RAGStack and DataStax Enterprise (DSE) 6.9 example
-
Pull the latest dse-server Docker image and confirm the container is in a running state.
docker pull datastax/dse-server:6.9.0-rc.2 docker run -e DS_LICENSE=accept -p 9042:9042 -d datastax/dse-server:6.9.0-rc.2
-
Install dependencies.
pip install ragstack-ai-langchain python-dotenv langchainhub
-
Create a
.env
file in the root directory of the project and add the following environment variables.OPENAI_API_KEY="sk-..."
-
Create a Python script to embed and generate the results of a query.
Python
import os from dotenv import load_dotenv import bs4 from langchain import hub from langchain_openai import ChatOpenAI, OpenAIEmbeddings from langchain_community.document_loaders import WebBaseLoader from langchain_core.output_parsers import StrOutputParser from langchain_core.runnables import RunnablePassthrough from langchain_text_splitters import RecursiveCharacterTextSplitter import cassio from cassio.table import MetadataVectorCassandraTable from langchain_community.vectorstores import Cassandra # Load environment variables load_dotenv() openai_api_key = os.getenv("OPENAI_API_KEY") # Initialize Cassandra cassio.init(contact_points=['localhost'], username='cassandra', password='cassandra') cassio.config.resolve_session().execute( "create keyspace if not exists my_vector_keyspace with replication = {'class': 'SimpleStrategy', 'replication_factor': '1'};" ) # Create metadata Vector Cassandra Table mvct = MetadataVectorCassandraTable(table='my_vector_table', vector_dimension=1536, keyspace='my_vector_keyspace') # Web loader configuration loader = WebBaseLoader( web_paths=("https://lilianweng.github.io/posts/2023-06-23-agent/",), bs_kwargs=dict( parse_only=bs4.SoupStrainer( class_=("post-content", "post-title", "post-header") ) ), ) docs = loader.load() # Document splitting text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) splits = text_splitter.split_documents(docs) # Vector store setup vectorstore = Cassandra.from_documents(documents=splits, embedding=OpenAIEmbeddings(), table_name='my_vector_table', keyspace='my_vector_keyspace', vector_dimension=1024) retriever = vectorstore.as_retriever() # Language model setup llm = ChatOpenAI() # Chain components def format_docs(docs): return "\n\n".join(doc.page_content for doc in docs) rag_chain = ( {"context": retriever | format_docs, "question": RunnablePassthrough()} | hub.pull("rlm/rag-prompt") | llm | StrOutputParser() ) # Invocation result = rag_chain.invoke("What is Task Decomposition?") print(result)
You should see output like this:
Task decomposition involves breaking down a complex task into smaller and simpler steps to make it more manageable. Techniques like Chain of Thought and Tree of Thoughts help models decompose hard tasks and enhance performance by thinking step by step. This process allows for a better interpretation of the model's thinking process and can involve various methods such as simple prompting, task-specific instructions, or human inputs.