RAG with Unstructured.io and Astra DB Serverless
Build a RAG pipeline with RAGStack, Astra DB Serverless, and Unstructured.io.
This example demonstrates loading and parsing a PDF document with Unstructured.io into an Astra DB Serverless vector store, then querying the index with LangChain.
Prerequisites
Unstructured
To use Unstructured.io, you need an API key. Sign-up for one here: https://unstructured.io/api-key-hosted.
A key will be emailed to you.
Astra DB Serverless
You will need an vector-enabled Astra DB Serverless database.
-
Create an vector-enabled Astra DB Serverless database.
-
Within your database, create an Astra DB Access Token with Database Administrator permissions.
-
Get your Astra DB Serverless API Endpoint:
-
https://<ASTRA_DB_ID>-<ASTRA_DB_REGION>.apps.astra.datastax.com
-
-
Create an OpenAI key at OpenAI. Install the following dependencies:
pip install ragstack-ai
See the Prerequisites page for more details.
Set up your environment
Create a .env
file in your application with the following environment variables:
UNSTRUCTURED_API_KEY=...
UNSTRUCTURED_API_URL=https://api.unstructured.io/general/v0/general
ASTRA_DB_API_ENDPOINT=https://<ASTRA_DB_ID>-<ASTRA_DB_REGION>.apps.astra.datastax.com
ASTRA_DB_APPLICATION_TOKEN=AstraCS:...
OPENAI_API_KEY=sk-...
If you’re using Google Colab, you’ll be prompted for these values in the Colab environment.
See the Prerequisites page for more details.
Create RAG pipeline
-
Import dependencies and load environment variables.
import os import requests from dotenv import load_dotenv from langchain_astradb import AstraDBVectorStore from langchain_core.documents import Document from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import PromptTemplate from langchain_core.runnables import RunnablePassthrough from langchain_community.document_loaders import ( unstructured, UnstructuredAPIFileLoader, ) from langchain_openai import ( ChatOpenAI, OpenAIEmbeddings, ) load_dotenv()
-
For this example we will focus on pages 9 & 10 of a PDF about attention mechanisms in transformer model architectures. The original source of the paper is available here: https://arxiv.org/pdf/1706.03762.pdf
url = "https://raw.githubusercontent.com/datastax/ragstack-ai/48bc55e7dc4de6a8b79fcebcedd242dc1254dd63/examples/notebooks/resources/attention_pages_9_10.pdf" file_path = "./attention_pages_9_10.pdf" response = requests.get(url, timeout=30) if response.status_code == 200: with open(file_path, "wb") as file: file.write(response.content) print("Download complete.") else: print("Error downloading the file.")
-
Parse the downloaded PDF with Unstructured into elements for indexing. Choose either Simple Parsing or Advanced Parsing:
Simple Parsing:
This works well if your document doesn’t contain any complex formatting or tables.
loader = UnstructuredAPIFileLoader( file_path="./attention_pages_9_10.pdf", api_key=os.getenv("UNSTRUCTURED_API_KEY"), url = os.getenv("UNSTRUCTURED_API_URL"), ) simple_docs = loader.load() print(len(simple_docs)) print(simple_docs[0].page_content[0:400])
By default, the parser returns 1 document per pdf file. The sample output of the document contents shows the first table’s description, and the start of a poorly formatted table.
Advanced Parsing:
By changing the processing strategy and response mode, we can get more detailed document structure. Unstructured can break the document into elements of different types, which can be helpful for improving your RAG system.
For example, the
Table
element type includes the table formatted as simple html, which can help the LLM answer questions from the table data, and we could exclude elements of typeFooter
from our vector store.A list of all the different element types can be found here: https://unstructured-io.github.io/unstructured/introduction/overview.html#id1
elements = unstructured.get_elements_from_api( file_path="./attention_pages_9_10.pdf", api_key=os.getenv("UNSTRUCTURED_API_KEY"), api_url=os.getenv("UNSTRUCTURED_API_URL"), strategy="hi_res", # default "auto" pdf_infer_table_structure=True, ) print(len(elements)) tables = [el for el in elements if el.category == "Table"] print(tables[1].metadata.text_as_html)
In the Advanced Parsing mode, we now get 27 elements instead of a single document, and table structure is available as html.
See the Colab notebook linked at the top of this page for a more detailed investigation into the benefits of using the Advanced Parsing mode.
-
Create an Astra DB Serverless vector store instance.
astra_db_store = AstraDBVectorStore( collection_name="langchain_unstructured", embedding=OpenAIEmbeddings(), token=os.getenv("ASTRA_DB_APPLICATION_TOKEN"), api_endpoint=os.getenv("ASTRA_DB_API_ENDPOINT") )
-
Create LangChain documents by chunking the text after
Table
elements and beforeTitle
elements. Use the html output format for table data. Insert the documents into Astra DB Serverless.documents = [] current_doc = None for el in elements: if el.category in ["Header", "Footer"]: continue # skip these if el.category == "Title": if current_doc is not None: documents.append(current_doc) current_doc = None if not current_doc: current_doc = Document(page_content="", metadata=el.metadata.to_dict()) current_doc.page_content += el.metadata.text_as_html if el.category == "Table" else el.text if el.category == "Table": if current_doc is not None: documents.append(current_doc) current_doc = None astra_db_store.add_documents(documents)
-
Build a RAG pipeline using the populated Astra DB Serverless vector store.
prompt = """ Answer the question based only on the supplied context. If you don't know the answer, say "I don't know". Context: {context} Question: {question} Your answer: """ llm = ChatOpenAI(model="gpt-3.5-turbo-16k", streaming=False, temperature=0) chain = ( {"context": astra_db_store.as_retriever(), "question": RunnablePassthrough()} | PromptTemplate.from_template(prompt) | llm | StrOutputParser() )
Execute queries
-
Ask a question that should be answered by the text of the document - this query should return
Reducing the attention key size hurts model quality.
.response_1 = chain.invoke("What does reducing the attention key size do?") print("\n***********New Unstructured Basic Query Engine***********") print(response_1)
-
Ask a question that can be answered from the table data. This query should return
The 'WSJ 23 F1' value for 'Dyer et al. (2016) (5]' was 91.7.
because the table data contains this information. This highlights the power of using Unstructured.io.response_2 = chain.invoke("For the transformer to English constituency results, what was the 'WSJ 23 F1' value for 'Dyer et al. (2016) (5]'?") print("\n***********New Unstructured Basic Query Engine***********") print(response_2)
-
Ask a question with an expected lack of context. This query should return
I don’t know. The context does not provide any information about George Washington’s birthdate.
because your document does not contain information about George Washington.response_3 = chain.invoke("When was George Washington born?") print("\n***********New Unstructured Basic Query Engine***********") print(response_3)
Complete code (Advanced Parsing)
Python
import os
import requests
from dotenv import load_dotenv
from langchain_astradb import AstraDBVectorStore
from langchain_core.documents import Document
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import PromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_community.document_loaders import (
unstructured,
UnstructuredAPIFileLoader,
)
from langchain_openai import (
ChatOpenAI,
OpenAIEmbeddings,
)
load_dotenv()
# download pdf
url = "https://raw.githubusercontent.com/datastax/ragstack-ai/48bc55e7dc4de6a8b79fcebcedd242dc1254dd63/examples/notebooks/resources/attention_pages_9_10.pdf"
file_path = "./attention_pages_9_10.pdf"
response = requests.get(url, timeout=30)
if response.status_code == 200:
with open(file_path, "wb") as file:
file.write(response.content)
print("Download complete.")
else:
print("Error downloading the file.")
# simple parse
loader = UnstructuredAPIFileLoader(
file_path="./attention_pages_9_10.pdf",
api_key=os.getenv("UNSTRUCTURED_API_KEY"),
url = os.getenv("UNSTRUCTURED_API_URL"),
)
simple_docs = loader.load()
print(len(simple_docs))
print(simple_docs[0].page_content[0:400])
# complex parse
elements = unstructured.get_elements_from_api(
file_path="./attention_pages_9_10.pdf",
api_key=os.getenv("UNSTRUCTURED_API_KEY"),
api_url=os.getenv("UNSTRUCTURED_API_URL"),
strategy="hi_res", # default "auto"
pdf_infer_table_structure=True,
)
print(len(elements))
tables = [el for el in elements if el.category == "Table"]
print(tables[1].metadata.text_as_html)
# create vector store
astra_db_store = AstraDBVectorStore(
collection_name="langchain_unstructured",
embedding=OpenAIEmbeddings(),
token=os.getenv("ASTRA_DB_APPLICATION_TOKEN"),
api_endpoint=os.getenv("ASTRA_DB_API_ENDPOINT")
)
# load documents
documents = []
current_doc = None
for el in elements:
if el.category in ["Header", "Footer"]:
continue # skip these
if el.category == "Title":
if current_doc is not None:
documents.append(current_doc)
current_doc = None
if not current_doc:
current_doc = Document(page_content="", metadata=el.metadata.to_dict())
current_doc.page_content += el.metadata.text_as_html if el.category == "Table" else el.text
if el.category == "Table":
if current_doc is not None:
documents.append(current_doc)
current_doc = None
astra_db_store.add_documents(documents)
# prompt and query
prompt = """
Answer the question based only on the supplied context. If you don't know the answer, say "I don't know".
Context: {context}
Question: {question}
Your answer:
"""
llm = ChatOpenAI(model="gpt-3.5-turbo-16k", streaming=False, temperature=0)
chain = (
{"context": astra_db_store.as_retriever(), "question": RunnablePassthrough()}
| PromptTemplate.from_template(prompt)
| llm
| StrOutputParser()
)
response_1 = chain.invoke("What does reducing the attention key size do?")
print("\n***********New Unstructured Basic Query Engine***********")
print(response_1)
response_2 = chain.invoke("For the transformer to English constituency results, what was the 'WSJ 23 F1' value for 'Dyer et al. (2016) (5]'?")
print("\n***********New Unstructured Basic Query Engine***********")
print(response_2)
response_3 = chain.invoke("When was George Washington born?")
print("\n***********New Unstructured Basic Query Engine***********")
print(response_3)