Create a vector database and perform a similarity search
In this tutorial, you’ll learn how to create an HCD cluster, connect to your cluster, load a set of vector embeddings using vectorize
, and perform a similarity search to find vectors that are close to the one in your query.
Learn how to create a HCD keyspace, connect to your keyspace, load a set of vector embeddings using vectorize
, and perform a similarity search to find vectors that are close to the one in your query.
Prerequisites
You need the following:
-
A terminal or terminal emulator
Install HCD
Go install an HCD cluster if you haven’t already. You’ll also want to install the Data API. For exploration, use the Docker installation with Data API.
Install a terminal to run your client
You can run the clients in a terminal to test them. You’ll want Xterm, Terminal, or another terminal emulator.
Identify your credentials
-
You need to identify the credentials, or token, for your database. For initial exploration, you can use the default superuser credentials set in the database. The default superuser credentials are:
cassandra
is the username andcassandra
is the password. These values will be used with a token provider in the client to generate a TOKEN used for authentication to run the client.-
Before going much further, you should create a new user with a secure password. This new user, once created, will be used to generate a token for authentication.
-
-
You need the API endpoint that your client will connect to. The API endpoint is the URL of the database you installed. The port number is
8181
by default. For example, if you installed the database using a Docker container, the API endpoint ishttp://localhost:8181
. This value will be your DB_API_ENDPOINT. -
You may either assign your username/password and API endpoint to environment variables in your terminal, or modify the client code to include them directly, as shown in the examples below. Another value that you will want to set is the
OPENAI_API_KEY
. This is the API key that you received when you signed up for the OpenAI API. This key is used to authenticate your requests to the OpenAI API, and the clients use it to vectorize the text that you provide.-
Linux or macOS
-
Windows
-
Google Colab
export DB_API_ENDPOINT=DB_API_ENDPOINT # Your database API endpoint export OPENAI_API_KEY=API_KEY # Your OpenAI API key
set DB_DB_API_ENDPOINT=DB_API_ENDPOINT # Your database API endpoint set OPENAI_API_KEY=API_KEY # Your OpenAI API key
import os os.environ["DB_API_ENDPOINT"] = "DB_API_ENDPOINT" # Your database API endpoint os.environ["OPENAI_API_KEY"] = "API_KEY" # Your OpenAI API key
-
Install the client
Install the library for the language and package manager you’re using.
-
Python
-
TypeScript
-
Java
To install the Python client with pip:
-
Verify that pip is version 23.0 or higher.
pip --version
-
Upgrade pip if needed.
python -m pip install --upgrade pip
-
Install the
astrapy
package. You must have Python 3.8 or higher.pip install astrapy
To install the TypeScript client:
-
Verify that Node is version 14 or higher.
node --version
-
Use npm or Yarn to install the TypeScript client.
-
npm
-
Yarn
To install the TypeScript client with npm:
npm install @datastax/astra-db-ts
To install the TypeScript client with Yarn:
-
Verify that Yarn is version 2.0 or higher.
yarn --version
-
Install the
astra-db-ts
package.yarn add @datastax/astra-db-ts
-
Use Maven or Gradle to install the Java client.
-
Maven
-
Gradle
To install the Java client with Maven:
-
Install Java 11+ and Maven 3.9+.
-
Create a
pom.xml
file in the root of your project.pom.xml<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>com.example</groupId> <artifactId>test-java-client</artifactId> <version>1.0-SNAPSHOT</version> <!-- The Java client --> <dependencies> <dependency> <groupId>com.datastax.astra</groupId> <artifactId>astra-db-java</artifactId> <version>1.0.0</version> </dependency> </dependencies> <build> <plugins> <plugin> <groupId>org.codehaus.mojo</groupId> <artifactId>exec-maven-plugin</artifactId> <version>3.0.0</version> <configuration> <executable>java</executable> <mainClass>com.example.Quickstart</mainClass> </configuration> <executions> <execution> <goals> <goal>java</goal> </goals> </execution> </executions> </plugin> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-compiler-plugin</artifactId> <configuration> <source>11</source> <target>11</target> </configuration> </plugin> </plugins> </build> </project>
To install the Java client with Gradle:
-
Install Java 11+ and Gradle.
-
Create a
build.gradle
file in the root of your project.build.gradleplugins { id 'java' id 'application' } repositories { mavenCentral() } dependencies { implementation 'com.datastax.astra:astra-db-java:1.0.0' } application { mainClassName = 'com.example.Quickstart' }
Initialize the client
Paste the following code into a new file on your computer. If you created the environment variables, you don’t need to include the variables in the code.
-
Python
-
TypeScript
-
Java
import os
from astrapy import DataAPIClient
from astrapy.constants import Environment
from astrapy.authentication import UsernamePasswordTokenProvider
from astrapy.constants import VectorMetric
from astrapy.ids import UUID
from astrapy.exceptions import InsertManyException
# Database settings
DB_USERNAME = "cassandra"
DB_PASSWORD = "cassandra"
DB_API_ENDPOINT = "http://localhost:8181"
DB_KEYSPACE = "cycling"
DB_COLLECTION = "vector_test"
# Database settings if you exported them as environment variables
# DB_USERNAME = os.environ.get("DB_USERNAME")
# DB_PASSWORD = os.environ.get("DB_PASSWORD")
# DB_API_ENDPOINT = os.environ.get("DB_API_ENDPOINT")
# OpenAI settings
OPEN_AI_PROVIDER = "openai";
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY");
MODEL_NAME = "text-embedding-3-small";
# Build a token
tp = UsernamePasswordTokenProvider(DB_USERNAME, DB_PASSWORD)
# Initialize the client and get a "Database" object
client = DataAPIClient(token=tp, environment=Environment.HCD)
database = client.get_database(DB_API_ENDPOINT, token=tp)
Don’t name the file |
import { DataAPIClient, UsernamePasswordTokenProvider, VectorDoc, UUID } from '@datastax/astra-db-ts';
// Database settings
const DB_USERNAME = "cassandra";
const DB_PASSWORD = "cassandra";
const DB_API_ENDPOINT = "http://localhost:8181";
const DB_ENVIRONMENT = "hcd";
const DB_KEYSPACE = "cycling";
// Database settings if you exported them as environment variables
// const DB_USERNAME = process.env.DB_USERNAME;
// const DB_PASSWORD = process.env.DB_PASSWORD;
// const DB_API_ENDPOINT = process.env.DB_API_ENDPOINT;
// OpenAI settings
const OPEN_AI_PROVIDER = "openai";
const OPENAI_API_KEY = process.env.OPENAI_API_KEY
const MODEL_NAME = "text-embedding-3-small";
// Build a token in the required format
const tp = new UsernamePasswordTokenProvider(DB_USERNAME, DB_PASSWORD);
// Initialize the client and get a "Db" object
const client = new DataAPIClient({ environment: 'hcd' });
const db = client.db(DB_API_ENDPOINT, { token: tp });
const dbAdmin = db.admin({ environment: 'hcd' });
import com.datastax.astra.client.Collection;
import com.datastax.astra.client.DataAPIClient;
import com.datastax.astra.client.Database;
import com.datastax.astra.client.admin.DataAPIDatabaseAdmin;
import com.datastax.astra.client.model.CollectionOptions;
import com.datastax.astra.client.model.CommandOptions;
import com.datastax.astra.client.model.Document;
import com.datastax.astra.client.model.FindOneOptions;
import com.datastax.astra.client.model.KeyspaceOptions;
import com.datastax.astra.client.model.SimilarityMetric;
import com.datastax.astra.internal.auth.UsernamePasswordTokenProvider;
import java.util.Optional;
import static com.datastax.astra.client.DataAPIClients.DEFAULT_ENDPOINT_LOCAL;
import static com.datastax.astra.client.DataAPIOptions.DataAPIDestination.HCD;
import static com.datastax.astra.client.DataAPIOptions.builder;
import static com.datastax.astra.client.model.Filters.eq;
public class QuickStartHCD {
public static void main(String[] args) {
// Database Settings
String cassandraUserName = "cassandra";
String cassandraPassword = "cassandra";
String dataApiUrl = DEFAULT_ENDPOINT_LOCAL; // http://localhost:8181
String databaseEnvironment = "HCD" // DSE, HCD, or ASTRA
String keyspaceName = "ks1";
String collectionName = "lyrics";
// Database settings if you export them as environment variables
// String cassandraUserName = System.getenv("DB_USERNAME");
// String cassandraPassword = System.getenv("DB_PASSWORD");
// String dataApiUrl = System.getenv("DB_API_ENDPOINT");
// OpenAI Embeddings
String openAiProvider = "openai";
String openAiKey = System.getenv("OPENAI_API_KEY"); // Need to export OPENAI_API_KEY
String openAiModel = "text-embedding-3-small";
int openAiEmbeddingDimension = 1536;
// Build a token in the form of Cassandra:base64(username):base64(password)
String token = new UsernamePasswordTokenProvider(cassandraUserName, cassandraPassword).getTokenAsString();
System.out.println("1/7 - Creating Token: " + token);
// Initialize the client
DataAPIClient client = new DataAPIClient(token, builder().withDestination(databaseEnvironment).build());
System.out.println("2/7 - Connected to Data API");
}
}
Create a keyspace
The clients all support creating a keyspace.
-
Python
-
TypeScript
-
Java
database.get_database_admin().create_keyspace(
DB_KEYSPACE,
update_db_keyspace=True,
)
Don’t name the file |
(async () => {
await dbAdmin.createKeyspace(DB_KEYSPACE);
console.log(await dbAdmin.listKeyspaces());
})();
// Create a default keyspace
((DataAPIDatabaseAdmin) client
.getDatabase(dataApiUrl)
.getDatabaseAdmin()).createKeyspace(keyspaceName, KeyspaceOptions.simpleStrategy(1));
System.out.println("3/7 - Keyspace '" + keyspaceName + "'created ");
Database db = client.getDatabase(dataApiUrl, keyspaceName);
System.out.println("4/7 - Connected to Database");
Create a collection
Create a collection in your keyspace.
Choose dimensions that match your vector data and pick an appropriate similarity metric: cosine
(default), dot_product
, or euclidean
.
The embeddings are generated using the vectorize
method, so the collection needs the parameters for using an embedding service.
-
Python
-
TypeScript
-
Java
import os
from astrapy import DataAPIClient
from astrapy.constants import Environment
from astrapy.authentication import UsernamePasswordTokenProvider
from astrapy.constants import VectorMetric
from astrapy.ids import UUID
from astrapy.exceptions import InsertManyException
# Database settings
DB_USERNAME = "cassandra"
DB_PASSWORD = "cassandra"
DB_API_ENDPOINT = "http://localhost:8181"
DB_KEYSPACE = "cycling"
DB_COLLECTION = "vector_test"
# Database settings if you exported them as environment variables
# DB_USERNAME = os.environ.get("DB_USERNAME")
# DB_PASSWORD = os.environ.get("DB_PASSWORD")
# DB_API_ENDPOINT = os.environ.get("DB_API_ENDPOINT")
# OpenAI settings
OPEN_AI_PROVIDER = "openai";
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY");
MODEL_NAME = "text-embedding-3-small";
# Build a token
tp = UsernamePasswordTokenProvider(DB_USERNAME, DB_PASSWORD)
# Initialize the client and get a "Database" object
client = DataAPIClient(token=tp, environment=Environment.HCD)
database = client.get_database(DB_API_ENDPOINT, token=tp)
# ⬇️ NEW CODE
# Create a collection. The default similarity metric is cosine. If you're not
# sure what dimension to set, use whatever dimension vector your embeddings
# model produces.
collection = database.create_collection(
DB_COLLECTION,
dimension=5,
metric=VectorMetric.COSINE, # or simply "cosine"
service={"provider": OPEN_AI_PROVIDER, "modelName": MODEL_NAME},
embedding_api_key=OPENAI_API_KEY,
keyspace=DB_KEYSPACE,
check_exists=False,
)
print(f"* Collection: {collection.full_name}\n")
# ⬆️ NEW CODE
import { DataAPIClient, UsernamePasswordTokenProvider, VectorDoc, UUID } from '@datastax/astra-db-ts';
// Database settings
const DB_USERNAME = "cassandra";
const DB_PASSWORD = "cassandra";
const DB_API_ENDPOINT = "http://localhost:8181";
const DB_ENVIRONMENT = "hcd";
const DB_KEYSPACE = "cycling";
// Database settings if you exported them as environment variables
// const DB_USERNAME = process.env.DB_USERNAME;
// const DB_PASSWORD = process.env.DB_PASSWORD;
// const DB_API_ENDPOINT = process.env.DB_API_ENDPOINT;
// OpenAI settings
const OPEN_AI_PROVIDER = "openai";
const OPENAI_API_KEY = process.env.OPENAI_API_KEY
const MODEL_NAME = "text-embedding-3-small";
// Build a token in the required format
const tp = new UsernamePasswordTokenProvider(DB_USERNAME, DB_PASSWORD);
// Initialize the client and get a "Db" object
const client = new DataAPIClient({ environment: 'hcd' });
const db = client.db(DB_API_ENDPOINT, { token: tp });
const dbAdmin = db.admin({ environment: 'hcd' });
// ⬇️ NEW CODE
// Schema for the collection (VectorDoc adds the $vector field)
interface Idea extends VectorDoc {
idea: string,
}
(async function () {
// Create a typed, vector-enabled collection. The default metric is cosine.
// If you're not sure what dimension to set, use whatever dimension vector
// your embeddings model produces.
const collection = await db.createCollection<Idea>('vector_test', {
keyspace: DB_KEYSPACE,
vector: {
service: {
provider: OPEN_AI_PROVIDER,
modelName: MODEL_NAME
},
dimension: 5,
metric: 'cosine',
},
embeddingApiKey: OPENAI_API_KEY,
checkExists: false
});
console.log(`* Created collection ${collection.keyspace}.${collection.collectionName}`);
})();
// ⬆️ NEW CODE
import com.datastax.astra.client.Collection;
import com.datastax.astra.client.DataAPIClient;
import com.datastax.astra.client.Database;
import com.datastax.astra.client.admin.DataAPIDatabaseAdmin;
import com.datastax.astra.client.model.CollectionOptions;
import com.datastax.astra.client.model.CommandOptions;
import com.datastax.astra.client.model.Document;
import com.datastax.astra.client.model.FindOneOptions;
import com.datastax.astra.client.model.KeyspaceOptions;
import com.datastax.astra.client.model.SimilarityMetric;
import com.datastax.astra.internal.auth.UsernamePasswordTokenProvider;
import java.util.Optional;
import static com.datastax.astra.client.DataAPIClients.DEFAULT_ENDPOINT_LOCAL;
import static com.datastax.astra.client.DataAPIOptions.DataAPIDestination.HCD;
import static com.datastax.astra.client.DataAPIOptions.builder;
import static com.datastax.astra.client.model.Filters.eq;
public class QuickStartHCD {
public static void main(String[] args) {
// Database Settings
String cassandraUserName = "cassandra";
String cassandraPassword = "cassandra";
String dataApiUrl = DEFAULT_ENDPOINT_LOCAL; // http://localhost:8181
String databaseEnvironment = "HCD" // DSE, HCD, or ASTRA
String keyspaceName = "ks1";
String collectionName = "lyrics";
// Database settings if you export them as environment variables
// String cassandraUserName = System.getenv("DB_USERNAME");
// String cassandraPassword = System.getenv("DB_PASSWORD");
// String dataApiUrl = System.getenv("DB_API_ENDPOINT");
// OpenAI Embeddings
String openAiProvider = "openai";
String openAiKey = System.getenv("OPENAI_API_KEY"); // Need to export OPENAI_API_KEY
String openAiModel = "text-embedding-3-small";
int openAiEmbeddingDimension = 1536;
// Build a token in the form of Cassandra:base64(username):base64(password)
String token = new UsernamePasswordTokenProvider(cassandraUserName, cassandraPassword).getTokenAsString();
System.out.println("1/7 - Creating Token: " + token);
// Initialize the client
DataAPIClient client = new DataAPIClient(token, builder().withDestination(databaseEnvironment).build());
System.out.println("2/7 - Connected to Data API");
// ⬇️ NEW CODE
// Create a collection
Collection<Document> collectionLyrics = db.createCollection(collectionName, CollectionOptions.builder()
.vectorDimension(5)
.vectorSimilarity(SimilarityMetric.COSINE)
.build(),
System.out.println("5/7 - Collection created");
// ⬆️ NEW CODE
}
}
Load vector embeddings
Insert a few documents into the collection.
Two methods are available for inserting data: $vectorize
and $vector
.
The $vectorize
method generate embeddings using a specified embedding service.
The $vector
method is used when you already have embeddings.
Use the $vectorize
method
-
Python
-
TypeScript
-
Java
import os
from astrapy import DataAPIClient
from astrapy.constants import Environment
from astrapy.authentication import UsernamePasswordTokenProvider
from astrapy.constants import VectorMetric
from astrapy.ids import UUID
from astrapy.exceptions import InsertManyException
# Database settings
DB_USERNAME = "cassandra"
DB_PASSWORD = "cassandra"
DB_API_ENDPOINT = "http://localhost:8181"
DB_KEYSPACE = "cycling"
DB_COLLECTION = "vector_test"
# Database settings if you exported them as environment variables
# DB_USERNAME = os.environ.get("DB_USERNAME")
# DB_PASSWORD = os.environ.get("DB_PASSWORD")
# DB_API_ENDPOINT = os.environ.get("DB_API_ENDPOINT")
# OpenAI settings
OPEN_AI_PROVIDER = "openai";
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY");
MODEL_NAME = "text-embedding-3-small";
# Build a token
tp = UsernamePasswordTokenProvider(DB_USERNAME, DB_PASSWORD)
# Initialize the client and get a "Database" object
client = DataAPIClient(token=tp, environment=Environment.HCD)
database = client.get_database(DB_API_ENDPOINT, token=tp)
# Create a collection. The default similarity metric is cosine. If you're not
# sure what dimension to set, use whatever dimension vector your embeddings
# model produces.
collection = database.create_collection(
DB_COLLECTION,
dimension=5,
metric=VectorMetric.COSINE, # or simply "cosine"
service={"provider": OPEN_AI_PROVIDER, "modelName": MODEL_NAME},
embedding_api_key=OPENAI_API_KEY,
keyspace=DB_KEYSPACE,
check_exists=False,
)
print(f"* Collection: {collection.full_name}\n")
# ⬇️ NEW CODE
# Insert documents into the collection.
# (UUIDs here are version 7.)
documents = [
{
"_id": UUID("018e65c9-df45-7913-89f8-175f28bd7f74"),
"text": "Chatbot integrated sneakers that talk to you",
"$vectorize": "Wild! How can they do that?"
},
{
"_id": UUID("018e65c9-e1b7-7048-a593-db452be1e4c2"),
"text": "An AI quilt to help you sleep forever",
"$vectorize": "Sleep like a baby soft and cuddly"
},
{
"_id": UUID("018e65c9-e33d-749b-9386-e848739582f0"),
"text": "A deep learning display that controls your mood",
"$vectorize": "I do not want my mood controlled!"
},
]
try:
insertion_result = collection.insert_many(documents)
print(f"* Inserted {len(insertion_result.inserted_ids)} items.\n")
except InsertManyException:
print("* Documents found on DB already. Let's move on.\n")
# ⬆️ NEW CODE
import { DataAPIClient, UsernamePasswordTokenProvider, VectorDoc, UUID } from '@datastax/astra-db-ts';
// Database settings
const DB_USERNAME = "cassandra";
const DB_PASSWORD = "cassandra";
const DB_API_ENDPOINT = "http://localhost:8181";
const DB_ENVIRONMENT = "hcd";
const DB_KEYSPACE = "cycling";
// Database settings if you exported them as environment variables
// const DB_USERNAME = process.env.DB_USERNAME;
// const DB_PASSWORD = process.env.DB_PASSWORD;
// const DB_API_ENDPOINT = process.env.DB_API_ENDPOINT;
// OpenAI settings
const OPEN_AI_PROVIDER = "openai";
const OPENAI_API_KEY = process.env.OPENAI_API_KEY
const MODEL_NAME = "text-embedding-3-small";
// Build a token in the required format
const tp = new UsernamePasswordTokenProvider(DB_USERNAME, DB_PASSWORD);
// Initialize the client and get a "Db" object
const client = new DataAPIClient({ environment: 'hcd' });
const db = client.db(DB_API_ENDPOINT, { token: tp });
const dbAdmin = db.admin({ environment: 'hcd' });
// Schema for the collection (VectorDoc adds the $vector field)
interface Idea extends VectorDoc {
idea: string,
}
(async function () {
// Create a typed, vector-enabled collection. The default metric is cosine.
// If you're not sure what dimension to set, use whatever dimension vector
// your embeddings model produces.
const collection = await db.createCollection<Idea>('vector_test', {
keyspace: DB_KEYSPACE,
vector: {
service: {
provider: OPEN_AI_PROVIDER,
modelName: MODEL_NAME
},
dimension: 5,
metric: 'cosine',
},
embeddingApiKey: OPENAI_API_KEY,
checkExists: false
});
console.log(`* Created collection ${collection.keyspace}.${collection.collectionName}`);
// ⬇️ NEW CODE
// Insert documents into the collection (using UUIDv7s)
const documents = [
{
_id: new UUID('018e65c9-df45-7913-89f8-175f28bd7f74'),
text: 'ChatGPT integrated sneakers that talk to you',
$vectorize: 'Wild! How can they do that?',
},
{
_id: new UUID('018e65c9-e1b7-7048-a593-db452be1e4c2'),
text: 'An AI quilt to help you sleep forever',
$vectorize: 'Sleep like a baby soft and cuddly',
},
{
_id: new UUID('018e65c9-e33d-749b-9386-e848739582f0'),
text: 'A deep learning display that controls your mood',
$vectorize: 'I do not want my mood controlled!',
},
];
try {
const inserted = await collection.insertMany(documents);
console.log(`* Inserted ${inserted.insertedCount} items.`);
} catch (e) {
console.log('* Documents found on DB already. Let\'s move on!');
}
// ⬆️ NEW CODE
})();
import com.datastax.astra.client.Collection;
import com.datastax.astra.client.DataAPIClient;
import com.datastax.astra.client.Database;
import com.datastax.astra.client.admin.DataAPIDatabaseAdmin;
import com.datastax.astra.client.model.CollectionOptions;
import com.datastax.astra.client.model.CommandOptions;
import com.datastax.astra.client.model.Document;
import com.datastax.astra.client.model.FindOneOptions;
import com.datastax.astra.client.model.KeyspaceOptions;
import com.datastax.astra.client.model.SimilarityMetric;
import com.datastax.astra.internal.auth.UsernamePasswordTokenProvider;
import java.util.Optional;
import static com.datastax.astra.client.DataAPIClients.DEFAULT_ENDPOINT_LOCAL;
import static com.datastax.astra.client.DataAPIOptions.DataAPIDestination.HCD;
import static com.datastax.astra.client.DataAPIOptions.builder;
import static com.datastax.astra.client.model.Filters.eq;
public class QuickStartHCD {
public static void main(String[] args) {
// Database Settings
String cassandraUserName = "cassandra";
String cassandraPassword = "cassandra";
String dataApiUrl = DEFAULT_ENDPOINT_LOCAL; // http://localhost:8181
String databaseEnvironment = "HCD" // DSE, HCD, or ASTRA
String keyspaceName = "ks1";
String collectionName = "lyrics";
// Database settings if you export them as environment variables
// String cassandraUserName = System.getenv("DB_USERNAME");
// String cassandraPassword = System.getenv("DB_PASSWORD");
// String dataApiUrl = System.getenv("DB_API_ENDPOINT");
// OpenAI Embeddings
String openAiProvider = "openai";
String openAiKey = System.getenv("OPENAI_API_KEY"); // Need to export OPENAI_API_KEY
String openAiModel = "text-embedding-3-small";
int openAiEmbeddingDimension = 1536;
// Build a token in the form of Cassandra:base64(username):base64(password)
String token = new UsernamePasswordTokenProvider(cassandraUserName, cassandraPassword).getTokenAsString();
System.out.println("1/7 - Creating Token: " + token);
// Initialize the client
DataAPIClient client = new DataAPIClient(token, builder().withDestination(databaseEnvironment).build());
System.out.println("2/7 - Connected to Data API");
// Create a collection
Collection<Document> collectionLyrics = db.createCollection(collectionName, CollectionOptions.builder()
.vectorDimension(5)
.vectorSimilarity(SimilarityMetric.COSINE)
.build(),
System.out.println("5/7 - Collection created");
// ⬇️ NEW CODE
// Insert some documents
collectionLyrics.insertMany(
new Document(1).append("band", "Dire Straits").append("song", "Romeo And Juliet").vectorize("A lovestruck Romeo sings the streets a serenade"),
new Document(2).append("band", "Dire Straits").append("song", "Romeo And Juliet").vectorize("Says something like, You and me babe, how about it?"),
new Document(4).append("band", "Dire Straits").append("song", "Romeo And Juliet").vectorize("Juliet says,Hey, it's Romeo, you nearly gimme a heart attack"),
new Document(5).append("band", "Dire Straits").append("song", "Romeo And Juliet").vectorize("He's underneath the window"),
new Document(6).append("band", "Dire Straits").append("song", "Romeo And Juliet").vectorize("She's singing, Hey la, my boyfriend's back"),
new Document(7).append("band", "Dire Straits").append("song", "Romeo And Juliet").vectorize("You shouldn't come around here singing up at people like that"),
new Document(8).append("band", "Dire Straits").append("song", "Romeo And Juliet").vectorize("Anyway, what you gonna do about it?"));
System.out.println("6/7 - Collection populated");
// ⬆️ NEW CODE
}
}
Use the $vector
method instead of $vectorize
The $vector
method can be used if you already have embeddings.
-
Python
-
TypeScript
-
Java
import os
from astrapy import DataAPIClient
from astrapy.constants import Environment
from astrapy.authentication import UsernamePasswordTokenProvider
from astrapy.constants import VectorMetric
from astrapy.ids import UUID
from astrapy.exceptions import InsertManyException
# Database settings
DB_USERNAME = "cassandra"
DB_PASSWORD = "cassandra"
DB_API_ENDPOINT = "http://localhost:8181"
DB_KEYSPACE = "cycling"
DB_COLLECTION = "vector_test"
# Database settings if you exported them as environment variables
# DB_USERNAME = os.environ.get("DB_USERNAME")
# DB_PASSWORD = os.environ.get("DB_PASSWORD")
# DB_API_ENDPOINT = os.environ.get("DB_API_ENDPOINT")
# OpenAI settings
OPEN_AI_PROVIDER = "openai";
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY");
MODEL_NAME = "text-embedding-3-small";
# Build a token
tp = UsernamePasswordTokenProvider(DB_USERNAME, DB_PASSWORD)
# Initialize the client and get a "Database" object
client = DataAPIClient(token=tp, environment=Environment.HCD)
database = client.get_database(DB_API_ENDPOINT, token=tp)
# Create a collection. The default similarity metric is cosine. If you're not
# sure what dimension to set, use whatever dimension vector your embeddings
# model produces.
collection = database.create_collection(
DB_COLLECTION,
dimension=5,
metric=VectorMetric.COSINE, # or simply "cosine"
service={"provider": OPEN_AI_PROVIDER, "modelName": MODEL_NAME},
embedding_api_key=OPENAI_API_KEY,
keyspace=DB_KEYSPACE,
check_exists=False,
)
print(f"* Collection: {collection.full_name}\n")
# ⬇️ NEW CODE
# Insert documents into the collection.
# (UUIDs here are version 7.)
documents = [
{
"_id": UUID("018e65c9-df45-7913-89f8-175f28bd7f74"),
"text": "Chatbot integrated sneakers that talk to you",
"$vector": [0.1, 0.15, 0.3, 0.12, 0.05],
},
{
"_id": UUID("018e65c9-e1b7-7048-a593-db452be1e4c2"),
"text": "An AI quilt to help you sleep forever",
"$vector": [0.45, 0.09, 0.01, 0.2, 0.11],
},
{
"_id": UUID("018e65c9-e33d-749b-9386-e848739582f0"),
"text": "A deep learning display that controls your mood",
"$vector": [0.1, 0.05, 0.08, 0.3, 0.6],
},
]
try:
insertion_result = collection.insert_many(documents)
print(f"* Inserted {len(insertion_result.inserted_ids)} items.\n")
except InsertManyException:
print("* Documents found on DB already. Let's move on.\n")
# ⬆️ NEW CODE
import { DataAPIClient, UsernamePasswordTokenProvider, VectorDoc, UUID } from '@datastax/astra-db-ts';
// Database settings
const DB_USERNAME = "cassandra";
const DB_PASSWORD = "cassandra";
const DB_API_ENDPOINT = "http://localhost:8181";
const DB_ENVIRONMENT = "hcd";
const DB_KEYSPACE = "cycling";
// Database settings if you exported them as environment variables
// const DB_USERNAME = process.env.DB_USERNAME;
// const DB_PASSWORD = process.env.DB_PASSWORD;
// const DB_API_ENDPOINT = process.env.DB_API_ENDPOINT;
// OpenAI settings
const OPEN_AI_PROVIDER = "openai";
const OPENAI_API_KEY = process.env.OPENAI_API_KEY
const MODEL_NAME = "text-embedding-3-small";
// Build a token in the required format
const tp = new UsernamePasswordTokenProvider(DB_USERNAME, DB_PASSWORD);
// Initialize the client and get a "Db" object
const client = new DataAPIClient({ environment: 'hcd' });
const db = client.db(DB_API_ENDPOINT, { token: tp });
const dbAdmin = db.admin({ environment: 'hcd' });
// Schema for the collection (VectorDoc adds the $vector field)
interface Idea extends VectorDoc {
idea: string,
}
(async function () {
// Create a typed, vector-enabled collection. The default metric is cosine.
// If you're not sure what dimension to set, use whatever dimension vector
// your embeddings model produces.
const collection = await db.createCollection<Idea>('vector_test', {
keyspace: DB_KEYSPACE,
vector: {
service: {
provider: OPEN_AI_PROVIDER,
modelName: MODEL_NAME
},
dimension: 5,
metric: 'cosine',
},
embeddingApiKey: OPENAI_API_KEY,
checkExists: false
});
console.log(`* Created collection ${collection.keyspace}.${collection.collectionName}`);
// ⬇️ NEW CODE
// Insert documents into the collection (using UUIDv7s)
const documents = [
{
_id: new UUID('018e65c9-df45-7913-89f8-175f28bd7f74'),
text: 'ChatGPT integrated sneakers that talk to you',
$vector: [0.25, 0.25, 0.25, 0.25, 0.45],
},
{
_id: new UUID('018e65c9-e1b7-7048-a593-db452be1e4c2'),
text: 'An AI quilt to help you sleep forever',
$vector: [0.10, 0.15, 0.25, 0.25, 0.15],
},
{
_id: new UUID('018e65c9-e33d-749b-9386-e848739582f0'),
text: 'A deep learning display that controls your mood',
$vector: 'I do not want my mood controlled!',
},
];
try {
const inserted = await collection.insertMany(documents);
console.log(`* Inserted ${inserted.insertedCount} items.`);
} catch (e) {
console.log('* Documents found on DB already. Let\'s move on!');
}
// ⬆️ NEW CODE
})();
import com.datastax.astra.client.Collection;
import com.datastax.astra.client.DataAPIClient;
import com.datastax.astra.client.Database;
import com.datastax.astra.client.admin.DataAPIDatabaseAdmin;
import com.datastax.astra.client.model.CollectionOptions;
import com.datastax.astra.client.model.CommandOptions;
import com.datastax.astra.client.model.Document;
import com.datastax.astra.client.model.FindOneOptions;
import com.datastax.astra.client.model.KeyspaceOptions;
import com.datastax.astra.client.model.SimilarityMetric;
import com.datastax.astra.internal.auth.UsernamePasswordTokenProvider;
import java.util.Optional;
import static com.datastax.astra.client.DataAPIClients.DEFAULT_ENDPOINT_LOCAL;
import static com.datastax.astra.client.DataAPIOptions.DataAPIDestination.HCD;
import static com.datastax.astra.client.DataAPIOptions.builder;
import static com.datastax.astra.client.model.Filters.eq;
public class QuickStartHCD {
public static void main(String[] args) {
// Database Settings
String cassandraUserName = "cassandra";
String cassandraPassword = "cassandra";
String dataApiUrl = DEFAULT_ENDPOINT_LOCAL; // http://localhost:8181
String databaseEnvironment = "HCD" // DSE, HCD, or ASTRA
String keyspaceName = "ks1";
String collectionName = "lyrics";
// Database settings if you export them as environment variables
// String cassandraUserName = System.getenv("DB_USERNAME");
// String cassandraPassword = System.getenv("DB_PASSWORD");
// String dataApiUrl = System.getenv("DB_API_ENDPOINT");
// OpenAI Embeddings
String openAiProvider = "openai";
String openAiKey = System.getenv("OPENAI_API_KEY"); // Need to export OPENAI_API_KEY
String openAiModel = "text-embedding-3-small";
int openAiEmbeddingDimension = 1536;
// Build a token in the form of Cassandra:base64(username):base64(password)
String token = new UsernamePasswordTokenProvider(cassandraUserName, cassandraPassword).getTokenAsString();
System.out.println("1/7 - Creating Token: " + token);
// Initialize the client
DataAPIClient client = new DataAPIClient(token, builder().withDestination(databaseEnvironment).build());
System.out.println("2/7 - Connected to Data API");
// Create a collection
Collection<Document> collectionLyrics = db.createCollection(collectionName, CollectionOptions.builder()
.vectorDimension(5)
.vectorSimilarity(SimilarityMetric.COSINE)
.build(),
System.out.println("5/7 - Collection created");
// ⬇️ NEW CODE
// Insert some documents
collection.insertMany(
new Document("1")
.append("text", "ChatGPT integrated sneakers that talk to you")
.vector(new float[]{0.1f, 0.15f, 0.3f, 0.12f, 0.05f}),
new Document("2")
.append("text", "An AI quilt to help you sleep forever")
.vector(new float[]{0.45f, 0.09f, 0.01f, 0.2f, 0.11f}),
new Document("3")
.append("text", "A deep learning display that controls your mood")
.vector(new float[]{0.1f, 0.05f, 0.08f, 0.3f, 0.6f}));
System.out.println("6/7 - Collection populated");
// ⬆️ NEW CODE
}
}
Perform a similarity search
Find documents that are close to a specific vector embedding. The code also shows the optional step of dropping the collection at the end.
-
Python
-
TypeScript
-
Java
import os
from astrapy import DataAPIClient
from astrapy.constants import Environment
from astrapy.authentication import UsernamePasswordTokenProvider
from astrapy.constants import VectorMetric
from astrapy.ids import UUID
from astrapy.exceptions import InsertManyException
# Database settings
DB_USERNAME = "cassandra"
DB_PASSWORD = "cassandra"
DB_API_ENDPOINT = "http://localhost:8181"
DB_KEYSPACE = "cycling"
DB_COLLECTION = "vector_test"
# Database settings if you exported them as environment variables
# DB_USERNAME = os.environ.get("DB_USERNAME")
# DB_PASSWORD = os.environ.get("DB_PASSWORD")
# DB_API_ENDPOINT = os.environ.get("DB_API_ENDPOINT")
# OpenAI settings
OPEN_AI_PROVIDER = "openai";
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY");
MODEL_NAME = "text-embedding-3-small";
# Build a token
tp = UsernamePasswordTokenProvider(DB_USERNAME, DB_PASSWORD)
# Initialize the client and get a "Database" object
client = DataAPIClient(token=tp, environment=Environment.HCD)
database = client.get_database(DB_API_ENDPOINT, token=tp)
# Create a collection. The default similarity metric is cosine. If you're not
# sure what dimension to set, use whatever dimension vector your embeddings
# model produces.
collection = database.create_collection(
DB_COLLECTION,
dimension=5,
metric=VectorMetric.COSINE, # or simply "cosine"
service={"provider": OPEN_AI_PROVIDER, "modelName": MODEL_NAME},
embedding_api_key=OPENAI_API_KEY,
keyspace=DB_KEYSPACE,
check_exists=False,
)
print(f"* Collection: {collection.full_name}\n")
# Insert documents into the collection.
# (UUIDs here are version 7.)
documents = [
{
"_id": UUID("018e65c9-df45-7913-89f8-175f28bd7f74"),
"text": "Chatbot integrated sneakers that talk to you",
"$vector": [0.1, 0.15, 0.3, 0.12, 0.05],
},
{
"_id": UUID("018e65c9-e1b7-7048-a593-db452be1e4c2"),
"text": "An AI quilt to help you sleep forever",
"$vector": [0.45, 0.09, 0.01, 0.2, 0.11],
},
{
"_id": UUID("018e65c9-e33d-749b-9386-e848739582f0"),
"text": "A deep learning display that controls your mood",
"$vector": [0.1, 0.05, 0.08, 0.3, 0.6],
},
]
try:
insertion_result = collection.insert_many(documents)
print(f"* Inserted {len(insertion_result.inserted_ids)} items.\n")
except InsertManyException:
print("* Documents found on DB already. Let's move on.\n")
# ⬇️ NEW CODE
# Perform a similarity search
query = [0.15, 0.1, 0.1, 0.35, 0.55]
results = collection.find(
vector=query,
limit=10,
)
print("Vector search results:")
for document in results:
print(" ", document)
# ⬆️ NEW CODE
import { DataAPIClient, UsernamePasswordTokenProvider, VectorDoc, UUID } from '@datastax/astra-db-ts';
// Database settings
const DB_USERNAME = "cassandra";
const DB_PASSWORD = "cassandra";
const DB_API_ENDPOINT = "http://localhost:8181";
const DB_ENVIRONMENT = "hcd";
const DB_KEYSPACE = "cycling";
// Database settings if you exported them as environment variables
// const DB_USERNAME = process.env.DB_USERNAME;
// const DB_PASSWORD = process.env.DB_PASSWORD;
// const DB_API_ENDPOINT = process.env.DB_API_ENDPOINT;
// OpenAI settings
const OPEN_AI_PROVIDER = "openai";
const OPENAI_API_KEY = process.env.OPENAI_API_KEY
const MODEL_NAME = "text-embedding-3-small";
// Build a token in the required format
const tp = new UsernamePasswordTokenProvider(DB_USERNAME, DB_PASSWORD);
// Initialize the client and get a "Db" object
const client = new DataAPIClient({ environment: 'hcd' });
const db = client.db(DB_API_ENDPOINT, { token: tp });
const dbAdmin = db.admin({ environment: 'hcd' });
// Schema for the collection (VectorDoc adds the $vector field)
interface Idea extends VectorDoc {
idea: string,
}
(async function () {
// Create a typed, vector-enabled collection. The default metric is cosine.
// If you're not sure what dimension to set, use whatever dimension vector
// your embeddings model produces.
const collection = await db.createCollection<Idea>('vector_test', {
keyspace: DB_KEYSPACE,
vector: {
service: {
provider: OPEN_AI_PROVIDER,
modelName: MODEL_NAME
},
dimension: 5,
metric: 'cosine',
},
embeddingApiKey: OPENAI_API_KEY,
checkExists: false
});
console.log(`* Created collection ${collection.keyspace}.${collection.collectionName}`);
// Insert documents into the collection (using UUIDv7s)
const documents = [
{
_id: new UUID('018e65c9-df45-7913-89f8-175f28bd7f74'),
text: 'ChatGPT integrated sneakers that talk to you',
$vector: [0.25, 0.25, 0.25, 0.25, 0.45],
},
{
_id: new UUID('018e65c9-e1b7-7048-a593-db452be1e4c2'),
text: 'An AI quilt to help you sleep forever',
$vector: [0.10, 0.15, 0.25, 0.25, 0.15],
},
{
_id: new UUID('018e65c9-e33d-749b-9386-e848739582f0'),
text: 'A deep learning display that controls your mood',
$vector: 'I do not want my mood controlled!',
},
];
try {
const inserted = await collection.insertMany(documents);
console.log(`* Inserted ${inserted.insertedCount} items.`);
} catch (e) {
console.log('* Documents found on DB already. Let\'s move on!');
}
// ⬇️ NEW CODE
// Perform a similarity search
const cursor = await collection.find({}, {
vector: [0.15, 0.1, 0.1, 0.35, 0.55],
limit: 10,
includeSimilarity: true,
});
console.log('* Search results:')
for await (const doc of cursor) {
console.log(' ', doc.text, doc.$similarity);
}
// Cleanup (if desired)
await db.dropCollection('vector_test');
console.log('* Collection dropped.');
// Close the client
await client.close();
// ⬆️ NEW CODE
})();
import com.datastax.astra.client.Collection;
import com.datastax.astra.client.DataAPIClient;
import com.datastax.astra.client.Database;
import com.datastax.astra.client.admin.DataAPIDatabaseAdmin;
import com.datastax.astra.client.model.CollectionOptions;
import com.datastax.astra.client.model.CommandOptions;
import com.datastax.astra.client.model.Document;
import com.datastax.astra.client.model.FindOneOptions;
import com.datastax.astra.client.model.KeyspaceOptions;
import com.datastax.astra.client.model.SimilarityMetric;
import com.datastax.astra.internal.auth.UsernamePasswordTokenProvider;
import java.util.Optional;
import static com.datastax.astra.client.DataAPIClients.DEFAULT_ENDPOINT_LOCAL;
import static com.datastax.astra.client.DataAPIOptions.DataAPIDestination.HCD;
import static com.datastax.astra.client.DataAPIOptions.builder;
import static com.datastax.astra.client.model.Filters.eq;
public class QuickStartHCD {
public static void main(String[] args) {
// Database Settings
String cassandraUserName = "cassandra";
String cassandraPassword = "cassandra";
String dataApiUrl = DEFAULT_ENDPOINT_LOCAL; // http://localhost:8181
String databaseEnvironment = "HCD" // DSE, HCD, or ASTRA
String keyspaceName = "ks1";
String collectionName = "lyrics";
// Database settings if you export them as environment variables
// String cassandraUserName = System.getenv("DB_USERNAME");
// String cassandraPassword = System.getenv("DB_PASSWORD");
// String dataApiUrl = System.getenv("DB_API_ENDPOINT");
// OpenAI Embeddings
String openAiProvider = "openai";
String openAiKey = System.getenv("OPENAI_API_KEY"); // Need to export OPENAI_API_KEY
String openAiModel = "text-embedding-3-small";
int openAiEmbeddingDimension = 1536;
// Build a token in the form of Cassandra:base64(username):base64(password)
String token = new UsernamePasswordTokenProvider(cassandraUserName, cassandraPassword).getTokenAsString();
System.out.println("1/7 - Creating Token: " + token);
// Initialize the client
DataAPIClient client = new DataAPIClient(token, builder().withDestination(databaseEnvironment).build());
System.out.println("2/7 - Connected to Data API");
// Create a collection
Collection<Document> collectionLyrics = db.createCollection(collectionName, CollectionOptions.builder()
.vectorDimension(5)
.vectorSimilarity(SimilarityMetric.COSINE)
.build(),
System.out.println("5/7 - Collection created");
// Insert some documents
collection.insertMany(
new Document("1")
.append("text", "ChatGPT integrated sneakers that talk to you")
.vector(new float[]{0.1f, 0.15f, 0.3f, 0.12f, 0.05f}),
new Document("2")
.append("text", "An AI quilt to help you sleep forever")
.vector(new float[]{0.45f, 0.09f, 0.01f, 0.2f, 0.11f}),
new Document("3")
.append("text", "A deep learning display that controls your mood")
.vector(new float[]{0.1f, 0.05f, 0.08f, 0.3f, 0.6f}));
System.out.println("6/7 - Collection populated");
// ⬇️ NEW CODE
FindIterable<Document> resultsSet = collection.find(
new float[]{0.15f, 0.1f, 0.1f, 0.35f, 0.55f},
10
);
resultsSet.forEach(System.out::println);
collection.drop();
System.out.println("Deleted the collection");
// ⬆️ NEW CODE
}
}
You get a sorted list of the documents you inserted. The database sorts documents by their similarity to the query vector, most similar documents first. The calculation uses cosine similarity by default.
Run the code
Run the code you defined above.
-
Python
-
TypeScript
-
Java
python QuickStartHCD.py
npx tsx QuickStartHCD.ts
yarn dlx tsx QuickStartHCD.ts
mvn clean compile
export OPENAI_API_KEY=<your-api-key>
mvn exec:java -Dexec.mainClass="com.example.QuickStartHCD"
gradle build
gradle run