Getting Started
First, make sure you have the driver properly installed.
Connecting to a Cluster
Before we can start executing any queries against a Cassandra cluster we need to setup
an instance of Cluster
. As the name suggests, you will typically have one
instance of Cluster
for each Cassandra cluster you want to interact
with.
First, make sure you have the Cassandra driver properly installed.
Connecting to Astra
If you are a DataStax Astra user, here is how to connect to your cluster:
-
Download the secure connect bundle from your Astra account.
-
Connect to your cluster with
from cassandra.cluster import Cluster
from cassandra.auth import PlainTextAuthProvider
cloud_config = {
'secure_connect_bundle': '/path/to/secure-connect-dbname.zip'
}
auth_provider = PlainTextAuthProvider(username='user', password='pass')
cluster = Cluster(cloud=cloud_config, auth_provider=auth_provider)
session = cluster.connect()
See Astra and Cloud for more details.
Connecting to Cassandra
The simplest way to create a Cluster
is like this:
from cassandra.cluster import Cluster
cluster = Cluster()
This will attempt to connection to a Cassandra instance on your local machine (127.0.0.1). You can also specify a list of IP addresses for nodes in your cluster:
from cassandra.cluster import Cluster
cluster = Cluster(['192.168.0.1', '192.168.0.2'])
The set of IP addresses we pass to the Cluster
is simply
an initial set of contact points. After the driver connects to one
of these nodes it will automatically discover the rest of the
nodes in the cluster and connect to them, so you don’t need to list
every node in your cluster.
If you need to use a non-standard port, use SSL, or customize the driver’s behavior in some other way, this is the place to do it:
from cassandra.cluster import Cluster
cluster = Cluster(['192.168.0.1', '192.168.0.2'], port=..., ssl_context=...)
Instantiating a Cluster
does not actually connect us to any nodes.
To establish connections and begin executing queries we need a
Session
, which is created by calling Cluster.connect()
:
cluster = Cluster()
session = cluster.connect()
Session Keyspace
The connect()
method takes an optional keyspace
argument
which sets the default keyspace for all queries made through that Session
:
cluster = Cluster()
session = cluster.connect('mykeyspace')
You can always change a Session’s keyspace using set_keyspace()
or
by executing a USE
query:
session.set_keyspace('users')
# or you can do this instead
session.execute('USE users')
Execution Profiles
Profiles are passed in by execution_profiles
dict.
In this case we can construct the base ExecutionProfile
passing all attributes:
from cassandra.cluster import Cluster, ExecutionProfile, EXEC_PROFILE_DEFAULT
from cassandra.policies import WhiteListRoundRobinPolicy, DowngradingConsistencyRetryPolicy
from cassandra.query import tuple_factory
profile = ExecutionProfile(
load_balancing_policy=WhiteListRoundRobinPolicy(['127.0.0.1']),
retry_policy=DowngradingConsistencyRetryPolicy(),
consistency_level=ConsistencyLevel.LOCAL_QUORUM,
serial_consistency_level=ConsistencyLevel.LOCAL_SERIAL,
request_timeout=15,
row_factory=tuple_factory
)
cluster = Cluster(execution_profiles={EXEC_PROFILE_DEFAULT: profile})
session = cluster.connect()
print(session.execute("SELECT release_version FROM system.local").one())
Users are free to setup additional profiles to be used by name:
profile_long = ExecutionProfile(request_timeout=30)
cluster = Cluster(execution_profiles={'long': profile_long})
session = cluster.connect()
session.execute(statement, execution_profile='long')
Also, parameters passed to Session.execute
or attached to Statement
s are still honored as before.
Executing Queries
Now that we have a Session
we can begin to execute queries. The simplest
way to execute a query is to use execute()
:
rows = session.execute('SELECT name, age, email FROM users')
for user_row in rows:
print(user_row.name, user_row.age, user_row.email)
This will transparently pick a Cassandra node to execute the query against and handle any retries that are necessary if the operation fails.
By default, each row in the result set will be a
namedtuple.
Each row will have a matching attribute for each column defined in the schema,
such as name
, age
, and so on. You can also treat them as normal tuples
by unpacking them or accessing fields by position. The following three
examples are equivalent:
rows = session.execute('SELECT name, age, email FROM users')
for row in rows:
print(row.name, row.age, row.email)
rows = session.execute('SELECT name, age, email FROM users')
for (name, age, email) in rows:
print(name, age, email)
rows = session.execute('SELECT name, age, email FROM users')
for row in rows:
print(row[0], row[1], row[2])
If you prefer another result format, such as a dict
per row, you
can change the row_factory
attribute.
As mentioned in our Drivers Best Practices Guide, it is highly recommended to use Prepared statements for your frequently run queries.
Prepared Statements
Prepared statements are queries that are parsed by Cassandra and then saved for later use. When the driver uses a prepared statement, it only needs to send the values of parameters to bind. This lowers network traffic and CPU utilization within Cassandra because Cassandra does not have to re-parse the query each time.
To prepare a query, use Session.prepare()
:
user_lookup_stmt = session.prepare("SELECT * FROM users WHERE user_id=?")
users = []
for user_id in user_ids_to_query:
user = session.execute(user_lookup_stmt, [user_id])
users.append(user)
prepare()
returns a PreparedStatement
instance
which can be used in place of SimpleStatement
instances or literal
string queries. It is automatically prepared against all nodes, and the driver
handles re-preparing against new nodes and restarted nodes when necessary.
Note that the placeholders for prepared statements are ?
characters. This
is different than for simple, non-prepared statements (although future versions
of the driver may use the same placeholders for both).
Althought it is not recommended, you can also pass parameters to non-prepared statements. The driver supports two forms of parameter place-holders: positional and named.
Positional parameters are used with a %s
placeholder. For example,
when you execute:
session.execute(
"""
INSERT INTO users (name, credits, user_id)
VALUES (%s, %s, %s)
""",
("John O'Reilly", 42, uuid.uuid1())
)
It is translated to the following CQL query:
INSERT INTO users (name, credits, user_id)
VALUES ('John O''Reilly', 42, 2644bada-852c-11e3-89fb-e0b9a54a6d93)
Note that you should use %s
for all types of arguments, not just strings.
For example, this would be wrong:
session.execute("INSERT INTO USERS (name, age) VALUES (%s, %d)", ("bob", 42)) # wrong
Instead, use %s
for the age placeholder.
If you need to use a literal %
character, use %%
.
Note: you must always use a sequence for the second argument, even if you are only passing in a single variable:
session.execute("INSERT INTO foo (bar) VALUES (%s)", "blah") # wrong
session.execute("INSERT INTO foo (bar) VALUES (%s)", ("blah")) # wrong
session.execute("INSERT INTO foo (bar) VALUES (%s)", ("blah", )) # right
session.execute("INSERT INTO foo (bar) VALUES (%s)", ["blah"]) # right
Note that the second line is incorrect because in Python, single-element tuples require a comma.
Named place-holders use the %(name)s
form:
session.execute(
"""
INSERT INTO users (name, credits, user_id, username)
VALUES (%(name)s, %(credits)s, %(user_id)s, %(name)s)
""",
{'name': "John O'Reilly", 'credits': 42, 'user_id': uuid.uuid1()}
)
Note that you can repeat placeholders with the same name, such as %(name)s
in the above example.
Only data values should be supplied this way. Other items, such as keyspaces, table names, and column names should be set ahead of time (typically using normal string formatting).
For non-prepared statements, Python types are cast to CQL literals in the following way:
Python Type |
CQL Literal Type |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
The driver supports asynchronous query execution through
execute_async()
. Instead of waiting for the query to
complete and returning rows directly, this method almost immediately
returns a ResponseFuture
object. There are two ways of
getting the final result from this object.
The first is by calling result()
on it. If
the query has not yet completed, this will block until it has and
then return the result or raise an Exception if an error occurred.
For example:
from cassandra import ReadTimeout
query = "SELECT * FROM users WHERE user_id=%s"
future = session.execute_async(query, [user_id])
# ... do some other work
try:
rows = future.result()
user = rows[0]
print(user.name, user.age)
except ReadTimeout:
log.exception("Query timed out:")
This works well for executing many queries concurrently:
# build a list of futures
futures = []
query = "SELECT * FROM users WHERE user_id=%s"
for user_id in ids_to_fetch:
futures.append(session.execute_async(query, [user_id])
# wait for them to complete and use the results
for future in futures:
rows = future.result()
print(rows[0].name)
Alternatively, instead of calling result()
,
you can attach callback and errback functions through the
add_callback()
,
add_errback()
, and
add_callbacks()
, methods. If you have used
Twisted Python before, this is designed to be a lightweight version of
that:
def handle_success(rows):
user = rows[0]
try:
process_user(user.name, user.age, user.id)
except Exception:
log.error("Failed to process user %s", user.id)
# don't re-raise errors in the callback
def handle_error(exception):
log.error("Failed to fetch user info: %s", exception)
future = session.execute_async(query)
future.add_callbacks(handle_success, handle_error)
- There are a few important things to remember when working with callbacks:
-
-
Exceptions that are raised inside the callback functions will be logged and then ignored.
-
Your callback will be run on the event loop thread, so any long-running operations will prevent other requests from being handled
-
Setting a Consistency Level
The consistency level used for a query determines how many of the replicas of the data you are interacting with need to respond for the query to be considered a success.
By default, ConsistencyLevel.LOCAL_ONE
will be used for all queries.
You can specify a different default by setting the ExecutionProfile.consistency_level
for the execution profile with key EXEC_PROFILE_DEFAULT
.
To specify a different consistency level per request, wrap queries
in a SimpleStatement
:
from cassandra import ConsistencyLevel
from cassandra.query import SimpleStatement
query = SimpleStatement(
"INSERT INTO users (name, age) VALUES (%s, %s)",
consistency_level=ConsistencyLevel.QUORUM)
session.execute(query, ('John', 42))
To specify a consistency level for prepared statements, you have two options.
The first is to set a default consistency level for every execution of the prepared statement:
from cassandra import ConsistencyLevel
cluster = Cluster()
session = cluster.connect("mykeyspace")
user_lookup_stmt = session.prepare("SELECT * FROM users WHERE user_id=?")
user_lookup_stmt.consistency_level = ConsistencyLevel.QUORUM
# these will both use QUORUM
user1 = session.execute(user_lookup_stmt, [user_id1])[0]
user2 = session.execute(user_lookup_stmt, [user_id2])[0]
The second option is to create a BoundStatement
from the
PreparedStatement
and binding parameters and set a consistency
level on that:
# override the QUORUM default
user3_lookup = user_lookup_stmt.bind([user_id3])
user3_lookup.consistency_level = ConsistencyLevel.ALL
user3 = session.execute(user3_lookup)
Speculative execution is a way to minimize latency by preemptively executing several instances of the same query against different nodes. For more details about this technique, see Speculative Execution with DataStax Drivers.
To enable speculative execution:
-
Configure a
SpeculativeExecutionPolicy
with the ExecutionProfile -
Mark your query as idempotent, which mean it can be applied multiple times without changing the result of the initial application. See Query Idempotence for more details.
Example:
from cassandra.cluster import Cluster, ExecutionProfile, EXEC_PROFILE_DEFAULT
from cassandra.policies import ConstantSpeculativeExecutionPolicy
from cassandra.query import SimpleStatement
# Configure the speculative execution policy
ep = ExecutionProfile(
speculative_execution_policy=ConstantSpeculativeExecutionPolicy(delay=.5, max_attempts=10)
)
cluster = Cluster(..., execution_profiles={EXEC_PROFILE_DEFAULT: ep})
session = cluster.connect()
# Mark the query idempotent
query = SimpleStatement(
"UPDATE my_table SET list_col = [1] WHERE pk = 1",
is_idempotent=True
)
# Execute. A new query will be sent to the server every 0.5 second
# until we receive a response, for a max number attempts of 10.
session.execute(query)