@datastax/astra-db-ts

@datastax/astra-db-ts

astra-db-ts is a TypeScript client for interacting with DataStax Astra DB.

Warning This README is still under construction; parts of it may be incomplete or outdated.

This README targets v2.0.0+, which expands on the previous 1.x API. Click here for the pre-existing client readme.

Table of contents

Quickstart

Use your preferred package manager to install @datastax/astra-db-ts. Note that this is not supported in browsers.

Get the API endpoint and your application token for your Astra DB instance @ astra.datastax.com.

Collections

import { DataAPIClient, ObjectId, vector, VectorDoc, oid } from '@datastax/astra-db-ts';

// Connect to the db
const client = new DataAPIClient({ logging: 'all' });
const db = client.db(process.env.CLIENT_DB_URL!, { token: process.env.CLIENT_DB_TOKEN! });

// The `VectorDoc` interface adds `$vector?: DataAPIVector` as a field to the collection type
interface Dream extends VectorDoc {
_id: ObjectId,
summary: string,
tags?: string[],
}

(async () => {
// Create the collection with a custom default ID type
const collection = await db.createCollection<Dream>('dreams', {
defaultId: { type: 'objectId' },
});

// Batch-insert some rows into the table.
// _id can be optionally provided, or be auto-generated @ the server side
await collection.insertMany([{
summary: 'A dinner on the Moon',
$vector: vector([0.2, -0.3, -0.5]),
}, {
summary: 'Riding the waves',
$vector: vector([0, 0.2, 1]),
tags: ['sport'],
}, {
_id: oid('674f0f5c1c162131319fa09e'),
summary: 'Meeting Beethoven at the dentist',
$vector: vector([0.2, 0.6, 0]),
}]);

// Hm, changed my mind
await collection.updateOne({ _id: oid('674f0f5c1c162131319fa09e') }, {
$set: { summary: 'Surfers\' paradise' }
});

// Let's see what we've got, by performing a vector search
const cursor = collection.find({})
.sort({ vector: vector([0, 0.2, 0.4]) })
.includeSimilarity(true)
.limit(2);

// This would print:
// - Surfers' paradise: 0.98238194
// - Friendly aliens in town: 0.91873914
for await (const result of cursor) {
console.log(`${result.summary}: ${result.$similarity}`);
}

// Cleanup (if desired)
await collection.drop();
})();

Tables

import { DataAPIClient, InferTableSchema, Table, vector } from '@datastax/astra-db-ts';

// Connect to the db
const client = new DataAPIClient({ logging: 'all' });
const db = client.db(process.env.CLIENT_DB_URL!, { token: process.env.CLIENT_DB_TOKEN! });

// Define the table's schema so we can infer the type of the table automatically (TS v5.0+)
const DreamsTableSchema = Table.schema({
columns: {
id: 'int',
summary: 'text',
tags: { type: 'set', valueType: 'text' },
vector: { type: 'vector', dimension: 3 },
},
primaryKey: 'id',
});

// Infer the TS-equivalent type from the table definition (like zod or arktype). Equivalent to:
//
// interface TableSchema {
// id: number,
// summary?: string | null,
// tags?: Set<string>,
// vector?: DataAPIVector | null,
// }
type Dream = InferTableSchema<typeof DreamsTableSchema>;

(async () => {
// Create the table if it doesn't already exist
// Table will be typed as `Table<Dream, { id: number }>`, where the former is the schema, and the latter is the primary key
const table = await db.createTable('dreams', {
definition: DreamsTableSchema,
ifNotExists: true,
});

// Create a vector index on the vector column so we can perform ANN searches on the table
await table.createVectorIndex('dreams_vector_idx', 'vector', {
options: { metric: 'cosine' },
ifNotExists: true,
});

// Batch-insert some rows into the table
const rows: Dream[] = [{
id: 102,
summary: 'A dinner on the Moon',
vector: vector([0.2, -0.3, -0.5]),
}, {
id: 103,
summary: 'Riding the waves',
vector: vector([0, 0.2, 1]),
tags: new Set(['sport']),
}, {
id: 37,
summary: 'Meeting Beethoven at the dentist',
vector: vector([0.2, 0.6, 0]),
}];
await table.insertMany(rows);

// Hm, changed my mind
await table.updateOne({ id: 103 }, {
$set: { summary: 'Surfers\' paradise' }
});

// Let's see what we've got, by performing a vector search
const cursor = table.find({})
.sort({ vector: vector([0, 0.2, 0.4]) })
.includeSimilarity(true)
.limit(2);

// This would print:
// - Surfers' paradise: 0.98238194
// - Friendly aliens in town: 0.91873914
for await (const result of cursor) {
console.log(`${result.summary}: ${result.$similarity}`);
}

// Cleanup (if desired)
await table.drop();
})();
Inferring the table schema pre-TS v5.0

Before TypeScript 5.0, there was no support for "const type parameters" (e.g. f<const T>(t: T): T) which Table.schema relies on.

No worries though—if you're using TypeScript 4.x or below, you can still infer the schema automatically, albeit with less language server support.

Schema object type errors may be non-local and harder to debug, but the code will still work as expected.

const DreamsTableSchema = <const>{
columns: {
id: 'int',
summary: 'text',
tags: { type: 'set', valueType: 'text' },
vector: { type: 'vector', dimension: 3 },
},
primaryKey: 'id',
};

// Still works, but you need to ensure DreamsTableSchema is a properly typed const object
type Dream = InferTableSchema<typeof DreamsTableSchema>;
type DreamPK = InferTablePrimaryKey<typeof DreamsTableSchema>;

(async () => {
// Necessary to explicitly set the type of the table schema and primary key here
const table = await db.createTable<Dream, DreamPK>('dreams', {
definition: DreamsTableSchema,
ifNotExists: true,
});
})();

If you're using TypeScript 4.9, you can at least use the satisfies operator to localize any definition type errors.

const DreamsTableSchema = <const>{
columns: {
id: 'int',
summary: 'text',
tags: { type: 'set', valueType: 'text' },
vector: { type: 'vector', dimension: 3 },
},
primaryKey: 'id',
} satisfies CreateTableDefinition<any>;

type Dream = InferTableSchema<typeof DreamsTableSchema>;

Next steps

High-level architecture

astra-db-ts's abstractions for working at the data and admin layers are structured as depicted by this diagram:

flowchart TD
DataAPIClient -->|".db(endpoint)"| Db
DataAPIClient -->|".admin()"| AstraAdmin

Db --->|".collection(name)
.createCollection(name)"| Collection

Db --->|".table(name)
.createTable(name)"| Table

AstraAdmin -->|".dbAdmin(endpoint)
.dbAdmin(id, region)"| DbAdmin

Db -->|".admin()"| DbAdmin
DbAdmin -->|".db()"| Db

Here's a small admin-oriented example:

import { DataAPIClient } from '@datastax/astra-db-ts';

// Spawn an admin
const client = new DataAPIClient('*TOKEN*');
const admin = client.admin();

(async () => {
// list info about all databases
const databases = await admin.listDatabases();
const dbInfo = databases[0];
console.log(dbInfo.info.name, dbInfo.id, dbInfo.info.region);

// list keyspaces for the first database
const dbAdmin = admin.dbAdmin(dbInfo.id, dbInfo.info.region);
console.log(await dbAdmin.listKeyspaces());
})();

Options hierarchy

Like the client hierarchy, the options for each class also exist in a hierarchy.

The general options for parent classes are deeply merged with the options for child classes.

graph TD
DataAPIClientOptions --> AdminOptions
DataAPIClientOptions --> DbOptions
DbOptions --> CollectionOptions
DbOptions --> TableOptions

Datatypes

See DATATYPES.md for a full list of supported datatypes and their TypeScript equivalents.

Non-astra support

astra-db-ts officially supports Data API instances using non-Astra backends, such as Data API on DSE or HCD.

However, while support is native, detection is not; you will have to manually declare the environment at times.

import { DataAPIClient, UsernamePasswordTokenProvider, DataAPIDbAdmin } from '@datastax/astra-db-ts';

// You'll need to pass in environment to the DataAPIClient when not using Astra
const tp = new UsernamePasswordTokenProvider('*USERNAME*', '*PASSWORD*');
const client = new DataAPIClient(tp, { environment: 'dse' });
const db = client.db('*ENDPOINT*');

// A common idiom may be to use `dbAdmin.createKeyspace` with `updateDbKeyspace` to initialize the keyspace when necessary
const dbAdmin = db.admin({ environment: 'dse' });
dbAdmin.createKeyspace('...', { updateDbKeyspace: true });

The TokenProvider class is an extensible concept to allow you to create or even refresh your tokens as necessary, depending on the Data API backend. Tokens may even be omitted if necessary.

astra-db-ts provides two TokenProvider instances by default:

  • StaticTokenProvider - This unit provider simply regurgitates whatever token was passed into its constructor
  • UsernamePasswordTokenProvider - Turns a user/pass pair into an appropriate token for DSE/HCD

(See examples/non-astra-backends for a full example of this in action.)

Browser support

astra-db-ts is designed to work in server-side environments, but it can technically work in the browser as well.

However, if, for some reason, you really want to use this in a browser, you may need to install the events polyfill, and possibly set up a CORS proxy (such as CORS Anywhere) to forward requests to the Data API.

But keep in mind that this may be very insecure, especially if you're hardcoding sensitive data into your client-side code, as it's trivial for anyone to inspect the code and extract the token (through XSS attacks or otherwise).

See examples/browser for a full example of browser usage in action, and steps on how to use astra-db-ts in your own browser application.

Using HTTP/2

astra-db-ts uses the native fetch API by default, but it can also work with HTTP/2 using the fetch-h2 module.

However, due to compatability reasons, fetch-h2 is no longer dynamically imported by default, and must be provided to the client manually.

Luckily, it is only a couple of easy steps to get HTTP/2 working in your project:

  1. Install fetch-h2 by running npm i fetch-h2.
  2. Provide fetch-h2 to the client.
import * as fetchH2 from 'fetch-h2';
// or `const fetchH2 = require('fetch-h2');`

const client = new DataAPIClient({
httpOptions: {
client: 'fetch-h2',
fetchH2: fetchH2,
},
});

See the using HTTP/2 example for a full example of this in action, and more information on how to use astra-db-ts with HTTP/2.

Examples

Check out the examples directory for more examples on how to use astra-db-ts in your own projects.