.
• Migrate off incremental repairs and then run a full repair to eliminate anti-compaction. Anti-compaction is the process of splitting an SSTable into two SSTables, one with repaired data and one with non-repaired data. This has compaction strategy implications.
 Note: If you are on DataStax Enterprise version 5.1.0-5.1.2, DataStax recommends upgrading to 5.1.3 or higher.

• Run repair frequently enough that every node is repaired before reaching the time specified in the gc_grace_seconds setting. If this requirement is met, deleted data is properly handled in the cluster.
• Schedule routine node repair operations to minimize cluster disruption during low-usage hours and on one node at a time:
 • Increase the time value setting of gc_grace_seconds if data is seldom deleted or overwritten. For these tables, changing the setting minimizes impact to disk space and provides a longer interval between repair operations.
 • Mitigate heavy disk usage by configuring nodetool compaction throttling options (setcompactionthroughput (page 1037) and setcompactionthreshold (page 1036)) before running a repair.

Guideline for running repair on a downed node

• Do not use partitioner range, -pr.
• Do not use incremental repair, -inc.

Changing repair strategies

Change the method used for routine repairs from incremental or full repair. Repairing SSTables using anti-entropy repair (page 1326) is required for database maintenance. A full repair of all SSTables on a node takes a lot of time and is resource-intensive. Incremental
repair consumes less time and resources because it skips SSTables that are already marked as repaired.

Migrating to full repairs

Incremental repairs split the data into repaired and unrepaired SSTables and mark the data state with metadata. Full repairs keeps the data together and uses no repair status flag. Before switching from incremental repairs to full repairs remove the status.

```
$ nodetool mark_unrepaired keyspace_name [table_name]
```

Migrating to incremental repairs

To start using incremental repairs, migrate the SSTables on each node. Incremental repair skips SSTables that are already marked as repaired. These steps ensure the data integrity when changing the repair strategy from full to incremental.

Warning: DataStax recommends using full repairs. Incremental repairs may cause performance issues, see CASSANDRA-9143.

Prerequisites:

In RHEL and Debian installations, you must install the tools packages before following these steps.

Attention: Before starting this procedure, be aware that the first system-wide full repair (3 (page 1333)) can take a long time, as the database recompacts all SSTables. To make this process less disruptive, *migrate* the cluster to incremental repair one node at a time.

In a terminal:

1. Disable autocompaction on the node:

   ```
   $ nodetool disableautocompaction
   ```

 Note: Running `nodetool disableautocompaction (page 966)` without any parameters disables autocompaction for all keyspaces.

2. Before running a full repair (3 (page 1333)), list the nodes SSTables located in `/var/lib/cassandra/data`. You will need this list to run the command to set the repairedAt flag in 5 (page 1333).

 The data directory contains a subdirectory for each keyspace. Each subdirectory contains a set of files for each SSTable. The name of the file that contains the SSTable data has the following format:
3. Run the default full, sequential repair on one node at a time:

 $ nodetool repair

 Tarball and Installer No-Services path: `install_directory/bin`

 Running `nodetool repair` *without parameters* runs a full sequential repair of all SSTables on the node and can take a substantial amount of time.

4. Stop the node *(page 1275).*

5. Using the list you created in 2 *(page 1332)*, set the `repairedAt` flag on each SSTable using `sstablerepairedset` *(page 1268)* to `--is-repaired`.

 Unless you set the `repairedAt` to `repaired` for each SSTable, the existing SSTables might not be changed by the repair process and any incremental repair process that runs later will not process these SSTables.

 - To mark a single SSTable:

 $ sudo sstablerepairedset --really-set --is-repaired SSTable-example-Data.db

 - For batch processing, use a text file of SSTable names:

 $ sudo sstablerepairedset --really-set --is-repaired -f SSTable-names.txt

 Tarball and Installer No-Services path:

 `installation_location/resources/cassandra/tools/bin`

 Note: The value of the `repairedAt` flag is the timestamp of the last repair. The `sstablerepairedset` command applies the current date/time. To check the value of the `repairedAt` flag, use:

 $ sstablemetadata example-keyspace-SSTable-example-Data.db | grep "Repaired at"

6. Restart the node *(page 1275).*

 What's next:

 After you have migrated all nodes, you can run incremental repairs using `nodetool repair` with the `-inc` option.
Related information:
https://www.datastax.com/dev/blog/repair-in-cassandra
https://www.datastax.com/dev/blog/more-efficient-repairs
https://www.datastax.com/dev/blog/anticompaction-in-cassandra-2-1

Monitoring a DataStax Enterprise cluster

OpsCenter provides DataStax cluster monitoring. The OpsCenter Performance Service combines OpsCenter metrics with CQL-based diagnostic tables populated by the DSE Performance Service to help understand, tune, and optimize cluster performance.

Getting statistics and metrics

Understanding the performance characteristics of a cluster is critical to diagnosing issues and planning capacity. Use DataStax tools and a Java Console (JConsole) to get node and cluster statistics.

DataStax Enterprise exposes a number of statistics and management operations via Java Management Extensions (JMX). JMX is a Java technology that supplies tools for managing and monitoring Java applications and services. Any statistic or operation that a Java application has exposed as an MBean can then be monitored or manipulated using JMX.

During normal operation, the database outputs information and statistics that you can monitor using JMX-compliant tools, such as:

- nodetool utility (page 1334)
- nodetool sjk (page 1338)
- JConsole (page 1335)

Using the same tools, you can perform certain administrative commands and operations such as flushing caches or doing a node repair.

Using nodetool

The nodetool utility (page 949) is a command-line interface for monitoring a cluster and performing routine database operations. It is typically run from an operational node.

The nodetool utility provides commands for viewing detailed metrics for tables, server metrics, and compaction statistics:

- nodetool tablestats (page 1063) displays statistics for each table and keyspace.
- nodetool tablehistograms (page 1062) provides statistics about a table, including read/write latency, row size, column count, and number of SSTables.
- nodetool netstats (page 1005) provides statistics about network operations and connections.
- nodetool tpstats (page 1072) provides statistics about the number of active, pending, and completed tasks for each stage of database operations by thread pool.
This example shows the output from nodetool proxyhistograms after running 4,500 insert statements and 45,000 select statements on a three ccm node-cluster on a local computer.

```
$ nodetool proxyhistograms
```

<table>
<thead>
<tr>
<th>Percentile</th>
<th>Read Latency (micros)</th>
<th>Write Latency (micros)</th>
<th>Range Latency (micros)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50%</td>
<td>1502.50</td>
<td>375.00</td>
<td>446.00</td>
</tr>
<tr>
<td>75%</td>
<td>1714.75</td>
<td>420.00</td>
<td>498.00</td>
</tr>
<tr>
<td>95%</td>
<td>31210.25</td>
<td>507.00</td>
<td>800.20</td>
</tr>
<tr>
<td>98%</td>
<td>36365.00</td>
<td>577.36</td>
<td>948.40</td>
</tr>
<tr>
<td>99%</td>
<td>36365.00</td>
<td>740.60</td>
<td>1024.39</td>
</tr>
<tr>
<td>Min</td>
<td>616.00</td>
<td>230.00</td>
<td>311.00</td>
</tr>
<tr>
<td>Max</td>
<td>36365.00</td>
<td>55726.00</td>
<td>59247.00</td>
</tr>
</tbody>
</table>

For a summary of the ring and its current state of general health, use nodetool status (page 1055). For example:

```
$ nodetool status
```

Note: Ownership information does not include topology; for complete information, specify a keyspace

Datacenter: datacenter1

```
Status=Up/Down
|/ State=Normal/Leaving/Joining/Moving
-- Address    Load       Tokens  Owns    Host ID
Rack
UN  127.0.0.1  47.66 KB   1       33.3%   aaa1b7c1-6049-4a08-ad3e-3697a0e30e10  rack1
UN  127.0.0.2  47.67 KB   1       33.3%   1848c369-4306-4874-afdf-5c1e95b8732e  rack1
UN  127.0.0.3  47.67 KB   1       33.3%   49578bf1-728f-438d-b1c1-d8dd644b6f7f  rack1
```

Using JConsole

JConsole is a JMX-compliant tool for monitoring Java applications. JConsole consumes the JMX metrics and operations exposed by DataStax Enterprise (DSE) and displays them in a well-organized GUI.

Note: If you choose to monitor DSE using JConsole, understand that JConsole consumes a significant amount of system resources. For this reason, DataStax
Operations

recommends running JConsole on a remote machine rather than on the same host as a DSE node.

Installing JConsole and connecting to a node

JConsole is included with Sun JDK 5.0 and later, and is also included in OpenJDK.

Prerequisites:

Use the following links to install OpenJDK for your operating system:

- Install OpenJDK 8 on Debian-based systems (page 177)
- Install OpenJDK 8 on RHEL-based systems (page 178)

Additionally, configure JMX authentication if you need to authenticate JMX users and role-based access control to MBeans.

1. After installing OpenJDK, start JConsole from a terminal, which opens the JConsole GUI:

 $ jconsole

2. In the JConsole GUI, select Remote Process and enter the IP address and the port of the node you want to connect to. By default, the DSE JMX metrics monitoring port is 7199.

3. Enter the username and password for the node you are connecting to.
4. Click **Connect** to connect to your node.

5. In the JConsole GUI, click the **MBeans** tab.

6. In the left navigation, click **org.apache.cassandra.metrics** to display all DSE metrics.

Viewing metrics in JConsole

For each node monitored, JConsole provides the following tab views. The Overview and Memory tabs contain information that is very useful for developers. The Memory tab allows you to compare heap and non-heap memory usage, and provides a control to immediately perform Java garbage collection.

Overview
- Displays overview information about the Java VM and monitored values.

Memory
- Displays information about memory use.

Threads
- Displays information about thread use.

Classes
- Displays information about class loading.

VM Summary
- Displays information about the Java Virtual Machine (VM).

MBeans
- Displays information about MBeans.

For specific database metrics and operations, the most important area of JConsole is the MBeans tab. This tab lists the following MBeans:

org.apache.cassandra.auth
- Includes permissions cache.

org.apache.cassandra.db
- Includes caching, table metrics, and compaction.

org.apache.cassandra.internal
- Internal server operations such as gossip, hinted handoff, and Memtable values.

org.apache.cassandra.metrics
- Includes metrics on CQL, clients, keyspaces, read repair, storage, threadpools, and other topics.

org.apache.cassandra.net
- Inter-node communication including FailureDetector, MessagingService, and StreamingManager.

org.apache.cassandra.request
- Tasks related to read, write, and replication operations.

org.apache.cassandra.service
- Includes GCInspector.

When you select an MBean in the tree, its MBeanInfo and MBean Descriptor are displayed on the right, and any attributes, operations or notifications appear in the tree.
Operations

below it. For example, selecting and expanding the org.apache.cassandra.metrics MBean to view available actions available metrics displays the following information:

Using nodetool sjk

Nodetool includes the open source Swiss Java Knife as a built-in command, nodetool sjk (page 1045), for troubleshooting. This section focuses on using the mx subcommand to get and set JMX MBean values.

Warning:

The nodetool sjk mxdump command tries to print all exposed MBeans to the console. The command can fail if it encounters an improperly formatted MBean that exposes a non-serializable type. To interact with a specific list of MBeans, use the nodetool sjk mx command.

Run the nodetool sjk mx command with the -q (query) switch to avoid errors if a non-serializable type (such as an mx4j MBean) is returned.

Listing MBean names

To get values from the command line, first get the complete name of the MBean.

Following is an example of how to use jmxterm to dump the full list of JMX MBeans from a database node:
Tip: Only perform this operation once because the list can be large or search MBeans with particular names in the output by redirecting the result to another filter. For example to find MBeans that contain the word `commitlog`:

```
$ echo "beans" | java -jar /tmp/jmxterm-1.0.0-uber.jar -l localhost:7199 -n 2>&1 | grep -i commitlog
```

The results provide the exact MBean strings to use in `nodetool s jk mx` command.

```
com.datastax.bdp.advrep.v2.metrics:name=CommitLogMessagesRead,type=ReplicationLog
com.datastax.bdp.advrep.v2.metrics:name=CommitLogsDeleted,type=ReplicationLog
com.datastax.bdp.advrep.v2.metrics:name=CommitLogsToConsume,type=ReplicationLog
org.apache.cassandra.db:type=Commitlog
org.apache.cassandra.metrics:name=CompletedTasks,type=CommitLog
org.apache.cassandra.metrics:name=PendingTasks,type=CommitLog
org.apache.cassandra.metrics:name=TotalCommitLogSize,type=CommitLog
org.apache.cassandra.metrics:name=WaitingOnCommit,type=CommitLog
org.apache.cassandra.metrics:name=WaitingOnSegmentAllocation,type=CommitLog
```

Getting the MBean options and values

Use the MBean information option to show available values. For example, to show the options available for `TotalCommitLogSize` from the previous results, use the complete name:

```
$ nodetool s jk mx -b
  "org.apache.cassandra.metrics:name=TotalCommitLogSize,type=CommitLog" -m
```

```
org.apache.cassandra.metrics:type=CommitLog,name=TotalCommitLogSize
org.apache.cassandra.metrics.CassandraMetricsRegistry$JmxGauge
  - Information on the management interface of the MBean
    (A) Value : java.lang.Object
      - Attribute exposed for management
    (O) objectName() : javax.management.ObjectName
      - Operation exposed for management
```

The MBean has a simple value. To read the single number, run the following command:

```
$ nodetool s jk mx -b
  "org.apache.cassandra.metrics:name=TotalCommitLogSize,type=CommitLog" -f Value -mg
```

```
org.apache.cassandra.metrics:type=CommitLog,name=TotalCommitLogSize
67108864
```
Note: SJK is case-sensitive, enter the names exactly.

To check on a more complex metric such as latency, find out how many values are available by using `-mi` option:

```bash
$ nodetool sjk mx -b
"org.apache.cassandra.metrics:name=Latency,scope=Read,type=ClientRequest"
-mi
```

gives:

```
org.apache.cassandra.metrics:type=ClientRequest,scope=Read,name=Latency
org.apache.cassandra.metrics.CassandraMetricsRegistry$JmxTimer
- Information on the management interface of the MBean
(A) Max : double
 - Attribute exposed for management
(A) Min : double
 - Attribute exposed for management
(A) Mean : double
 - Attribute exposed for management
(A) StdDev : double
 - Attribute exposed for management
(A) 95thPercentile : double
 - Attribute exposed for management
(A) DurationUnit : String
 - Attribute exposed for management
(A) 50thPercentile : double
 - Attribute exposed for management
(A) 75thPercentile : double
 - Attribute exposed for management
(A) 98thPercentile : double
 - Attribute exposed for management
(A) 99thPercentile : double
 - Attribute exposed for management
(A) 999thPercentile : double
 - Attribute exposed for management
(A) OneMinuteRate : double
 - Attribute exposed for management
(A) FifteenMinuteRate : double
 - Attribute exposed for management
(A) FiveMinuteRate : double
 - Attribute exposed for management
(A) MeanRate : double
 - Attribute exposed for management
(A) RateUnit : String
 - Attribute exposed for management
(A) Count : long
 - Attribute exposed for management
(O) values() : long[]
 - Operation exposed for management
(O) objectName() : javax.management.ObjectName
 - Operation exposed for management
```

Then to read out a single value from this metric, use the following command:
Thread pool and read/write latency statistics

The DataStax Enterprise database maintains distinct thread pools for different stages of execution. Each thread pool provide statistics on the number of tasks that are active, pending, and completed. Increases in the pending tasks column indicate when to add additional capacity. After a baseline is established, configure alarms for any increases above normal in the pending tasks column. Use `nodetool tpstats` on the command line to view the thread pool details shown in the table.

The database tracks latency (averages and totals) of read, write, and slicing operations at the server level through StorageProxyMBean.

Table 254: Thread Pool statistics reported by nodetool tpstats

<table>
<thead>
<tr>
<th>Thread Pool</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AntiEntropyStage</td>
<td>Tasks related to repair</td>
</tr>
<tr>
<td>CacheCleanupExecutor</td>
<td>Tasks related to cache maintenance (counter cache, row cache)</td>
</tr>
<tr>
<td>CompactionExecutor</td>
<td>Tasks related to compaction</td>
</tr>
<tr>
<td>CounterMutationStage</td>
<td>Tasks related to leading counter writes</td>
</tr>
<tr>
<td>GossipStage</td>
<td>Tasks related to the gossip protocol</td>
</tr>
<tr>
<td>HintsDispatcher</td>
<td>Tasks related to sending hints</td>
</tr>
<tr>
<td>InternalResponseStage</td>
<td>Tasks related to miscellaneous internal task responses</td>
</tr>
<tr>
<td>MemtableFlushWriter</td>
<td>Tasks related to flushing memtables</td>
</tr>
<tr>
<td>MemtablePostFlush</td>
<td>Tasks related to maintenance after memtable flush completion</td>
</tr>
<tr>
<td>MemtableReclaimMemory</td>
<td>Tasks related to reclaiming memtable memory</td>
</tr>
<tr>
<td>MigrationStage</td>
<td>Tasks related to schema maintenance</td>
</tr>
<tr>
<td>MiscStage</td>
<td>Tasks related to miscellaneous tasks, including snapshots and removing hosts</td>
</tr>
<tr>
<td>MutationStage</td>
<td>Tasks related to writes</td>
</tr>
<tr>
<td>Native-Transport-Requests</td>
<td>Tasks related to client requests from CQL</td>
</tr>
</tbody>
</table>
Table Pool

<table>
<thead>
<tr>
<th>ThreadPool</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PendingRangeCalculator</td>
<td>Tasks related to recalculating range ownership after bootstraps/decommissions</td>
</tr>
<tr>
<td>PerDiskMemtableFlushWriter_</td>
<td>Tasks related to flushing memtables to a given disk</td>
</tr>
<tr>
<td>ReadRepairStage</td>
<td>Tasks related to performing read repairs</td>
</tr>
<tr>
<td>ReadStage</td>
<td>Tasks related to reads</td>
</tr>
<tr>
<td>RequestResponseStage</td>
<td>Tasks for callbacks from intra-node requests</td>
</tr>
<tr>
<td>Sampler</td>
<td>Tasks related to sampling statistics</td>
</tr>
<tr>
<td>SecondaryIndexManagement</td>
<td>Tasks related to secondary index maintenance</td>
</tr>
<tr>
<td>ValidationExecutor</td>
<td>Tasks related to validation compactions</td>
</tr>
<tr>
<td>ViewMutationStage</td>
<td>Tasks related to maintaining materialized views</td>
</tr>
</tbody>
</table>

Table statistics

For individual tables, the ColumnFamilyStoreMBean provides the same general latency attributes as StorageProxyMBean. Unlike StorageProxyMBean, ColumnFamilyStoreMBean has a number of other statistics that are important to monitor for performance trends. The most important of these are listed in the table.

Table 255: Table Statistics

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MemtableDataSize</td>
<td>The total size consumed by this table's data (not including metadata).</td>
</tr>
<tr>
<td>MemtableColumnsCount</td>
<td>Returns the total number of columns present in the memtable (across all keys).</td>
</tr>
<tr>
<td>MemtableSwitchCount</td>
<td>How many times the memtable has been flushed out.</td>
</tr>
<tr>
<td>RecentReadLatencyMicros</td>
<td>The average read latency since the last call to this bean.</td>
</tr>
<tr>
<td>RecentWriterLatencyMicros</td>
<td>The average write latency since the last call to this bean.</td>
</tr>
<tr>
<td>LiveSSTableCount</td>
<td>The number of live SSTables for this table.</td>
</tr>
</tbody>
</table>

The recent read latency and write latency counters are important for making sure operations happen in a consistent manner. If these counters start to increase after a period of staying flat, you probably need to add capacity to the cluster.
You can set a threshold and monitor LiveSSTableCount to ensure that the number of SSTables for a given table does not become too great.

Compaction metrics

Monitoring compaction performance is an important aspect of knowing when to add capacity to your cluster. The following attributes are exposed through CompactionManagerMBean.

Table 256: Compaction Metrics

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BytesCompacted</td>
<td>Total number of bytes compacted since server [re]start</td>
</tr>
<tr>
<td>CompletedTasks</td>
<td>Number of completed compactions since server [re]start</td>
</tr>
<tr>
<td>PendingTasks</td>
<td>Estimated number of compactions remaining to perform</td>
</tr>
<tr>
<td>TotalCompactionsCompleted</td>
<td>Total number of compactions since server [re]start</td>
</tr>
</tbody>
</table>

Endpoint metrics MBean

The endpoint metrics MBean tracks the number of requests per second made to each endpoint by the internode communication router.
Tuning the database

Tuning Java resources

Tuning the Java Virtual Machine (JVM) can improve performance or reduce high memory consumption.

About garbage collection

Garbage collection (GC) is the process by which Java removes data that is no longer needed from memory. To achieve the best performance, it is important to select the right garbage collector and heap size settings.

One situation that you definitely want to minimize is a garbage collection pause, also known as a stop-the-world event. A pause occurs when a region of memory is full and the JVM needs to make space to continue. During a pause all operations are suspended. Because a pause affects networking, the node can appear as down to other nodes in the cluster. Additionally, any SELECT and INSERT statements will wait, which increases read and write latencies. Avoid a pause of more than a second, or multiple pauses within a second that add to a large fraction of that second. The basic cause of the problem is the rate of data stored in memory outpaces the rate at which data can be removed. For specific symptoms and causes, see Garbage collection pauses.

Choosing a Java garbage collector

DataStax Enterprise (DSE) 5.1 uses the garbage first collector (G1) by default. G1 is recommended for the following reasons:

- Heap sizes from 16 GB to 64 GB.

 G1 performs better than CMS (concurrent-mark-sweep) for larger heaps because it scans the regions of the heap containing the most garbage objects first, and compacts...
the heap on-the-go, while CMS stops the application when performing garbage collection.

- The workload is variable, that is, the cluster is performing the different processes all the time.
- For future proofing, as CMS will be deprecated in Java 9.
- G1 is easier to configure.
- G1 is self tuning.
- You only need to set MAX_HEAP_SIZE.

However, G1 incurs some latency due to profiling.

CMS is recommended only in the following circumstances:

- You have the time and expertise to manually tune and test garbage collection.

 Be aware that allocating more memory to the heap can result in diminishing performance as the garbage collection facility increases the amount of database metadata in heap memory.

- Heap sizes are smaller than 16 GB.
- The workload is fixed, that is, the cluster performs the same processes all the time.
- The environment requires the lowest latency possible.

Note: For help configuring CMS, contact the DataStax Services team.

Setting CMS as the Java garbage collector

1. Open `jvm.options`.

2. Comment out all lines in the `### GI Settings` section.

3. Uncomment all the `### CMS Settings` section

Determining the heap size

You might be tempted to set the Java heap to consume the majority of the computer’s RAM. However, this setting can interfere with the operation of the OS page cache. Operating systems that maintain the OS page cache for frequently accessed data are very good at keeping this data in memory. Properly tuning the OS page cache usually results in better performance than increasing the row cache.

The database automatically calculates the maximum heap size (MAX_HEAP_SIZE) based on this formula:

```
max(min(1/2 ram, 1024 megabytes), min(1/4 ram, 32765 megabytes))
```

For production use, use these guidelines to adjust heap size for your environment:

- Heap size is usually between ¼ and ½ of system memory.
• Do not devote all memory to heap because it is also used for offheap cache and file system cache.
• Always enable GC logging when adjusting GC.
• Adjust settings gradually and test each incremental change.
• Enable parallel processing for GC, particularly when using DSE Search.
• The `GCInspector` class logs information about any garbage collection that takes longer than 200 ms. Garbage collections that occur frequently and take a moderate length of time (seconds) to complete, indicate excessive garbage collection pressure on the JVM. In addition to adjusting the garbage collection options, other remedies include adding nodes, and lowering cache sizes.
• For a node using G1, DataStax recommends a `MAX_HEAP_SIZE` as large as possible, up to 64 GB.

Note: For more tuning tips, see [Secret HotSpot option improving GC pauses on large heaps](#).

MAX_HEAP_SIZE

The recommended maximum heap size depends on which GC is used:

<table>
<thead>
<tr>
<th>Hardware setup</th>
<th>Recommended <code>MAX_HEAP_SIZE</code></th>
</tr>
</thead>
<tbody>
<tr>
<td>G1 for newer computers (8+ cores) with up to 256 GB RAM</td>
<td>16 GB to 32765 MB. See Java performance tuning.</td>
</tr>
<tr>
<td>CMS for newer computers (8+ cores) with up to 256 GB RAM</td>
<td>No more 16 GB.</td>
</tr>
<tr>
<td>Older computers</td>
<td>Typically 8 GB.</td>
</tr>
</tbody>
</table>

The easiest way to determine the optimum heap size for your environment is:

1. Set the maximum heap size in the `jvm.options` file to a high arbitrary value on a single node. For example, when using G1:

```java
-Xms48G 
-Xmx48G
```

Set the min (-Xms) and max (-Xmx) heap sizes to the same value to avoid stop-the-world GC pauses during resize, and to lock the heap in memory on startup which prevents any of it from being swapped out.

2. Enable GC logging.

3. Check the logs to view the heap used by that node and use that value for setting the heap size in the cluster:
Note: This method decreases performance for the test node, but generally does not significantly reduce cluster performance.

If you don't see improved performance, contact the DataStax Services team for additional help.

HEAP_NEWSIZE

For CMS, you may also need to adjust HEAP_NEWSIZE. This setting determines the amount of heap memory allocated to newer objects or *young generation*. The database calculates the default value for this property in megabytes (MB) as the lesser of:

- 100 times the number of cores
- ¼ of MAX_HEAP_SIZE

As a starting point, set HEAP_NEWSIZE to 100 MB per physical CPU core. For example, for a modern 8-core+ machine:

```
-Xmn800M
```

A larger HEAP_NEWSIZE leads to longer GC pause times. For a smaller HEAP_NEWSIZE, GC pauses are shorter but usually more expensive.

See [Recommended minimum memory for dedicated hardware and virtual environments](#).

How DSE uses memory

The database performs the following major operations within JVM heap:

- To perform reads, the database maintains the following components in heap memory:
 - Bloom filters
 - Partition summary
 - Partition key cache
 - Compression offsets
 - SSTable index summary

 This metadata resides in memory and is proportional to total data. Some of the components grow proportionally to the size of total memory.

- The database gathers replicas for a read or for anti-entropy repair and compares the replicas in heap memory.
- Data written to the database is first stored in memtables in heap memory. Memtables are flushed to SSTables on disk.

To improve performance, the database also uses off-heap memory as follows:

- Page cache. The database uses additional memory as page cache when reading files on disk.
- The Bloom filter and compression offset maps reside off-heap.
• The database can store cached rows in native memory, outside the Java heap. This reduces JVM heap requirements, which helps keep the heap size in the sweet spot for JVM garbage collection performance.

Adjusting JVM parameters for other DataStax Enterprise services

• **DSE Search**: Some users have reported that increasing the stack size improves performance under Tomcat.

 To increase the stack size, uncomment and modify the default setting in the cassandra-env.sh file.

  ```
  # Per-thread stack size.
  JVM_OPTS="$JVM_OPTS -Xss256k"
  ```

 Also, decreasing the memtable space to make room for search caches can improve performance. Modify the memtable space by changing the `memtable_heap_space_in_mb` (page 206) and `memtable_offheap_space_in_mb` (page 207) properties in the cassandra.yaml file.

• **MapReduce**: Because MapReduce runs outside the JVM, changes to the JVM do not affect Analytics/Hadoop operations directly.

Other JMX options

DSE exposes other statistics and management operations via Java Management Extensions (JMX). JConsole (page 1335), the nodetool (page 1334) are JMX-compliant management tools.

Configure the database for JMX management by editing these properties in cassandra-env.sh.

 • `com.sun.management.jmxremote.port`: sets the port on which the database listens from JMX connections.
 • `com.sun.management.jmxremote.ssl`: enables or disables SSL for JMX.
 • `com.sun.management.jmxremote.authenticate`: enables or disables remote authentication for JMX.
 • `-Djava.rmi.server.hostname`: sets the interface hostname or IP that JMX should use to connect. Uncomment and set if you are having trouble connecting.

 Note: By default, you can interact with DSE using JMX on port 7199 without authentication.

Tuning Bloom filters

DataStax Enterprise uses Bloom filters to determine whether an SSTable has data for a particular partition. Bloom filters are unused for range scans, but are used for index scans. Bloom filters are probabilistic sets that allow you to trade memory for accuracy. This means that higher Bloom filter attribute settings `bloom_filter_fp_chance` use less memory, but will
result in more disk I/O if the SSTables are highly fragmented. Bloom filter settings range from 0 to 1.0 (disabled). The default value of `bloom_filter_fp_chance` depends on the compaction strategy.

The LeveledCompactionStrategy (page 1353) (LCS) uses a higher default value (0.1) than the SizeTieredCompactionStrategy (page 1354) (STCS), which has a default of 0.01. Memory savings are nonlinear; going from 0.01 to 0.1 saves about one third of the memory. SSTables using LCS contain a relatively smaller ranges of keys than those using STCS, which facilitates efficient exclusion of the SSTables even without a bloom filter; however, adding a small bloom filter helps when there are many levels in LCS.

The settings you choose depend the type of workload. For example, to run an analytics application that heavily scans a particular table, you would want to inhibit the Bloom filter on the table by setting it high.

To view the observed Bloom filters false positive rate and the number of SSTables consulted per read use `tablestats` (page 1063) in the nodetool utility.

Bloom filters are stored off-heap so you don’t need include it when determining the -Xmx settings (the maximum memory size that the JVM can reach).

To change the `bloom filter property` on a table, use CQL. For example:

```
ALTER TABLE addamsFamily WITH bloom_filter_fp_chance = 0.1;
```

After updating the value of `bloom_filter_fp_chance` on a table, Bloom filters need to be regenerated in one of these ways:

- Initiate compaction (page 1353)
- Upgrade SSTables (page 1078)

You do not have to restart DataStax Enterprise after regenerating SSTables.

Configuring memtable thresholds

Configuring memtable thresholds can improve write performance.

The database flushes memtables to disk, creating SSTables when the commit log space threshold (page 209) or the memtable cleanup threshold (page 210) has been exceeded. Configure the commit log space threshold per node in the cassandra.yaml. How you tune memtable thresholds depends on your data and write load. Increase memtable thresholds under either of these conditions:

- The write load includes a high volume of updates on a smaller set of data.
- A steady stream of continuous writes occurs. This action leads to more efficient compaction.
Operations

Allocating memory for memtables reduces the memory available for caching and other internal database structures, so tune carefully and in small increments.

Data caching

Configuring data caches

DataStax Enterprise includes integrated caching and distributes cache data around the cluster.

On this page:

- About the partition key cache (page 1350)
- About the row cache (page 1350)
- Using key cache and row cache (page 1351)

When a node goes down, the client can read from another cached replica of the data. The database architecture also facilitates troubleshooting because there is no separate caching tier, and cached data matches what is in the database exactly. The integrated cache alleviates the cold start problem by saving the cache to disk periodically. The database reads contents back into the cache and distributes the data when it restarts. The cluster does not start with a cold cache.

The saved key cache files include the ID of the table in the file name. A saved key cache filename for the `users` table in the `mykeyspace` keyspace looks similar to:

mykeyspace-users.users_name_idx-19bd7f80352c11e4aa6a57448213f97f-KeyCache-b.db2046071785672832311.tmp

About the partition key cache

The partition key cache is a cache of the partition index for a table. Using the key cache instead of relying on the OS page cache decreases seek times. Enabling just the key cache results in disk (or OS page cache) activity to actually read the requested data rows, but not enabling the key cache results in more reads from disk.

About the row cache

Note: Utilizing appropriate OS page cache results in better performance than using row caching. Consult resources for page caching for the operating system on which DSE is hosted.

Configure the number of rows to cache in a partition by setting the `rows_per_partition` table option. To cache rows, if the row key is not already in the cache, the database reads the first portion of the partition, and puts the data in the cache. If the newly cached data does not include all cells configured by user, the database performs another read. The actual size of the row-cache depends on the workload. You should properly benchmark your application to get "the best" row cache size to configure.
There are two row cache options, the old serializing cache provider and a new off-heap cache (OHC) provider. The new OHC provider has been benchmarked as performing about 15% better than the older option.

Using key cache and row cache

Typically, you enable either the partition key or row cache for a table.

Tip: Enable a row cache only when the number of reads is much bigger (rule of thumb is 95%) than the number of writes. Consider using the operating system page cache instead of the row cache, because writes to a partition invalidate the whole partition in the cache.

Tip: Disable caching entirely for archive tables, which are infrequently read.

Enabling and configuring caching

Use CQL to enable or disable caching by configuring the caching table property. Set parameters in the cassandra.yaml file to configure global caching properties:

- Partition key cache size ([page 216](#))
- Row cache size ([page 216](#))
- How often DataStax Enterprise saves partition key caches ([page 216](#)) to disk
- How often DSE saves row caches ([page 216](#)) to disk

Configuring the `row_cache_size_in_mb` (in the cassandra.yaml ([page 216](#)) configuration file) determines how much space in memory the database allocates to store rows from the most frequently read partitions of the table.

1. Set the table caching property that configures the partition key cache and the row cache.

```sql
CREATE TABLE users (
  userid text PRIMARY KEY,
  first_name text,
  last_name text,
) WITH caching = { 'keys' : 'NONE', 'rows_per_partition' : '120' };
```

Tips for efficient cache use

Some tips for efficient cache use are:

- Store lower-demand data or data with extremely long partitions in a table with minimal or no caching.
- Deploy a large number of transactional nodes under a relatively light load per node.
- Logically separate heavily-read data into discrete tables.
Note: The Tuning the row cache in Cassandra 2.1 blog describes best practices of using the built-in caching mechanisms and designing an effective data model.

When you query a table, turn on tracing to check that the table actually gets data from the cache rather than from disk. The first time you read data from a partition, the trace shows this line below the query because the cache has not been populated yet:

```
Row cache miss [ReadStage:41]
```

In subsequent queries for the same partition, look for a line in the trace that looks something like this:

```
Row cache hit [ReadStage:55]
```

This output means the data was found in the cache and no disk read occurred. Updates invalidate the cache. If you query rows in the cache plus uncached rows, request more rows than the global limit allows, or the query does not grab the beginning of the partition, the trace might include a line that looks something like this:

```
Ignoring row cache as cached value could not satisfy query [ReadStage:89]
```

This output indicates that an insufficient cache caused a disk read. Requesting rows not at the beginning of the partition is a likely cause. Try removing constraints that might cause the query to skip the beginning of the partition, or place a limit on the query to prevent results from overflowing the cache. To ensure that the query hits the cache, try increasing the cache size limit, or restructure the table to position frequently accessed rows at the head of the partition.

Monitoring and adjusting caching

In the event of high memory consumption, consider tuning data caches.

Make changes to cache options in small, incremental adjustments, then monitor the effects of each change using `nodetool info` (page 995).

The cassandra.yaml file provides options for adjusting row cache and key cache settings:

- Cache size in bytes
- Capacity in bytes
- Number of hits
- Number of requests
- Recent hit rate
- Duration in seconds after which the database saves the key cache.

For example, on start-up, the information from `nodetool info` might look something like this:

```
ID               : 387d15ba-7103-491b-9327-1a691dbb504a
Gossip active    : true
```
Operations

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thrift active</td>
<td>true</td>
</tr>
<tr>
<td>Native Transport active</td>
<td>true</td>
</tr>
<tr>
<td>Load</td>
<td>65.87 KB</td>
</tr>
<tr>
<td>Generation No</td>
<td>1400189757</td>
</tr>
<tr>
<td>Uptime (seconds)</td>
<td>148760</td>
</tr>
<tr>
<td>Heap Memory (MB)</td>
<td>392.82 / 1996.81</td>
</tr>
<tr>
<td>datacenter</td>
<td>datacenter1</td>
</tr>
<tr>
<td>Rack</td>
<td>rack1</td>
</tr>
<tr>
<td>Exceptions</td>
<td>0</td>
</tr>
<tr>
<td>Key Cache</td>
<td>entries 10, size 728 (bytes), capacity 103809024 (bytes), 93 hits, 102 requests, 0.912 recent hit rate, 14400 save period in seconds</td>
</tr>
<tr>
<td>Row Cache</td>
<td>entries 0, size 0 (bytes), capacity 0 (bytes), 0 hits, 0 requests, NaN recent hit rate, 0 save period in seconds</td>
</tr>
<tr>
<td>Counter Cache</td>
<td>entries 0, size 0 (bytes), capacity 51380224 (bytes), 0 hits, 0 requests, NaN recent hit rate, 7200 save period in seconds</td>
</tr>
<tr>
<td>Token</td>
<td>-9223372036854775808</td>
</tr>
</tbody>
</table>

Compacting and compressing

Configuring compaction

As discussed in the How is data maintained?, the compaction process merges keys, combines columns, evicts tombstones, consolidates SSTables, and creates a new index in the merged SSTable.

In the cassandra.yaml file, you configure these global compaction parameters:

- snapshot_before_compaction (page 207)
- concurrent_compactors (page 210)
- compaction_throughput_mb_per_sec (page 206)

The compaction_throughput_mb_per_sec parameter is designed for use with large partitions. The database throttles compaction to this rate across the entire system.

DataStax Enterprise (DSE) provides a start-up option for testing compaction strategies (page 1356) without affecting the production workload.

DSE supports the following compaction strategies, which you can configure using CQL:

- LeveledCompactionStrategy (LCS): The leveled compaction strategy creates SSTables of a fixed, relatively small size (160 MB by default) that are grouped into levels. Within each level, SSTables are guaranteed to be non-overlapping. Each level (L0, L1, L2 and so on) is 10 times as large as the previous. Disk I/O is more uniform and predictable on higher than on lower levels as SSTables are continuously being compacted into progressively larger levels. At each level, row keys are merged into non-overlapping SSTables in the next level. This process can improve performance for reads, because the database can determine which SSTables in each level to check for the existence of row key data. This compaction strategy is modeled after Google’s LevelDB implementation. Also see LCS compaction subproperties.
Operations

- **SizeTieredCompactionStrategy (STCS):** The default compaction strategy. This strategy triggers a minor compaction when there are a number of similar sized SSTables on disk as configured by the table subproperty, `min_threshold`. A minor compaction does not involve all the tables in a keyspace. Also see **STCS compaction subproperties**.

- **TimeWindowCompactionStrategy (TWCS):** This strategy is an alternative for time series data. TWCS compacts SSTables using a series of *time windows*. While with a time window, TWCS compacts all SSTables flushed from memory into larger SSTables using STCS. At the end of the time window, all of these SSTables are compacted into a single SSTable. Then the next time window starts and the process repeats. The duration of the time window is the only setting required. See **TWCS compaction subproperties**. For more information about TWCS, see **How is data maintained?**.

- **DateTieredCompactionStrategy (DTCS):** (deprecated).

To configure the compaction strategy property and **CQL compaction subproperties**, such as the maximum number of SSTables to compact and minimum SSTable size, use **CREATE TABLE** or **ALTER TABLE**.

1. Update a table to set the compaction strategy using the **ALTER TABLE** statement.

   ```sql
   ALTER TABLE users WITH
   compaction = { 'class' : 'LeveledCompactionStrategy' }
   ```

2. Change the **compaction strategy property** to SizeTieredCompactionStrategy and specify the minimum number of SSTables to trigger a compaction using the CQL **min_threshold** attribute.

   ```sql
   ALTER TABLE users
   WITH compaction =
   { 'class' : 'SizeTieredCompactionStrategy', 'min_threshold' : 6 }
   ```

You can monitor the results of your configuration using compaction metrics, see **Compaction metrics (page 1343)**.

What’s next: DSE supports extended logging for Compaction. This utility must be configured as part of the table configuration. The extended compaction logs are stored in a separate file. For details, see **Enabling extended compaction logging**.

Compression

Compression maximizes the storage capacity of DataStax Enterprise (DSE) nodes by reducing the volume of data on disk and disk I/O, particularly for read-dominated workloads. The database quickly finds the location of rows in the SSTable index and decompresses the relevant row chunks. DSE uses a storage engine that dramatically reduces disk volume automatically. See **Putting some structure in the storage engine**.

Write performance is not negatively impacted by compression in DSE as it is in traditional databases. In traditional relational databases, writes require overwrites to existing data files on disk. The database has to locate the relevant pages on disk, decompress them,
overwrite the relevant data, and finally recompress. In a relational database, compression is an expensive operation in terms of CPU cycles and disk I/O. Because SSTable data files are immutable (they are not written to again after they have been flushed to disk), there is no recompression cycle necessary in order to process writes. SSTables are compressed only once when they are written to disk. Writes on compressed tables can show up to a 10 percent performance improvement.

In DSE the commit log can also be compressed and write performance can be improved 6-12%. See the Updates to Cassandra’s Commit Log in 2.2 blog.

When to compress data

Compression is most effective on a table with many rows, where each row contains the same set of columns (or the same number of columns) as all other rows. For example, a table containing user data such as username, email and state is a good candidate for compression. The greater the similarity of the data across rows, the greater the compression ratio and gain in read performance.

A table whose rows contain differing sets of columns is not well-suited for compression.

Don't confuse table compression with compact storage of columns, which is used for backward compatibility of old applications with CQL.

Depending on the data characteristics of the table, compressing its data can result in:

- 25-33% reduction in data size
- 25-35% performance improvement on reads
- 5-10% performance improvement on writes

After configuring compression on an existing table, subsequently created SSTables are compressed. Existing SSTables on disk are not compressed immediately. DataStax Enterprise compresses existing SSTables when the normal database compaction process occurs. You can force existing SSTables to be rewritten and compressed by using nodetool upgradesstables (page 1078) or nodetool scrub (page 1030).

Configuring compression

You configure a table property and subproperties to manage compression. CQL table properties describes the available options for compression. Compression is enabled by default.

- Disable compression, using CQL to set the compression parameter enabled to false.

```sql
CREATE TABLE DogTypes (  
    block_id uuid,  
    species text,  
    alias text,  
    population varint,  
    PRIMARY KEY (block_id)  
)  
WITH compression = { 'enabled' : false };  
```
Operations

• Enable compression on an existing table, using ALTER TABLE to set the compression algorithm class to LZ4Compressor, SnappyCompressor, or DeflateCompressor.

```sql
CREATE TABLE DogTypes (
    WITH compression = { 'class' : 'LZ4Compressor' };
)
```

• Change compression on an existing table, using ALTER TABLE and setting the compression algorithm class to DeflateCompressor.

```sql
ALTER TABLE CatTypes
    WITH compression = { 'class' : 'DeflateCompressor',
                      'chunk_length_in_kb' : 64 }
```

Tune data compression on a per-table basis using CQL to alter a table.

Testing compaction and compression

Write survey mode is a start-up option for testing new compaction and compression strategies. In write survey mode, you can test out new compaction and compression strategies on that node and benchmark the write performance differences, without affecting the production cluster.

Write survey mode adds a node to a database cluster. The node accepts all write traffic as if it were part of the normal cluster, but the node does not officially join the ring.

You can also use the write survey mode to try out a new product version. The nodes you add in write survey mode to a cluster must be of the same major release version as other nodes in the cluster. The write survey mode relies on the streaming subsystem that transfers data between nodes in bulk and differs from one major release to another.

If you want to see how read performance is affected by modifications, stop the node, bring it up as a standalone machine, and then benchmark read operations on the node.

1. Start the node using the write_survey option:

 • Package and Installer-Services installations: Add the following option to cassandra-env.sh file:

     ```bash
     JVM_OPTS="${JVM_OPTS} -Dcassandra.write_survey=true"
     ```

 • Tarball and Installer-No Services installations: Start the node with this option:

     ```bash
     $ cd installation_location
     $ sudo bin/cassandra -Dcassandra.write_survey=true
     ```

 `cassandra-topology.properties`
 The location of the `cassandra-topology.properties` file depends on the type of installation:
Migrating data to DataStax Enterprise

DataStax Enterprise (DSE) uses several solutions for migrating data from other databases:

- The **CQL COPY** command mirrors what the PostgreSQL RDBMS uses for file/export import.

 You can use COPY in the CQL shell to read CSV data to DSE and write CSV data from DSE to a file system. Typically, an RDBMS has unload utilities for writing table data to a file system.

- The **sstableloader** ([page 1256](#)) provides the ability to bulk load external data into a cluster.

ETL tools

If you need more sophistication applied to a data movement situation than just extract-load, you can use any number of extract-transform-load (ETL) solutions that support DSE. These tools provide transformation routines for manipulating source data and then loading the data into a DSE target. The tools offer features such as visual, point-and-click interfaces, scheduling engines, and more.

Many ETL vendors who support DSE supply community editions of their products that are free and able to solve many different use cases. Enterprise editions are also available.

You can download ETL tools that work with DSE from Jaspersoft, Pentaho, and Talend.

Collecting node health and indexing status scores

Node health options are always enabled for all nodes. Node health is a score-based representation of how fit a node is to handle search queries. The node health composite score is based on dropped mutations and uptime. A dynamic health score between 0 and 1 describes the health of the specified DataStax Enterprise node:

- A higher score indicates better node health. The highest score is 1.
- A lower score applies to nodes that have a large number of dropped mutations and nodes that are just started.

On DSE Search nodes, the **shard selection** algorithm uses account proximity and secondary factors such as active and indexing statuses. You can examine node health scores and indexing status. The indexing status is INDEXING, FINISHED, or FAILED.
Replication selection for distributed search queries can be configured to consider node health when multiple candidates exist for a particular token range. This health-based routing enables a trade-off between index consistency and query throughput. When the primary concern is performance, do not enable health-based routing.

dse.yaml

The location of the `dse.yaml` file depends on the type of installation:

<table>
<thead>
<tr>
<th>Package installations</th>
<th>/etc/dse/dse.yaml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer-Services installations</td>
<td></td>
</tr>
<tr>
<td>Tarball installations</td>
<td><code>installation_location/</code> resources/dse/conf/dse.yaml</td>
</tr>
<tr>
<td>Installer-No Services installations</td>
<td></td>
</tr>
</tbody>
</table>

1. In the `dse.yaml` file:

 a. Customize node health options to increase the node health score from 0 to 1 (full health):

   ```yaml
   node_health_options:
     refresh_rate_ms: 50000
     uptime_ramp_up_period_seconds: 10800
     dropped_mutation_window_minutes: 30
   ``

   **node_health_options**

   Node health options are always enabled for all nodes. Node health is a score-based representation of how fit a node is to handle search queries.

   **Tip:** If a node is repairing after a period of downtime, try increasing the `uptime_ramp_up_period_seconds` value to the expected repair time.

   b. To enable replication selection for distributed search queries to consider node health, enable health-based routing:

   ```yaml
 enable_health_based_routing: true
 ``

 Health-based routing enables a trade-off between index consistency and query throughput. When the primary concern is performance, do not enable health-based routing.

2. To retrieve a dynamic health score between 0 and 1 that describes the specified DataStax Enterprise node, use the command.

For example:

```
$ dsetool -h 200.192.10.11 node_health
```
Node Health [0,1]: 0.7

If you do not specify the IP address, the default is the local DataStax Enterprise node.

Specify `dsetool node_health -all` to retrieve the node health scores (page 1357) for all nodes.

You can also see node health scores with `dsetool status`.

3. To retrieve the dynamic indexing status (INDEXING, FINISHED, or FAILED) of the specified core on a node, use the `dsetool core_indexing_status` (page 1177) command.

For example:

```bash
$ dsetool -h 200.192.10.11 core_indexing_status wiki.solr
wiki.solr: INDEXING
```

Clearing the data from DataStax Enterprise

Remove all data from any type of installation.

Package or a DataStax Installer-Services installation

To clear the data from the default directories:

1. After **Stop (page 1280)** the service.

2. Run the following command:

```bash
$ sudo rm -rf /var/lib/cassandra/* ## Remove all data
$ sudo rm -rf /var/lib/cassandra/data/* ## Remove only the data directories
```

Tarball or DataStax Installer-No Services installation

To clear all data from the default directories:

1. **Stop (page 1275)** the DataStax Enterprise (DSE) process.

2. Remove the data:

```bash
$ cd installation_location
$ sudo rm -rf data/* commitlog/* saved_caches/* hints/* ## Remove all data
$ sudo rm -rf data/* ## Remove only the data directories
```

where the **installation_location** is either:

- `/var/lib/cassandra/data`
Operations

- The directory where you installed DSE.
DataStax Studio 2.0

About DataStax Studio

DataStax Studio is an interactive tool for CQL (Cassandra Query Language) and DSE Graph:

- For CQL, it provides the ability to visually create and navigate database objects, create complex queries, and tune CQL queries. Studio includes an intelligent CQL editor that provides syntax highlighting, validation, intelligent code completion, configuration options, and query profiling.
- For DSE Graph, it allows you to explore and view large datasets. It provides an intuitive interface for developers and analysts to collaborate and test theories by mixing code, documentation, and visualizations for query results and profiles into self-documenting notebooks.

Notebooks combine runnable Gremlin code and markdown text in a rich interactive environment. The code is written in the Gremlin graph traversal language. This code is executed by the Gremlin Server that is a part of DataStax Enterprise Graph component. Markdown is a simple language for creating human-readable plain text documents that can be displayed.

Upgrading DataStax Studio

The internal format for Studio settings and notebooks may change when a new version is released. While newly-created notebooks might not work with older versions of Studio, notebooks created in older versions of Studio can be used with new versions. To be on the safe side, you should always back up your older notebooks before opening them in a newer version of Studio (in case you want to downgrade your version of Studio and reopen these notebooks).

DataStax Studio release notes

Studio release notes cover enhancements, known issues, and resolved issues.

For earlier versions, see Studio 1.0.1 and Studio 1.0.2. (No longer supported.)

Studio 2.0.0

Release notes for DataStax Studio

Important: DataStax recommends the latest release.

- 2.0.0 Changes and enhancements (page 1362)
- 2.0.0 Resolved issues (page 1362)
2.0.0 Changes and enhancements

- Code cells in notebooks support CQL code
- DataStax Enterprise Graph improvements
 # Effective schema is scoped per HTTP session
- Changes to how Notebooks are stored. Notebooks are event-sourced aggregates. Notebooks are stored across multiple files located in the $userdata/eventlog and $userdata/snapshots directories *(page 1387).* (STUDIO-735, STUDIO-1545)
- The Graph field moved from Connection to Notebook. Existing Graph values are moved to each related Notebook. (STUDIO-1053)
- Statement line numbers are reported for failed executions. (STUDIO-1169)
- Editor improvements include electric pairing for matching delimiters: parentheses `()`, square brackets `[]`, and single quotation marks `''`. (STUDIO-1091)
- Configure edge thickness in graph controls as a static value for all edges in the graph. (STUDIO-959)
- Notebook improvements include support to reset result window and clear previous result. (STUDIO-437)

2.0.0 Resolved issues

- RPC call failures are not adequately managed. (STUDIO-642, STUDIO-829)
- Chart views, including pie, bar, and line, grow in size for each cell rerun. (STUDIO-860)
- Property key is not truncated in the table header. Hover should show full name. (STUDIO-870).
- Edit Connection form: FQDN starting with number does not validate. (STUDIO-934)
- In the Edit Connection form, trailing whitespace is not ignored and causes error message: "Invalid address, address must not be empty". (STUDIO-935)
- When a gremlin traversal steps performs a scan, it should be highlighted and called out. (STUDIO-949)
- Opening schema display does not work with certain schemas. (STUDIO-981)
- Numeric values of text properties like schema.propertyKey('age').Text().create() are not handled correctly. Empty/null values are not ignored. (STUDIO-1057)
- Edit Connection form: graph name is not validated. (STUDIO-1182)
- Profiling query results in a UI freeze. (STUDIO-1192)

Getting started with DataStax Studio

Installing and running DataStax Studio 2.0

Prerequisites:

- DataStax Enterprise 5.1 installed *(page 145)*, configured, and running.
- A supported browser.
- All DataStax Enterprise 5.1 prerequisites *(page 145).*
• Windows platforms: Windows 7 and 10, Java 8.

1. Download DataStax Studio for your platform.

 Note: If you installed DSE 5.1 using the DataStax Installer (page 145) and selected **Developer Related Tools**, Studio has already been installed in the DataStax Enterprise installation directory.

2. Unpack Studio:

 • Linux:

 $ tar zvxf datastax-studio-2.0.0.tar.gz

 • Windows:

 a. From File Explorer, right-click `datastax-studio-2.0.0.zip`.

 b. Enter the destination folder for Studio.

 c. Click **Extract**.

3. To start Studio, run the Studio Server shell script:

 • Linux:

 $ cd DSE_installation_directory/datastax-studio-2.0.0
 $./bin/server.sh

 Your result will look similar to:

 `Studio is now running at: http://127.0.0.1:9091`

 • Windows:

 C:/ DSE_installation_directory\datastax-studio-2.0.0\bin
 \server.bat

 Your result will look similar to:

 `Studio is now running at: http://127.0.0.1:9091`

4. To open DataStax Studio, by entering the URL in your browser:

 http://URI_running_DSE:9091/

 • For DSE running on localhost, `URI_running_DSE` is localhost.
• For DSE on another machine, URI_running_DSE is the hostname or IP address for the remote machine.

What's next: Use notebooks to get started.

DataStax Studio 2.0 has revisions of these notebooks:
• Working with Graph v2
• DSE Graph QuickStart v2

A new notebook:
• Working with CQL

These notebooks include helpful information on using Studio and examples of using CQL and DSE Graph in Studio.

Starting and stopping DataStax Studio

Steps to start and stop Studio.

1. To start Studio, run the Studio Server shell script:
 • Linux:
 $ cd DSE_installation_directory/datastax-studio-2.0.0
 $./bin/server.sh
 $./bin/server.sh
Tip: To start Studio in the background, add an ampersand (&) at the end of the command:

```
$.bin/server.sh &
```

- Windows:

```
C:/ DSE_installation_directory\datastax-studio-2.0.0\bin \server.bat
```

Your result will look similar to:

```
Studio is now running at: http://127.0.0.1:9091
```

2. To stop Studio:

```
$ pkill -f studio
```

Creating a simple notebook in DataStax Studio

A notebook is a document that contains text and runnable code. A notebook consists of one or more cells.

Prerequisites:

- DSE 5.1 installed (page 145), configured, and running.
- If using DSE Graph (page 561), it must be configured, and running.
- DataStax Studio installed (page 1362) and running.

To create a new notebook and add some text.

 The DataStax Studio opens in the Notebooks page.

2. Select Add Notebook (the plus icon (in a square) to the left of the existing notebooks).

 The Create Notebook dialog displays.

3. Add information to the fields and Create.

 Name
 My Notebook
 Select a connection
4. Select Create.

 The notebook displays with a single empty (default) cell in CQL edit mode. This can be changed to Gremlin or Markdown depending on the desired mode.

The following steps show a Markdown example:

5. In the default cell, change the drop-down to Markdown.

6. Add some verbiage to the default cell:

   ```markdown
   My Notebook
   ============
   Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut
   consectetur lectus sit amet erat tempus ornare. Fusce sagittis,
   mauris eu maximus pellentesque, odio purus accumsan lacus, eu
   accumsan ex nisi eu metus.
   ```

7. Select Run Cell to render the marked down text.
8. Each notebook has only one connection. Create a connection (page 1367) to a DSE cluster.

Creating a connection in DataStax Studio

Prerequisites:
- DSE 5.1 installed (page 145), configured, and running.
- DataStax Studio installed (page 1362) and running.
- If using DSE Graph (page 561), it must be configured and running.

A connection to a DSE cluster is required.

Each notebook has only one connection. Each connection can have multiple notebooks.

Tip: You can configure more than one host in a Studio connection. Hosts initialize the Cassandra driver connection, so more than one host provides redundancy and failover protection.

A notebook persists its data to a DSE cluster.

DSE Graph
The connection identifies a particular graph.

For notebooks using DSE Graph, the connection must be changed to use a different graph.

CQL
The connection identifies a database instance.

For notebooks using CQL, the keyspace and table can be changed within the notebook.

To create a connection from a notebook to a DSE cluster:

1. Browse to the URL for the Studio installation.
2. In the menu (#), select the **Connections** menu item.

The **Connections page in DataStax Studio** *(page 1392)* displays.

3. Create the connection from a notebook to a DSE cluster:
 a. Select **Add connection** (the plus icon in the top center of the page).

The **Create Connection** dialog appears.

b. Enter the connection information:
 - **Name**: Name of the connection.
 - **Host/IP (comma delimited)**: The host names or IP addresses of the DSE cluster to connect to. Default: localhost.
 - **Username**: Optional. DSE username for logging in.
 - **Password**: Optional. DSE password for logging in.
 - **Port**: IP connection port of the DSE cluster. Default: 9042.

This example connects to a single-node DSE cluster on the local host using the default port.

 - **Name**: My First Connection
 - **Host/IP**: 127.0.0.1
 - **Port**: 9042

c. Select **Save**.

4. Click **Test** to verify the connection works.

5. To configure a secure encrypted connection, select the **Use SSL** check box.

 The Truststore and Keystore fields display. See **Using SSL connections in DataStax Studio** *(page 1369)*.

6. Click **Save**.
A connection is created from the notebook to the DSE cluster.

Using SSL connections in DataStax Studio

Prerequisites:

- SSL must be configured and working on your cluster. See Configuring SSL for details on:
 - Client-to-node encryption
 - Node-to-node encryption
 - Preparing server certificates

DataStax recommends using certificates signed by a CA. See Setting up SSL certificates.

- A truststore is required for server verification. The truststore or CA certificate can be shared between all DSE servers and clients. For DataStax Studio, the public key certificate from the CA must be stored in a local truststore file.
- A keystore is required for client verification.
- Java Cryptography Extension (JCE) Unlimited Strength Policy files is required to ensure support for all encryption algorithms.

1. Install the Java Cryptography Extension (JCE) on your client system. See Installing JCE.

2. Download Java 8 for DataStax Enterprise.

 Installation directory (jre lib/security):
 - Linux: /usr/lib/jvm/jdk1.major.minor_update/jre/lib/security
 - Mac OS X: /Library/Java/JavaVirtualMachines/jdk1.major.minor_update/Contents/Home/jre/lib/security
 - Windows: C:\Program Files\Java\jre7\lib\security

 Extract the downloaded file and copy the contents of UnlimitedJCEPolicy directory to the jre/lib/security directory.

3. To perform server verification, the client needs to have the public key certificate of each node in the cluster stored in a local truststore file.

 a. In the menu (#), select Connections to open the Browse Connections page.

 b. Click + to add a connection or click to edit an existing connection.

 The Create Connection dialog displays.

 c. Select the Use SSL check box to show the Truststore and Keystore fields.

 d. For server verification, add the paths to the local truststore file and the truststore password.
The public key certificate from the CA must be stored in a local truststore file.

4. For client verification, add the paths to the keystore and the keystore password.
 The keystore path is to the Java keystore (JKS). The keystore contains the private key.

5. Select **Test** to test your connection information.
 The **Connected Successfully** message verifies successful connection to DataStax Enterprise nodes.

6. Click **Save**

7. Restart the Studio server for the JCE policies and other connection changes to take effect.

Creating a graph in a Studio notebook

Creating vertices and edges in DataStax Studio

Prerequisites:
- DSE 5.1 installed *(page 145)*, configured, and running.
- DataStax Studio installed *(page 1362)* and running.
- A connection *(page 1367)* from Studio to a DSE cluster.
- An existing notebook *(page 1365)*.

Add Gremlin code to a notebook to create a simple two vertex, one edge graph.

1. If necessary, start DataStax Studio and open the notebook you previously created *(page 1365)*.

When you create a notebook, an empty graph instance is created and named after the value in the graph name field in the notebook's connection. A local variable, g, is defined automatically and bound to that graph.

2. Add a cell to the notebook.

3. Ensure that **Gremlin** is selected in the menu for the notebook cell editor mode:

4. Add the code to the cell to create some vertices and edges for the graph.

```java
schema.config().option('graph.schema_mode').set('Development')

Vertex firstVertex = graph.addVertex(label, 'user', 'id', 1, 'name', 'Jo Dowe', 'role', 'customer')
```
These lines of code, put DSE Graph in development mode, create two vertices, and connect them with a single edge.

5. Select Run Cell to execute the code.

6. Select Graph in Display toolbar. (By default, the Table view is displayed.)

7. Hover your mouse over a vertex to display its properties.

What’s next: See the DSE Graph documentation (page 561).

Creating a schema in DataStax Studio

Prerequisites:
To create a schema, execute Gremlin code in a Gremlin cell in your notebook. The schema used in this example represents users and products and their relationships to one another.

1. Add a code cell to your notebook.

2. Write code to create a schema:
 a. Drop the schema if it exists.

   ```java
   schema.clear()
   ```
 When creating a notebook, some variables are created by default (if none exist) for you to access in code cells. For example, a graph (graph), a graph traversal (g), and a schema (schema). The graph variable is set to an empty graph with the name that you previously provided in the notebook’s connection.

 a. Create the property keys for the schema.

   ```java
   schema.propertyKey('id').Int().create()
schema.propertyKey('name').Text().create()
schema.propertyKey('role').Text().create()
   ```
 The id and name property keys are used by both the user and the product vertices. The role property key is only used by the user vertex.

 b. Create the vertex labels for user and product.

   ```java
   schema.vertexLabel('user').create()
schema.vertexLabel('product').create()
   ```

 c. Create the edge label for use between the user and product vertices.

   ```java
   schema.edgeLabel('bought').create()
   ```

3. Execute the code by selecting Run Cell.

 You have created the schema for the example.

4. View the resulting schema by selecting Schema in the upper-right-hand corner of the notebook.
The schema you created in this task is based on the following data model:

![Data model diagram]

Adding data to a graph in DataStax Studio

Prerequisites:
- Create the schema *(page 1371)*.

To add data to a graph from a cell in your notebook:

1. Add four more vertices and two other edges:

```python
user = graph.addVertex(label, 'user', 'id', 2, 'name', 'Jay Quest', 'role', 'customer')
product = graph.addVertex(label, 'product', 'id', 3, 'name', 'digital camera')
user.addEdge('bought', product)

user = graph.addVertex(label, 'user', 'id', 3, 'name', 'Bartholmew Hicks', 'role', 'employee')
product = graph.addVertex(label, 'product', 'id', 4, 'name', 'eraser')
schema.edgeLabel('manufactured').create()
user.addEdge('manufactured', product)
```
2. Create an edge between two existing vertices:

a. Add this code to a new Gremlin cell:

```gremlin
user = g.V().has('user', 'name', 'Jo Dowe').next()
product = g.V().has('product', 'name', 'eraser').next()
user.addEdge('bought', product)
g.V()
```

b. Switch the cell to display a graph.

c. Select the Jo Dowe user vertex.
Interact with data using CQL in DataStax Studio

Creating keyspaces and tables with DataStax Studio

Prerequisites:
- DSE 5.1 installed (page 145), configured, and running.
- DataStax Studio installed (page 1362) and running.
- A connection (page 1367) from Studio to a DSE cluster.
- An existing notebook (page 1365).

Add CQL code to a notebook to create a simple keyspace and two tables.

1. Open a notebook.

2. Create a DSE keyspace using the CQL command `CREATE KEYSPACE`:

```cql
CREATE KEYSPACE inventory WITH REPLICATION = { 'class' : 'SimpleStrategy', 'replication_factor' : 1 };
```

 a. Select CQL select as the language.

 b. No keyspace is selected, as none currently exists.

 c. Click the button labelled CL.ONE to execute the CQL code.
3. Create two tables using the CQL command **CREATE TABLE**:

```cql
USE inventory;  // or select the default keyspace above, and comment out this line

CREATE TABLE product_info (  
  product_id uuid,  
  product_name varchar,  
  PRIMARY KEY (product_id)
);

CREATE TABLE buyer_info (  
  buyer_id uuid,  
  buyer_name varchar,  
  PRIMARY KEY (buyer_id)
);
```

The keyspace can be configured using the Keyspace pull-down menu in the cell, or with the CQL command **USE**.

4. Use the CQL shell command **DESCRIBE KEYSPACE** to display information about the keyspace that you created:

```cql
DESCRIBE KEYSPACE inventory;
```
Inserting data using CQL in DataStax Studio

Prerequisites:

- Create the schema (page 1371).

To add data to a table from a cell in your notebook:

1. Use the CQL command **INSERT** to add data to the tables:

```cql
USE inventory;

INSERT INTO product_info (product_id, product_name) VALUES
(99051fe9-6a9c-46c2-b949-38ef78858dd0,'Coffee mug');
INSERT INTO product_info (product_id, product_name) VALUES
(b3a76c6b-7c7f-4af6-964f-803a9283c401,'Ethiopian coffee');
INSERT INTO product_info (product_id, product_name) VALUES
(0c3f7e87-f6b6-41d2-9668-2b64d117102c,'Half and half');
```
2. To display the inserted data, use the CQL command **SELECT**:

```
SELECT * FROM inventory.product_info;
```

What's next:
The notebook tutorial *Working with CQL* is installed with Studio. For more information about DataStax Enterprise CQL, see [Accessing data using CQL](#).

Using notebooks in DataStax Studio

A notebook persists its data to a DSE cluster.

DSE Graph

The connection identifies a particular graph.

For notebooks using DSE Graph, the connection must be changed to use a different graph.

CQL

The connection identifies a database instance.
For notebooks using CQL, the keyspace and table can be changed within the notebook.

Listing notebooks using Notebook Manager

The Notebook Manager lists all notebooks, starred notebooks, and supports filtering by searching.

Connect to the Notebook Manager page in a web browser using the following URL: http://localhost:9091.

To return to the Notebook Manager from a Notebook, select Notebooks from the menu (#).

GUI

+ To add a notebook, by click the Add Notebook button.

Defining run behavior in DataStax Studio

With results visualization and profiling capability, Studio serves as a debugging tool by executing code in a way that reproduces the settings used in their applications. When using Studio to interact with DSE, you are able to execute code written in CQL or Gremlin. Each language has its own set of configuration options that determine execution behavior.

Execution configurations provide different execution setups by passing a set of options that customize the run execution. Execution configurations are persistent so you can reuse them.

Standard run configurations are provided:
<table>
<thead>
<tr>
<th>Cell type</th>
<th>Execution configuration</th>
<th>Settings</th>
</tr>
</thead>
</table>
| CQL | CL.ONE | • Consistency level: ONE
• Timeout (MS): 10000
• Max Results: 5000
• CQL Tracing: Disabled |
| CQL | CL.Quorum | • Consistency level: QUORUM
• Timeout (MS): 10000
• Max Results: 5000
• CQL Tracing: Disabled |
| CQL | CL.ALL | • Consistency level: ALL
• Timeout (MS): 10000
• Max Results: 5000
• CQL Tracing: Disabled |
| CQL | CL.ONE.TRACE | • Consistency level: ONE
• Timeout (MS): 10000
• Max Results: 5000
• CQL Tracing: Enabled |
| Gremlin | Transactional | Execute statement using real-time OLTP (online transaction processing) engine, traversal source |
| Gremlin | Spark | Execute statement using OLAP (online analytical processing) engine, traversal source |

You can create a custom CQL execution configuration by adjusting these settings for your environment:

- Consistency level: ANY, ONE, TWO, THREE, QUORUM, ALL, LOCAL_QUORUM, EACH QUORUM, SERIAL, LOCAL_SERIAL, LOCAL_ONE
- Timeout (MS): milliseconds
- Max Results: limit_results
- CQL Tracing: Enabled or Disabled

1. In the top right of a code cell, hover over the play button # and then click # to list the existing configurations.

Tip:
- In CQL cells, the default execution configuration is CL.ONE so the play button is CL.ONE #.
• In Gremlin cells, the default execution configuration is Executive using real-time (transactional) engine so the play button is Real-time #.

2. Select **Manage Configurations**.

3. Select an existing configuration to view settings.

4. **For CQL cells only:** Click + Add New Configuration to create an execution configuration.

 a. Enter a self-describing **Name**.

 b. Select a **Consistency Level**.

 c. Enter a **Timeout** value in milliseconds.

 d. Enter **Max Results**.

 e. Optionally select the **CQL Tracing** check box.

5. Click **Save**.

 New execution configurations are available to be selected from any CQL notebook cell.

Notebook cells in DataStax Studio

Notebook cells contain markdown text, Gremlin code, or CQL.

Creating connections

To create connections to DSE clusters, select the **Connections** menu.

<table>
<thead>
<tr>
<th>Widget</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>📝</td>
<td>View Details.</td>
</tr>
<tr>
<td>🌐</td>
<td>View Schema.</td>
</tr>
</tbody>
</table>
Cells

<table>
<thead>
<tr>
<th>Widget</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add Cell</td>
<td>adds another cell before or after the current cell.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Widget</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run Cell</td>
<td>displays the markdown or runs the Gremlin code and displays the results.</td>
</tr>
<tr>
<td>Hide code editor</td>
<td>hides the code editor.</td>
</tr>
<tr>
<td>Disable editor validations / Enable editor validations</td>
<td>toggle.</td>
</tr>
<tr>
<td>More actions</td>
<td>displays more menu items for the cell.</td>
</tr>
</tbody>
</table>

Gremlin results display

The results returned by the last Gremlin statement executed in a cell can be displayed in a number of ways.

<table>
<thead>
<tr>
<th>Widget</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw</td>
<td></td>
</tr>
<tr>
<td>Table</td>
<td></td>
</tr>
<tr>
<td>Pie chart</td>
<td></td>
</tr>
<tr>
<td>Bar</td>
<td></td>
</tr>
<tr>
<td>Line</td>
<td></td>
</tr>
<tr>
<td>Area</td>
<td></td>
</tr>
<tr>
<td>Scatter</td>
<td></td>
</tr>
<tr>
<td>Graph</td>
<td>displays vertices and edges.</td>
</tr>
<tr>
<td>Settings</td>
<td></td>
</tr>
</tbody>
</table>

Graph provides a contextual view of a result by automatically populating the entire sub-graph shared between the result's vertices and edges. The Gremlin result is examined:
• All vertices emitted and all vertices touched by emitted edges are aggregated into the set of working vertices.
• All edges that connect this set of vertices are then populated.

Note: This sub-graph result populates the **Graph**. However, the Gremlin result populates all other views (such as, raw, table, charts).

Notebook code editor in DataStax Studio

The Notebook code editor supports a subset of the [Apache Groovy™](http://groovy-lang.org) programming language.

A notebook connects to a DSE cluster based on the connection information. Each notebook has only one connection. One piece of information connection specifies its Graph Name.

The code editor provides pre-defined alias variables:

- **graph**

 The variable that refers to the graph.

- **g**

 The traversal source associated with the graph for OLTP graph traversals.

- **a**

 The traversal source associated with the graph for OLAP graph traversals.

A drop-down list shows for content-assist *(page 1383)* on a blank line in the editor.

The code editor supports inline code validation. If some code is invalid or uses Groovy syntax that the editor does not support, the invalid code is displayed with a red underlining.

Content assistance

The code editor provides content assistance *(Ctrl+Space)*.
Content-assistance proposes content based on context:

- Methods
- Variables

Press **Return** to select the highlighted choice from the assistance list.

You can filter proposals by typing enough characters to select a line in the pull-down menu.

Use Shift-Tab to return to the beginning of a line.

Code validation

The notebook editor performs validation as code is entered into the cell. You can turn off validation on a per-cell basis. To turn off validation in a cell, move the slider to Disable editor validations.

The notebook editor supports these validations:

Groovy syntax

The code in a cell is executed within DSE Graph as Groovy. The notebook editor adds enough Groovy syntax support for you to craft your Gremlin statements.

Type-checking
The code in a cell is also checked for type. If you try to call a method on an object of the wrong type or pass a parameter of an invalid type, a validation error is displayed.

```gremlin
g.V().hasPropertyKey()
```

The method `hasPropertyKey()` is undefined for the type `GraphTraversal<Vertex, Vertex>`.

```gremlin
g.V().has(123, 'x', 'y')
```

Type mismatch: cannot convert from int to String.

Domain-specific
Common errors in code are pointed out when possible.

```gremlin
g.Y()
```

Traversal has not been iterated; call `next()`, `iterate()` or `forEachRemaining()`.

The code editor cells in a notebook have no Gremlin session scope context and rely on an implicit scope based on their order. Validation occurs from the top cell down in the order in the notebook. If you execute code out of order, validation errors can occur even if the code executes successfully.
Groovy language support

Supported:

- variable declarations in Groovy style:

  ```groovy
  # def foo
  # def SomeType foo
  # SomeType foo
  # Shell-style variables
  
  # method invocations
  
  # optional semicolons to complete statements
  
  # generics
  
  # strings in both forms:
  
  # '123'
  # "123"
  
  # for loops: basic and for in syntax
  
  # while loops
  
  # try-catch-finally: a type is required for catching the exception
  
  # if-else statements
  
  # switch statements
  
  # casting in both styles: (SomeType) foo and foo as SomeType
  
  # list literals
  
  Unsupported Groovy language

  - closures
  
  - multi-variable assignment and other advanced variable assignments like object deconstruction
  
  - import statements explicitly disabled
  
  - map literals or other complex type literals that are not supported by Java
  
  - try-catch-finally: multi-catch is not supported

  Notebook information

  Selecting Information displays:

  - Connection being used for the notebook.
  
  - Last update to the notebook.
  
  - Version of Studio JAR file being run.
Notebook schema

Selecting Information displays the current graph schema for the notebook.

In addition to visual schema representation, the code-assist feature also provides schema-assist proposals.

That’s a lot of proposals. Let’s break them down:

- The editor is intelligent enough to know that this is a Vertex-based traversal (because of type inference) and presents only the schema proposals that are relevant for vertex properties and keys.
- Because there are multiple has methods, Studio proposes possibilities for all of these variations.
- The editor concretely makes a proposal for each possible property key.

User data for DataStax Studio notebooks

Studio 2 notebooks are stored across multiple files located in the $userdata/eventlog and $userdata/snapshots directories.
Snapshots are periodically created for notebooks that are active (recently edited or recently executed cells). These snapshots are stored in the $userdata/snapshots/studio/uuid directory which contains snapshot files (snr-n, where the highest snr-n file is the latest snapshot). These snapshots are single file representations of the notebook but might not be fully up to date.

If you have previously stored Studio 1.0.x notebooks in a version control system, the format change described above prevents using the same storage method. You can, however, use one of the snapshots. Snapshots are single file representations of the notebook, but might not be fully up to date.

By default, snapshots are created every five minutes for a notebook that is being actively edited. This time interval can be configured by adding an option in the configuration.yaml file:

```
userData:
 snapshotSaveIntervalInSeconds: 300
```

Data migration

Existing notebooks from Studio 1.0.x are migrated to the new format in Studio 2.0.x. Studio creates a backup of 1.0 notebooks in the $userdata/1_x_backup directory during the upgrade migration. If the migration is successful, the $userdata/notebooks/admin directory is deleted.

Studio does not delete your previous notebook files if an error occurs while migrating them to the new format.

Configuring DataStax Studio

Basic configuration options in DataStax Studio

The primary configuration file for Studio is `dse-studio-install-dir/configuration.yaml`.

A sample configuration file in XML format:

```
<configuration>
 <resultSizeLimit>1000</resultSizeLimit>
 <maxResultSizeBytes>524288</maxResultSizeBytes>
 <cellExecutionTimeout>0</cellExecutionTimeout>
</configuration>
```

# Maximum number of items returned per cell execution. Additional items will be truncated.
# Unit: count / number of items
resultSizeLimit: 1000

# Maximum size of a cell result. If a cell result exceeds this size then the cell execution will fail.
# Unit: bytes
maxResultSizeBytes: 524288

# Cell execution timeout. A value of 0 indicates no timeout and will depend on the DSE server timeouts configured in dse.yaml.
# Unit: miliseconds
cellExecutionTimeout: 0
executionTimeoutMs: 0

# TraversalSource mapping for real-time and analytic execution engines. These values correspond to the traversal sources configured in dse.yaml.
# Unit: string
traversalSources:
  realTimeTraversalSource: g
  analyticTraversalSource: a

# This refers to the datastax-studio server
server:
  httpPort: 9091
  # WARNING!!! Changing this setting from the default(localhost) could pose a security risk as other users on external machines could then gain access to notebooks and the clusters those are connected to.
  # Studio is designed to be used as a desktop application, but if deploying centrally you should be aware of the potential security risks.
  # Please visit http://docs.datastax.com/en/latest-studio/studio/reference/configuration.html for information on configuration
  httpBindAddress: localhost

logging:
  fileName: studio.log
  maxLogFileSize: 250 MB
  maxFiles: 10
  directory: ./logs

# User data, where we store data specific to a user in the application. For the short-term this is the file system, which is why we need to explicitly configure a location
userData:
  # defaults to a .datastax_studio folder in your home directory, such as ~/.datastax_studio
  # set to a non-null value to override
  baseDirectory: null

Cell options

**resultSizeLimit**
Maximum number of items returned per cell execution. Additional items will be truncated. Default: 1000.

**maxResultSizeBytes**
Maximum size of a cell result. If a cell result exceeds this size then the cell execution will fail. Default: 10485760.

**executionTimeoutMs**
Cell execution timeout in milliseconds. A value of 0 indicates no timeout override. Uses the DSE server timeouts configured in the dse.yaml file. Default: 0.
traversalSources

Traversal source mapping for real-time and analytic execution engines. These values correspond to the traversal sources configured in the dse.yaml file.

realTimeTraversalSource
Traversal source mapping for real-time execution engine. Default: g

analyticTraversalSource

Server

httpPort
The port on which the Studio server is running. Default: 9091

httpBindAddress
The IP address to which the Studio server is bound. Default: 127.0.0.1.

Note: In Studio version 1.0.0, if you change either of these options, you must also change the corresponding ide options, graphSchemaServiceURL and graphSchemaServicePort.

Logging

Logging-related options:

fileName
Name of the log file. Default: studio.log.

maxLogFileSize
Default: 250 MB.

maxFiles
Maximum number of log files. Default: 10.

directory
Path of the directory in which log files are stored. Default: ./log.

User data

Directories where user data is stored relative to the baseDirectory:

baseDirectory
Default: ~/.datastax_studio

connectionsDirectory
userdata/connections

The location of the dse.yaml file depends on the type of installation:

<table>
<thead>
<tr>
<th>Package installations</th>
<th>/etc/dse/dse.yaml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer-Services installations</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tarball installations</th>
<th>installation_location/ resources/dse/conf/dse.yaml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer-No Services installations</td>
<td></td>
</tr>
</tbody>
</table>

The location of the cassandra.yaml file depends on the type of installation:
Advanced configuration options in DataStax Studio

There are a number of advanced configuration options that are not explicitly declared and set in the configuration.yaml file.

**userData**

- **connectionsDirectory**
  The directory where connections are stored. Default: connections.

- **snapshotSaveIntervalInSeconds**
  Default: 300.

- **entityCacheIdleTimeoutInSeconds**
  Default: 3600.

- **maxKeyspaceSessionsPerConnection**
  Maximum number of sessions associated with a specific keyspace that Studio keeps open at any one point in time. Least recently used sessions are closed first.
  Default: 5.

- **eventReplayTimeoutInSeconds**
  Default: 600.

- **eventReplayBatchSize**
  Default: 10.

**security**

To make encryption of passwords unique for your installation, you may change the password in this file. But you should ensure it is a reasonably strong generated password, and not just a word or phrase.

- **encryptionPasswordFile**
  Default: conf/security/security.properties.

**connectionManagement**

- **idleTimeoutInSeconds**
  Determines how long before a connection expires and is closed when it is not in use in seconds. Default: 3600 (1 hour).

**Miscellaneous**

- **schemaRefreshIntervalMs**
Schema refresh polling interval in milliseconds. Default: 3000 (3 seconds).

DataStax Studio Reference

Connections page in DataStax Studio

Create and modify connections from the Connections page.

Create Connections dialog

Use the Create Connection dialog to create and modify a connection to a DataStax Enterprise cluster:

Name
Name of the connection.

Host/IP (comma delimited)
The host names or IP addresses of the DSE cluster to connect to. Default: localhost.

Username
Optional. DSE username for logging in.

Password
Optional. DSE password for logging in.

Port
IP connection port of the DSE cluster. Default: 9042.

Default imports in DataStax Studio

The following imports are performed by default in a notebook cell.

- Static imports:

  ```java
 # org.apache.tinkerpop.gremlin.util.TimeUtil.*
  ```
# org.apache.tinkerpop.gremlin.structure.Direction.*
# org.apache.tinkerpop.gremlin.process.traversal.Pop.*
# org.apache.tinkerpop.gremlin.process.traversal.dsl.graph.GraphTraversalSource.*
# org.apache.tinkerpop.gremlin.process.traversal.dsl.graph.__.*
# org.apache.tinkerpop.gremlin.structure.io.IoCore.*
# org.apache.tinkerpop.gremlin.structure.Column.*
# org.apache.tinkerpop.gremlin.structure.T.*
# org.apache.tinkerpop.gremlin.process.traversal.Operator.*

• Imports:

  # groovy.grape.Grape
  # org.apache.commons.configuration.*
  # org.apache.tinkerpop.gremlin.process.traversal.strategy.verification.*
  # org.apache.tinkerpop.gremlin.process.computer.bulkloading.*
  # org.apache.tinkerpop.gremlin.process.computer.traversal.*
  # org.apache.tinkerpop.gremlin.util.function.*
  # org.apache.tinkerpop.gremlin.structure.io.*
  # org.apache.tinkerpop.gremlin.process.computer.ranking.pagerank.*
  # org.apache.tinkerpop.gremlin.groovy.loaders.*
  # groovy.json.*
  # org.apache.tinkerpop.gremlin.process.traversal.dsl.graph.*
  # org.apache.tinkerpop.gremlin.structure.*
  # org.apache.tinkerpop.gremlin.process.traversal.strategy.decoration.*
  # org.apache.tinkerpop.gremlin.process.traversal.strategy.optimization.*
  # org.apache.tinkerpop.gremlin.process.traversal.step.util.event.*
  # org.apache.tinkerpop.gremlin.util.*
  # org.apache.tinkerpop.gremlin.structure.util.*
  # org.apache.tinkerpop.gremlin.structure.io.graphml.*
  # org.apache.tinkerpop.gremlin.process.computer.*
  # org.apache.tinkerpop.gremlin.process.traversal.strategy.finalization.*
  # org.apache.tinkerpop.gremlin.process.computer.clustering.peerpressure.*
  # org.apache.tinkerpop.gremlin.structure.util.detached.*
  # org.apache.tinkerpop.gremlin.structure.io.graphson.*
  # org.apache.tinkerpop.gremlin.process.computer.traversal.*
  # org.apache.tinkerpop.gremlin.process.computer.bulkdumping.*
# org.apache.tinkerpop.gremlin.process.traversal.util.*
# org.apache.tinkerpop.gremlin.groovy.function.*

- Extra imports:

  # com.datastax.bdp.graph.api.*
  # com.datastax.bdp.graph.api.schema.*
  # com.datastax.bdp.graph.api.id.*
  # com.datastax.bdp.graph.api.config.*
  # org.apache.cassandra.db.marshal.geometry.*
  # com.datastax.bdp.graph.api.system.*
  # java.time.*

**Note:** To get a list from within a Gremlin cell:

```
DseGraphImports.getInstance().getAllImports()
```

## Keyboard shortcuts in DataStax Studio notebooks

Studio notebooks have keyboard shortcuts to increase your proficiency while writing code and content. Mode depends on cursor location:

- Edit mode when focus is on a cell editor.
- Command mode when focus is on the cell.

### Edit mode keyboard shortcuts

```
##+##
<table>
<thead>
<tr>
<th>Shortcut</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctrl+Shift+?</td>
<td>Display Shortcut help.</td>
</tr>
<tr>
<td>Esc</td>
<td>Unfocus the editor and focus the cell (switch to Command mode).</td>
</tr>
<tr>
<td>Shift+Enter</td>
<td>Save code and execute cell.</td>
</tr>
<tr>
<td>Ctrl+Space</td>
<td>Content assist.</td>
</tr>
<tr>
<td>Ctrl+L</td>
<td>Toggle line numbers.</td>
</tr>
<tr>
<td>Ctrl+/ (Macintosh OS X: #+/)</td>
<td>Toggle comment.</td>
</tr>
<tr>
<td>Ctrl+H</td>
<td>Hide the editor and focus on the cell (switch to Command mode).</td>
</tr>
<tr>
<td>Ctrl+Alt+H</td>
<td>Add a new cell below and switch to its editor.</td>
</tr>
<tr>
<td>Ctrl+Alt+Shift+H</td>
<td>Add a new cell above and switch to its editor.</td>
</tr>
<tr>
<td>Ctrl+Shift+S</td>
<td>Toggle Schema view.</td>
</tr>
</tbody>
</table>
```
### DataStax Studio FAQ

**Frequently asked questions**

**Why can I configure more than one host in a Studio connection?**  
Hosts initialize the Cassandra driver connection. Configuring more than one host provides redundancy and failover protection.

**How can I view a list of my notebooks?**  
Use the Notebook Manager (page 1379) to list and filter notebooks.

**Where have my old notebook files gone?**  
When you upgrade Studio to version 2.0, all of your existing notebooks are backed up.

---

<table>
<thead>
<tr>
<th>Shortcut</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctrl+Shift+Down (Macintosh OS X: #+#+Down)</td>
<td>Focus on the cell below, entering its Command mode.</td>
</tr>
<tr>
<td>Ctrl+Shift+Up (Macintosh OS X: #+#+Up)</td>
<td>Focus on the cell above, entering its Command mode.</td>
</tr>
<tr>
<td>Alt+Backspace (Macintosh OS X: #+Backspace)</td>
<td>Delete from the cursor to the beginning of the line.</td>
</tr>
<tr>
<td>Alt+Delete (Macintosh OS X: #+Delete)</td>
<td>Delete from the cursor to the end of the line.</td>
</tr>
</tbody>
</table>

### Command mode keyboard shortcuts

<table>
<thead>
<tr>
<th>Shortcut</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctrl+Shift+?</td>
<td>Display Shortcut help.</td>
</tr>
<tr>
<td>Enter</td>
<td>Focus on the cell's code editor (switch to Edit mode).</td>
</tr>
<tr>
<td>Delete (Macintosh OS X: Function +Backspace)</td>
<td>Delete the current cell and focus on next available cell.</td>
</tr>
<tr>
<td>H</td>
<td>Toggle editor visibility.</td>
</tr>
<tr>
<td>N</td>
<td>Add new cell below and switch to its editor.</td>
</tr>
<tr>
<td>Shift+N</td>
<td>Add new cell above and switch to its editor.</td>
</tr>
<tr>
<td>S</td>
<td>Toggle Schema view.</td>
</tr>
<tr>
<td>Up</td>
<td>Switch to the cell above.</td>
</tr>
<tr>
<td>Down</td>
<td>Switch to the cell below.</td>
</tr>
<tr>
<td>Shift+Up</td>
<td>Move current cell up.</td>
</tr>
<tr>
<td>Shift+Down</td>
<td>Move current cell down.</td>
</tr>
</tbody>
</table>
Existing notebooks from Studio 1.0.x are migrated to the new format in Studio 2.0.x. Studio creates a backup of 1.0 notebooks in the $userdata/1_x_backup directory during the upgrade migration. If the migration is successful, the $userdata/notebooks/admin directory is deleted.

**Which web browsers are supported for Studio?**

DataStax Studio is tested on these platforms (all 64-bit) with the latest versions of the specified web browsers.

**Does Studio support connection to SSL-enabled clusters?**

Yes. See Using SSL connections in DataStax Studio (page 1369).

## Troubleshooting DataStax Studio

Fixing problems in DataStax Studio.

See Troubleshooting DataStax Studio.
CQL (Cassandra Query Language) is a query language for the DataStax Enterprise database. See CQL for DataStax Enterprise 5.1.