Helpers

Helper components provide utility functions to help manage data, tasks, and other components in your flow.

Chat Memory

This component retrieves and manages chat messages from Langflow tables or an external memory.

Parameters

Inputs
Name Display Name Info

memory

External Memory

Retrieve messages from an external memory. If empty, it will use the Langflow tables.

sender

Sender Type

Filter by sender type.

sender_name

Sender Name

Filter by sender name.

n_messages

Number of Messages

Number of messages to retrieve.

session_id

Session ID

The session ID of the chat. If empty, the current session ID parameter will be used.

order

Order

Order of the messages.

template

Template

The template to use for formatting the data. It can contain the keys {text}, {sender} or any other key in the message data.

Outputs
Name Display Name Info

messages

Messages (Data)

Retrieved messages as Data objects.

messages_text

Messages (Text)

Retrieved messages formatted as text.

lc_memory

Memory

Built LangChain memory object.

Component code

ChatMemory.py
404: Not Found

Combine Text

This component concatenates two text sources into a single text chunk using a specified delimiter.

Parameters

Inputs
Name Display Name Info

first_text

First Text

The first text input to concatenate.

second_text

Second Text

The second text input to concatenate.

delimiter

Delimiter

A string used to separate the two text inputs. Defaults to a space.

Component code

CombineText.py
from langflow.custom import Component
from langflow.io import MessageTextInput, Output
from langflow.schema.message import Message


class CombineTextComponent(Component):
    display_name = "Combine Text"
    description = "Concatenate two text sources into a single text chunk using a specified delimiter."
    icon = "merge"
    name = "CombineText"

    inputs = [
        MessageTextInput(
            name="text1",
            display_name="First Text",
            info="The first text input to concatenate.",
        ),
        MessageTextInput(
            name="text2",
            display_name="Second Text",
            info="The second text input to concatenate.",
        ),
        MessageTextInput(
            name="delimiter",
            display_name="Delimiter",
            info="A string used to separate the two text inputs. Defaults to a whitespace.",
            value=" ",
        ),
    ]

    outputs = [
        Output(display_name="Combined Text", name="combined_text", method="combine_texts"),
    ]

    def combine_texts(self) -> Message:
        combined = self.delimiter.join([self.text1, self.text2])
        self.status = combined
        return Message(text=combined)

Create List

This component dynamically creates a record with a specified number of fields.

Parameters

Inputs
Name Display Name Info

n_fields

Number of Fields

Number of fields to be added to the record.

text_key

Text Key

Key used as text.

Component code

CreateList.py
from langflow.custom import Component
from langflow.inputs import StrInput
from langflow.schema import Data
from langflow.template import Output


class CreateListComponent(Component):
    display_name = "Create List"
    description = "Creates a list of texts."
    icon = "list"
    name = "CreateList"

    inputs = [
        StrInput(
            name="texts",
            display_name="Texts",
            info="Enter one or more texts.",
            is_list=True,
        ),
    ]

    outputs = [
        Output(display_name="Data List", name="list", method="create_list"),
    ]

    def create_list(self) -> list[Data]:
        data = [Data(text=text) for text in self.texts]
        self.status = data
        return data

Custom Component

Use this component as a template to create your custom component.

Component code

CustomComponent.py
# from langflow.field_typing import Data
from langflow.custom import Component
from langflow.io import MessageTextInput, Output
from langflow.schema import Data


class CustomComponent(Component):
    display_name = "Custom Component"
    description = "Use as a template to create your own component."
    documentation: str = "http://docs.langflow.org/components/custom"
    icon = "custom_components"
    name = "CustomComponent"

    inputs = [
        MessageTextInput(name="input_value", display_name="Input Value", value="Hello, World!"),
    ]

    outputs = [
        Output(display_name="Output", name="output", method="build_output"),
    ]

    def build_output(self) -> Data:
        data = Data(value=self.input_value)
        self.status = data
        return data

Filter Data

This component converts LangChain documents into Data.

Component code

FilterData.py
from typing import List

from langflow.custom import Component
from langflow.io import DataInput, MessageTextInput, Output
from langflow.schema import Data


class FilterDataComponent(Component):
    display_name = "Filter Data"
    description = "Filters a Data object based on a list of keys."
    icon = "filter"
    beta = True
    name = "FilterData"

    inputs = [
        DataInput(
            name="data",
            display_name="Data",
            info="Data object to filter.",
        ),
        MessageTextInput(
            name="filter_criteria",
            display_name="Filter Criteria",
            info="List of keys to filter by.",
            is_list=True,
        ),
    ]

    outputs = [
        Output(display_name="Filtered Data", name="filtered_data", method="filter_data"),
    ]

    def filter_data(self) -> Data:
        filter_criteria: List[str] = self.filter_criteria
        data = self.data.data if isinstance(self.data, Data) else {}

        # Filter the data
        filtered = {key: value for key, value in data.items() if key in filter_criteria}

        # Create a new Data object with the filtered data
        filtered_data = Data(data=filtered)
        self.status = filtered_data
        return filtered_data

Hierarchical Task

This component creates and manages hierarchical tasks for CrewAI agents in a Playground environment.

For more information, see the CrewAI documentation.

Parameters

Inputs
Name Display Name Info

task_description

Description

Descriptive text detailing task’s purpose and execution.

expected_output

Expected Output

Clear definition of expected task outcome.

tools

Tools

List of tools/resources limited for task execution. Uses the Agent tools by default.

Outputs
Name Display Name Info

task_output

Task

The built hierarchical task.

Component code

HierarchicalTask.py
from langflow.base.agents.crewai.tasks import HierarchicalTask
from langflow.custom import Component
from langflow.io import HandleInput, MultilineInput, Output


class HierarchicalTaskComponent(Component):
    display_name: str = "Hierarchical Task"
    description: str = "Each task must have a description, an expected output and an agent responsible for execution."
    icon = "CrewAI"
    inputs = [
        MultilineInput(
            name="task_description",
            display_name="Description",
            info="Descriptive text detailing task's purpose and execution.",
        ),
        MultilineInput(
            name="expected_output",
            display_name="Expected Output",
            info="Clear definition of expected task outcome.",
        ),
        HandleInput(
            name="tools",
            display_name="Tools",
            input_types=["Tool"],
            is_list=True,
            info="List of tools/resources limited for task execution. Uses the Agent tools by default.",
            required=False,
            advanced=True,
        ),
    ]

    outputs = [
        Output(display_name="Task", name="task_output", method="build_task"),
    ]

    def build_task(self) -> HierarchicalTask:
        task = HierarchicalTask(
            description=self.task_description,
            expected_output=self.expected_output,
            tools=self.tools or [],
        )
        self.status = task
        return task

ID Generator

This component generates a unique ID.

Parameters

Outputs
Name Display Name Info

value

Value

Unique ID generated.

Component code

IDGenerator.py
import uuid
from typing import Any, Optional

from langflow.custom import CustomComponent
from langflow.schema.dotdict import dotdict


class IDGeneratorComponent(CustomComponent):
    display_name = "ID Generator"
    description = "Generates a unique ID."
    name = "IDGenerator"

    def update_build_config(  # type: ignore
        self, build_config: dotdict, field_value: Any, field_name: Optional[str] = None
    ):
        if field_name == "unique_id":
            build_config[field_name]["value"] = str(uuid.uuid4())
        return build_config

    def build_config(self):
        return {
            "unique_id": {
                "display_name": "Value",
                "refresh_button": True,
            }
        }

    def build(self, unique_id: str) -> str:
        return unique_id

Merge Data

Component code

MergeData.py
from langflow.custom import CustomComponent
from langflow.schema import Data


class MergeDataComponent(CustomComponent):
    display_name = "Merge Data"
    description = "Combines multiple data sources into a single unified Data object."
    beta: bool = True
    name = "MergeData"

    field_config = {
        "data": {"display_name": "Data"},
    }

    def build(self, data: list[Data]) -> Data:
        if not data:
            return Data()
        if len(data) == 1:
            return data[0]
        merged_data = Data()
        for value in data:
            if merged_data is None:
                merged_data = value
            else:
                merged_data += value
        self.status = merged_data
        return merged_data

Parse Data

The ParseData component converts Data objects into plain text using a specified template. This component transforms structured data into human-readable text formats, allowing for customizable output through the use of templates.

Parameters

Inputs
Name Display Name Info

data

Data

The data to convert to text

template

Template

The template to use for formatting the data. It can contain the keys {text}, {data} or any other key in the Data

sep

Separator

The separator to use between multiple data items

Outputs
Name Display Name Info

text

Text

The resulting formatted text string as a Message object

Component code

ParseData.py
from langflow.custom import Component
from langflow.helpers.data import data_to_text
from langflow.io import DataInput, MultilineInput, Output, StrInput
from langflow.schema.message import Message


class ParseDataComponent(Component):
    display_name = "Parse Data"
    description = "Convert Data into plain text following a specified template."
    icon = "braces"
    name = "ParseData"

    inputs = [
        DataInput(name="data", display_name="Data", info="The data to convert to text."),
        MultilineInput(
            name="template",
            display_name="Template",
            info="The template to use for formatting the data. It can contain the keys {text}, {data} or any other key in the Data.",
            value="{text}",
        ),
        StrInput(name="sep", display_name="Separator", advanced=True, value="\n"),
    ]

    outputs = [
        Output(display_name="Text", name="text", method="parse_data"),
    ]

    def parse_data(self) -> Message:
        data = self.data if isinstance(self.data, list) else [self.data]
        template = self.template

        result_string = data_to_text(template, data, sep=self.sep)
        self.status = result_string
        return Message(text=result_string)

Sequential Task

This component creates and manage sequential tasks for CrewAI agents. It builds a SequentialTask object with the provided description, expected output, and agent, allowing for the specification of tools and asynchronous execution.

For more information, see the CrewAI documentation.

Parameters

Inputs
Name Display Name Info

task_description

Description

Descriptive text detailing task’s purpose and execution.

expected_output

Expected Output

Clear definition of expected task outcome.

tools

Tools

List of tools/resources limited for task execution. Uses the Agent tools by default.

agent

Agent

CrewAI Agent that will perform the task.

task

Task

CrewAI Task that will perform the task.

async_execution

Async Execution

Boolean flag indicating asynchronous task execution.

Outputs
Name Display Name Info

task_output

Task

The built sequential task or list of tasks.

Component code

SequentialTask.py
from langflow.base.agents.crewai.tasks import SequentialTask
from langflow.custom import Component
from langflow.io import BoolInput, HandleInput, MultilineInput, Output


class SequentialTaskComponent(Component):
    display_name: str = "Sequential Task"
    description: str = "Each task must have a description, an expected output and an agent responsible for execution."
    icon = "CrewAI"
    inputs = [
        MultilineInput(
            name="task_description",
            display_name="Description",
            info="Descriptive text detailing task's purpose and execution.",
        ),
        MultilineInput(
            name="expected_output",
            display_name="Expected Output",
            info="Clear definition of expected task outcome.",
        ),
        HandleInput(
            name="tools",
            display_name="Tools",
            input_types=["Tool"],
            is_list=True,
            info="List of tools/resources limited for task execution. Uses the Agent tools by default.",
            required=False,
            advanced=True,
        ),
        HandleInput(
            name="agent",
            display_name="Agent",
            input_types=["Agent"],
            info="CrewAI Agent that will perform the task",
            required=True,
        ),
        HandleInput(
            name="task",
            display_name="Task",
            input_types=["SequentialTask"],
            info="CrewAI Task that will perform the task",
        ),
        BoolInput(
            name="async_execution",
            display_name="Async Execution",
            value=True,
            advanced=True,
            info="Boolean flag indicating asynchronous task execution.",
        ),
    ]

    outputs = [
        Output(display_name="Task", name="task_output", method="build_task"),
    ]

    def build_task(self) -> list[SequentialTask]:
        tasks: list[SequentialTask] = []
        task = SequentialTask(
            description=self.task_description,
            expected_output=self.expected_output,
            tools=self.agent.tools,
            async_execution=False,
            agent=self.agent,
        )
        tasks.append(task)
        self.status = task
        if self.task:
            if isinstance(self.task, list) and all(isinstance(task, SequentialTask) for task in self.task):
                tasks = self.task + tasks
            elif isinstance(self.task, SequentialTask):
                tasks = [self.task] + tasks
        return tasks

Split Text

This component splits text into chunks of a specified length.

Parameters

Inputs
Name Display Name Info

texts

Texts

Texts to split.

separators

Separators

Characters to split on. Defaults to a space.

max_chunk_size

Max Chunk Size

The maximum length (in characters) of each chunk.

chunk_overlap

Chunk Overlap

The amount of character overlap between chunks.

recursive

Recursive

Whether to split recursively.

Component code

SplitText.py
from typing import List

from langchain_text_splitters import CharacterTextSplitter

from langflow.custom import Component
from langflow.io import HandleInput, IntInput, MessageTextInput, Output
from langflow.schema import Data
from langflow.utils.util import unescape_string


class SplitTextComponent(Component):
    display_name: str = "Split Text"
    description: str = "Split text into chunks based on specified criteria."
    icon = "scissors-line-dashed"
    name = "SplitText"

    inputs = [
        HandleInput(
            name="data_inputs",
            display_name="Data Inputs",
            info="The data to split.",
            input_types=["Data"],
            is_list=True,
        ),
        IntInput(
            name="chunk_overlap",
            display_name="Chunk Overlap",
            info="Number of characters to overlap between chunks.",
            value=200,
        ),
        IntInput(
            name="chunk_size",
            display_name="Chunk Size",
            info="The maximum number of characters in each chunk.",
            value=1000,
        ),
        MessageTextInput(
            name="separator",
            display_name="Separator",
            info="The character to split on. Defaults to newline.",
            value="\n",
        ),
    ]

    outputs = [
        Output(display_name="Chunks", name="chunks", method="split_text"),
    ]

    def _docs_to_data(self, docs):
        data = []
        for doc in docs:
            data.append(Data(text=doc.page_content, data=doc.metadata))
        return data

    def split_text(self) -> List[Data]:
        separator = unescape_string(self.separator)

        documents = []
        for _input in self.data_inputs:
            if isinstance(_input, Data):
                documents.append(_input.to_lc_document())

        splitter = CharacterTextSplitter(
            chunk_overlap=self.chunk_overlap,
            chunk_size=self.chunk_size,
            separator=separator,
        )
        docs = splitter.split_documents(documents)
        data = self._docs_to_data(docs)
        self.status = data
        return data

Store Message

This component stores chat messages or text into Langflow tables or an external memory.

It provides flexibility in managing message storage and retrieval within a chat system.

Parameters

Inputs
Name Display Name Info

message

Message

The chat message to be stored. (Required)

memory

External Memory

The external memory to store the message. If empty, it will use the Langflow tables.

sender

Sender

The sender of the message. Can be Machine or User. If empty, the current sender parameter will be used.

sender_name

Sender Name

The name of the sender. Can be AI or User. If empty, the current sender parameter will be used.

session_id

Session ID

The session ID of the chat. If empty, the current session ID parameter will be used.

Outputs
Name Display Name Info

stored_messages

Stored Messages

The list of stored messages after the current message has been added.

Component code

StoreMessage.py
from langflow.custom import Component
from langflow.inputs import MessageInput, StrInput, HandleInput
from langflow.schema.message import Message
from langflow.template import Output
from langflow.memory import get_messages, store_message
from langflow.utils.constants import MESSAGE_SENDER_AI, MESSAGE_SENDER_NAME_AI


class StoreMessageComponent(Component):
    display_name = "Store Message"
    description = "Stores a chat message or text into Langflow tables or an external memory."
    icon = "save"
    name = "StoreMessage"

    inputs = [
        MessageInput(name="message", display_name="Message", info="The chat message to be stored.", required=True),
        HandleInput(
            name="memory",
            display_name="External Memory",
            input_types=["BaseChatMessageHistory"],
            info="The external memory to store the message. If empty, it will use the Langflow tables.",
        ),
        StrInput(
            name="sender",
            display_name="Sender",
            info="The sender of the message. Might be Machine or User. If empty, the current sender parameter will be used.",
            advanced=True,
        ),
        StrInput(
            name="sender_name",
            display_name="Sender Name",
            info="The name of the sender. Might be AI or User. If empty, the current sender parameter will be used.",
            advanced=True,
        ),
        StrInput(
            name="session_id",
            display_name="Session ID",
            info="The session ID of the chat. If empty, the current session ID parameter will be used.",
            value="",
        ),
    ]

    outputs = [
        Output(display_name="Stored Messages", name="stored_messages", method="store_message"),
    ]

    def store_message(self) -> Message:
        message = self.message

        message.session_id = self.session_id or message.session_id
        message.sender = self.sender or message.sender or MESSAGE_SENDER_AI
        message.sender_name = self.sender_name or message.sender_name or MESSAGE_SENDER_NAME_AI

        if self.memory:
            # override session_id
            self.memory.session_id = message.session_id
            lc_message = message.to_lc_message()
            self.memory.add_messages([lc_message])
            stored = self.memory.messages
            stored = [Message.from_lc_message(m) for m in stored]
            if message.sender:
                stored = [m for m in stored if m.sender == message.sender]
        else:
            store_message(message, flow_id=self.graph.flow_id)
            stored = get_messages(session_id=message.session_id, sender_name=message.sender_name, sender=message.sender)
        self.status = stored
        return stored

Was this helpful?

Give Feedback

How can we improve the documentation?

© 2024 DataStax | Privacy policy | Terms of use

Apache, Apache Cassandra, Cassandra, Apache Tomcat, Tomcat, Apache Lucene, Apache Solr, Apache Hadoop, Hadoop, Apache Pulsar, Pulsar, Apache Spark, Spark, Apache TinkerPop, TinkerPop, Apache Kafka and Kafka are either registered trademarks or trademarks of the Apache Software Foundation or its subsidiaries in Canada, the United States and/or other countries. Kubernetes is the registered trademark of the Linux Foundation.

General Inquiries: +1 (650) 389-6000, info@datastax.com