Embeddings

Embeddings models are used to convert text into numerical vectors. These vectors can be used for various tasks such as similarity search, clustering, and classification.

AI/ML

This component generates embeddings using the AI/ML API.

Parameters

Inputs
Name Type Description

model_name

String

The name of the AI/ML embedding model to use

aiml_api_key

SecretString

API key for authenticating with the AI/ML service

Outputs
Name Type Description

embeddings

Embeddings

An instance of AIMLEmbeddingsImpl for generating embeddings

Component code

AIML.py
from langflow.base.embeddings.model import LCEmbeddingsModel
from langflow.base.models.aiml_constants import AIML_EMBEDDING_MODELS
from langflow.components.embeddings.util.AIMLEmbeddingsImpl import AIMLEmbeddingsImpl
from langflow.field_typing import Embeddings
from langflow.inputs.inputs import DropdownInput
from langflow.io import SecretStrInput


class AIMLEmbeddingsComponent(LCEmbeddingsModel):
    display_name = "AI/ML Embeddings"
    description = "Generate embeddings using the AI/ML API."
    icon = "AI/ML"
    name = "AIMLEmbeddings"

    inputs = [
        DropdownInput(
            name="model_name",
            display_name="Model Name",
            options=AIML_EMBEDDING_MODELS,
            required=True,
        ),
        SecretStrInput(
            name="aiml_api_key",
            display_name="AI/ML API Key",
            value="AIML_API_KEY",
            required=True,
        ),
    ]

    def build_embeddings(self) -> Embeddings:
        return AIMLEmbeddingsImpl(
            api_key=self.aiml_api_key,
            model=self.model_name,
        )

Amazon Bedrock Embeddings

Use this component to load embedding models and generate embeddings with Amazon Bedrock.

This component requires an AWS account and access to Amazon Bedrock.

Parameters

Inputs
Name Display Name Info

credentials_profile_name

AWS Credentials Profile

Name of the AWS credentials profile in ~/.aws/credentials or ~/.aws/config

model_id

Model ID

ID of the model to call, e.g., amazon.titan-embed-text-v1

endpoint_url

Endpoint URL

URL to set a specific service endpoint other than the default AWS endpoint

region_name

AWS Region

AWS region to use, e.g., us-west-2

Component code

AmazonBedrock.py
from langchain_community.embeddings import BedrockEmbeddings

from langflow.base.models.model import LCModelComponent
from langflow.field_typing import Embeddings
from langflow.inputs import SecretStrInput
from langflow.io import DropdownInput, MessageTextInput, Output


class AmazonBedrockEmbeddingsComponent(LCModelComponent):
    display_name: str = "Amazon Bedrock Embeddings"
    description: str = "Generate embeddings using Amazon Bedrock models."
    documentation = "https://python.langchain.com/docs/modules/data_connection/text_embedding/integrations/bedrock"
    icon = "Amazon"
    name = "AmazonBedrockEmbeddings"

    inputs = [
        DropdownInput(
            name="model_id",
            display_name="Model Id",
            options=["amazon.titan-embed-text-v1"],
            value="amazon.titan-embed-text-v1",
        ),
        SecretStrInput(name="aws_access_key", display_name="Access Key"),
        SecretStrInput(name="aws_secret_key", display_name="Secret Key"),
        MessageTextInput(
            name="credentials_profile_name",
            display_name="Credentials Profile Name",
            advanced=True,
        ),
        MessageTextInput(name="region_name", display_name="Region Name", value="us-east-1"),
        MessageTextInput(name="endpoint_url", display_name=" Endpoint URL", advanced=True),
    ]

    outputs = [
        Output(display_name="Embeddings", name="embeddings", method="build_embeddings"),
    ]

    def build_embeddings(self) -> Embeddings:
        if self.aws_access_key:
            import boto3  # type: ignore

            session = boto3.Session(
                aws_access_key_id=self.aws_access_key,
                aws_secret_access_key=self.aws_secret_key,
            )
        elif self.credentials_profile_name:
            import boto3

            session = boto3.Session(profile_name=self.credentials_profile_name)
        else:
            import boto3

            session = boto3.Session()

        client_params = {}
        if self.endpoint_url:
            client_params["endpoint_url"] = self.endpoint_url
        if self.region_name:
            client_params["region_name"] = self.region_name

        boto3_client = session.client("bedrock-runtime", **client_params)
        output = BedrockEmbeddings(
            credentials_profile_name=self.credentials_profile_name,
            client=boto3_client,
            model_id=self.model_id,
            endpoint_url=self.endpoint_url,
            region_name=self.region_name,
        )  # type: ignore
        return output

Astra DB vectorize

Use this component to generates embeddings with Astra DB vectorize.

This component requires that your Astra DB database has a collection that uses a vectorize embedding provider integration. For more information and instructions, see Auto-generate embeddings with vectorize.

Parameters

Inputs
Name Display Name Info

provider

Embedding Provider

The embedding provider to use

model_name

Model Name

The embedding model to use

authentication

Authentication

The name of the API key in Astra KMS that stores your vectorize embedding provider credentials. (Not required if using an Astra-hosted embedding provider.)

provider_api_key

Provider API Key

As an alternative to authentication, directly provide your embedding provider credentials.

model_parameters

Model Parameters

Additional model parameters

Component code

AstraVectorize.py
from typing import Any

from langflow.custom import Component
from langflow.inputs.inputs import DictInput, DropdownInput, MessageTextInput, SecretStrInput
from langflow.template.field.base import Output


class AstraVectorizeComponent(Component):
    display_name: str = "Astra Vectorize"
    description: str = "Configuration options for Astra Vectorize server-side embeddings."
    documentation: str = "https://docs.datastax.com/en/astra-db-serverless/databases/embedding-generation.html"
    icon = "AstraDB"
    name = "AstraVectorize"

    VECTORIZE_PROVIDERS_MAPPING = {
        "Azure OpenAI": ["azureOpenAI", ["text-embedding-3-small", "text-embedding-3-large", "text-embedding-ada-002"]],
        "Hugging Face - Dedicated": ["huggingfaceDedicated", ["endpoint-defined-model"]],
        "Hugging Face - Serverless": [
            "huggingface",
            [
                "sentence-transformers/all-MiniLM-L6-v2",
                "intfloat/multilingual-e5-large",
                "intfloat/multilingual-e5-large-instruct",
                "BAAI/bge-small-en-v1.5",
                "BAAI/bge-base-en-v1.5",
                "BAAI/bge-large-en-v1.5",
            ],
        ],
        "Jina AI": [
            "jinaAI",
            [
                "jina-embeddings-v2-base-en",
                "jina-embeddings-v2-base-de",
                "jina-embeddings-v2-base-es",
                "jina-embeddings-v2-base-code",
                "jina-embeddings-v2-base-zh",
            ],
        ],
        "Mistral AI": ["mistral", ["mistral-embed"]],
        "NVIDIA": ["nvidia", ["NV-Embed-QA"]],
        "OpenAI": ["openai", ["text-embedding-3-small", "text-embedding-3-large", "text-embedding-ada-002"]],
        "Upstage": ["upstageAI", ["solar-embedding-1-large"]],
        "Voyage AI": [
            "voyageAI",
            ["voyage-large-2-instruct", "voyage-law-2", "voyage-code-2", "voyage-large-2", "voyage-2"],
        ],
    }
    VECTORIZE_MODELS_STR = "\n\n".join(
        [provider + ": " + (", ".join(models[1])) for provider, models in VECTORIZE_PROVIDERS_MAPPING.items()]
    )

    inputs = [
        DropdownInput(
            name="provider",
            display_name="Provider",
            options=VECTORIZE_PROVIDERS_MAPPING.keys(),
            value="",
            required=True,
        ),
        MessageTextInput(
            name="model_name",
            display_name="Model Name",
            info=f"The embedding model to use for the selected provider. Each provider has a different set of models "
            f"available (full list at https://docs.datastax.com/en/astra-db-serverless/databases/embedding-generation.html):\n\n{VECTORIZE_MODELS_STR}",
            required=True,
        ),
        MessageTextInput(
            name="api_key_name",
            display_name="API Key name",
            info="The name of the embeddings provider API key stored on Astra. If set, it will override the 'ProviderKey' in the authentication parameters.",
        ),
        DictInput(
            name="authentication",
            display_name="Authentication parameters",
            is_list=True,
            advanced=True,
        ),
        SecretStrInput(
            name="provider_api_key",
            display_name="Provider API Key",
            info="An alternative to the Astra Authentication that passes an API key for the provider with each request to Astra DB. This may be used when Vectorize is configured for the collection, but no corresponding provider secret is stored within Astra's key management system.",
            advanced=True,
        ),
        DictInput(
            name="authentication",
            display_name="Authentication Parameters",
            is_list=True,
            advanced=True,
        ),
        DictInput(
            name="model_parameters",
            display_name="Model Parameters",
            advanced=True,
            is_list=True,
        ),
    ]
    outputs = [
        Output(display_name="Vectorize", name="config", method="build_options", types=["dict"]),
    ]

    def build_options(self) -> dict[str, Any]:
        provider_value = self.VECTORIZE_PROVIDERS_MAPPING[self.provider][0]
        authentication = {**(self.authentication or {})}
        api_key_name = self.api_key_name
        if api_key_name:
            authentication["providerKey"] = api_key_name
        return {
            # must match astrapy.info.CollectionVectorServiceOptions
            "collection_vector_service_options": {
                "provider": provider_value,
                "modelName": self.model_name,
                "authentication": authentication,
                "parameters": self.model_parameters or {},
            },
            "collection_embedding_api_key": self.provider_api_key,
        }

Azure OpenAI Embeddings

This component generates embeddings using Azure OpenAI models.

Use this component to create embeddings with Azure’s OpenAI service.

Make sure you have the necessary Azure credentials and have set up the OpenAI resource.

Parameters

Inputs
Name Display Name Info

Azure Endpoint

Azure Endpoint

Your Azure endpoint, including the resource

Deployment Name

Deployment Name

The name of the deployment

API Version

API Version

The API version to use

API Key

API Key

The API key to access the Azure OpenAI service

Component code

AzureOpenAI.py
from langchain_openai import AzureOpenAIEmbeddings

from langflow.base.models.model import LCModelComponent
from langflow.field_typing import Embeddings
from langflow.io import DropdownInput, IntInput, MessageTextInput, Output, SecretStrInput


class AzureOpenAIEmbeddingsComponent(LCModelComponent):
    display_name: str = "Azure OpenAI Embeddings"
    description: str = "Generate embeddings using Azure OpenAI models."
    documentation: str = "https://python.langchain.com/docs/integrations/text_embedding/azureopenai"
    icon = "Azure"
    name = "AzureOpenAIEmbeddings"

    API_VERSION_OPTIONS = [
        "2022-12-01",
        "2023-03-15-preview",
        "2023-05-15",
        "2023-06-01-preview",
        "2023-07-01-preview",
        "2023-08-01-preview",
    ]

    inputs = [
        MessageTextInput(
            name="azure_endpoint",
            display_name="Azure Endpoint",
            required=True,
            info="Your Azure endpoint, including the resource. Example: `https://example-resource.azure.openai.com/`",
        ),
        MessageTextInput(
            name="azure_deployment",
            display_name="Deployment Name",
            required=True,
        ),
        DropdownInput(
            name="api_version",
            display_name="API Version",
            options=API_VERSION_OPTIONS,
            value=API_VERSION_OPTIONS[-1],
            advanced=True,
        ),
        SecretStrInput(
            name="api_key",
            display_name="API Key",
            required=True,
        ),
        IntInput(
            name="dimensions",
            display_name="Dimensions",
            info="The number of dimensions the resulting output embeddings should have. Only supported by certain models.",
            advanced=True,
        ),
    ]

    outputs = [
        Output(display_name="Embeddings", name="embeddings", method="build_embeddings"),
    ]

    def build_embeddings(self) -> Embeddings:
        try:
            embeddings = AzureOpenAIEmbeddings(
                azure_endpoint=self.azure_endpoint,
                azure_deployment=self.azure_deployment,
                api_version=self.api_version,
                api_key=self.api_key,
                dimensions=self.dimensions or None,
            )
        except Exception as e:
            raise ValueError(f"Could not connect to AzureOpenAIEmbeddings API: {str(e)}") from e

        return embeddings

Cohere Embeddings

This component loads embedding models from Cohere.

Use this component to generate embeddings using Cohere’s AI models.

Ensure you have a valid Cohere API key.

Parameters

Inputs
Name Display Name Info

cohere_api_key

Cohere API Key

API key required to authenticate with the Cohere service

model

Model Name

Language model used for embedding text documents and performing queries

truncate

Truncate

Whether to truncate the input text to fit within the model’s constraints

Component code

Cohere.py
from langchain_community.embeddings.cohere import CohereEmbeddings

from langflow.base.models.model import LCModelComponent
from langflow.field_typing import Embeddings
from langflow.io import DropdownInput, FloatInput, IntInput, MessageTextInput, Output, SecretStrInput


class CohereEmbeddingsComponent(LCModelComponent):
    display_name = "Cohere Embeddings"
    description = "Generate embeddings using Cohere models."
    icon = "Cohere"
    name = "CohereEmbeddings"

    inputs = [
        SecretStrInput(name="cohere_api_key", display_name="Cohere API Key"),
        DropdownInput(
            name="model",
            display_name="Model",
            advanced=True,
            options=[
                "embed-english-v2.0",
                "embed-multilingual-v2.0",
                "embed-english-light-v2.0",
                "embed-multilingual-light-v2.0",
            ],
            value="embed-english-v2.0",
        ),
        MessageTextInput(name="truncate", display_name="Truncate", advanced=True),
        IntInput(name="max_retries", display_name="Max Retries", value=3, advanced=True),
        MessageTextInput(name="user_agent", display_name="User Agent", advanced=True, value="langchain"),
        FloatInput(name="request_timeout", display_name="Request Timeout", advanced=True),
    ]

    outputs = [
        Output(display_name="Embeddings", name="embeddings", method="build_embeddings"),
    ]

    def build_embeddings(self) -> Embeddings:
        return CohereEmbeddings(  # type: ignore
            cohere_api_key=self.cohere_api_key,
            model=self.model,
            truncate=self.truncate,
            max_retries=self.max_retries,
            user_agent=self.user_agent,
            request_timeout=self.request_timeout or None,
        )

Hugging Face Embeddings

This component loads embedding models from HuggingFace.

Use this component to generate embeddings using locally downloaded Hugging Face models. Ensure you have sufficient computational resources to run the models.

Parameters

Inputs
Name Display Name Info

Cache Folder

Cache Folder

Folder path to cache HuggingFace models

Encode Kwargs

Encoding Arguments

Additional arguments for the encoding process

Model Kwargs

Model Arguments

Additional arguments for the model

Model Name

Model Name

Name of the HuggingFace model to use

Multi Process

Multi-Process

Whether to use multiple processes

Component code

HuggingFaceInferenceAPI.py
from langchain_community.embeddings.huggingface import HuggingFaceInferenceAPIEmbeddings
from pydantic.v1.types import SecretStr

from langflow.base.models.model import LCModelComponent
from langflow.field_typing import Embeddings
from langflow.io import MessageTextInput, Output, SecretStrInput


class HuggingFaceInferenceAPIEmbeddingsComponent(LCModelComponent):
    display_name = "HuggingFace Embeddings"
    description = "Generate embeddings using Hugging Face Inference API models."
    documentation = "https://github.com/huggingface/text-embeddings-inference"
    icon = "HuggingFace"
    name = "HuggingFaceInferenceAPIEmbeddings"

    inputs = [
        SecretStrInput(name="api_key", display_name="API Key"),
        MessageTextInput(name="api_url", display_name="API URL", advanced=True, value="http://localhost:8080"),
        MessageTextInput(name="model_name", display_name="Model Name", value="BAAI/bge-large-en-v1.5"),
    ]

    outputs = [
        Output(display_name="Embeddings", name="embeddings", method="build_embeddings"),
    ]

    def build_embeddings(self) -> Embeddings:
        if not self.api_key:
            raise ValueError("API Key is required")

        api_key = SecretStr(self.api_key)

        return HuggingFaceInferenceAPIEmbeddings(api_key=api_key, api_url=self.api_url, model_name=self.model_name)

Hugging Face API Embeddings

This component generates embeddings using Hugging Face Inference API models.

Use this component to create embeddings with Hugging Face’s hosted models. Ensure you have a valid Hugging Face API key.

Parameters

Inputs
Name Display Name Info

API Key

API Key

API key for accessing the Hugging Face Inference API

API URL

API URL

URL of the Hugging Face Inference API

Model Name

Model Name

Name of the model to use for embeddings

Cache Folder

Cache Folder

Folder path to cache Hugging Face models

Encode Kwargs

Encoding Arguments

Additional arguments for the encoding process

Model Kwargs

Model Arguments

Additional arguments for the model

Multi Process

Multi-Process

Whether to use multiple processes

Component code

HuggingFaceInferenceAPI.py
from langchain_community.embeddings.huggingface import HuggingFaceInferenceAPIEmbeddings
from pydantic.v1.types import SecretStr

from langflow.base.models.model import LCModelComponent
from langflow.field_typing import Embeddings
from langflow.io import MessageTextInput, Output, SecretStrInput


class HuggingFaceInferenceAPIEmbeddingsComponent(LCModelComponent):
    display_name = "HuggingFace Embeddings"
    description = "Generate embeddings using Hugging Face Inference API models."
    documentation = "https://github.com/huggingface/text-embeddings-inference"
    icon = "HuggingFace"
    name = "HuggingFaceInferenceAPIEmbeddings"

    inputs = [
        SecretStrInput(name="api_key", display_name="API Key"),
        MessageTextInput(name="api_url", display_name="API URL", advanced=True, value="http://localhost:8080"),
        MessageTextInput(name="model_name", display_name="Model Name", value="BAAI/bge-large-en-v1.5"),
    ]

    outputs = [
        Output(display_name="Embeddings", name="embeddings", method="build_embeddings"),
    ]

    def build_embeddings(self) -> Embeddings:
        if not self.api_key:
            raise ValueError("API Key is required")

        api_key = SecretStr(self.api_key)

        return HuggingFaceInferenceAPIEmbeddings(api_key=api_key, api_url=self.api_url, model_name=self.model_name)

MistralAI Embeddings

This component generates embeddings using MistralAI models.

Parameters

Inputs
Name Type Description

model

String

The MistralAI model to use (default: "mistral-embed")

mistral_api_key

SecretString

API key for authenticating with MistralAI

max_concurrent_requests

Integer

Maximum number of concurrent API requests (default: 64)

max_retries

Integer

Maximum number of retry attempts for failed requests (default: 5)

timeout

Integer

Request timeout in seconds (default: 120)

endpoint

String

Custom API endpoint URL (default: "https://api.mistral.ai/v1/")

Outputs
Name Type Description

embeddings

Embeddings

MistralAIEmbeddings instance for generating embeddings

Component code

MistalAI.py
from langchain_mistralai.embeddings import MistralAIEmbeddings
from pydantic.v1 import SecretStr

from langflow.base.models.model import LCModelComponent
from langflow.field_typing import Embeddings
from langflow.io import DropdownInput, IntInput, MessageTextInput, Output, SecretStrInput


class MistralAIEmbeddingsComponent(LCModelComponent):
    display_name = "MistralAI Embeddings"
    description = "Generate embeddings using MistralAI models."
    icon = "MistralAI"
    name = "MistalAIEmbeddings"

    inputs = [
        DropdownInput(
            name="model",
            display_name="Model",
            advanced=False,
            options=["mistral-embed"],
            value="mistral-embed",
        ),
        SecretStrInput(name="mistral_api_key", display_name="Mistral API Key"),
        IntInput(
            name="max_concurrent_requests",
            display_name="Max Concurrent Requests",
            advanced=True,
            value=64,
        ),
        IntInput(name="max_retries", display_name="Max Retries", advanced=True, value=5),
        IntInput(name="timeout", display_name="Request Timeout", advanced=True, value=120),
        MessageTextInput(
            name="endpoint",
            display_name="API Endpoint",
            advanced=True,
            value="https://api.mistral.ai/v1/",
        ),
    ]

    outputs = [
        Output(display_name="Embeddings", name="embeddings", method="build_embeddings"),
    ]

    def build_embeddings(self) -> Embeddings:
        if not self.mistral_api_key:
            raise ValueError("Mistral API Key is required")

        api_key = SecretStr(self.mistral_api_key)

        return MistralAIEmbeddings(
            api_key=api_key,
            model=self.model,
            endpoint=self.endpoint,
            max_concurrent_requests=self.max_concurrent_requests,
            max_retries=self.max_retries,
            timeout=self.timeout,
        )

NVIDIA

This component generates embeddings using NVIDIA models.

Parameters

Inputs
Name Type Description

model

String

The NVIDIA model to use for embeddings (e.g., nvidia/nv-embed-v1)

base_url

String

Base URL for the NVIDIA API (default: https://integrate.api.nvidia.com/v1)

nvidia_api_key

SecretString

API key for authenticating with NVIDIA’s service

temperature

Float

Model temperature for embedding generation (default: 0.1)

Outputs
Name Type Description

embeddings

Embeddings

NVIDIAEmbeddings instance for generating embeddings

Component code

NVIDIA.py
from typing import Any

from langflow.base.embeddings.model import LCEmbeddingsModel
from langflow.field_typing import Embeddings
from langflow.inputs.inputs import DropdownInput, SecretStrInput
from langflow.io import FloatInput, MessageTextInput
from langflow.schema.dotdict import dotdict


class NVIDIAEmbeddingsComponent(LCEmbeddingsModel):
    display_name: str = "NVIDIA Embeddings"
    description: str = "Generate embeddings using NVIDIA models."
    icon = "NVIDIA"

    inputs = [
        DropdownInput(
            name="model",
            display_name="Model",
            options=[
                "nvidia/nv-embed-v1",
                "snowflake/arctic-embed-I",
            ],
            value="nvidia/nv-embed-v1",
        ),
        MessageTextInput(
            name="base_url",
            display_name="NVIDIA Base URL",
            refresh_button=True,
            value="https://integrate.api.nvidia.com/v1",
        ),
        SecretStrInput(
            name="nvidia_api_key",
            display_name="NVIDIA API Key",
            info="The NVIDIA API Key.",
            advanced=False,
            value="NVIDIA_API_KEY",
        ),
        FloatInput(
            name="temperature",
            display_name="Model Temperature",
            value=0.1,
            advanced=True,
        ),
    ]

    def update_build_config(self, build_config: dotdict, field_value: Any, field_name: str | None = None):
        if field_name == "base_url" and field_value:
            try:
                build_model = self.build_embeddings()
                ids = [model.id for model in build_model.available_models]  # type: ignore
                build_config["model"]["options"] = ids
                build_config["model"]["value"] = ids[0]
            except Exception as e:
                raise ValueError(f"Error getting model names: {e}")
        return build_config

    def build_embeddings(self) -> Embeddings:
        try:
            from langchain_nvidia_ai_endpoints import NVIDIAEmbeddings
        except ImportError:
            raise ImportError("Please install langchain-nvidia-ai-endpoints to use the Nvidia model.")
        try:
            output = NVIDIAEmbeddings(
                model=self.model,
                base_url=self.base_url,
                temperature=self.temperature,
                nvidia_api_key=self.nvidia_api_key,
            )  # type: ignore
        except Exception as e:
            raise ValueError(f"Could not connect to NVIDIA API. Error: {e}") from e
        return output

Ollama Embeddings

This component generates embeddings using Ollama models.

Use this component to create embeddings with locally run Ollama models.

Ensure you have Ollama set up and running on your system.

Parameters

Inputs
Name Display Name Info

Ollama Model

Model Name

Name of the Ollama model to use

Ollama Base URL

Base URL

Base URL of the Ollama API

Model Temperature

Temperature

Temperature parameter for the model

Component code

Ollama.py
from langchain_community.embeddings import OllamaEmbeddings

from langflow.base.models.model import LCModelComponent
from langflow.field_typing import Embeddings
from langflow.io import FloatInput, MessageTextInput, Output


class OllamaEmbeddingsComponent(LCModelComponent):
    display_name: str = "Ollama Embeddings"
    description: str = "Generate embeddings using Ollama models."
    documentation = "https://python.langchain.com/docs/integrations/text_embedding/ollama"
    icon = "Ollama"
    name = "OllamaEmbeddings"

    inputs = [
        MessageTextInput(
            name="model",
            display_name="Ollama Model",
            value="llama3.1",
        ),
        MessageTextInput(
            name="base_url",
            display_name="Ollama Base URL",
            value="http://localhost:11434",
        ),
        FloatInput(
            name="temperature",
            display_name="Model Temperature",
            value=0.1,
            advanced=True,
        ),
    ]

    outputs = [
        Output(display_name="Embeddings", name="embeddings", method="build_embeddings"),
    ]

    def build_embeddings(self) -> Embeddings:
        try:
            output = OllamaEmbeddings(
                model=self.model,
                base_url=self.base_url,
                temperature=self.temperature,
            )  # type: ignore
        except Exception as e:
            raise ValueError("Could not connect to Ollama API.") from e
        return output

OpenAI Embeddings

This component loads embedding models from OpenAI.

Use this component to generate embeddings using OpenAI’s models.

Ensure you have a valid OpenAI API key and sufficient quota.

Parameters

Inputs
Name Display Name Info

OpenAI API Key

API Key

The API key to use for accessing the OpenAI API

Default Headers

Default Headers

Default headers for the HTTP requests

Default Query

Default Query

Default query parameters for the HTTP requests

Allowed Special

Allowed Special Tokens

Special tokens allowed for processing

Disallowed Special

Disallowed Special Tokens

Special tokens disallowed for processing

Chunk Size

Chunk Size

Chunk size for processing

Client

HTTP Client

HTTP client for making requests

Deployment

Deployment

Deployment name for the model

Embedding Context Length

Context Length

Length of embedding context

Max Retries

Max Retries

Maximum number of retries for failed requests

Model

Model Name

Name of the model to use

Model Kwargs

Model Arguments

Additional keyword arguments for the model

OpenAI API Base

API Base URL

Base URL of the OpenAI API

OpenAI API Type

API Type

Type of the OpenAI API

OpenAI API Version

API Version

Version of the OpenAI API

OpenAI Organization

Organization

Organization associated with the API key

OpenAI Proxy

Proxy

Proxy server for the requests

Request Timeout

Request Timeout

Timeout for the HTTP requests

Show Progress Bar

Show Progress

Whether to show a progress bar for processing

Skip Empty

Skip Empty

Whether to skip empty inputs

TikToken Enable

Enable TikToken

Whether to enable TikToken

TikToken Model Name

TikToken Model

Name of the TikToken model

Component code

OpenAI.py
from langchain_openai.embeddings.base import OpenAIEmbeddings

from langflow.base.embeddings.model import LCEmbeddingsModel
from langflow.base.models.openai_constants import OPENAI_EMBEDDING_MODEL_NAMES
from langflow.field_typing import Embeddings
from langflow.io import BoolInput, DictInput, DropdownInput, FloatInput, IntInput, MessageTextInput, SecretStrInput


class OpenAIEmbeddingsComponent(LCEmbeddingsModel):
    display_name = "OpenAI Embeddings"
    description = "Generate embeddings using OpenAI models."
    icon = "OpenAI"
    name = "OpenAIEmbeddings"

    inputs = [
        DictInput(
            name="default_headers",
            display_name="Default Headers",
            advanced=True,
            info="Default headers to use for the API request.",
        ),
        DictInput(
            name="default_query",
            display_name="Default Query",
            advanced=True,
            info="Default query parameters to use for the API request.",
        ),
        IntInput(name="chunk_size", display_name="Chunk Size", advanced=True, value=1000),
        MessageTextInput(name="client", display_name="Client", advanced=True),
        MessageTextInput(name="deployment", display_name="Deployment", advanced=True),
        IntInput(name="embedding_ctx_length", display_name="Embedding Context Length", advanced=True, value=1536),
        IntInput(name="max_retries", display_name="Max Retries", value=3, advanced=True),
        DropdownInput(
            name="model",
            display_name="Model",
            advanced=False,
            options=OPENAI_EMBEDDING_MODEL_NAMES,
            value="text-embedding-3-small",
        ),
        DictInput(name="model_kwargs", display_name="Model Kwargs", advanced=True),
        SecretStrInput(name="openai_api_base", display_name="OpenAI API Base", advanced=True),
        SecretStrInput(name="openai_api_key", display_name="OpenAI API Key", value="OPENAI_API_KEY"),
        SecretStrInput(name="openai_api_type", display_name="OpenAI API Type", advanced=True),
        MessageTextInput(name="openai_api_version", display_name="OpenAI API Version", advanced=True),
        MessageTextInput(
            name="openai_organization",
            display_name="OpenAI Organization",
            advanced=True,
        ),
        MessageTextInput(name="openai_proxy", display_name="OpenAI Proxy", advanced=True),
        FloatInput(name="request_timeout", display_name="Request Timeout", advanced=True),
        BoolInput(name="show_progress_bar", display_name="Show Progress Bar", advanced=True),
        BoolInput(name="skip_empty", display_name="Skip Empty", advanced=True),
        MessageTextInput(
            name="tiktoken_model_name",
            display_name="TikToken Model Name",
            advanced=True,
        ),
        BoolInput(
            name="tiktoken_enable",
            display_name="TikToken Enable",
            advanced=True,
            value=True,
            info="If False, you must have transformers installed.",
        ),
        IntInput(
            name="dimensions",
            display_name="Dimensions",
            info="The number of dimensions the resulting output embeddings should have. Only supported by certain models.",
            advanced=True,
        ),
    ]

    def build_embeddings(self) -> Embeddings:
        return OpenAIEmbeddings(
            tiktoken_enabled=self.tiktoken_enable,
            default_headers=self.default_headers,
            default_query=self.default_query,
            allowed_special="all",
            disallowed_special="all",
            chunk_size=self.chunk_size,
            deployment=self.deployment,
            embedding_ctx_length=self.embedding_ctx_length,
            max_retries=self.max_retries,
            model=self.model,
            model_kwargs=self.model_kwargs,
            base_url=self.openai_api_base,
            api_key=self.openai_api_key,
            openai_api_type=self.openai_api_type,
            api_version=self.openai_api_version,
            organization=self.openai_organization,
            openai_proxy=self.openai_proxy,
            timeout=self.request_timeout or None,
            show_progress_bar=self.show_progress_bar,
            skip_empty=self.skip_empty,
            tiktoken_model_name=self.tiktoken_model_name,
            dimensions=self.dimensions or None,
        )

VertexAI Embeddings

This component wraps around Google Vertex AI Embeddings API.

Use this component to generate embeddings using Google’s Vertex AI service.

Ensure you have the necessary Google Cloud credentials and permissions.

Parameters

Inputs
Name Display Name Info

credentials

Credentials

The default custom credentials to use

location

Location

The default location to use when making API calls

max_output_tokens

Max Output Tokens

Token limit for text output from one prompt

model_name

Model Name

The name of the Vertex AI large language model

project

Project

The default GCP project to use when making Vertex API calls

request_parallelism

Request Parallelism

The amount of parallelism allowed for requests

temperature

Temperature

Tunes the degree of randomness in text generations

top_k

Top K

How the model selects tokens for output

top_p

Top P

Probability threshold for token selection

tuned_model_name

Tuned Model Name

The name of a tuned model (overrides model_name if provided)

verbose

Verbose

Controls the level of detail in the output

Component code

VertexAI.py
from langflow.base.models.model import LCModelComponent
from langflow.field_typing import Embeddings
from langflow.io import BoolInput, FileInput, FloatInput, IntInput, MessageTextInput, Output


class VertexAIEmbeddingsComponent(LCModelComponent):
    display_name = "VertexAI Embeddings"
    description = "Generate embeddings using Google Cloud VertexAI models."
    icon = "VertexAI"
    name = "VertexAIEmbeddings"

    inputs = [
        FileInput(
            name="credentials",
            display_name="Credentials",
            info="JSON credentials file. Leave empty to fallback to environment variables",
            value="",
            file_types=["json"],
        ),
        MessageTextInput(name="location", display_name="Location", value="us-central1", advanced=True),
        MessageTextInput(name="project", display_name="Project", info="The project ID.", advanced=True),
        IntInput(name="max_output_tokens", display_name="Max Output Tokens", advanced=True),
        IntInput(name="max_retries", display_name="Max Retries", value=1, advanced=True),
        MessageTextInput(name="model_name", display_name="Model Name", value="textembedding-gecko"),
        IntInput(name="n", display_name="N", value=1, advanced=True),
        IntInput(name="request_parallelism", value=5, display_name="Request Parallelism", advanced=True),
        MessageTextInput(name="stop_sequences", display_name="Stop", advanced=True, is_list=True),
        BoolInput(name="streaming", display_name="Streaming", value=False, advanced=True),
        FloatInput(name="temperature", value=0.0, display_name="Temperature"),
        IntInput(name="top_k", display_name="Top K", advanced=True),
        FloatInput(name="top_p", display_name="Top P", value=0.95, advanced=True),
    ]

    outputs = [
        Output(display_name="Embeddings", name="embeddings", method="build_embeddings"),
    ]

    def build_embeddings(self) -> Embeddings:
        try:
            from langchain_google_vertexai import VertexAIEmbeddings
        except ImportError:
            raise ImportError(
                "Please install the langchain-google-vertexai package to use the VertexAIEmbeddings component."
            )

        from google.oauth2 import service_account

        if self.credentials:
            gcloud_credentials = service_account.Credentials.from_service_account_file(self.credentials)
        else:
            # will fallback to environment variable or inferred from gcloud CLI
            gcloud_credentials = None
        return VertexAIEmbeddings(
            credentials=gcloud_credentials,
            location=self.location,
            max_output_tokens=self.max_output_tokens or None,
            max_retries=self.max_retries,
            model_name=self.model_name,
            n=self.n,
            project=self.project,
            request_parallelism=self.request_parallelism,
            stop=self.stop_sequences or None,
            streaming=self.streaming,
            temperature=self.temperature,
            top_k=self.top_k or None,
            top_p=self.top_p,
        )

Was this helpful?

Give Feedback

How can we improve the documentation?

© 2024 DataStax | Privacy policy | Terms of use

Apache, Apache Cassandra, Cassandra, Apache Tomcat, Tomcat, Apache Lucene, Apache Solr, Apache Hadoop, Hadoop, Apache Pulsar, Pulsar, Apache Spark, Spark, Apache TinkerPop, TinkerPop, Apache Kafka and Kafka are either registered trademarks or trademarks of the Apache Software Foundation or its subsidiaries in Canada, the United States and/or other countries. Kubernetes is the registered trademark of the Linux Foundation.

General Inquiries: +1 (650) 389-6000, info@datastax.com