DataStax Graph Queries
The driver executes graph queries over the Cassandra native protocol. Use
Session.execute_graph()
or Session.execute_graph_async()
for
executing gremlin queries in DataStax Graph.
The driver defines three Execution Profiles suitable for graph execution:
See Getting Started and Execution Profiles for more detail on working with profiles.
In DSE 6.8.0, the Core graph engine has been introduced and is now the default. It provides a better unified multi-model, performance and scale. This guide is for graphs that use the core engine. If you work with previous versions of DSE or existing graphs, see DataStax Classic Graph Queries.
Getting Started with Graph and the Core Engine
First, we need to create a graph in the system. To access the system API, we use the system execution profile
from cassandra.cluster import Cluster, EXEC_PROFILE_GRAPH_SYSTEM_DEFAULT
cluster = Cluster()
session = cluster.connect()
graph_name = 'movies'
session.execute_graph("system.graph(name).create()", {'name': graph_name},
execution_profile=EXEC_PROFILE_GRAPH_SYSTEM_DEFAULT)
Graphs that use the core engine only support GraphSON3. Since they are Cassandra tables under the hood, we can automatically configure the execution profile with the proper options (row_factory and graph_protocol) when executing queries. You only need to make sure that the graph_name is set and GraphSON3 will be automatically used:
from cassandra.cluster import Cluster, GraphExecutionProfile, EXEC_PROFILE_GRAPH_DEFAULT
graph_name = 'movies'
ep = GraphExecutionProfile(graph_options=GraphOptions(graph_name=graph_name))
cluster = Cluster(execution_profiles={EXEC_PROFILE_GRAPH_DEFAULT: ep})
session = cluster.connect()
session.execute_graph("g.addV(...)")
Note that this graph engine detection is based on the metadata. You might experience some query errors if the graph has been newly created and is not yet in the metadata. This would result to a badly configured execution profile. If you really want to avoid that, configure your execution profile explicitly:
from cassandra.cluster import Cluster, GraphExecutionProfile, EXEC_PROFILE_GRAPH_DEFAULT
from cassandra.graph import GraphOptions, GraphProtocol, graph_graphson3_row_factory
graph_name = 'movies'
ep_graphson3 = GraphExecutionProfile(
row_factory=graph_graphson3_row_factory,
graph_options=GraphOptions(
graph_protocol=GraphProtocol.GRAPHSON_3_0,
graph_name=graph_name))
cluster = Cluster(execution_profiles={'core': ep_graphson3})
session = cluster.connect()
session.execute_graph("g.addV(...)", execution_profile='core')
We are ready to configure our graph schema. We will create a simple one for movies:
# A Vertex represents a "thing" in the world.
# Create the genre vertex
query = """
schema.vertexLabel('genre')
.partitionBy('genreId', Int)
.property('name', Text)
.create()
"""
session.execute_graph(query)
# Create the person vertex
query = """
schema.vertexLabel('person')
.partitionBy('personId', Int)
.property('name', Text)
.create()
"""
session.execute_graph(query)
# Create the movie vertex
query = """
schema.vertexLabel('movie')
.partitionBy('movieId', Int)
.property('title', Text)
.property('year', Int)
.property('country', Text)
.create()
"""
session.execute_graph(query)
# An edge represents a relationship between two vertices
# Create our edges
queries = """
schema.edgeLabel('belongsTo').from('movie').to('genre').create();
schema.edgeLabel('actor').from('movie').to('person').create();
"""
session.execute_graph(queries)
# Indexes to execute graph requests efficiently
# If you have a node with the search workload enabled (solr), use the following:
indexes = """
schema.vertexLabel('genre').searchIndex()
.by("name")
.create();
schema.vertexLabel('person').searchIndex()
.by("name")
.create();
schema.vertexLabel('movie').searchIndex()
.by('title')
.by("year")
.create();
"""
session.execute_graph(indexes)
# Otherwise, use secondary indexes:
indexes = """
schema.vertexLabel('genre')
.secondaryIndex('by_genre')
.by('name')
.create()
schema.vertexLabel('person')
.secondaryIndex('by_name')
.by('name')
.create()
schema.vertexLabel('movie')
.secondaryIndex('by_title')
.by('title')
.create()
"""
session.execute_graph(indexes)
Add some edge indexes (materialized views):
indexes = """
schema.edgeLabel('belongsTo')
.from('movie')
.to('genre')
.materializedView('movie__belongsTo__genre_by_in_genreId')
.ifNotExists()
.partitionBy(IN, 'genreId')
.clusterBy(OUT, 'movieId', Asc)
.create()
schema.edgeLabel('actor')
.from('movie')
.to('person')
.materializedView('movie__actor__person_by_in_personId')
.ifNotExists()
.partitionBy(IN, 'personId')
.clusterBy(OUT, 'movieId', Asc)
.create()
"""
session.execute_graph(indexes)
Next, we’ll add some data:
session.execute_graph("""
g.addV('genre').property('genreId', 1).property('name', 'Action').next();
g.addV('genre').property('genreId', 2).property('name', 'Drama').next();
g.addV('genre').property('genreId', 3).property('name', 'Comedy').next();
g.addV('genre').property('genreId', 4).property('name', 'Horror').next();
""")
session.execute_graph("""
g.addV('person').property('personId', 1).property('name', 'Mark Wahlberg').next();
g.addV('person').property('personId', 2).property('name', 'Leonardo DiCaprio').next();
g.addV('person').property('personId', 3).property('name', 'Iggy Pop').next();
""")
session.execute_graph("""
g.addV('movie').property('movieId', 1).property('title', 'The Happening').
property('year', 2008).property('country', 'United States').next();
g.addV('movie').property('movieId', 2).property('title', 'The Italian Job').
property('year', 2003).property('country', 'United States').next();
g.addV('movie').property('movieId', 3).property('title', 'Revolutionary Road').
property('year', 2008).property('country', 'United States').next();
g.addV('movie').property('movieId', 4).property('title', 'The Man in the Iron Mask').
property('year', 1998).property('country', 'United States').next();
g.addV('movie').property('movieId', 5).property('title', 'Dead Man').
property('year', 1995).property('country', 'United States').next();
""")
Now that our genre, actor and movie vertices are added, we’ll create the relationships (edges) between them:
session.execute_graph("""
genre_horror = g.V().hasLabel('genre').has('name', 'Horror').id().next();
genre_drama = g.V().hasLabel('genre').has('name', 'Drama').id().next();
genre_action = g.V().hasLabel('genre').has('name', 'Action').id().next();
leo = g.V().hasLabel('person').has('name', 'Leonardo DiCaprio').id().next();
mark = g.V().hasLabel('person').has('name', 'Mark Wahlberg').id().next();
iggy = g.V().hasLabel('person').has('name', 'Iggy Pop').id().next();
the_happening = g.V().hasLabel('movie').has('title', 'The Happening').id().next();
the_italian_job = g.V().hasLabel('movie').has('title', 'The Italian Job').id().next();
rev_road = g.V().hasLabel('movie').has('title', 'Revolutionary Road').id().next();
man_mask = g.V().hasLabel('movie').has('title', 'The Man in the Iron Mask').id().next();
dead_man = g.V().hasLabel('movie').has('title', 'Dead Man').id().next();
g.addE('belongsTo').from(__.V(the_happening)).to(__.V(genre_horror)).next();
g.addE('belongsTo').from(__.V(the_italian_job)).to(__.V(genre_action)).next();
g.addE('belongsTo').from(__.V(rev_road)).to(__.V(genre_drama)).next();
g.addE('belongsTo').from(__.V(man_mask)).to(__.V(genre_drama)).next();
g.addE('belongsTo').from(__.V(man_mask)).to(__.V(genre_action)).next();
g.addE('belongsTo').from(__.V(dead_man)).to(__.V(genre_drama)).next();
g.addE('actor').from(__.V(the_happening)).to(__.V(mark)).next();
g.addE('actor').from(__.V(the_italian_job)).to(__.V(mark)).next();
g.addE('actor').from(__.V(rev_road)).to(__.V(leo)).next();
g.addE('actor').from(__.V(man_mask)).to(__.V(leo)).next();
g.addE('actor').from(__.V(dead_man)).to(__.V(iggy)).next();
""")
We are all set. You can now query your graph. Here are some examples:
# Find all movies of the genre Drama
for r in session.execute_graph("""
g.V().has('genre', 'name', 'Drama').in('belongsTo').valueMap();"""):
print(r)
# Find all movies of the same genre than the movie 'Dead Man'
for r in session.execute_graph("""
g.V().has('movie', 'title', 'Dead Man').out('belongsTo').in('belongsTo').valueMap();"""):
print(r)
# Find all movies of Mark Wahlberg
for r in session.execute_graph("""
g.V().has('person', 'name', 'Mark Wahlberg').in('actor').valueMap();"""):
print(r)
To see a more graph examples, see DataStax Graph Examples.
Graph Types for the Core Engine
Here are the supported graph types with their python representations:
DSE Graph |
Python Driver |
---|---|
text |
str |
boolean |
bool |
bigint |
long |
int |
int |
smallint |
int |
varint |
long |
double |
float |
float |
float |
uuid |
UUID |
bigdecimal |
Decimal |
duration |
Duration (cassandra.util) |
inet |
str or IPV4Address/IPV6Address (if available) |
timestamp |
datetime.datetime |
date |
datetime.date |
time |
datetime.time |
polygon |
Polygon |
point |
Point |
linestring |
LineString |
blob |
bytearray, buffer (PY2), memoryview (PY3), bytes (PY3) |
list |
list |
map |
dict |
set |
set or list (Can return a list due to numerical values returned by Java) |
tuple |
tuple |
udt |
class or namedtuple |
Named Parameters
Named parameters are passed in a dict to cluster.Session.execute_graph()
:
result_set = session.execute_graph('[a, b]', {'a': 1, 'b': 2}, execution_profile=EXEC_PROFILE_GRAPH_SYSTEM_DEFAULT)
[r.value for r in result_set] # [1, 2]
All python types listed in Graph Types for the Core Engine can be passed as named parameters and will be serialized automatically to their graph representation:
Example:
session.execute_graph("""
g.addV('person').
property('name', text_value).
property('age', integer_value).
property('birthday', timestamp_value).
property('house_yard', polygon_value).next()
""", {
'text_value': 'Mike Smith',
'integer_value': 34,
'timestamp_value': datetime.datetime(1967, 12, 30),
'polygon_value': Polygon(((30, 10), (40, 40), (20, 40), (10, 20), (30, 10)))
})
As with all Execution Profile parameters, graph options can be set in the cluster default (as shown in the first example) or specified per execution:
ep = session.execution_profile_clone_update(EXEC_PROFILE_GRAPH_DEFAULT,
graph_options=GraphOptions(graph_name='something-else'))
session.execute_graph(statement, execution_profile=ep)
CQL collections, Tuple and UDT
This is a very interesting feature of the core engine: we can use all CQL data types, including list, map, set, tuple and udt. Here is an example using all these types:
query = """
schema.type('address')
.property('address', Text)
.property('city', Text)
.property('state', Text)
.create();
"""
session.execute_graph(query)
# It works the same way than normal CQL UDT, so we
# can create an udt class and register it
class Address(object):
def __init__(self, address, city, state):
self.address = address
self.city = city
self.state = state
session.cluster.register_user_type(graph_name, 'address', Address)
query = """
schema.vertexLabel('person')
.partitionBy('personId', Int)
.property('address', typeOf('address'))
.property('friends', listOf(Text))
.property('skills', setOf(Text))
.property('scores', mapOf(Text, Int))
.property('last_workout', tupleOf(Text, Date))
.create()
"""
session.execute_graph(query)
# insertion example
query = """
g.addV('person')
.property('personId', pid)
.property('address', address)
.property('friends', friends)
.property('skills', skills)
.property('scores', scores)
.property('last_workout', last_workout)
.next()
"""
session.execute_graph(query, {
'pid': 3,
'address': Address('42 Smith St', 'Quebec', 'QC'),
'friends': ['Al', 'Mike', 'Cathy'],
'skills': {'food', 'fight', 'chess'},
'scores': {'math': 98, 'french': 3},
'last_workout': ('CrossFit', datetime.date(2018, 11, 20))
})
Limitations
Since Python is not a strongly-typed language and the UDT/Tuple graphson representation is, you might get schema errors when trying to write numerical data. Example:
session.execute_graph("""
schema.vertexLabel('test_tuple').partitionBy('id', Int).property('t', tupleOf(Text, Bigint)).create()
""")
session.execute_graph("""
g.addV('test_tuple').property('id', 0).property('t', t)
""",
{'t': ('Test', 99))}
)
# error: [Invalid query] message="Value component 1 is of type int, not bigint"
This is because the server requires the client to include a GraphSON schema definition with every UDT or tuple query. In the general case, the driver can’t determine what Graph type is meant by, e.g., an int value, and so it can’t serialize the value with the correct type in the schema. The driver provides some numerical type-wrapper factories that you can use to specify types:
Here’s the working example of the case above:
from cassandra.graph import to_bigint
session.execute_graph("""
g.addV('test_tuple').property('id', 0).property('t', t)
""",
{'t': ('Test', to_bigint(99))}
)
Continuous Paging
This is another nice feature that comes with the core engine: continuous paging with graph queries. If all nodes of the cluster are >= DSE 6.8.0, it is automatically enabled under the hood to get the best performance. If you want to explicitly enable/disable it, you can do it through the execution profile:
# Disable it
ep = GraphExecutionProfile(..., continuous_paging_options=None))
cluster = Cluster(execution_profiles={EXEC_PROFILE_GRAPH_DEFAULT: ep})
# Enable with a custom max_pages option
ep = GraphExecutionProfile(...,
continuous_paging_options=ContinuousPagingOptions(max_pages=10)))
cluster = Cluster(execution_profiles={EXEC_PROFILE_GRAPH_DEFAULT: ep})