Models

Model components generate text using large language models.

Refer to your specific component’s documentation for more information on parameters.

Use a model component in a flow

Model components receive inputs and prompts for generating text, and the generated text is sent to an output component.

The model output can also be sent to the Language Model port and on to a Parse Data component, where the output can be parsed into structured Data objects.

This example has the OpenAI model in a chatbot flow. For more information, see the Quickstart.

starter flow basic prompting

AI/ML API

This component creates a ChatOpenAI model instance using the AIML API.

For more information, see AIML documentation.

Parameters

Inputs
Name Type Description

max_tokens

Integer

The maximum number of tokens to generate. Set to 0 for unlimited tokens. Range: 0-128000.

model_kwargs

Dictionary

Additional keyword arguments for the model.

model_name

String

The name of the AIML model to use. Options are predefined in AIML_CHAT_MODELS.

aiml_api_base

String

The base URL of the AIML API. Defaults to https://api.aimlapi.com.

api_key

SecretString

The AIML API Key to use for the model.

temperature

Float

Controls randomness in the output. Default: 0.1.

seed

Integer

Controls reproducibility of the job.

Outputs
Name Type Description

model

LanguageModel

An instance of ChatOpenAI configured with the specified parameters.

Component code

aiml.py
from langchain_openai import ChatOpenAI
from pydantic.v1 import SecretStr
from typing_extensions import override

from langflow.base.models.aiml_constants import AimlModels
from langflow.base.models.model import LCModelComponent
from langflow.field_typing import LanguageModel
from langflow.field_typing.range_spec import RangeSpec
from langflow.inputs import (
    DictInput,
    DropdownInput,
    IntInput,
    SecretStrInput,
    SliderInput,
    StrInput,
)


class AIMLModelComponent(LCModelComponent):
    display_name = "AIML"
    description = "Generates text using AIML LLMs."
    icon = "AIML"
    name = "AIMLModel"
    documentation = "https://docs.aimlapi.com/api-reference"

    inputs = [
        *LCModelComponent._base_inputs,
        IntInput(
            name="max_tokens",
            display_name="Max Tokens",
            advanced=True,
            info="The maximum number of tokens to generate. Set to 0 for unlimited tokens.",
            range_spec=RangeSpec(min=0, max=128000),
        ),
        DictInput(name="model_kwargs", display_name="Model Kwargs", advanced=True),
        DropdownInput(
            name="model_name",
            display_name="Model Name",
            advanced=False,
            options=[],
            refresh_button=True,
        ),
        StrInput(
            name="aiml_api_base",
            display_name="AIML API Base",
            advanced=True,
            info="The base URL of the OpenAI API. Defaults to https://api.aimlapi.com . "
            "You can change this to use other APIs like JinaChat, LocalAI and Prem.",
        ),
        SecretStrInput(
            name="api_key",
            display_name="AIML API Key",
            info="The AIML API Key to use for the OpenAI model.",
            advanced=False,
            value="AIML_API_KEY",
            required=True,
        ),
        SliderInput(
            name="temperature", display_name="Temperature", value=0.1, range_spec=RangeSpec(min=0, max=2, step=0.01)
        ),
    ]

    @override
    def update_build_config(self, build_config: dict, field_value: str, field_name: str | None = None):
        if field_name in {"api_key", "aiml_api_base", "model_name"}:
            aiml = AimlModels()
            aiml.get_aiml_models()
            build_config["model_name"]["options"] = aiml.chat_models
        return build_config

    def build_model(self) -> LanguageModel:  # type: ignore[type-var]
        aiml_api_key = self.api_key
        temperature = self.temperature
        model_name: str = self.model_name
        max_tokens = self.max_tokens
        model_kwargs = self.model_kwargs or {}
        aiml_api_base = self.aiml_api_base or "https://api.aimlapi.com/v2"

        openai_api_key = aiml_api_key.get_secret_value() if isinstance(aiml_api_key, SecretStr) else aiml_api_key

        # TODO: Once OpenAI fixes their o1 models, this part will need to be removed
        # to work correctly with o1 temperature settings.
        if "o1" in model_name:
            temperature = 1

        return ChatOpenAI(
            model=model_name,
            temperature=temperature,
            api_key=openai_api_key,
            base_url=aiml_api_base,
            max_tokens=max_tokens or None,
            **model_kwargs,
        )

    def _get_exception_message(self, e: Exception):
        """Get a message from an OpenAI exception.

        Args:
            e (Exception): The exception to get the message from.

        Returns:
            str: The message from the exception.
        """
        try:
            from openai.error import BadRequestError
        except ImportError:
            return None
        if isinstance(e, BadRequestError):
            message = e.json_body.get("error", {}).get("message", "")
            if message:
                return message
        return None

Amazon Bedrock

This component generates text using Amazon Bedrock LLMs.

For more information, see Amazon Bedrock documentation.

Parameters

Inputs
Name Type Description

model_id

String

The ID of the Amazon Bedrock model to use. Options include various models from Amazon, Anthropic, AI21, Cohere, Meta, Mistral, and Stability AI.

aws_access_key

SecretString

AWS Access Key for authentication.

aws_secret_key

SecretString

AWS Secret Key for authentication.

credentials_profile_name

String

Name of the AWS credentials profile to use (advanced).

region_name

String

AWS region name. Default: "us-east-1".

model_kwargs

Dictionary

Additional keyword arguments for the model (advanced).

endpoint_url

String

Custom endpoint URL for the Bedrock service (advanced).

Outputs
Name Type Description

model

LanguageModel

An instance of ChatBedrock configured with the specified parameters.

Component code

amazon_bedrock.py
from langflow.base.models.aws_constants import AWS_REGIONS, AWS_MODEL_IDs
from langflow.base.models.model import LCModelComponent
from langflow.field_typing import LanguageModel
from langflow.inputs import MessageTextInput, SecretStrInput
from langflow.io import DictInput, DropdownInput


class AmazonBedrockComponent(LCModelComponent):
    display_name: str = "Amazon Bedrock"
    description: str = "Generate text using Amazon Bedrock LLMs."
    icon = "Amazon"
    name = "AmazonBedrockModel"

    inputs = [
        *LCModelComponent._base_inputs,
        DropdownInput(
            name="model_id",
            display_name="Model ID",
            options=AWS_MODEL_IDs,
            value="anthropic.claude-3-haiku-20240307-v1:0",
            info="List of available model IDs to choose from.",
        ),
        SecretStrInput(
            name="aws_access_key_id",
            display_name="AWS Access Key ID",
            info="The access key for your AWS account."
            "Usually set in Python code as the environment variable 'AWS_ACCESS_KEY_ID'.",
            value="AWS_ACCESS_KEY_ID",
            required=True,
        ),
        SecretStrInput(
            name="aws_secret_access_key",
            display_name="AWS Secret Access Key",
            info="The secret key for your AWS account. "
            "Usually set in Python code as the environment variable 'AWS_SECRET_ACCESS_KEY'.",
            value="AWS_SECRET_ACCESS_KEY",
            required=True,
        ),
        SecretStrInput(
            name="aws_session_token",
            display_name="AWS Session Token",
            advanced=False,
            info="The session key for your AWS account. "
            "Only needed for temporary credentials. "
            "Usually set in Python code as the environment variable 'AWS_SESSION_TOKEN'.",
            load_from_db=False,
        ),
        SecretStrInput(
            name="credentials_profile_name",
            display_name="Credentials Profile Name",
            advanced=True,
            info="The name of the profile to use from your "
            "~/.aws/credentials file. "
            "If not provided, the default profile will be used.",
            load_from_db=False,
        ),
        DropdownInput(
            name="region_name",
            display_name="Region Name",
            value="us-east-1",
            options=AWS_REGIONS,
            info="The AWS region where your Bedrock resources are located.",
        ),
        DictInput(
            name="model_kwargs",
            display_name="Model Kwargs",
            advanced=True,
            is_list=True,
            info="Additional keyword arguments to pass to the model.",
        ),
        MessageTextInput(
            name="endpoint_url",
            display_name="Endpoint URL",
            advanced=True,
            info="The URL of the Bedrock endpoint to use.",
        ),
    ]

    def build_model(self) -> LanguageModel:  # type: ignore[type-var]
        try:
            from langchain_aws import ChatBedrock
        except ImportError as e:
            msg = "langchain_aws is not installed. Please install it with `pip install langchain_aws`."
            raise ImportError(msg) from e
        try:
            import boto3
        except ImportError as e:
            msg = "boto3 is not installed. Please install it with `pip install boto3`."
            raise ImportError(msg) from e
        if self.aws_access_key_id or self.aws_secret_access_key:
            try:
                session = boto3.Session(
                    aws_access_key_id=self.aws_access_key_id,
                    aws_secret_access_key=self.aws_secret_access_key,
                    aws_session_token=self.aws_session_token,
                )
            except Exception as e:
                msg = "Could not create a boto3 session."
                raise ValueError(msg) from e
        elif self.credentials_profile_name:
            session = boto3.Session(profile_name=self.credentials_profile_name)
        else:
            session = boto3.Session()

        client_params = {}
        if self.endpoint_url:
            client_params["endpoint_url"] = self.endpoint_url
        if self.region_name:
            client_params["region_name"] = self.region_name

        boto3_client = session.client("bedrock-runtime", **client_params)
        try:
            output = ChatBedrock(
                client=boto3_client,
                model_id=self.model_id,
                region_name=self.region_name,
                model_kwargs=self.model_kwargs,
                endpoint_url=self.endpoint_url,
                streaming=self.stream,
            )
        except Exception as e:
            msg = "Could not connect to AmazonBedrock API."
            raise ValueError(msg) from e
        return output

Anthropic

This component allows the generation of text using Anthropic Chat and Language models.

For more information, see the Anthropic documentation.

Parameters

Inputs
Name Type Description

max_tokens

Integer

The maximum number of tokens to generate. Set to 0 for unlimited tokens. Default: 4096.

model

String

The name of the Anthropic model to use. Options include various Claude 3 models.

anthropic_api_key

SecretString

Your Anthropic API key for authentication.

temperature

Float

Controls randomness in the output. Default: 0.1.

anthropic_api_url

String

Endpoint of the Anthropic API. Defaults to 'https://api.anthropic.com' if not specified (advanced).

prefill

String

Prefill text to guide the model’s response (advanced).

Outputs
Name Type Description

model

LanguageModel

An instance of ChatAnthropic configured with the specified parameters.

Component code

anthropic.py
from typing import Any

import requests
from loguru import logger

from langflow.base.models.anthropic_constants import ANTHROPIC_MODELS
from langflow.base.models.model import LCModelComponent
from langflow.field_typing import LanguageModel
from langflow.field_typing.range_spec import RangeSpec
from langflow.io import BoolInput, DropdownInput, IntInput, MessageTextInput, SecretStrInput, SliderInput
from langflow.schema.dotdict import dotdict


class AnthropicModelComponent(LCModelComponent):
    display_name = "Anthropic"
    description = "Generate text using Anthropic Chat&Completion LLMs with prefill support."
    icon = "Anthropic"
    name = "AnthropicModel"

    inputs = [
        *LCModelComponent._base_inputs,
        IntInput(
            name="max_tokens",
            display_name="Max Tokens",
            advanced=True,
            value=4096,
            info="The maximum number of tokens to generate. Set to 0 for unlimited tokens.",
        ),
        DropdownInput(
            name="model_name",
            display_name="Model Name",
            options=[],
            refresh_button=True,
            real_time_refresh=True,
        ),
        SecretStrInput(
            name="api_key",
            display_name="Anthropic API Key",
            info="Your Anthropic API key.",
            value=None,
            real_time_refresh=True,
        ),
        SliderInput(
            name="temperature",
            display_name="Temperature",
            value=0.1,
            info="Run inference with this temperature. Must by in the closed interval [0.0, 1.0].",
            range_spec=RangeSpec(min=0, max=1, step=0.01),
        ),
        MessageTextInput(
            name="base_url",
            display_name="Anthropic API URL",
            info="Endpoint of the Anthropic API. Defaults to 'https://api.anthropic.com' if not specified.",
            value="https://api.anthropic.com",
            real_time_refresh=True,
        ),
        BoolInput(
            name="tool_model_enabled",
            display_name="Enable Tool Models",
            info=(
                "Select if you want to use models that can work with tools. If yes, only those models will be shown."
            ),
            advanced=False,
            value=True,
            real_time_refresh=True,
        ),
        MessageTextInput(
            name="prefill", display_name="Prefill", info="Prefill text to guide the model's response.", advanced=True
        ),
    ]

    def build_model(self) -> LanguageModel:  # type: ignore[type-var]
        try:
            from langchain_anthropic.chat_models import ChatAnthropic
        except ImportError as e:
            msg = "langchain_anthropic is not installed. Please install it with `pip install langchain_anthropic`."
            raise ImportError(msg) from e
        try:
            output = ChatAnthropic(
                model=self.model_name,
                anthropic_api_key=self.api_key,
                max_tokens_to_sample=self.max_tokens,
                temperature=self.temperature,
                anthropic_api_url=self.base_url,
                streaming=self.stream,
            )
        except Exception as e:
            msg = "Could not connect to Anthropic API."
            raise ValueError(msg) from e

        return output

    def get_models(self, tool_model_enabled: bool | None = None) -> list[str]:
        try:
            import anthropic

            client = anthropic.Anthropic(api_key=self.api_key)
            models = client.models.list(limit=20).data
            model_ids = [model.id for model in models]
        except (ImportError, ValueError, requests.exceptions.RequestException) as e:
            logger.exception(f"Error getting model names: {e}")
            model_ids = ANTHROPIC_MODELS
        if tool_model_enabled:
            try:
                from langchain_anthropic.chat_models import ChatAnthropic
            except ImportError as e:
                msg = "langchain_anthropic is not installed. Please install it with `pip install langchain_anthropic`."
                raise ImportError(msg) from e
            for model in model_ids:
                model_with_tool = ChatAnthropic(
                    model=self.model_name,
                    anthropic_api_key=self.api_key,
                    anthropic_api_url=self.base_url,
                )
                if not self.supports_tool_calling(model_with_tool):
                    model_ids.remove(model)
        return model_ids

    def _get_exception_message(self, exception: Exception) -> str | None:
        """Get a message from an Anthropic exception.

        Args:
            exception (Exception): The exception to get the message from.

        Returns:
            str: The message from the exception.
        """
        try:
            from anthropic import BadRequestError
        except ImportError:
            return None
        if isinstance(exception, BadRequestError):
            message = exception.body.get("error", {}).get("message")
            if message:
                return message
        return None

    def update_build_config(self, build_config: dotdict, field_value: Any, field_name: str | None = None):
        if field_name in ("base_url", "model_name", "tool_model_enabled", "api_key") and field_value:
            try:
                if len(self.api_key) != 0:
                    try:
                        ids = self.get_models(tool_model_enabled=self.tool_model_enabled)
                    except (ImportError, ValueError, requests.exceptions.RequestException) as e:
                        logger.exception(f"Error getting model names: {e}")
                        ids = ANTHROPIC_MODELS
                    build_config["model_name"]["options"] = ids
                    build_config["model_name"]["value"] = ids[0]
            except Exception as e:
                msg = f"Error getting model names: {e}"
                raise ValueError(msg) from e
        return build_config

Azure OpenAI

This component generates text using Azure OpenAI LLM.

For more information, see the Azure OpenAI documentation.

Parameters

Inputs
Name Display Name Info

Model Name

Model Name

Specifies the name of the Azure OpenAI model to be used for text generation.

Azure Endpoint

Azure Endpoint

Your Azure endpoint, including the resource.

Deployment Name

Deployment Name

Specifies the name of the deployment.

API Version

API Version

Specifies the version of the Azure OpenAI API to be used.

API Key

API Key

Your Azure OpenAI API key.

Temperature

Temperature

Specifies the sampling temperature. Defaults to 0.7.

Max Tokens

Max Tokens

Specifies the maximum number of tokens to generate. Defaults to 1000.

Input Value

Input Value

Specifies the input text for text generation.

Stream

Stream

Specifies whether to stream the response from the model. Defaults to False.

Component code

azure_openai.py
from langchain_openai import AzureChatOpenAI

from langflow.base.models.model import LCModelComponent
from langflow.field_typing import LanguageModel
from langflow.inputs import MessageTextInput
from langflow.io import DropdownInput, FloatInput, IntInput, SecretStrInput


class AzureChatOpenAIComponent(LCModelComponent):
    display_name: str = "Azure OpenAI"
    description: str = "Generate text using Azure OpenAI LLMs."
    documentation: str = "https://python.langchain.com/docs/integrations/llms/azure_openai"
    beta = False
    icon = "Azure"
    name = "AzureOpenAIModel"

    AZURE_OPENAI_API_VERSIONS = [
        "2024-06-01",
        "2024-07-01-preview",
        "2024-08-01-preview",
        "2024-09-01-preview",
        "2024-10-01-preview",
        "2023-05-15",
        "2023-12-01-preview",
        "2024-02-15-preview",
        "2024-03-01-preview",
    ]

    inputs = [
        *LCModelComponent._base_inputs,
        MessageTextInput(
            name="azure_endpoint",
            display_name="Azure Endpoint",
            info="Your Azure endpoint, including the resource. Example: `https://example-resource.azure.openai.com/`",
            required=True,
        ),
        MessageTextInput(name="azure_deployment", display_name="Deployment Name", required=True),
        SecretStrInput(name="api_key", display_name="API Key"),
        DropdownInput(
            name="api_version",
            display_name="API Version",
            options=sorted(AZURE_OPENAI_API_VERSIONS, reverse=True),
            value=next(
                (
                    version
                    for version in sorted(AZURE_OPENAI_API_VERSIONS, reverse=True)
                    if not version.endswith("-preview")
                ),
                AZURE_OPENAI_API_VERSIONS[0],
            ),
        ),
        FloatInput(name="temperature", display_name="Temperature", value=0.7),
        IntInput(
            name="max_tokens",
            display_name="Max Tokens",
            advanced=True,
            info="The maximum number of tokens to generate. Set to 0 for unlimited tokens.",
        ),
    ]

    def build_model(self) -> LanguageModel:  # type: ignore[type-var]
        azure_endpoint = self.azure_endpoint
        azure_deployment = self.azure_deployment
        api_version = self.api_version
        api_key = self.api_key
        temperature = self.temperature
        max_tokens = self.max_tokens
        stream = self.stream

        try:
            output = AzureChatOpenAI(
                azure_endpoint=azure_endpoint,
                azure_deployment=azure_deployment,
                api_version=api_version,
                api_key=api_key,
                temperature=temperature,
                max_tokens=max_tokens or None,
                streaming=stream,
            )
        except Exception as e:
            msg = f"Could not connect to AzureOpenAI API: {e}"
            raise ValueError(msg) from e

        return output

Azure OpenAI component error

If you’re encountering the following error when building the Azure OpenAI component:

Error building Component Azure OpenAI: 1 validation error for MessageTextInput value Value error, Invalid value type <class 'NoneType'> [type=value_error, input_value=None, input_type=NoneType]

Ensure that the MessageTextInput fields (input_value, sender_name, session_id) are correctly defined and used in the message_response method.

Ensure that the values from your Azure deployment, like resource groups, subscriptions, and regions, are being passed correctly to the component. For more information, see the Azure OpenAI documentation.

Cohere

This component generates text using Cohere’s language models.

For more information, see the Cohere documentation.

Parameters

Inputs
Name Display Name Info

Cohere API Key

Cohere API Key

Your Cohere API key.

Max Tokens

Max Tokens

Specifies the maximum number of tokens to generate. Defaults to 256.

Temperature

Temperature

Specifies the sampling temperature. Defaults to 0.75.

Input Value

Input Value

Specifies the input text for text generation.

Component code

cohere.py
from langchain_cohere import ChatCohere
from pydantic.v1 import SecretStr

from langflow.base.models.model import LCModelComponent
from langflow.field_typing import LanguageModel
from langflow.field_typing.range_spec import RangeSpec
from langflow.io import SecretStrInput, SliderInput


class CohereComponent(LCModelComponent):
    display_name = "Cohere"
    description = "Generate text using Cohere LLMs."
    documentation = "https://python.langchain.com/docs/modules/model_io/models/llms/integrations/cohere"
    icon = "Cohere"
    name = "CohereModel"

    inputs = [
        *LCModelComponent._base_inputs,
        SecretStrInput(
            name="cohere_api_key",
            display_name="Cohere API Key",
            info="The Cohere API Key to use for the Cohere model.",
            advanced=False,
            value="COHERE_API_KEY",
            required=True,
        ),
        SliderInput(
            name="temperature",
            display_name="Temperature",
            value=0.75,
            range_spec=RangeSpec(min=0, max=2, step=0.01),
            info="Controls randomness. Lower values are more deterministic, higher values are more creative.",
        ),
    ]

    def build_model(self) -> LanguageModel:  # type: ignore[type-var]
        cohere_api_key = self.cohere_api_key
        temperature = self.temperature

        api_key = SecretStr(cohere_api_key).get_secret_value() if cohere_api_key else None

        return ChatCohere(
            temperature=temperature or 0.75,
            cohere_api_key=api_key,
        )

Google Generative AI

This component generates text using Google’s Generative AI models.

For more information, see the Google Generative AI documentation.

Parameters

Inputs
Name Display Name Info

Google API Key

Google API Key

Your Google API key to use for the Google Generative AI.

Model

Model

The name of the model to use, such as "gemini-pro".

Max Output Tokens

Max Output Tokens

The maximum number of tokens to generate.

Temperature

Temperature

Run inference with this temperature.

Top K

Top K

Consider the set of top K most probable tokens.

Top P

Top P

The maximum cumulative probability of tokens to consider when sampling.

N

N

Number of chat completions to generate for each prompt.

Component code

google_generative_ai.py
from pydantic.v1 import SecretStr

from langflow.base.models.google_generative_ai_constants import GOOGLE_GENERATIVE_AI_MODELS
from langflow.base.models.model import LCModelComponent
from langflow.field_typing import LanguageModel
from langflow.inputs import DropdownInput, FloatInput, IntInput, SecretStrInput


class GoogleGenerativeAIComponent(LCModelComponent):
    display_name = "Google Generative AI"
    description = "Generate text using Google Generative AI."
    icon = "GoogleGenerativeAI"
    name = "GoogleGenerativeAIModel"

    inputs = [
        *LCModelComponent._base_inputs,
        IntInput(
            name="max_output_tokens", display_name="Max Output Tokens", info="The maximum number of tokens to generate."
        ),
        DropdownInput(
            name="model",
            display_name="Model",
            info="The name of the model to use.",
            options=GOOGLE_GENERATIVE_AI_MODELS,
            value="gemini-1.5-pro",
        ),
        SecretStrInput(
            name="google_api_key",
            display_name="Google API Key",
            info="The Google API Key to use for the Google Generative AI.",
        ),
        FloatInput(
            name="top_p",
            display_name="Top P",
            info="The maximum cumulative probability of tokens to consider when sampling.",
            advanced=True,
        ),
        FloatInput(name="temperature", display_name="Temperature", value=0.1),
        IntInput(
            name="n",
            display_name="N",
            info="Number of chat completions to generate for each prompt. "
            "Note that the API may not return the full n completions if duplicates are generated.",
            advanced=True,
        ),
        IntInput(
            name="top_k",
            display_name="Top K",
            info="Decode using top-k sampling: consider the set of top_k most probable tokens. Must be positive.",
            advanced=True,
        ),
    ]

    def build_model(self) -> LanguageModel:  # type: ignore[type-var]
        try:
            from langchain_google_genai import ChatGoogleGenerativeAI
        except ImportError as e:
            msg = "The 'langchain_google_genai' package is required to use the Google Generative AI model."
            raise ImportError(msg) from e

        google_api_key = self.google_api_key
        model = self.model
        max_output_tokens = self.max_output_tokens
        temperature = self.temperature
        top_k = self.top_k
        top_p = self.top_p
        n = self.n

        return ChatGoogleGenerativeAI(
            model=model,
            max_output_tokens=max_output_tokens or None,
            temperature=temperature,
            top_k=top_k or None,
            top_p=top_p or None,
            n=n or 1,
            google_api_key=SecretStr(google_api_key).get_secret_value(),
        )

Groq

This component generates text using Groq’s language models.

For more information, see the Groq documentation.

Parameters

Inputs
Name Type Description

groq_api_key

SecretString

API key for the Groq API.

groq_api_base

String

Base URL path for API requests. Default: "https://api.groq.com" (advanced).

max_tokens

Integer

The maximum number of tokens to generate (advanced).

temperature

Float

Controls randomness in the output. Range: [0.0, 1.0]. Default: 0.1.

n

Integer

Number of chat completions to generate for each prompt (advanced).

model_name

String

The name of the Groq model to use. Options are dynamically fetched from the Groq API.

Outputs
Name Type Description

model

LanguageModel

An instance of ChatGroq configured with the specified parameters.

Component code

groq.py
import requests
from loguru import logger
from pydantic.v1 import SecretStr

from langflow.base.models.groq_constants import GROQ_MODELS
from langflow.base.models.model import LCModelComponent
from langflow.field_typing import LanguageModel
from langflow.field_typing.range_spec import RangeSpec
from langflow.io import BoolInput, DropdownInput, FloatInput, IntInput, MessageTextInput, SecretStrInput, SliderInput


class GroqModel(LCModelComponent):
    display_name: str = "Groq"
    description: str = "Generate text using Groq."
    icon = "Groq"
    name = "GroqModel"

    inputs = [
        *LCModelComponent._base_inputs,
        SecretStrInput(
            name="api_key", display_name="Groq API Key", info="API key for the Groq API.", real_time_refresh=True
        ),
        MessageTextInput(
            name="base_url",
            display_name="Groq API Base",
            info="Base URL path for API requests, leave blank if not using a proxy or service emulator.",
            advanced=True,
            value="https://api.groq.com",
            real_time_refresh=True,
        ),
        IntInput(
            name="max_tokens",
            display_name="Max Output Tokens",
            info="The maximum number of tokens to generate.",
            advanced=True,
        ),
        FloatInput(
            name="temperature",
            display_name="Temperature",
            info="Run inference with this temperature. Must by in the closed interval [0.0, 1.0].",
            value=0.1,
        ),
        SliderInput(
            name="temperature",
            display_name="Temperature",
            value=0.1,
            info="Run inference with this temperature. Must by in the closed interval [0.0, 1.0].",
            range_spec=RangeSpec(min=0, max=1, step=0.01),
        ),
        IntInput(
            name="n",
            display_name="N",
            info="Number of chat completions to generate for each prompt. "
            "Note that the API may not return the full n completions if duplicates are generated.",
            advanced=True,
        ),
        DropdownInput(
            name="model_name",
            display_name="Model",
            info="The name of the model to use.",
            options=[],
            refresh_button=True,
            real_time_refresh=True,
        ),
        BoolInput(
            name="tool_model_enabled",
            display_name="Enable Tool Models",
            info=(
                "Select if you want to use models that can work with tools. If yes, only those models will be shown."
            ),
            advanced=False,
            value=True,
            real_time_refresh=True,
        ),
    ]

    def get_models(self, tool_model_enabled: bool | None = None) -> list[str]:
        try:
            url = f"{self.base_url}/openai/v1/models"
            headers = {"Authorization": f"Bearer {self.api_key}", "Content-Type": "application/json"}

            response = requests.get(url, headers=headers, timeout=10)
            response.raise_for_status()
            model_list = response.json()
            model_ids = [model["id"] for model in model_list.get("data", [])]
        except (ImportError, ValueError, requests.exceptions.RequestException) as e:
            logger.exception(f"Error getting model names: {e}")
            model_ids = GROQ_MODELS
        if tool_model_enabled:
            try:
                from langchain_groq import ChatGroq
            except ImportError as e:
                msg = "langchain_groq is not installed. Please install it with `pip install langchain_groq`."
                raise ImportError(msg) from e
            for model in model_ids:
                model_with_tool = ChatGroq(
                    model=model,
                    api_key=self.api_key,
                    base_url=self.base_url,
                )
                if not self.supports_tool_calling(model_with_tool):
                    model_ids.remove(model)
            return model_ids
        return model_ids

    def update_build_config(self, build_config: dict, field_value: str, field_name: str | None = None):
        if field_name in ("base_url", "model_name", "tool_model_enabled", "api_key") and field_value:
            try:
                if len(self.api_key) != 0:
                    try:
                        ids = self.get_models(tool_model_enabled=self.tool_model_enabled)
                    except (ImportError, ValueError, requests.exceptions.RequestException) as e:
                        logger.exception(f"Error getting model names: {e}")
                        ids = GROQ_MODELS
                    build_config["model_name"]["options"] = ids
                    build_config["model_name"]["value"] = ids[0]
            except Exception as e:
                msg = f"Error getting model names: {e}"
                raise ValueError(msg) from e
        return build_config

    def build_model(self) -> LanguageModel:  # type: ignore[type-var]
        try:
            from langchain_groq import ChatGroq
        except ImportError as e:
            msg = "langchain-groq is not installed. Please install it with `pip install langchain-groq`."
            raise ImportError(msg) from e

        return ChatGroq(
            model=self.model_name,
            max_tokens=self.max_tokens or None,
            temperature=self.temperature,
            base_url=self.base_url,
            n=self.n or 1,
            api_key=SecretStr(self.api_key).get_secret_value(),
            streaming=self.stream,
        )

Hugging Face API

This component generates text using Hugging Face’s language models.

For more information, see the Hugging Face documentation.

Parameters

Inputs
Name Display Name Info

Endpoint URL

Endpoint URL

The URL of the Hugging Face Inference API endpoint.

Task

Task

Specifies the task for text generation.

API Token

API Token

The API token required for authentication.

Model Kwargs

Model Kwargs

Additional keyword arguments for the model.

Input Value

Input Value

The input text for text generation.

Component code

huggingface.py
from typing import Any

from langchain_community.llms.huggingface_endpoint import HuggingFaceEndpoint
from tenacity import retry, stop_after_attempt, wait_fixed

# TODO: langchain_community.llms.huggingface_endpoint is depreciated.
#  Need to update to langchain_huggingface, but have dependency with langchain_core 0.3.0
from langflow.base.models.model import LCModelComponent
from langflow.field_typing import LanguageModel
from langflow.io import DictInput, DropdownInput, FloatInput, IntInput, SecretStrInput, StrInput


class HuggingFaceEndpointsComponent(LCModelComponent):
    display_name: str = "HuggingFace"
    description: str = "Generate text using Hugging Face Inference APIs."
    icon = "HuggingFace"
    name = "HuggingFaceModel"

    inputs = [
        *LCModelComponent._base_inputs,
        StrInput(name="model_id", display_name="Model ID", value="openai-community/gpt2"),
        IntInput(
            name="max_new_tokens", display_name="Max New Tokens", value=512, info="Maximum number of generated tokens"
        ),
        IntInput(
            name="top_k",
            display_name="Top K",
            advanced=True,
            info="The number of highest probability vocabulary tokens to keep for top-k-filtering",
        ),
        FloatInput(
            name="top_p",
            display_name="Top P",
            value=0.95,
            advanced=True,
            info=(
                "If set to < 1, only the smallest set of most probable tokens with "
                "probabilities that add up to `top_p` or higher are kept for generation"
            ),
        ),
        FloatInput(
            name="typical_p",
            display_name="Typical P",
            value=0.95,
            advanced=True,
            info="Typical Decoding mass.",
        ),
        FloatInput(
            name="temperature",
            display_name="Temperature",
            value=0.8,
            advanced=True,
            info="The value used to module the logits distribution",
        ),
        FloatInput(
            name="repetition_penalty",
            display_name="Repetition Penalty",
            info="The parameter for repetition penalty. 1.0 means no penalty.",
            advanced=True,
        ),
        StrInput(
            name="inference_endpoint",
            display_name="Inference Endpoint",
            value="https://api-inference.huggingface.co/models/",
            info="Custom inference endpoint URL.",
        ),
        DropdownInput(
            name="task",
            display_name="Task",
            options=["text2text-generation", "text-generation", "summarization", "translation"],
            advanced=True,
            info="The task to call the model with. Should be a task that returns `generated_text` or `summary_text`.",
        ),
        SecretStrInput(name="huggingfacehub_api_token", display_name="API Token", password=True),
        DictInput(name="model_kwargs", display_name="Model Keyword Arguments", advanced=True),
        IntInput(name="retry_attempts", display_name="Retry Attempts", value=1, advanced=True),
    ]

    def get_api_url(self) -> str:
        if "huggingface" in self.inference_endpoint.lower():
            return f"{self.inference_endpoint}{self.model_id}"
        return self.inference_endpoint

    def create_huggingface_endpoint(
        self,
        task: str | None,
        huggingfacehub_api_token: str | None,
        model_kwargs: dict[str, Any],
        max_new_tokens: int,
        top_k: int | None,
        top_p: float,
        typical_p: float | None,
        temperature: float | None,
        repetition_penalty: float | None,
    ) -> HuggingFaceEndpoint:
        retry_attempts = self.retry_attempts
        endpoint_url = self.get_api_url()

        @retry(stop=stop_after_attempt(retry_attempts), wait=wait_fixed(2))
        def _attempt_create():
            return HuggingFaceEndpoint(
                endpoint_url=endpoint_url,
                task=task,
                huggingfacehub_api_token=huggingfacehub_api_token,
                model_kwargs=model_kwargs,
                max_new_tokens=max_new_tokens,
                top_k=top_k,
                top_p=top_p,
                typical_p=typical_p,
                temperature=temperature,
                repetition_penalty=repetition_penalty,
            )

        return _attempt_create()

    def build_model(self) -> LanguageModel:
        task = self.task or None
        huggingfacehub_api_token = self.huggingfacehub_api_token
        model_kwargs = self.model_kwargs or {}
        max_new_tokens = self.max_new_tokens
        top_k = self.top_k or None
        top_p = self.top_p
        typical_p = self.typical_p or None
        temperature = self.temperature or 0.8
        repetition_penalty = self.repetition_penalty or None

        try:
            llm = self.create_huggingface_endpoint(
                task=task,
                huggingfacehub_api_token=huggingfacehub_api_token,
                model_kwargs=model_kwargs,
                max_new_tokens=max_new_tokens,
                top_k=top_k,
                top_p=top_p,
                typical_p=typical_p,
                temperature=temperature,
                repetition_penalty=repetition_penalty,
            )
        except Exception as e:
            msg = "Could not connect to HuggingFace Endpoints API."
            raise ValueError(msg) from e

        return llm

Maritalk

This component generates text using Maritalk LLMs. For more information, see Maritalk documentation.

Parameters

Inputs
Name Type Description

max_tokens

Integer

The maximum number of tokens to generate. Set to 0 for unlimited tokens. Default: 512.

model_name

String

The name of the Maritalk model to use. Options: "sabia-2-small", "sabia-2-medium". Default: "sabia-2-small".

api_key

SecretString

The Maritalk API Key to use for authentication.

temperature

Float

Controls randomness in the output. Range: [0, 1]. Default: 0.1.

Outputs
Name Type Description

model

LanguageModel

An instance of ChatMaritalk configured with the specified parameters.

Component code

maritalk.py
from langchain_community.chat_models import ChatMaritalk

from langflow.base.models.model import LCModelComponent
from langflow.field_typing import LanguageModel
from langflow.field_typing.range_spec import RangeSpec
from langflow.inputs import DropdownInput, FloatInput, IntInput, SecretStrInput


class MaritalkModelComponent(LCModelComponent):
    display_name = "Maritalk"
    description = "Generates text using Maritalk LLMs."
    icon = "Maritalk"
    name = "Maritalk"
    inputs = [
        *LCModelComponent._base_inputs,
        IntInput(
            name="max_tokens",
            display_name="Max Tokens",
            advanced=True,
            value=512,
            info="The maximum number of tokens to generate. Set to 0 for unlimited tokens.",
        ),
        DropdownInput(
            name="model_name",
            display_name="Model Name",
            advanced=False,
            options=["sabia-2-small", "sabia-2-medium"],
            value=["sabia-2-small"],
        ),
        SecretStrInput(
            name="api_key",
            display_name="Maritalk API Key",
            info="The Maritalk API Key to use for the OpenAI model.",
            advanced=False,
        ),
        FloatInput(name="temperature", display_name="Temperature", value=0.1, range_spec=RangeSpec(min=0, max=1)),
    ]

    def build_model(self) -> LanguageModel:  # type: ignore[type-var]
        # self.output_schea is a list of dictionarie s
        # let's convert it to a dictionary
        api_key = self.api_key
        temperature = self.temperature
        model_name: str = self.model_name
        max_tokens = self.max_tokens

        return ChatMaritalk(
            max_tokens=max_tokens,
            model=model_name,
            api_key=api_key,
            temperature=temperature or 0.1,
        )

Mistral

This component generates text using MistralAI LLMs.

For more information, see Mistral AI documentation.

Parameters

Inputs
Name Type Description

max_tokens

Integer

The maximum number of tokens to generate. Set to 0 for unlimited tokens (advanced).

model_name

String

The name of the Mistral AI model to use. Options include "open-mixtral-8x7b", "open-mixtral-8x22b", "mistral-small-latest", "mistral-medium-latest", "mistral-large-latest", and "codestral-latest". Default: "codestral-latest".

mistral_api_base

String

The base URL of the Mistral API. Defaults to https://api.mistral.ai/v1 (advanced).

api_key

SecretString

The Mistral API Key to use for authentication.

temperature

Float

Controls randomness in the output. Default: 0.5.

max_retries

Integer

Maximum number of retries for API calls. Default: 5 (advanced).

timeout

Integer

Timeout for API calls in seconds. Default: 60 (advanced).

max_concurrent_requests

Integer

Maximum number of concurrent API requests. Default: 3 (advanced).

top_p

Float

Nucleus sampling parameter. Default: 1 (advanced).

random_seed

Integer

Seed for random number generation. Default: 1 (advanced).

safe_mode

Boolean

Enables safe mode for content generation (advanced).

Outputs
Name Type Description

model

LanguageModel

An instance of ChatMistralAI configured with the specified parameters.

Component code

mistral.py
from langchain_mistralai import ChatMistralAI
from pydantic.v1 import SecretStr

from langflow.base.models.model import LCModelComponent
from langflow.field_typing import LanguageModel
from langflow.io import BoolInput, DropdownInput, FloatInput, IntInput, SecretStrInput, StrInput


class MistralAIModelComponent(LCModelComponent):
    display_name = "MistralAI"
    description = "Generates text using MistralAI LLMs."
    icon = "MistralAI"
    name = "MistralModel"

    inputs = [
        *LCModelComponent._base_inputs,
        IntInput(
            name="max_tokens",
            display_name="Max Tokens",
            advanced=True,
            info="The maximum number of tokens to generate. Set to 0 for unlimited tokens.",
        ),
        DropdownInput(
            name="model_name",
            display_name="Model Name",
            advanced=False,
            options=[
                "open-mixtral-8x7b",
                "open-mixtral-8x22b",
                "mistral-small-latest",
                "mistral-medium-latest",
                "mistral-large-latest",
                "codestral-latest",
            ],
            value="codestral-latest",
        ),
        StrInput(
            name="mistral_api_base",
            display_name="Mistral API Base",
            advanced=True,
            info="The base URL of the Mistral API. Defaults to https://api.mistral.ai/v1. "
            "You can change this to use other APIs like JinaChat, LocalAI and Prem.",
        ),
        SecretStrInput(
            name="api_key",
            display_name="Mistral API Key",
            info="The Mistral API Key to use for the Mistral model.",
            advanced=False,
        ),
        FloatInput(name="temperature", display_name="Temperature", advanced=False, value=0.5),
        IntInput(name="max_retries", display_name="Max Retries", advanced=True, value=5),
        IntInput(name="timeout", display_name="Timeout", advanced=True, value=60),
        IntInput(name="max_concurrent_requests", display_name="Max Concurrent Requests", advanced=True, value=3),
        FloatInput(name="top_p", display_name="Top P", advanced=True, value=1),
        IntInput(name="random_seed", display_name="Random Seed", value=1, advanced=True),
        BoolInput(name="safe_mode", display_name="Safe Mode", advanced=True),
    ]

    def build_model(self) -> LanguageModel:  # type: ignore[type-var]
        mistral_api_key = self.api_key
        temperature = self.temperature
        model_name = self.model_name
        max_tokens = self.max_tokens
        mistral_api_base = self.mistral_api_base or "https://api.mistral.ai/v1"
        max_retries = self.max_retries
        timeout = self.timeout
        max_concurrent_requests = self.max_concurrent_requests
        top_p = self.top_p
        random_seed = self.random_seed
        safe_mode = self.safe_mode

        api_key = SecretStr(mistral_api_key).get_secret_value() if mistral_api_key else None

        return ChatMistralAI(
            max_tokens=max_tokens or None,
            model_name=model_name,
            endpoint=mistral_api_base,
            api_key=api_key,
            temperature=temperature,
            max_retries=max_retries,
            timeout=timeout,
            max_concurrent_requests=max_concurrent_requests,
            top_p=top_p,
            random_seed=random_seed,
            safe_mode=safe_mode,
        )

NVIDIA

This component generates text using NVIDIA LLMs.

For more information, see NVIDIA AI Foundation Models documentation.

Parameters

Inputs
Name Type Description

max_tokens

Integer

The maximum number of tokens to generate. Set to 0 for unlimited tokens (advanced).

model_name

String

The name of the NVIDIA model to use. Default: "mistralai/mixtral-8x7b-instruct-v0.1".

base_url

String

The base URL of the NVIDIA API. Default: "https://integrate.api.nvidia.com/v1".

nvidia_api_key

SecretString

The NVIDIA API Key for authentication.

temperature

Float

Controls randomness in the output. Default: 0.1.

seed

Integer

The seed controls the reproducibility of the job (advanced). Default: 1.

Outputs
Name Type Description

model

LanguageModel

An instance of ChatNVIDIA configured with the specified parameters.

Component code

nvidia.py
from typing import Any

from langflow.base.models.model import LCModelComponent
from langflow.field_typing import LanguageModel
from langflow.field_typing.range_spec import RangeSpec
from langflow.inputs import BoolInput, DropdownInput, IntInput, MessageTextInput, SecretStrInput, SliderInput
from langflow.schema.dotdict import dotdict


class NVIDIAModelComponent(LCModelComponent):
    display_name = "NVIDIA"
    description = "Generates text using NVIDIA LLMs."
    icon = "NVIDIA"

    inputs = [
        *LCModelComponent._base_inputs,
        IntInput(
            name="max_tokens",
            display_name="Max Tokens",
            advanced=True,
            info="The maximum number of tokens to generate. Set to 0 for unlimited tokens.",
        ),
        DropdownInput(
            name="model_name",
            display_name="Model Name",
            advanced=False,
            options=[],
            real_time_refresh=True,
            refresh_button=True,
        ),
        MessageTextInput(
            name="base_url",
            display_name="NVIDIA Base URL",
            value="https://integrate.api.nvidia.com/v1",
            refresh_button=True,
            info="The base URL of the NVIDIA API. Defaults to https://integrate.api.nvidia.com/v1.",
            real_time_refresh=True,
        ),
        BoolInput(
            name="tool_model_enabled",
            display_name="Enable Tool Models",
            info=(
                "Select if you want to use models that can work with tools. If yes, only those models will be shown."
            ),
            advanced=False,
            value=True,
            real_time_refresh=True,
        ),
        SecretStrInput(
            name="api_key",
            display_name="NVIDIA API Key",
            info="The NVIDIA API Key.",
            advanced=False,
            value="NVIDIA_API_KEY",
            real_time_refresh=True,
        ),
        SliderInput(
            name="temperature",
            display_name="Temperature",
            value=0.1,
            info="Run inference with this temperature. Must by in the closed interval [0.0, 1.0].",
            range_spec=RangeSpec(min=0, max=1, step=0.01),
        ),
        IntInput(
            name="seed",
            display_name="Seed",
            info="The seed controls the reproducibility of the job.",
            advanced=True,
            value=1,
        ),
    ]

    def get_models(self, tool_model_enabled: bool | None = None) -> list[str]:
        build_model = self.build_model()
        if tool_model_enabled:
            tool_models = [model for model in build_model.get_available_models() if model.supports_tools]
            return [model.id for model in tool_models]
        return [model.id for model in build_model.available_models]

    def update_build_config(self, build_config: dotdict, field_value: Any, field_name: str | None = None):
        if field_name in ("base_url", "model_name", "tool_model_enabled", "api_key") and field_value:
            try:
                ids = self.get_models(self.tool_model_enabled)
                build_config["model_name"]["options"] = ids
                build_config["model_name"]["value"] = ids[0]
            except Exception as e:
                msg = f"Error getting model names: {e}"
                raise ValueError(msg) from e
        return build_config

    def build_model(self) -> LanguageModel:  # type: ignore[type-var]
        try:
            from langchain_nvidia_ai_endpoints import ChatNVIDIA
        except ImportError as e:
            msg = "Please install langchain-nvidia-ai-endpoints to use the NVIDIA model."
            raise ImportError(msg) from e
        api_key = self.api_key
        temperature = self.temperature
        model_name: str = self.model_name
        max_tokens = self.max_tokens
        seed = self.seed
        return ChatNVIDIA(
            max_tokens=max_tokens or None,
            model=model_name,
            base_url=self.base_url,
            api_key=api_key,
            temperature=temperature or 0.1,
            seed=seed,
        )

Ollama

This component generates text using Ollama’s language models.

For more information, see the Ollama documentation.

Parameters

Inputs
Name Display Name Info

Base URL

Base URL

Endpoint of the Ollama API.

Model Name

Model Name

The model name to use.

Temperature

Temperature

Controls the creativity of model responses.

Component code

ollama.py
from typing import Any
from urllib.parse import urljoin

import httpx
from langchain_ollama import ChatOllama

from langflow.base.models.model import LCModelComponent
from langflow.field_typing import LanguageModel
from langflow.io import BoolInput, DictInput, DropdownInput, FloatInput, IntInput, StrInput


class ChatOllamaComponent(LCModelComponent):
    display_name = "Ollama"
    description = "Generate text using Ollama Local LLMs."
    icon = "Ollama"
    name = "OllamaModel"

    async def update_build_config(self, build_config: dict, field_value: Any, field_name: str | None = None):
        if field_name == "mirostat":
            if field_value == "Disabled":
                build_config["mirostat_eta"]["advanced"] = True
                build_config["mirostat_tau"]["advanced"] = True
                build_config["mirostat_eta"]["value"] = None
                build_config["mirostat_tau"]["value"] = None

            else:
                build_config["mirostat_eta"]["advanced"] = False
                build_config["mirostat_tau"]["advanced"] = False

                if field_value == "Mirostat 2.0":
                    build_config["mirostat_eta"]["value"] = 0.2
                    build_config["mirostat_tau"]["value"] = 10
                else:
                    build_config["mirostat_eta"]["value"] = 0.1
                    build_config["mirostat_tau"]["value"] = 5

        if field_name == "model_name":
            base_url_dict = build_config.get("base_url", {})
            base_url_load_from_db = base_url_dict.get("load_from_db", False)
            base_url_value = base_url_dict.get("value")
            if base_url_load_from_db:
                base_url_value = await self.get_variables(base_url_value, field_name)
            elif not base_url_value:
                base_url_value = "http://localhost:11434"
            build_config["model_name"]["options"] = await self.get_model(base_url_value)
        if field_name == "keep_alive_flag":
            if field_value == "Keep":
                build_config["keep_alive"]["value"] = "-1"
                build_config["keep_alive"]["advanced"] = True
            elif field_value == "Immediately":
                build_config["keep_alive"]["value"] = "0"
                build_config["keep_alive"]["advanced"] = True
            else:
                build_config["keep_alive"]["advanced"] = False

        return build_config

    @staticmethod
    async def get_model(base_url_value: str) -> list[str]:
        try:
            url = urljoin(base_url_value, "/api/tags")
            async with httpx.AsyncClient() as client:
                response = await client.get(url)
                response.raise_for_status()
                data = response.json()

                return [model["name"] for model in data.get("models", [])]
        except Exception as e:
            msg = "Could not retrieve models. Please, make sure Ollama is running."
            raise ValueError(msg) from e

    inputs = [
        StrInput(
            name="base_url",
            display_name="Base URL",
            info="Endpoint of the Ollama API. Defaults to 'http://localhost:11434' if not specified.",
            value="http://localhost:11434",
        ),
        DropdownInput(
            name="model_name",
            display_name="Model Name",
            value="llama3.1",
            info="Refer to https://ollama.com/library for more models.",
            refresh_button=True,
        ),
        FloatInput(
            name="temperature",
            display_name="Temperature",
            value=0.2,
            info="Controls the creativity of model responses.",
        ),
        StrInput(
            name="format", display_name="Format", info="Specify the format of the output (e.g., json).", advanced=True
        ),
        DictInput(name="metadata", display_name="Metadata", info="Metadata to add to the run trace.", advanced=True),
        DropdownInput(
            name="mirostat",
            display_name="Mirostat",
            options=["Disabled", "Mirostat", "Mirostat 2.0"],
            info="Enable/disable Mirostat sampling for controlling perplexity.",
            value="Disabled",
            advanced=True,
            real_time_refresh=True,
        ),
        FloatInput(
            name="mirostat_eta",
            display_name="Mirostat Eta",
            info="Learning rate for Mirostat algorithm. (Default: 0.1)",
            advanced=True,
        ),
        FloatInput(
            name="mirostat_tau",
            display_name="Mirostat Tau",
            info="Controls the balance between coherence and diversity of the output. (Default: 5.0)",
            advanced=True,
        ),
        IntInput(
            name="num_ctx",
            display_name="Context Window Size",
            info="Size of the context window for generating tokens. (Default: 2048)",
            advanced=True,
        ),
        IntInput(
            name="num_gpu",
            display_name="Number of GPUs",
            info="Number of GPUs to use for computation. (Default: 1 on macOS, 0 to disable)",
            advanced=True,
        ),
        IntInput(
            name="num_thread",
            display_name="Number of Threads",
            info="Number of threads to use during computation. (Default: detected for optimal performance)",
            advanced=True,
        ),
        IntInput(
            name="repeat_last_n",
            display_name="Repeat Last N",
            info="How far back the model looks to prevent repetition. (Default: 64, 0 = disabled, -1 = num_ctx)",
            advanced=True,
        ),
        FloatInput(
            name="repeat_penalty",
            display_name="Repeat Penalty",
            info="Penalty for repetitions in generated text. (Default: 1.1)",
            advanced=True,
        ),
        FloatInput(name="tfs_z", display_name="TFS Z", info="Tail free sampling value. (Default: 1)", advanced=True),
        IntInput(name="timeout", display_name="Timeout", info="Timeout for the request stream.", advanced=True),
        IntInput(
            name="top_k", display_name="Top K", info="Limits token selection to top K. (Default: 40)", advanced=True
        ),
        FloatInput(name="top_p", display_name="Top P", info="Works together with top-k. (Default: 0.9)", advanced=True),
        BoolInput(name="verbose", display_name="Verbose", info="Whether to print out response text.", advanced=True),
        StrInput(
            name="tags",
            display_name="Tags",
            info="Comma-separated list of tags to add to the run trace.",
            advanced=True,
        ),
        StrInput(
            name="stop_tokens",
            display_name="Stop Tokens",
            info="Comma-separated list of tokens to signal the model to stop generating text.",
            advanced=True,
        ),
        StrInput(name="system", display_name="System", info="System to use for generating text.", advanced=True),
        StrInput(name="template", display_name="Template", info="Template to use for generating text.", advanced=True),
        *LCModelComponent._base_inputs,
    ]

    def build_model(self) -> LanguageModel:  # type: ignore[type-var]
        # Mapping mirostat settings to their corresponding values
        mirostat_options = {"Mirostat": 1, "Mirostat 2.0": 2}

        # Default to 0 for 'Disabled'
        mirostat_value = mirostat_options.get(self.mirostat, 0)

        # Set mirostat_eta and mirostat_tau to None if mirostat is disabled
        if mirostat_value == 0:
            mirostat_eta = None
            mirostat_tau = None
        else:
            mirostat_eta = self.mirostat_eta
            mirostat_tau = self.mirostat_tau

        # Mapping system settings to their corresponding values
        llm_params = {
            "base_url": self.base_url,
            "model": self.model_name,
            "mirostat": mirostat_value,
            "format": self.format,
            "metadata": self.metadata,
            "tags": self.tags.split(",") if self.tags else None,
            "mirostat_eta": mirostat_eta,
            "mirostat_tau": mirostat_tau,
            "num_ctx": self.num_ctx or None,
            "num_gpu": self.num_gpu or None,
            "num_thread": self.num_thread or None,
            "repeat_last_n": self.repeat_last_n or None,
            "repeat_penalty": self.repeat_penalty or None,
            "temperature": self.temperature or None,
            "stop": self.stop_tokens.split(",") if self.stop_tokens else None,
            "system": self.system,
            "template": self.template,
            "tfs_z": self.tfs_z or None,
            "timeout": self.timeout or None,
            "top_k": self.top_k or None,
            "top_p": self.top_p or None,
            "verbose": self.verbose,
        }

        # Remove parameters with None values
        llm_params = {k: v for k, v in llm_params.items() if v is not None}

        try:
            output = ChatOllama(**llm_params)
        except Exception as e:
            msg = "Could not initialize Ollama LLM."
            raise ValueError(msg) from e

        return output

OpenAI

The OpenAIModelComponent generates text using OpenAI’s language models. It builds and returns a ChatOpenAI model instance with the specified configurations.

Parameters

Inputs
Name Display Name Info

max_tokens

Max Tokens

Maximum number of tokens to generate

model_kwargs

Model Kwargs

Additional keyword arguments for the model

json_mode

JSON Mode

Enable JSON output mode

output_schema

Schema

Schema for the model’s output

model_name

Model Name

Name of the OpenAI model to use

openai_api_base

OpenAI API Base

Base URL for the OpenAI API

api_key

OpenAI API Key

API key for authentication

temperature

Temperature

Controls randomness in output

seed

Seed

Seed for reproducibility

Outputs
Name Display Name Info

output

Language Model

Configured ChatOpenAI model instance

Component code

openai.py
from langchain_openai import ChatOpenAI
from pydantic.v1 import SecretStr

from langflow.base.models.model import LCModelComponent
from langflow.base.models.openai_constants import OPENAI_MODEL_NAMES
from langflow.field_typing import LanguageModel
from langflow.field_typing.range_spec import RangeSpec
from langflow.inputs import BoolInput, DictInput, DropdownInput, IntInput, SecretStrInput, SliderInput, StrInput


class OpenAIModelComponent(LCModelComponent):
    display_name = "OpenAI"
    description = "Generates text using OpenAI LLMs."
    icon = "OpenAI"
    name = "OpenAIModel"

    inputs = [
        *LCModelComponent._base_inputs,
        IntInput(
            name="max_tokens",
            display_name="Max Tokens",
            advanced=True,
            info="The maximum number of tokens to generate. Set to 0 for unlimited tokens.",
            range_spec=RangeSpec(min=0, max=128000),
        ),
        DictInput(
            name="model_kwargs",
            display_name="Model Kwargs",
            advanced=True,
            info="Additional keyword arguments to pass to the model.",
        ),
        BoolInput(
            name="json_mode",
            display_name="JSON Mode",
            advanced=True,
            info="If True, it will output JSON regardless of passing a schema.",
        ),
        DropdownInput(
            name="model_name",
            display_name="Model Name",
            advanced=False,
            options=OPENAI_MODEL_NAMES,
            value=OPENAI_MODEL_NAMES[0],
        ),
        StrInput(
            name="openai_api_base",
            display_name="OpenAI API Base",
            advanced=True,
            info="The base URL of the OpenAI API. "
            "Defaults to https://api.openai.com/v1. "
            "You can change this to use other APIs like JinaChat, LocalAI and Prem.",
        ),
        SecretStrInput(
            name="api_key",
            display_name="OpenAI API Key",
            info="The OpenAI API Key to use for the OpenAI model.",
            advanced=False,
            value="OPENAI_API_KEY",
        ),
        SliderInput(
            name="temperature", display_name="Temperature", value=0.1, range_spec=RangeSpec(min=0, max=2, step=0.01)
        ),
        IntInput(
            name="seed",
            display_name="Seed",
            info="The seed controls the reproducibility of the job.",
            advanced=True,
            value=1,
        ),
    ]

    def build_model(self) -> LanguageModel:  # type: ignore[type-var]
        openai_api_key = self.api_key
        temperature = self.temperature
        model_name: str = self.model_name
        max_tokens = self.max_tokens
        model_kwargs = self.model_kwargs or {}
        openai_api_base = self.openai_api_base or "https://api.openai.com/v1"
        json_mode = self.json_mode
        seed = self.seed

        api_key = SecretStr(openai_api_key).get_secret_value() if openai_api_key else None
        output = ChatOpenAI(
            max_tokens=max_tokens or None,
            model_kwargs=model_kwargs,
            model=model_name,
            base_url=openai_api_base,
            api_key=api_key,
            temperature=temperature if temperature is not None else 0.1,
            seed=seed,
        )
        if json_mode:
            output = output.bind(response_format={"type": "json_object"})

        return output

    def _get_exception_message(self, e: Exception):
        """Get a message from an OpenAI exception.

        Args:
            e (Exception): The exception to get the message from.

        Returns:
            str: The message from the exception.
        """
        try:
            from openai import BadRequestError
        except ImportError:
            return None
        if isinstance(e, BadRequestError):
            message = e.body.get("message")
            if message:
                return message
        return None

Qianfan

This component generates text using Qianfan’s language models.

For more information, see the Qianfan documentation.

Component code

baidu_qianfan_chat.py
from langchain_community.chat_models.baidu_qianfan_endpoint import QianfanChatEndpoint

from langflow.base.models.model import LCModelComponent
from langflow.field_typing.constants import LanguageModel
from langflow.io import DropdownInput, FloatInput, MessageTextInput, SecretStrInput


class QianfanChatEndpointComponent(LCModelComponent):
    display_name: str = "Qianfan"
    description: str = "Generate text using Baidu Qianfan LLMs."
    documentation: str = "https://python.langchain.com/docs/integrations/chat/baidu_qianfan_endpoint"
    icon = "BaiduQianfan"
    name = "BaiduQianfanChatModel"

    inputs = [
        *LCModelComponent._base_inputs,
        DropdownInput(
            name="model",
            display_name="Model Name",
            options=[
                "EB-turbo-AppBuilder",
                "Llama-2-70b-chat",
                "ERNIE-Bot-turbo-AI",
                "ERNIE-Lite-8K-0308",
                "ERNIE-Speed",
                "Qianfan-Chinese-Llama-2-13B",
                "ERNIE-3.5-8K",
                "BLOOMZ-7B",
                "Qianfan-Chinese-Llama-2-7B",
                "XuanYuan-70B-Chat-4bit",
                "AquilaChat-7B",
                "ERNIE-Bot-4",
                "Llama-2-13b-chat",
                "ChatGLM2-6B-32K",
                "ERNIE-Bot",
                "ERNIE-Speed-128k",
                "ERNIE-4.0-8K",
                "Qianfan-BLOOMZ-7B-compressed",
                "ERNIE Speed",
                "Llama-2-7b-chat",
                "Mixtral-8x7B-Instruct",
                "ERNIE 3.5",
                "ERNIE Speed-AppBuilder",
                "ERNIE-Speed-8K",
                "Yi-34B-Chat",
            ],
            info="https://python.langchain.com/docs/integrations/chat/baidu_qianfan_endpoint",
            value="ERNIE-4.0-8K",
        ),
        SecretStrInput(
            name="qianfan_ak",
            display_name="Qianfan Ak",
            info="which you could get from  https://cloud.baidu.com/product/wenxinworkshop",
        ),
        SecretStrInput(
            name="qianfan_sk",
            display_name="Qianfan Sk",
            info="which you could get from  https://cloud.baidu.com/product/wenxinworkshop",
        ),
        FloatInput(
            name="top_p",
            display_name="Top p",
            info="Model params, only supported in ERNIE-Bot and ERNIE-Bot-turbo",
            value=0.8,
            advanced=True,
        ),
        FloatInput(
            name="temperature",
            display_name="Temperature",
            info="Model params, only supported in ERNIE-Bot and ERNIE-Bot-turbo",
            value=0.95,
        ),
        FloatInput(
            name="penalty_score",
            display_name="Penalty Score",
            info="Model params, only supported in ERNIE-Bot and ERNIE-Bot-turbo",
            value=1.0,
            advanced=True,
        ),
        MessageTextInput(
            name="endpoint", display_name="Endpoint", info="Endpoint of the Qianfan LLM, required if custom model used."
        ),
    ]

    def build_model(self) -> LanguageModel:  # type: ignore[type-var]
        model = self.model
        qianfan_ak = self.qianfan_ak
        qianfan_sk = self.qianfan_sk
        top_p = self.top_p
        temperature = self.temperature
        penalty_score = self.penalty_score
        endpoint = self.endpoint

        try:
            kwargs = {
                "model": model,
                "qianfan_ak": qianfan_ak or None,
                "qianfan_sk": qianfan_sk or None,
                "top_p": top_p,
                "temperature": temperature,
                "penalty_score": penalty_score,
            }

            if endpoint:  # Only add endpoint if it has a value
                kwargs["endpoint"] = endpoint

            output = QianfanChatEndpoint(**kwargs)

        except Exception as e:
            msg = "Could not connect to Baidu Qianfan API."
            raise ValueError(msg) from e

        return output

Perplexity

This component generates text using Perplexity’s language models.

For more information, see the Perplexity documentation.

Parameters

Inputs
Name Type Description

model_name

String

The name of the Perplexity model to use. Options include various Llama 3.1 models.

max_output_tokens

Integer

The maximum number of tokens to generate.

api_key

SecretString

The Perplexity API Key for authentication.

temperature

Float

Controls randomness in the output. Default: 0.75.

top_p

Float

The maximum cumulative probability of tokens to consider when sampling (advanced).

n

Integer

Number of chat completions to generate for each prompt (advanced).

top_k

Integer

Number of top tokens to consider for top-k sampling. Must be positive (advanced).

Outputs
Name Type Description

model

LanguageModel

An instance of ChatPerplexity configured with the specified parameters.

Component code

perplexity.py
from langchain_community.chat_models import ChatPerplexity
from pydantic.v1 import SecretStr

from langflow.base.models.model import LCModelComponent
from langflow.field_typing import LanguageModel
from langflow.field_typing.range_spec import RangeSpec
from langflow.io import DropdownInput, FloatInput, IntInput, SecretStrInput, SliderInput


class PerplexityComponent(LCModelComponent):
    display_name = "Perplexity"
    description = "Generate text using Perplexity LLMs."
    documentation = "https://python.langchain.com/v0.2/docs/integrations/chat/perplexity/"
    icon = "Perplexity"
    name = "PerplexityModel"

    inputs = [
        *LCModelComponent._base_inputs,
        DropdownInput(
            name="model_name",
            display_name="Model Name",
            advanced=False,
            options=[
                "llama-3.1-sonar-small-128k-online",
                "llama-3.1-sonar-large-128k-online",
                "llama-3.1-sonar-huge-128k-online",
                "llama-3.1-sonar-small-128k-chat",
                "llama-3.1-sonar-large-128k-chat",
                "llama-3.1-8b-instruct",
                "llama-3.1-70b-instruct",
            ],
            value="llama-3.1-sonar-small-128k-online",
        ),
        IntInput(
            name="max_output_tokens", display_name="Max Output Tokens", info="The maximum number of tokens to generate."
        ),
        SecretStrInput(
            name="api_key",
            display_name="Perplexity API Key",
            info="The Perplexity API Key to use for the Perplexity model.",
            advanced=False,
            required=True,
        ),
        SliderInput(
            name="temperature", display_name="Temperature", value=0.75, range_spec=RangeSpec(min=0, max=2, step=0.05)
        ),
        FloatInput(
            name="top_p",
            display_name="Top P",
            info="The maximum cumulative probability of tokens to consider when sampling.",
            advanced=True,
        ),
        IntInput(
            name="n",
            display_name="N",
            info="Number of chat completions to generate for each prompt. "
            "Note that the API may not return the full n completions if duplicates are generated.",
            advanced=True,
        ),
        IntInput(
            name="top_k",
            display_name="Top K",
            info="Decode using top-k sampling: consider the set of top_k most probable tokens. Must be positive.",
            advanced=True,
        ),
    ]

    def build_model(self) -> LanguageModel:  # type: ignore[type-var]
        api_key = SecretStr(self.api_key).get_secret_value()
        temperature = self.temperature
        model = self.model_name
        max_output_tokens = self.max_output_tokens
        top_k = self.top_k
        top_p = self.top_p
        n = self.n

        return ChatPerplexity(
            model=model,
            temperature=temperature or 0.75,
            pplx_api_key=api_key,
            top_k=top_k or None,
            top_p=top_p or None,
            n=n or 1,
            max_output_tokens=max_output_tokens,
        )

VertexAI

This component generates text using Vertex AI LLMs.

For more information, see Google Vertex AI documentation.

Parameters

Inputs
Name Type Description

credentials

File

JSON credentials file. Leave empty to fallback to environment variables. File type: JSON.

model_name

String

The name of the Vertex AI model to use. Default: "gemini-1.5-pro".

project

String

The project ID (advanced).

location

String

The location for the Vertex AI API. Default: "us-central1" (advanced).

max_output_tokens

Integer

The maximum number of tokens to generate (advanced).

max_retries

Integer

Maximum number of retries for API calls. Default: 1 (advanced).

temperature

Float

Controls randomness in the output. Default: 0.0.

top_k

Integer

The number of highest probability vocabulary tokens to keep for top-k-filtering (advanced).

top_p

Float

The cumulative probability of parameter highest probability vocabulary tokens to keep for nucleus sampling. Default: 0.95 (advanced).

verbose

Boolean

Whether to print verbose output. Default: False (advanced).

Outputs
Name Type Description

model

LanguageModel

An instance of ChatVertexAI configured with the specified parameters.

Component code

vertexai.py
from typing import cast

from langflow.base.models.model import LCModelComponent
from langflow.field_typing import LanguageModel
from langflow.inputs import MessageTextInput
from langflow.io import BoolInput, FileInput, FloatInput, IntInput, StrInput


class ChatVertexAIComponent(LCModelComponent):
    display_name = "Vertex AI"
    description = "Generate text using Vertex AI LLMs."
    icon = "VertexAI"
    name = "VertexAiModel"

    inputs = [
        *LCModelComponent._base_inputs,
        FileInput(
            name="credentials",
            display_name="Credentials",
            info="JSON credentials file. Leave empty to fallback to environment variables",
            file_types=["json"],
        ),
        MessageTextInput(name="model_name", display_name="Model Name", value="gemini-1.5-pro"),
        StrInput(name="project", display_name="Project", info="The project ID.", advanced=True),
        StrInput(name="location", display_name="Location", value="us-central1", advanced=True),
        IntInput(name="max_output_tokens", display_name="Max Output Tokens", advanced=True),
        IntInput(name="max_retries", display_name="Max Retries", value=1, advanced=True),
        FloatInput(name="temperature", value=0.0, display_name="Temperature"),
        IntInput(name="top_k", display_name="Top K", advanced=True),
        FloatInput(name="top_p", display_name="Top P", value=0.95, advanced=True),
        BoolInput(name="verbose", display_name="Verbose", value=False, advanced=True),
    ]

    def build_model(self) -> LanguageModel:
        try:
            from langchain_google_vertexai import ChatVertexAI
        except ImportError as e:
            msg = "Please install the langchain-google-vertexai package to use the VertexAIEmbeddings component."
            raise ImportError(msg) from e
        location = self.location or None
        if self.credentials:
            from google.cloud import aiplatform
            from google.oauth2 import service_account

            credentials = service_account.Credentials.from_service_account_file(self.credentials)
            project = self.project or credentials.project_id
            # ChatVertexAI sometimes skip manual credentials initialization
            aiplatform.init(
                project=project,
                location=location,
                credentials=credentials,
            )
        else:
            project = self.project or None
            credentials = None

        return cast(
            "LanguageModel",
            ChatVertexAI(
                credentials=credentials,
                location=location,
                project=project,
                max_output_tokens=self.max_output_tokens or None,
                max_retries=self.max_retries,
                model_name=self.model_name,
                temperature=self.temperature,
                top_k=self.top_k or None,
                top_p=self.top_p,
                verbose=self.verbose,
            ),
        )

Was this helpful?

Give Feedback

How can we improve the documentation?

© 2025 DataStax | Privacy policy | Terms of use

Apache, Apache Cassandra, Cassandra, Apache Tomcat, Tomcat, Apache Lucene, Apache Solr, Apache Hadoop, Hadoop, Apache Pulsar, Pulsar, Apache Spark, Spark, Apache TinkerPop, TinkerPop, Apache Kafka and Kafka are either registered trademarks or trademarks of the Apache Software Foundation or its subsidiaries in Canada, the United States and/or other countries. Kubernetes is the registered trademark of the Linux Foundation.

General Inquiries: +1 (650) 389-6000, info@datastax.com