Embeddings

Embeddings models convert text into numerical vectors. These embeddings capture the semantic meaning of the input text, and allow LLMs to understand context.

Refer to your specific component’s documentation for more information on parameters.

Use an embeddings model component in a flow

In this example of a document ingestion pipeline, the OpenAI embeddings model is connected to a vector database. The component converts the text chunks into vectors and stores them in the vector database. The vectorized data can be used to inform AI workloads like chatbots, similarity searches, and agents.

This embeddings component uses an OpenAI API key for authentication. Refer to your specific embeddings component’s documentation for more information on authentication.

url component

AI/ML

This component generates embeddings using the AI/ML API.

Parameters

Inputs
Name Type Description

model_name

String

The name of the AI/ML embedding model to use

aiml_api_key

SecretString

API key for authenticating with the AI/ML service

Outputs
Name Type Description

embeddings

Embeddings

An instance of AIMLEmbeddingsImpl for generating embeddings

Component code

aiml.py
from langflow.base.embeddings.aiml_embeddings import AIMLEmbeddingsImpl
from langflow.base.embeddings.model import LCEmbeddingsModel
from langflow.field_typing import Embeddings
from langflow.inputs.inputs import DropdownInput
from langflow.io import SecretStrInput


class AIMLEmbeddingsComponent(LCEmbeddingsModel):
    display_name = "AI/ML Embeddings"
    description = "Generate embeddings using the AI/ML API."
    icon = "AI/ML"
    name = "AIMLEmbeddings"

    inputs = [
        DropdownInput(
            name="model_name",
            display_name="Model Name",
            options=[
                "text-embedding-3-small",
                "text-embedding-3-large",
                "text-embedding-ada-002",
            ],
            required=True,
        ),
        SecretStrInput(
            name="aiml_api_key",
            display_name="AI/ML API Key",
            value="AIML_API_KEY",
            required=True,
        ),
    ]

    def build_embeddings(self) -> Embeddings:
        return AIMLEmbeddingsImpl(
            api_key=self.aiml_api_key,
            model=self.model_name,
        )

Amazon Bedrock Embeddings

Use this component to load embedding models and generate embeddings with Amazon Bedrock.

This component requires an AWS account and access to Amazon Bedrock.

Parameters

Inputs
Name Display Name Info

credentials_profile_name

AWS Credentials Profile

Name of the AWS credentials profile in ~/.aws/credentials or ~/.aws/config

model_id

Model ID

ID of the model to call, e.g., amazon.titan-embed-text-v1

endpoint_url

Endpoint URL

URL to set a specific service endpoint other than the default AWS endpoint

region_name

AWS Region

AWS region to use, e.g., us-west-2

Component code

amazon_bedrock.py
from langflow.base.models.aws_constants import AWS_EMBEDDING_MODEL_IDS, AWS_REGIONS
from langflow.base.models.model import LCModelComponent
from langflow.field_typing import Embeddings
from langflow.inputs import SecretStrInput
from langflow.io import DropdownInput, MessageTextInput, Output


class AmazonBedrockEmbeddingsComponent(LCModelComponent):
    display_name: str = "Amazon Bedrock Embeddings"
    description: str = "Generate embeddings using Amazon Bedrock models."
    icon = "Amazon"
    name = "AmazonBedrockEmbeddings"

    inputs = [
        DropdownInput(
            name="model_id",
            display_name="Model Id",
            options=AWS_EMBEDDING_MODEL_IDS,
            value="amazon.titan-embed-text-v1",
        ),
        SecretStrInput(
            name="aws_access_key_id",
            display_name="AWS Access Key ID",
            info="The access key for your AWS account."
            "Usually set in Python code as the environment variable 'AWS_ACCESS_KEY_ID'.",
            value="AWS_ACCESS_KEY_ID",
            required=True,
        ),
        SecretStrInput(
            name="aws_secret_access_key",
            display_name="AWS Secret Access Key",
            info="The secret key for your AWS account. "
            "Usually set in Python code as the environment variable 'AWS_SECRET_ACCESS_KEY'.",
            value="AWS_SECRET_ACCESS_KEY",
            required=True,
        ),
        SecretStrInput(
            name="aws_session_token",
            display_name="AWS Session Token",
            advanced=False,
            info="The session key for your AWS account. "
            "Only needed for temporary credentials. "
            "Usually set in Python code as the environment variable 'AWS_SESSION_TOKEN'.",
            value="AWS_SESSION_TOKEN",
        ),
        SecretStrInput(
            name="credentials_profile_name",
            display_name="Credentials Profile Name",
            advanced=True,
            info="The name of the profile to use from your "
            "~/.aws/credentials file. "
            "If not provided, the default profile will be used.",
            value="AWS_CREDENTIALS_PROFILE_NAME",
        ),
        DropdownInput(
            name="region_name",
            display_name="Region Name",
            value="us-east-1",
            options=AWS_REGIONS,
            info="The AWS region where your Bedrock resources are located.",
        ),
        MessageTextInput(
            name="endpoint_url",
            display_name="Endpoint URL",
            advanced=True,
            info="The URL of the AWS Bedrock endpoint to use.",
        ),
    ]

    outputs = [
        Output(display_name="Embeddings", name="embeddings", method="build_embeddings"),
    ]

    def build_embeddings(self) -> Embeddings:
        try:
            from langchain_aws import BedrockEmbeddings
        except ImportError as e:
            msg = "langchain_aws is not installed. Please install it with `pip install langchain_aws`."
            raise ImportError(msg) from e
        try:
            import boto3
        except ImportError as e:
            msg = "boto3 is not installed. Please install it with `pip install boto3`."
            raise ImportError(msg) from e
        if self.aws_access_key_id or self.aws_secret_access_key:
            session = boto3.Session(
                aws_access_key_id=self.aws_access_key_id,
                aws_secret_access_key=self.aws_secret_access_key,
                aws_session_token=self.aws_session_token,
            )
        elif self.credentials_profile_name:
            session = boto3.Session(profile_name=self.credentials_profile_name)
        else:
            session = boto3.Session()

        client_params = {}
        if self.endpoint_url:
            client_params["endpoint_url"] = self.endpoint_url
        if self.region_name:
            client_params["region_name"] = self.region_name

        boto3_client = session.client("bedrock-runtime", **client_params)
        return BedrockEmbeddings(
            credentials_profile_name=self.credentials_profile_name,
            client=boto3_client,
            model_id=self.model_id,
            endpoint_url=self.endpoint_url,
            region_name=self.region_name,
        )

Astra DB vectorize

Connect this component to the Embeddings port of the Astra DB vector store component to generate embeddings.

This component requires that your Astra DB database has a collection that uses a vectorize embedding provider integration. For more information and instructions, see Auto-generate embeddings with vectorize.

Parameters

Inputs
Name Display Name Info

provider

Embedding Provider

The embedding provider to use

model_name

Model Name

The embedding model to use

authentication

Authentication

The name of the API key in Astra KMS that stores your vectorize embedding provider credentials. (Not required if using an Astra-hosted embedding provider.)

provider_api_key

Provider API Key

As an alternative to authentication, directly provide your embedding provider credentials.

model_parameters

Model Parameters

Additional model parameters

Component code

astra_vectorize.py
from typing import Any

from langflow.custom import Component
from langflow.inputs.inputs import DictInput, DropdownInput, MessageTextInput, SecretStrInput
from langflow.template.field.base import Output


class AstraVectorizeComponent(Component):
    display_name: str = "Astra Vectorize [DEPRECATED]"
    description: str = (
        "Configuration options for Astra Vectorize server-side embeddings. "
        "This component is deprecated. Please use the Astra DB Component directly."
    )
    documentation: str = "https://docs.datastax.com/en/astra-db-serverless/databases/embedding-generation.html"
    icon = "AstraDB"
    name = "AstraVectorize"

    VECTORIZE_PROVIDERS_MAPPING = {
        "Azure OpenAI": ["azureOpenAI", ["text-embedding-3-small", "text-embedding-3-large", "text-embedding-ada-002"]],
        "Hugging Face - Dedicated": ["huggingfaceDedicated", ["endpoint-defined-model"]],
        "Hugging Face - Serverless": [
            "huggingface",
            [
                "sentence-transformers/all-MiniLM-L6-v2",
                "intfloat/multilingual-e5-large",
                "intfloat/multilingual-e5-large-instruct",
                "BAAI/bge-small-en-v1.5",
                "BAAI/bge-base-en-v1.5",
                "BAAI/bge-large-en-v1.5",
            ],
        ],
        "Jina AI": [
            "jinaAI",
            [
                "jina-embeddings-v2-base-en",
                "jina-embeddings-v2-base-de",
                "jina-embeddings-v2-base-es",
                "jina-embeddings-v2-base-code",
                "jina-embeddings-v2-base-zh",
            ],
        ],
        "Mistral AI": ["mistral", ["mistral-embed"]],
        "NVIDIA": ["nvidia", ["NV-Embed-QA"]],
        "OpenAI": ["openai", ["text-embedding-3-small", "text-embedding-3-large", "text-embedding-ada-002"]],
        "Upstage": ["upstageAI", ["solar-embedding-1-large"]],
        "Voyage AI": [
            "voyageAI",
            ["voyage-large-2-instruct", "voyage-law-2", "voyage-code-2", "voyage-large-2", "voyage-2"],
        ],
    }
    VECTORIZE_MODELS_STR = "\n\n".join(
        [provider + ": " + (", ".join(models[1])) for provider, models in VECTORIZE_PROVIDERS_MAPPING.items()]
    )

    inputs = [
        DropdownInput(
            name="provider",
            display_name="Provider",
            options=VECTORIZE_PROVIDERS_MAPPING.keys(),
            value="",
            required=True,
        ),
        MessageTextInput(
            name="model_name",
            display_name="Model Name",
            info="The embedding model to use for the selected provider. Each provider has a different set of models "
            f"available (full list at https://docs.datastax.com/en/astra-db-serverless/databases/embedding-generation.html):\n\n{VECTORIZE_MODELS_STR}",
            required=True,
        ),
        MessageTextInput(
            name="api_key_name",
            display_name="API Key name",
            info="The name of the embeddings provider API key stored on Astra. "
            "If set, it will override the 'ProviderKey' in the authentication parameters.",
        ),
        DictInput(
            name="authentication",
            display_name="Authentication parameters",
            is_list=True,
            advanced=True,
        ),
        SecretStrInput(
            name="provider_api_key",
            display_name="Provider API Key",
            info="An alternative to the Astra Authentication that passes an API key for the provider with each request "
            "to Astra DB. "
            "This may be used when Vectorize is configured for the collection, "
            "but no corresponding provider secret is stored within Astra's key management system.",
            advanced=True,
        ),
        DictInput(
            name="authentication",
            display_name="Authentication Parameters",
            is_list=True,
            advanced=True,
        ),
        DictInput(
            name="model_parameters",
            display_name="Model Parameters",
            advanced=True,
            is_list=True,
        ),
    ]
    outputs = [
        Output(display_name="Vectorize", name="config", method="build_options", types=["dict"]),
    ]

    def build_options(self) -> dict[str, Any]:
        provider_value = self.VECTORIZE_PROVIDERS_MAPPING[self.provider][0]
        authentication = {**(self.authentication or {})}
        api_key_name = self.api_key_name
        if api_key_name:
            authentication["providerKey"] = api_key_name
        return {
            # must match astrapy.info.CollectionVectorServiceOptions
            "collection_vector_service_options": {
                "provider": provider_value,
                "modelName": self.model_name,
                "authentication": authentication,
                "parameters": self.model_parameters or {},
            },
            "collection_embedding_api_key": self.provider_api_key,
        }

Azure OpenAI Embeddings

This component generates embeddings using Azure OpenAI models.

Use this component to create embeddings with Azure’s OpenAI service.

Make sure you have the necessary Azure credentials and have set up the OpenAI resource.

Parameters

Inputs
Name Display Name Info

Azure Endpoint

Azure Endpoint

Your Azure endpoint, including the resource

Deployment Name

Deployment Name

The name of the deployment

API Version

API Version

The API version to use

API Key

API Key

The API key to access the Azure OpenAI service

Component code

azure_openai.py
from langchain_openai import AzureOpenAIEmbeddings

from langflow.base.models.model import LCModelComponent
from langflow.base.models.openai_constants import OPENAI_EMBEDDING_MODEL_NAMES
from langflow.field_typing import Embeddings
from langflow.io import DropdownInput, IntInput, MessageTextInput, Output, SecretStrInput


class AzureOpenAIEmbeddingsComponent(LCModelComponent):
    display_name: str = "Azure OpenAI Embeddings"
    description: str = "Generate embeddings using Azure OpenAI models."
    documentation: str = "https://python.langchain.com/docs/integrations/text_embedding/azureopenai"
    icon = "Azure"
    name = "AzureOpenAIEmbeddings"

    API_VERSION_OPTIONS = [
        "2022-12-01",
        "2023-03-15-preview",
        "2023-05-15",
        "2023-06-01-preview",
        "2023-07-01-preview",
        "2023-08-01-preview",
    ]

    inputs = [
        DropdownInput(
            name="model",
            display_name="Model",
            advanced=False,
            options=OPENAI_EMBEDDING_MODEL_NAMES,
            value=OPENAI_EMBEDDING_MODEL_NAMES[0],
        ),
        MessageTextInput(
            name="azure_endpoint",
            display_name="Azure Endpoint",
            required=True,
            info="Your Azure endpoint, including the resource. Example: `https://example-resource.azure.openai.com/`",
        ),
        MessageTextInput(
            name="azure_deployment",
            display_name="Deployment Name",
            required=True,
        ),
        DropdownInput(
            name="api_version",
            display_name="API Version",
            options=API_VERSION_OPTIONS,
            value=API_VERSION_OPTIONS[-1],
            advanced=True,
        ),
        SecretStrInput(
            name="api_key",
            display_name="API Key",
            required=True,
        ),
        IntInput(
            name="dimensions",
            display_name="Dimensions",
            info="The number of dimensions the resulting output embeddings should have. "
            "Only supported by certain models.",
            advanced=True,
        ),
    ]

    outputs = [
        Output(display_name="Embeddings", name="embeddings", method="build_embeddings"),
    ]

    def build_embeddings(self) -> Embeddings:
        try:
            embeddings = AzureOpenAIEmbeddings(
                model=self.model,
                azure_endpoint=self.azure_endpoint,
                azure_deployment=self.azure_deployment,
                api_version=self.api_version,
                api_key=self.api_key,
                dimensions=self.dimensions or None,
            )
        except Exception as e:
            msg = f"Could not connect to AzureOpenAIEmbeddings API: {e}"
            raise ValueError(msg) from e

        return embeddings

Cohere Embeddings

This component loads embedding models from Cohere.

Use this component to generate embeddings using Cohere’s AI models.

Ensure you have a valid Cohere API key.

Parameters

Inputs
Name Display Name Info

cohere_api_key

Cohere API Key

API key required to authenticate with the Cohere service

model

Model Name

Language model used for embedding text documents and performing queries

truncate

Truncate

Whether to truncate the input text to fit within the model’s constraints

Component code

cohere.py
from langchain_community.embeddings.cohere import CohereEmbeddings

from langflow.base.models.model import LCModelComponent
from langflow.field_typing import Embeddings
from langflow.io import DropdownInput, FloatInput, IntInput, MessageTextInput, Output, SecretStrInput


class CohereEmbeddingsComponent(LCModelComponent):
    display_name = "Cohere Embeddings"
    description = "Generate embeddings using Cohere models."
    icon = "Cohere"
    name = "CohereEmbeddings"

    inputs = [
        SecretStrInput(name="cohere_api_key", display_name="Cohere API Key", required=True),
        DropdownInput(
            name="model",
            display_name="Model",
            advanced=False,
            options=[
                "embed-english-v2.0",
                "embed-multilingual-v2.0",
                "embed-english-light-v2.0",
                "embed-multilingual-light-v2.0",
            ],
            value="embed-english-v2.0",
        ),
        MessageTextInput(name="truncate", display_name="Truncate", advanced=True),
        IntInput(name="max_retries", display_name="Max Retries", value=3, advanced=True),
        MessageTextInput(name="user_agent", display_name="User Agent", advanced=True, value="langchain"),
        FloatInput(name="request_timeout", display_name="Request Timeout", advanced=True),
    ]

    outputs = [
        Output(display_name="Embeddings", name="embeddings", method="build_embeddings"),
    ]

    def build_embeddings(self) -> Embeddings:
        return CohereEmbeddings(
            cohere_api_key=self.cohere_api_key,
            model=self.model,
            truncate=self.truncate,
            max_retries=self.max_retries,
            user_agent=self.user_agent,
            request_timeout=self.request_timeout or None,
        )

Embedding similarity

This component computes selected forms of similarity between two embedding vectors.

Parameters

Inputs
Name Display Name Info

embedding_vectors

Embedding Vectors

A list containing exactly two data objects with embedding vectors to compare.

similarity_metric

Similarity Metric

Select the similarity metric to use. Options: "Cosine Similarity", "Euclidean Distance", "Manhattan Distance".

Outputs
Name Display Name Info

similarity_data

Similarity Data

Data object containing the computed similarity score and additional information.

Component code

similarity.py
import numpy as np

from langflow.custom import Component
from langflow.io import DataInput, DropdownInput, Output
from langflow.schema import Data


class EmbeddingSimilarityComponent(Component):
    display_name: str = "Embedding Similarity"
    description: str = "Compute selected form of similarity between two embedding vectors."
    icon = "equal"

    inputs = [
        DataInput(
            name="embedding_vectors",
            display_name="Embedding Vectors",
            info="A list containing exactly two data objects with embedding vectors to compare.",
            is_list=True,
            required=True,
        ),
        DropdownInput(
            name="similarity_metric",
            display_name="Similarity Metric",
            info="Select the similarity metric to use.",
            options=["Cosine Similarity", "Euclidean Distance", "Manhattan Distance"],
            value="Cosine Similarity",
        ),
    ]

    outputs = [
        Output(display_name="Similarity Data", name="similarity_data", method="compute_similarity"),
    ]

    def compute_similarity(self) -> Data:
        embedding_vectors: list[Data] = self.embedding_vectors

        # Assert that the list contains exactly two Data objects
        if len(embedding_vectors) != 2:  # noqa: PLR2004
            msg = "Exactly two embedding vectors are required."
            raise ValueError(msg)

        embedding_1 = np.array(embedding_vectors[0].data["embeddings"])
        embedding_2 = np.array(embedding_vectors[1].data["embeddings"])

        if embedding_1.shape != embedding_2.shape:
            similarity_score = {"error": "Embeddings must have the same dimensions."}
        else:
            similarity_metric = self.similarity_metric

            if similarity_metric == "Cosine Similarity":
                score = np.dot(embedding_1, embedding_2) / (np.linalg.norm(embedding_1) * np.linalg.norm(embedding_2))
                similarity_score = {"cosine_similarity": score}

            elif similarity_metric == "Euclidean Distance":
                score = np.linalg.norm(embedding_1 - embedding_2)
                similarity_score = {"euclidean_distance": score}

            elif similarity_metric == "Manhattan Distance":
                score = np.sum(np.abs(embedding_1 - embedding_2))
                similarity_score = {"manhattan_distance": score}

        # Create a Data object to encapsulate the similarity score and additional information
        similarity_data = Data(
            data={
                "embedding_1": embedding_vectors[0].data["embeddings"],
                "embedding_2": embedding_vectors[1].data["embeddings"],
                "similarity_score": similarity_score,
            },
            text_key="similarity_score",
        )

        self.status = similarity_data
        return similarity_data

Google generative AI embeddings

This component connects to Google’s generative AI embedding service using the GoogleGenerativeAIEmbeddings class from the langchain-google-genai package.

Parameters

Inputs
Name Display Name Info

api_key

API Key

Secret API key for accessing Google’s generative AI service (required)

model_name

Model Name

Name of the embedding model to use (default: "models/text-embedding-004")

Outputs
Name Display Name Info

embeddings

Embeddings

Built GoogleGenerativeAIEmbeddings object

Component code

google_generative_ai.py
# from langflow.field_typing import Data

# TODO: remove ignore once the google package is published with types
from google.ai.generativelanguage_v1beta.types import BatchEmbedContentsRequest
from langchain_core.embeddings import Embeddings
from langchain_google_genai import GoogleGenerativeAIEmbeddings
from langchain_google_genai._common import GoogleGenerativeAIError

from langflow.custom import Component
from langflow.io import MessageTextInput, Output, SecretStrInput


class GoogleGenerativeAIEmbeddingsComponent(Component):
    display_name = "Google Generative AI Embeddings"
    description = (
        "Connect to Google's generative AI embeddings service using the GoogleGenerativeAIEmbeddings class, "
        "found in the langchain-google-genai package."
    )
    documentation: str = "https://python.langchain.com/v0.2/docs/integrations/text_embedding/google_generative_ai/"
    icon = "Google"
    name = "Google Generative AI Embeddings"

    inputs = [
        SecretStrInput(name="api_key", display_name="API Key", required=True),
        MessageTextInput(name="model_name", display_name="Model Name", value="models/text-embedding-004"),
    ]

    outputs = [
        Output(display_name="Embeddings", name="embeddings", method="build_embeddings"),
    ]

    def build_embeddings(self) -> Embeddings:
        if not self.api_key:
            msg = "API Key is required"
            raise ValueError(msg)

        class HotaGoogleGenerativeAIEmbeddings(GoogleGenerativeAIEmbeddings):
            def __init__(self, *args, **kwargs) -> None:
                super(GoogleGenerativeAIEmbeddings, self).__init__(*args, **kwargs)

            def embed_documents(
                self,
                texts: list[str],
                *,
                batch_size: int = 100,
                task_type: str | None = None,
                titles: list[str] | None = None,
                output_dimensionality: int | None = 768,
            ) -> list[list[float]]:
                """Embed a list of strings.

                Google Generative AI currently sets a max batch size of 100 strings.

                Args:
                    texts: List[str] The list of strings to embed.
                    batch_size: [int] The batch size of embeddings to send to the model
                    task_type: task_type (https://ai.google.dev/api/rest/v1/TaskType)
                    titles: An optional list of titles for texts provided.
                    Only applicable when TaskType is RETRIEVAL_DOCUMENT.
                    output_dimensionality: Optional reduced dimension for the output embedding.
                    https://ai.google.dev/api/rest/v1/models/batchEmbedContents#EmbedContentRequest
                Returns:
                    List of embeddings, one for each text.
                """
                embeddings: list[list[float]] = []
                batch_start_index = 0
                for batch in GoogleGenerativeAIEmbeddings._prepare_batches(texts, batch_size):
                    if titles:
                        titles_batch = titles[batch_start_index : batch_start_index + len(batch)]
                        batch_start_index += len(batch)
                    else:
                        titles_batch = [None] * len(batch)  # type: ignore[list-item]

                    requests = [
                        self._prepare_request(
                            text=text,
                            task_type=task_type,
                            title=title,
                            output_dimensionality=output_dimensionality,
                        )
                        for text, title in zip(batch, titles_batch, strict=True)
                    ]

                    try:
                        result = self.client.batch_embed_contents(
                            BatchEmbedContentsRequest(requests=requests, model=self.model)
                        )
                    except Exception as e:
                        msg = f"Error embedding content: {e}"
                        raise GoogleGenerativeAIError(msg) from e
                    embeddings.extend([list(e.values) for e in result.embeddings])
                return embeddings

            def embed_query(
                self,
                text: str,
                task_type: str | None = None,
                title: str | None = None,
                output_dimensionality: int | None = 768,
            ) -> list[float]:
                """Embed a text.

                Args:
                    text: The text to embed.
                    task_type: task_type (https://ai.google.dev/api/rest/v1/TaskType)
                    title: An optional title for the text.
                    Only applicable when TaskType is RETRIEVAL_DOCUMENT.
                    output_dimensionality: Optional reduced dimension for the output embedding.
                    https://ai.google.dev/api/rest/v1/models/batchEmbedContents#EmbedContentRequest

                Returns:
                    Embedding for the text.
                """
                task_type = task_type or "RETRIEVAL_QUERY"
                return self.embed_documents(
                    [text],
                    task_type=task_type,
                    titles=[title] if title else None,
                    output_dimensionality=output_dimensionality,
                )[0]

        return HotaGoogleGenerativeAIEmbeddings(model=self.model_name, google_api_key=self.api_key)

Hugging Face Embeddings

This component is deprecated as of Langflow version 1.0.18. Instead, use the Hugging Face API Embeddings component.

This component loads embedding models from HuggingFace.

Use this component to generate embeddings using locally downloaded Hugging Face models. Ensure you have sufficient computational resources to run the models.

Parameters

Inputs
Name Display Name Info

Cache Folder

Cache Folder

Folder path to cache HuggingFace models

Encode Kwargs

Encoding Arguments

Additional arguments for the encoding process

Model Kwargs

Model Arguments

Additional arguments for the model

Model Name

Model Name

Name of the HuggingFace model to use

Multi Process

Multi-Process

Whether to use multiple processes

Hugging Face embeddings Inference API

This component generates embeddings using Hugging Face Inference API models.

Use this component to create embeddings with Hugging Face’s hosted models. Ensure you have a valid Hugging Face API key.

Parameters

Inputs
Name Display Name Info

API Key

API Key

API key for accessing the Hugging Face Inference API

API URL

API URL

URL of the Hugging Face Inference API

Model Name

Model Name

Name of the model to use for embeddings

Cache Folder

Cache Folder

Folder path to cache Hugging Face models

Encode Kwargs

Encoding Arguments

Additional arguments for the encoding process

Model Kwargs

Model Arguments

Additional arguments for the model

Multi Process

Multi-Process

Whether to use multiple processes

Component code

huggingface_inference_api.py
from urllib.parse import urlparse

import requests
from langchain_community.embeddings.huggingface import HuggingFaceInferenceAPIEmbeddings
from pydantic.v1.types import SecretStr
from tenacity import retry, stop_after_attempt, wait_fixed

from langflow.base.embeddings.model import LCEmbeddingsModel
from langflow.field_typing import Embeddings
from langflow.io import MessageTextInput, Output, SecretStrInput


class HuggingFaceInferenceAPIEmbeddingsComponent(LCEmbeddingsModel):
    display_name = "HuggingFace Embeddings Inference"
    description = "Generate embeddings using HuggingFace Text Embeddings Inference (TEI)"
    documentation = "https://huggingface.co/docs/text-embeddings-inference/index"
    icon = "HuggingFace"
    name = "HuggingFaceInferenceAPIEmbeddings"

    inputs = [
        SecretStrInput(
            name="api_key",
            display_name="API Key",
            advanced=True,
            info="Required for non-local inference endpoints. Local inference does not require an API Key.",
        ),
        MessageTextInput(
            name="inference_endpoint",
            display_name="Inference Endpoint",
            required=True,
            value="https://api-inference.huggingface.co/models/",
            info="Custom inference endpoint URL.",
        ),
        MessageTextInput(
            name="model_name",
            display_name="Model Name",
            value="BAAI/bge-large-en-v1.5",
            info="The name of the model to use for text embeddings.",
            required=True,
        ),
    ]

    outputs = [
        Output(display_name="Embeddings", name="embeddings", method="build_embeddings"),
    ]

    def validate_inference_endpoint(self, inference_endpoint: str) -> bool:
        parsed_url = urlparse(inference_endpoint)
        if not all([parsed_url.scheme, parsed_url.netloc]):
            msg = (
                f"Invalid inference endpoint format: '{self.inference_endpoint}'. "
                "Please ensure the URL includes both a scheme (e.g., 'http://' or 'https://') and a domain name. "
                "Example: 'http://localhost:8080' or 'https://api.example.com'"
            )
            raise ValueError(msg)

        try:
            response = requests.get(f"{inference_endpoint}/health", timeout=5)
        except requests.RequestException as e:
            msg = (
                f"Inference endpoint '{inference_endpoint}' is not responding. "
                "Please ensure the URL is correct and the service is running."
            )
            raise ValueError(msg) from e

        if response.status_code != requests.codes.ok:
            msg = f"HuggingFace health check failed: {response.status_code}"
            raise ValueError(msg)
        # returning True to solve linting error
        return True

    def get_api_url(self) -> str:
        if "huggingface" in self.inference_endpoint.lower():
            return f"{self.inference_endpoint}{self.model_name}"
        return self.inference_endpoint

    @retry(stop=stop_after_attempt(3), wait=wait_fixed(2))
    def create_huggingface_embeddings(
        self, api_key: SecretStr, api_url: str, model_name: str
    ) -> HuggingFaceInferenceAPIEmbeddings:
        return HuggingFaceInferenceAPIEmbeddings(api_key=api_key, api_url=api_url, model_name=model_name)

    def build_embeddings(self) -> Embeddings:
        api_url = self.get_api_url()

        is_local_url = api_url.startswith(("http://localhost", "http://127.0.0.1"))

        if not self.api_key and is_local_url:
            self.validate_inference_endpoint(api_url)
            api_key = SecretStr("DummyAPIKeyForLocalDeployment")
        elif not self.api_key:
            msg = "API Key is required for non-local inference endpoints"
            raise ValueError(msg)
        else:
            api_key = SecretStr(self.api_key).get_secret_value()

        try:
            return self.create_huggingface_embeddings(api_key, api_url, self.model_name)
        except Exception as e:
            msg = "Could not connect to HuggingFace Inference API."
            raise ValueError(msg) from e

MistralAI Embeddings

This component generates embeddings using MistralAI models.

Parameters

Inputs
Name Type Description

model

String

The MistralAI model to use (default: "mistral-embed")

mistral_api_key

SecretString

API key for authenticating with MistralAI

max_concurrent_requests

Integer

Maximum number of concurrent API requests (default: 64)

max_retries

Integer

Maximum number of retry attempts for failed requests (default: 5)

timeout

Integer

Request timeout in seconds (default: 120)

endpoint

String

Custom API endpoint URL (default: "https://api.mistral.ai/v1/")

Outputs
Name Type Description

embeddings

Embeddings

MistralAIEmbeddings instance for generating embeddings

Component code

mistral.py
from langchain_mistralai.embeddings import MistralAIEmbeddings
from pydantic.v1 import SecretStr

from langflow.base.models.model import LCModelComponent
from langflow.field_typing import Embeddings
from langflow.io import DropdownInput, IntInput, MessageTextInput, Output, SecretStrInput


class MistralAIEmbeddingsComponent(LCModelComponent):
    display_name = "MistralAI Embeddings"
    description = "Generate embeddings using MistralAI models."
    icon = "MistralAI"
    name = "MistalAIEmbeddings"

    inputs = [
        DropdownInput(
            name="model",
            display_name="Model",
            advanced=False,
            options=["mistral-embed"],
            value="mistral-embed",
        ),
        SecretStrInput(name="mistral_api_key", display_name="Mistral API Key", required=True),
        IntInput(
            name="max_concurrent_requests",
            display_name="Max Concurrent Requests",
            advanced=True,
            value=64,
        ),
        IntInput(name="max_retries", display_name="Max Retries", advanced=True, value=5),
        IntInput(name="timeout", display_name="Request Timeout", advanced=True, value=120),
        MessageTextInput(
            name="endpoint",
            display_name="API Endpoint",
            advanced=True,
            value="https://api.mistral.ai/v1/",
        ),
    ]

    outputs = [
        Output(display_name="Embeddings", name="embeddings", method="build_embeddings"),
    ]

    def build_embeddings(self) -> Embeddings:
        if not self.mistral_api_key:
            msg = "Mistral API Key is required"
            raise ValueError(msg)

        api_key = SecretStr(self.mistral_api_key).get_secret_value()

        return MistralAIEmbeddings(
            api_key=api_key,
            model=self.model,
            endpoint=self.endpoint,
            max_concurrent_requests=self.max_concurrent_requests,
            max_retries=self.max_retries,
            timeout=self.timeout,
        )

NVIDIA

This component generates embeddings using NVIDIA models.

Parameters

Inputs
Name Type Description

model

String

The NVIDIA model to use for embeddings (e.g., nvidia/nv-embed-v1)

base_url

String

Base URL for the NVIDIA API (default: https://integrate.api.nvidia.com/v1)

nvidia_api_key

SecretString

API key for authenticating with NVIDIA’s service

temperature

Float

Model temperature for embedding generation (default: 0.1)

Outputs
Name Type Description

embeddings

Embeddings

NVIDIAEmbeddings instance for generating embeddings

Component code

nvidia.py
from typing import Any

from langflow.base.embeddings.model import LCEmbeddingsModel
from langflow.field_typing import Embeddings
from langflow.inputs.inputs import DropdownInput, SecretStrInput
from langflow.io import FloatInput, MessageTextInput
from langflow.schema.dotdict import dotdict


class NVIDIAEmbeddingsComponent(LCEmbeddingsModel):
    display_name: str = "NVIDIA Embeddings"
    description: str = "Generate embeddings using NVIDIA models."
    icon = "NVIDIA"

    inputs = [
        DropdownInput(
            name="model",
            display_name="Model",
            options=[
                "nvidia/nv-embed-v1",
                "snowflake/arctic-embed-I",
            ],
            value="nvidia/nv-embed-v1",
            required=True,
        ),
        MessageTextInput(
            name="base_url",
            display_name="NVIDIA Base URL",
            refresh_button=True,
            value="https://integrate.api.nvidia.com/v1",
            required=True,
        ),
        SecretStrInput(
            name="nvidia_api_key",
            display_name="NVIDIA API Key",
            info="The NVIDIA API Key.",
            advanced=False,
            value="NVIDIA_API_KEY",
            required=True,
        ),
        FloatInput(
            name="temperature",
            display_name="Model Temperature",
            value=0.1,
            advanced=True,
        ),
    ]

    def update_build_config(self, build_config: dotdict, field_value: Any, field_name: str | None = None):
        if field_name == "base_url" and field_value:
            try:
                build_model = self.build_embeddings()
                ids = [model.id for model in build_model.available_models]
                build_config["model"]["options"] = ids
                build_config["model"]["value"] = ids[0]
            except Exception as e:
                msg = f"Error getting model names: {e}"
                raise ValueError(msg) from e
        return build_config

    def build_embeddings(self) -> Embeddings:
        try:
            from langchain_nvidia_ai_endpoints import NVIDIAEmbeddings
        except ImportError as e:
            msg = "Please install langchain-nvidia-ai-endpoints to use the Nvidia model."
            raise ImportError(msg) from e
        try:
            output = NVIDIAEmbeddings(
                model=self.model,
                base_url=self.base_url,
                temperature=self.temperature,
                nvidia_api_key=self.nvidia_api_key,
            )
        except Exception as e:
            msg = f"Could not connect to NVIDIA API. Error: {e}"
            raise ValueError(msg) from e
        return output

Ollama Embeddings

This component generates embeddings using Ollama models.

Use this component to create embeddings with locally run Ollama models.

Ensure you have Ollama set up and running on your system.

Parameters

Inputs
Name Display Name Info

Ollama Model

Model Name

Name of the Ollama model to use

Ollama Base URL

Base URL

Base URL of the Ollama API

Model Temperature

Temperature

Temperature parameter for the model

Component code

ollama.py
from langchain_ollama import OllamaEmbeddings

from langflow.base.models.model import LCModelComponent
from langflow.field_typing import Embeddings
from langflow.io import MessageTextInput, Output


class OllamaEmbeddingsComponent(LCModelComponent):
    display_name: str = "Ollama Embeddings"
    description: str = "Generate embeddings using Ollama models."
    documentation = "https://python.langchain.com/docs/integrations/text_embedding/ollama"
    icon = "Ollama"
    name = "OllamaEmbeddings"

    inputs = [
        MessageTextInput(
            name="model",
            display_name="Ollama Model",
            value="nomic-embed-text",
            required=True,
        ),
        MessageTextInput(
            name="base_url",
            display_name="Ollama Base URL",
            value="http://localhost:11434",
            required=True,
        ),
    ]

    outputs = [
        Output(display_name="Embeddings", name="embeddings", method="build_embeddings"),
    ]

    def build_embeddings(self) -> Embeddings:
        try:
            output = OllamaEmbeddings(model=self.model, base_url=self.base_url)
        except Exception as e:
            msg = "Could not connect to Ollama API."
            raise ValueError(msg) from e
        return output

OpenAI Embeddings

This component loads embedding models from OpenAI.

Use this component to generate embeddings using OpenAI’s models.

Ensure you have a valid OpenAI API key and sufficient quota.

Parameters

Inputs
Name Display Name Info

OpenAI API Key

API Key

The API key to use for accessing the OpenAI API

Default Headers

Default Headers

Default headers for the HTTP requests

Default Query

Default Query

Default query parameters for the HTTP requests

Allowed Special

Allowed Special Tokens

Special tokens allowed for processing

Disallowed Special

Disallowed Special Tokens

Special tokens disallowed for processing

Chunk Size

Chunk Size

Chunk size for processing

Client

HTTP Client

HTTP client for making requests

Deployment

Deployment

Deployment name for the model

Embedding Context Length

Context Length

Length of embedding context

Max Retries

Max Retries

Maximum number of retries for failed requests

Model

Model Name

Name of the model to use

Model Kwargs

Model Arguments

Additional keyword arguments for the model

OpenAI API Base

API Base URL

Base URL of the OpenAI API

OpenAI API Type

API Type

Type of the OpenAI API

OpenAI API Version

API Version

Version of the OpenAI API

OpenAI Organization

Organization

Organization associated with the API key

OpenAI Proxy

Proxy

Proxy server for the requests

Request Timeout

Request Timeout

Timeout for the HTTP requests

Show Progress Bar

Show Progress

Whether to show a progress bar for processing

Skip Empty

Skip Empty

Whether to skip empty inputs

TikToken Enable

Enable TikToken

Whether to enable TikToken

TikToken Model Name

TikToken Model

Name of the TikToken model

Component code

openai.py
from langchain_openai import OpenAIEmbeddings

from langflow.base.embeddings.model import LCEmbeddingsModel
from langflow.base.models.openai_constants import OPENAI_EMBEDDING_MODEL_NAMES
from langflow.field_typing import Embeddings
from langflow.io import BoolInput, DictInput, DropdownInput, FloatInput, IntInput, MessageTextInput, SecretStrInput


class OpenAIEmbeddingsComponent(LCEmbeddingsModel):
    display_name = "OpenAI Embeddings"
    description = "Generate embeddings using OpenAI models."
    icon = "OpenAI"
    name = "OpenAIEmbeddings"

    inputs = [
        DictInput(
            name="default_headers",
            display_name="Default Headers",
            advanced=True,
            info="Default headers to use for the API request.",
        ),
        DictInput(
            name="default_query",
            display_name="Default Query",
            advanced=True,
            info="Default query parameters to use for the API request.",
        ),
        IntInput(name="chunk_size", display_name="Chunk Size", advanced=True, value=1000),
        MessageTextInput(name="client", display_name="Client", advanced=True),
        MessageTextInput(name="deployment", display_name="Deployment", advanced=True),
        IntInput(name="embedding_ctx_length", display_name="Embedding Context Length", advanced=True, value=1536),
        IntInput(name="max_retries", display_name="Max Retries", value=3, advanced=True),
        DropdownInput(
            name="model",
            display_name="Model",
            advanced=False,
            options=OPENAI_EMBEDDING_MODEL_NAMES,
            value="text-embedding-3-small",
        ),
        DictInput(name="model_kwargs", display_name="Model Kwargs", advanced=True),
        SecretStrInput(name="openai_api_key", display_name="OpenAI API Key", value="OPENAI_API_KEY", required=True),
        MessageTextInput(name="openai_api_base", display_name="OpenAI API Base", advanced=True),
        MessageTextInput(name="openai_api_type", display_name="OpenAI API Type", advanced=True),
        MessageTextInput(name="openai_api_version", display_name="OpenAI API Version", advanced=True),
        MessageTextInput(
            name="openai_organization",
            display_name="OpenAI Organization",
            advanced=True,
        ),
        MessageTextInput(name="openai_proxy", display_name="OpenAI Proxy", advanced=True),
        FloatInput(name="request_timeout", display_name="Request Timeout", advanced=True),
        BoolInput(name="show_progress_bar", display_name="Show Progress Bar", advanced=True),
        BoolInput(name="skip_empty", display_name="Skip Empty", advanced=True),
        MessageTextInput(
            name="tiktoken_model_name",
            display_name="TikToken Model Name",
            advanced=True,
        ),
        BoolInput(
            name="tiktoken_enable",
            display_name="TikToken Enable",
            advanced=True,
            value=True,
            info="If False, you must have transformers installed.",
        ),
        IntInput(
            name="dimensions",
            display_name="Dimensions",
            info="The number of dimensions the resulting output embeddings should have. "
            "Only supported by certain models.",
            advanced=True,
        ),
    ]

    def build_embeddings(self) -> Embeddings:
        return OpenAIEmbeddings(
            client=self.client or None,
            model=self.model,
            dimensions=self.dimensions or None,
            deployment=self.deployment or None,
            api_version=self.openai_api_version or None,
            base_url=self.openai_api_base or None,
            openai_api_type=self.openai_api_type or None,
            openai_proxy=self.openai_proxy or None,
            embedding_ctx_length=self.embedding_ctx_length,
            api_key=self.openai_api_key or None,
            organization=self.openai_organization or None,
            allowed_special="all",
            disallowed_special="all",
            chunk_size=self.chunk_size,
            max_retries=self.max_retries,
            timeout=self.request_timeout or None,
            tiktoken_enabled=self.tiktoken_enable,
            tiktoken_model_name=self.tiktoken_model_name or None,
            show_progress_bar=self.show_progress_bar,
            model_kwargs=self.model_kwargs,
            skip_empty=self.skip_empty,
            default_headers=self.default_headers or None,
            default_query=self.default_query or None,
        )

Text embedder

This component generates embeddings for a given message using a specified embedding model.

Parameters

Inputs
Name Display Name Info

embedding_model

Embedding Model

The embedding model to use for generating embeddings.

message

Message

The message for which to generate embeddings.

Outputs
Name Display Name Info

embeddings

Embedding Data

Data object containing the original text and its embedding vector.

Component code

text_embedder.py
import logging
from typing import TYPE_CHECKING

from langflow.custom import Component
from langflow.io import HandleInput, MessageInput, Output
from langflow.schema import Data

if TYPE_CHECKING:
    from langflow.field_typing import Embeddings
    from langflow.schema.message import Message


class TextEmbedderComponent(Component):
    display_name: str = "Text Embedder"
    description: str = "Generate embeddings for a given message using the specified embedding model."
    icon = "binary"
    inputs = [
        HandleInput(
            name="embedding_model",
            display_name="Embedding Model",
            info="The embedding model to use for generating embeddings.",
            input_types=["Embeddings"],
            required=True,
        ),
        MessageInput(
            name="message",
            display_name="Message",
            info="The message to generate embeddings for.",
            required=True,
        ),
    ]
    outputs = [
        Output(display_name="Embedding Data", name="embeddings", method="generate_embeddings"),
    ]

    def generate_embeddings(self) -> Data:
        try:
            embedding_model: Embeddings = self.embedding_model
            message: Message = self.message

            # Validate embedding model
            if not embedding_model:
                msg = "Embedding model not provided"
                raise ValueError(msg)

            # Extract the text content from the message
            text_content = message.text if message and message.text else ""
            if not text_content:
                msg = "No text content found in message"
                raise ValueError(msg)

            # Check if the embedding model has the required attributes
            if not hasattr(embedding_model, "client") or not embedding_model.client:
                msg = "Embedding model client not properly initialized"
                raise ValueError(msg)

            # Ensure the base URL has proper protocol
            if hasattr(embedding_model.client, "base_url"):
                base_url = embedding_model.client.base_url
                if not base_url.startswith(("http://", "https://")):
                    embedding_model.client.base_url = f"https://{base_url}"

            # Generate embeddings using the provided embedding model
            embeddings = embedding_model.embed_documents([text_content])

            # Validate embeddings output
            if not embeddings or not isinstance(embeddings, list):
                msg = "Invalid embeddings generated"
                raise ValueError(msg)

            embedding_vector = embeddings[0]

        except Exception as e:
            logging.exception("Error generating embeddings")
            # Return empty data with error status
            error_data = Data(data={"text": "", "embeddings": [], "error": str(e)})
            self.status = {"error": str(e)}
            return error_data

        # Create a Data object to encapsulate the results
        result_data = Data(data={"text": text_content, "embeddings": embedding_vector})
        self.status = {"text": text_content, "embeddings": embedding_vector}
        return result_data

VertexAI Embeddings

This component wraps around Google Vertex AI Embeddings API.

Use this component to generate embeddings using Google’s Vertex AI service.

Ensure you have the necessary Google Cloud credentials and permissions.

Parameters

Inputs
Name Display Name Info

credentials

Credentials

The default custom credentials to use

location

Location

The default location to use when making API calls

max_output_tokens

Max Output Tokens

Token limit for text output from one prompt

model_name

Model Name

The name of the Vertex AI large language model

project

Project

The default GCP project to use when making Vertex API calls

request_parallelism

Request Parallelism

The amount of parallelism allowed for requests

temperature

Temperature

Tunes the degree of randomness in text generations

top_k

Top K

How the model selects tokens for output

top_p

Top P

Probability threshold for token selection

tuned_model_name

Tuned Model Name

The name of a tuned model (overrides model_name if provided)

verbose

Verbose

Controls the level of detail in the output

Component code

vertexai.py
from langflow.base.models.model import LCModelComponent
from langflow.field_typing import Embeddings
from langflow.io import BoolInput, FileInput, FloatInput, IntInput, MessageTextInput, Output


class VertexAIEmbeddingsComponent(LCModelComponent):
    display_name = "VertexAI Embeddings"
    description = "Generate embeddings using Google Cloud VertexAI models."
    icon = "VertexAI"
    name = "VertexAIEmbeddings"

    inputs = [
        FileInput(
            name="credentials",
            display_name="Credentials",
            info="JSON credentials file. Leave empty to fallback to environment variables",
            value="",
            file_types=["json"],
            required=True,
        ),
        MessageTextInput(name="location", display_name="Location", value="us-central1", advanced=True),
        MessageTextInput(name="project", display_name="Project", info="The project ID.", advanced=True),
        IntInput(name="max_output_tokens", display_name="Max Output Tokens", advanced=True),
        IntInput(name="max_retries", display_name="Max Retries", value=1, advanced=True),
        MessageTextInput(name="model_name", display_name="Model Name", value="textembedding-gecko", required=True),
        IntInput(name="n", display_name="N", value=1, advanced=True),
        IntInput(name="request_parallelism", value=5, display_name="Request Parallelism", advanced=True),
        MessageTextInput(name="stop_sequences", display_name="Stop", advanced=True, is_list=True),
        BoolInput(name="streaming", display_name="Streaming", value=False, advanced=True),
        FloatInput(name="temperature", value=0.0, display_name="Temperature"),
        IntInput(name="top_k", display_name="Top K", advanced=True),
        FloatInput(name="top_p", display_name="Top P", value=0.95, advanced=True),
    ]

    outputs = [
        Output(display_name="Embeddings", name="embeddings", method="build_embeddings"),
    ]

    def build_embeddings(self) -> Embeddings:
        try:
            from langchain_google_vertexai import VertexAIEmbeddings
        except ImportError as e:
            msg = "Please install the langchain-google-vertexai package to use the VertexAIEmbeddings component."
            raise ImportError(msg) from e

        from google.oauth2 import service_account

        if self.credentials:
            gcloud_credentials = service_account.Credentials.from_service_account_file(self.credentials)
        else:
            # will fallback to environment variable or inferred from gcloud CLI
            gcloud_credentials = None
        return VertexAIEmbeddings(
            credentials=gcloud_credentials,
            location=self.location,
            max_output_tokens=self.max_output_tokens or None,
            max_retries=self.max_retries,
            model_name=self.model_name,
            n=self.n,
            project=self.project,
            request_parallelism=self.request_parallelism,
            stop=self.stop_sequences or None,
            streaming=self.streaming,
            temperature=self.temperature,
            top_k=self.top_k or None,
            top_p=self.top_p,
        )

Was this helpful?

Give Feedback

How can we improve the documentation?

© 2025 DataStax | Privacy policy | Terms of use

Apache, Apache Cassandra, Cassandra, Apache Tomcat, Tomcat, Apache Lucene, Apache Solr, Apache Hadoop, Hadoop, Apache Pulsar, Pulsar, Apache Spark, Spark, Apache TinkerPop, TinkerPop, Apache Kafka and Kafka are either registered trademarks or trademarks of the Apache Software Foundation or its subsidiaries in Canada, the United States and/or other countries. Kubernetes is the registered trademark of the Linux Foundation.

General Inquiries: +1 (650) 389-6000, info@datastax.com