Vector Stores

This Langflow feature is currently in public preview. Development is ongoing, and the features and functionality are subject to change. Langflow, and the use of such, is subject to the DataStax Preview Terms.

Vector databases store vector data, which backs AI workloads like chatbots and Retrieval Augmented Generation.

Vector database components establish connections to existing vector databases or create in-memory vector stores for storing and retrieving vector data.

Vector database components are distinct from memory components, which are built specifically for storing and retrieving chat messages from external databases.

Use a vector store component in a flow

Vector databases can be populated from within Langflow with document ingestion pipelines, like the following.

vector store document ingestion

This example uses the Astra DB vector store component. Your vector store component’s parameters and authentication may be different, but the document ingestion workflow is the same. A document is loaded from a local machine and chunked. The Astra DB vector store generates embeddings with the connected model component, and stores them in the connected Astra DB database.

This vector data can then be retrieved for workloads like Retrieval Augmented Generation.

vector store retrieval

The user’s chat input is embedded and compared to the vectors embedded during document ingestion for a similarity search. The results are output from the vector database component as a Data object, and parsed into text. This text fills the {context} variable in the Prompt component, which informs the Open AI model component’s responses.

Alternatively, connect the vector database component’s Retriever port to a retriever tool, and then to an agent component. This enables the agent to use your vector database as a tool and make decisions based on the available data.

vector store agent retrieval tool

Astra DB Vector Store

This component implements a Vector Store using Astra DB Serverless with search capabilities.

Parameters

Inputs
Name Display Name Info

token

Astra DB Application Token

The authentication token for accessing Astra DB.

environment

Environment

The environment for the Astra DB API Endpoint. For example, dev or prod.

database_name

Database

The database name for the Astra DB instance.

api_endpoint

Astra DB API Endpoint

The API endpoint for the Astra DB instance. This supersedes the database selection.

collection_name

Collection

The name of the collection within Astra DB where the vectors are stored.

keyspace

Keyspace

An optional keyspace within Astra DB to use for the collection.

embedding_choice

Embedding Model or Astra Vectorize

Choose an embedding model or use Astra vectorize.

embedding_model

Embedding Model

Specify the embedding model. Not required for Astra vectorize collections.

number_of_results

Number of Search Results

The number of search results to return (default: 4).

search_type

Search Type

The search type to use. The options are Similarity, Similarity with score threshold, and MMR (Max Marginal Relevance).

search_score_threshold

Search Score Threshold

The minimum similarity score threshold for search results when using the Similarity with score threshold option.

advanced_search_filter

Search Metadata Filter

An optional dictionary of filters to apply to the search query.

autodetect_collection

Autodetect Collection

A boolean flag to determine whether to autodetect the collection.

content_field

Content Field

A field to use as the text content field for the vector store.

deletion_field

Deletion Based On Field

When provided, documents in the target collection with metadata field values matching the input metadata field value are deleted before new data is loaded.

ignore_invalid_documents

Ignore Invalid Documents

A boolean flag to determine whether to ignore invalid documents at runtime.

astradb_vectorstore_kwargs

AstraDBVectorStore Parameters

An optional dictionary of additional parameters for the AstraDBVectorStore.

Outputs
Name Display Name Info

vector_store

Vector Store

Built Astra DB Serverless vector store

search_results

Search Results

Results of the similarity search as a list of Data objects

Component code

astradb.py
404: Not Found

Generate embeddings

The Astra DB Vector Store component offers two methods for generating embeddings.

  • Embedding Model: Use your own embedding model by connecting an embedding model component in Langflow.

  • Astra Vectorize: Use Astra DB’s built-in embedding generation service. When creating a new collection, choose the embeddings provider and models, including NVIDIA’s NV-Embed-QA model hosted by DataStax.

The embedding model selection is made when creating a new collection and cannot be changed later.

For an example of using the Astra DB Vector Store component with an embedding model, see the Vector Store RAG starter project.

For more information, see the Astra DB Serverless documentation.

Astra DB graph vector store

This component implements a Vector Store using Astra DB Serverless with graph capabilities.

Parameters

Inputs
Name Type Description

token

SecretString

Authentication token for accessing Astra DB.

api_endpoint

SecretString

API endpoint URL for the Astra DB service.

collection_name

String

The name of the collection within Astra DB where vectors will be stored.

embedding

Handle

Embedding model to use.

search_input

Multiline

Input text for searching documents.

ingest_data

Data

Data to be ingested into the vector store.

Outputs
Name Type Description

vector_store

VectorStore

An instance of AstraDBGraphVectorStore for storing and searching vectors.

Component code

astradb_graph.py
404: Not Found

Cassandra

This component creates a Cassandra Vector Store with search capabilities. For more information, see the Cassandra documentation.

Parameters

Inputs
Name Type Description

database_ref

String

Contact points for the database or AstraDB database ID

username

String

Username for the database (leave empty for AstraDB)

token

SecretString

User password for the database or AstraDB token

keyspace

String

Table Keyspace or AstraDB namespace

table_name

String

Name of the table or AstraDB collection

ttl_seconds

Integer

Time-to-live for added texts

batch_size

Integer

Number of data to process in a single batch

setup_mode

String

Configuration mode for setting up the Cassandra table

cluster_kwargs

Dict

Additional keyword arguments for the Cassandra cluster

search_query

String

Query for similarity search

ingest_data

Data

Data to be ingested into the vector store

embedding

Embeddings

Embedding function to use

number_of_results

Integer

Number of results to return in search

search_type

String

Type of search to perform

search_score_threshold

Float

Minimum similarity score for search results

search_filter

Dict

Metadata filters for search query

body_search

String

Document textual search terms

enable_body_search

Boolean

Flag to enable body search

Outputs
Name Type Description

vector_store

Cassandra

Cassandra vector store instance

search_results

List[Data]

Results of similarity search

Component code

cassandra.py
404: Not Found

Cassandra Graph Vector Store

This component implements a Cassandra Graph Vector Store with search capabilities.

Parameters

Inputs
Name Display Name Info

database_ref

Contact Points / Astra Database ID

Contact points for the database or AstraDB database ID (required).

username

Username

Username for the database (leave empty for AstraDB).

token

Password / AstraDB Token

User password for the database or AstraDB token (required).

keyspace

Keyspace

Table Keyspace or AstraDB namespace (required).

table_name

Table Name

The name of the table or AstraDB collection where vectors will be stored (required).

setup_mode

Setup Mode

Configuration mode for setting up the Cassandra table (options: "Sync", "Off", default: "Sync").

cluster_kwargs

Cluster arguments

Optional dictionary of additional keyword arguments for the Cassandra cluster.

search_query

Search Query

Query string for similarity search.

ingest_data

Ingest Data

Data to be ingested into the vector store (list of Data objects).

embedding

Embedding

Embedding model to use.

number_of_results

Number of Results

Number of results to return in similarity search (default: 4).

search_type

Search Type

Search type to use (options: "Traversal", "MMR traversal", "Similarity", "Similarity with score threshold", "MMR (Max Marginal Relevance)", default: "Traversal").

depth

Depth of traversal

The maximum depth of edges to traverse (for "Traversal" or "MMR traversal" search types, default: 1).

search_score_threshold

Search Score Threshold

Minimum similarity score threshold for search results (for "Similarity with score threshold" search type).

search_filter

Search Metadata Filter

Optional dictionary of filters to apply to the search query.

Outputs
Name Display Name Info

vector_store

Vector Store

Built Cassandra Graph vector store.

search_results

Search Results

Results of the similarity search as a list of Data objects.

Component code

cassandra_graph.py
404: Not Found

Chroma DB

This component creates a Chroma Vector Store with search capabilities. For more information, see the Chroma documentation.

Parameters

Inputs
Name Type Description

collection_name

String

The name of the Chroma collection. Default: "langflow".

persist_directory

String

The directory to persist the Chroma database.

search_query

String

The query to search for in the vector store.

ingest_data

Data

The data to ingest into the vector store (list of Data objects).

embedding

Embeddings

The embedding function to use for the vector store.

chroma_server_cors_allow_origins

String

CORS allow origins for the Chroma server.

chroma_server_host

String

Host for the Chroma server.

chroma_server_http_port

Integer

HTTP port for the Chroma server.

chroma_server_grpc_port

Integer

gRPC port for the Chroma server.

chroma_server_ssl_enabled

Boolean

Enable SSL for the Chroma server.

allow_duplicates

Boolean

Allow duplicate documents in the vector store.

search_type

String

Type of search to perform: "Similarity" or "MMR".

number_of_results

Integer

Number of results to return from the search. Default: 10.

limit

Integer

Limit the number of records to compare when Allow Duplicates is False.

Component code

chroma.py
404: Not Found

Clickhouse

This component implements a Clickhouse Vector Store with search capabilities using the LangChain framework.

Parameters

Inputs
Name Display Name Info

host

hostname

Clickhouse server hostname (required, default: "localhost")

port

port

Clickhouse server port (required, default: 8123)

database

database

Clickhouse database name (required)

table

Table name

Clickhouse table name (required)

username

The ClickHouse user name.

Username for authentication (required)

password

The password for username.

Password for authentication (required)

index_type

index_type

Type of the index (options: "annoy", "vector_similarity", default: "annoy")

metric

metric

Metric to compute distance (options: "angular", "euclidean", "manhattan", "hamming", "dot", default: "angular")

secure

Use https/TLS

Overrides inferred values from the interface or port arguments (default: false)

index_param

Param of the index

Index parameters (default: "'L2Distance',100")

index_query_params

index query params

Additional index query parameters

search_query

Search Query

Query string for similarity search

ingest_data

Ingest Data

Data to be ingested into the vector store

embedding

Embedding

Embedding model to use

number_of_results

Number of Results

Number of results to return in similarity search (default: 4)

score_threshold

Score threshold

Threshold for similarity scores

Outputs
Name Display Name Info

vector_store

Vector Store

Built Clickhouse vector store

search_results

Search Results

Results of the similarity search as a list of Data objects

Component code

clickhouse.py
404: Not Found

Couchbase

This component creates a Couchbase Vector Store with search capabilities. For more information, see the Couchbase documentation.

Parameters

Inputs
Name Type Description

couchbase_connection_string

SecretString

Couchbase Cluster connection string (required).

couchbase_username

String

Couchbase username (required).

couchbase_password

SecretString

Couchbase password (required).

bucket_name

String

Name of the Couchbase bucket (required).

scope_name

String

Name of the Couchbase scope (required).

collection_name

String

Name of the Couchbase collection (required).

index_name

String

Name of the Couchbase index (required).

search_query

String

The query to search for in the vector store.

ingest_data

Data

The data to ingest into the vector store (list of Data objects).

embedding

Embeddings

The embedding function to use for the vector store.

number_of_results

Integer

Number of results to return from the search. Default: 4 (advanced).

Outputs
Name Type Description

vector_store

CouchbaseVectorStore

A Couchbase vector store instance configured with the specified parameters.

Component code

couchbase.py
404: Not Found

Elasticsearch

This component creates an Elasticsearch Vector Store with search capabilities. For more information, see the Elasticsearch vector store documentation.

Parameters

Inputs
Name Type Description

elasticsearch_url

String

URL for self-managed Elasticsearch deployments, such as http://localhost:9200.

cloud_id

SecretString

Elastic Cloud ID for cloud deployments.

index_name

String

The index name where vectors will be stored in Elasticsearch cluster.

search_input

Multiline

Search query for retrieving documents.

username

String

Elasticsearch username for authentication.

password

SecretString

Elasticsearch password for authentication.

ingest_data

Data

Data to be ingested into the vector store.

embedding

Handle

Embedding model to use.

search_type

Dropdown

Type of search to perform (similarity or mmr).

number_of_results

Integer

Number of results to return.

search_score_threshold

Float

Minimum similarity score threshold for search results.

api_key

SecretString

API Key for Elastic Cloud authentication.

Outputs
Name Type Description

vector_store

VectorStore

An instance of ElasticsearchStore for storing and searching vectors.

Component code

elasticsearch.py
404: Not Found

FAISS

This component creates a FAISS Vector Store with search capabilities.

For more information, see the FAISS documentation.

Parameters

Inputs
Name Type Description

index_name

String

The name of the FAISS index. Default: "langflow_index".

persist_directory

String

Path to save the FAISS index. It will be relative to where Langflow is running.

search_query

String

The query to search for in the vector store.

ingest_data

Data

The data to ingest into the vector store (list of Data objects or documents).

allow_dangerous_deserialization

Boolean

Set to True to allow loading pickle files from untrusted sources. Default: True (advanced).

embedding

Embeddings

The embedding function to use for the vector store.

number_of_results

Integer

Number of results to return from the search. Default: 4 (advanced).

Outputs
Name Type Description

vector_store

FAISS

A FAISS vector store instance configured with the specified parameters.

Component code

faiss.py
404: Not Found

Graph RAG

This component performs Graph RAG (Retrieval Augmented Generation) traversal in a vector store, enabling graph-based document retrieval. For more information, see the Graph RAG documentation.

For an example flow, see the Graph RAG template.

Parameters

Inputs
Name Display Name Info

embedding_model

Embedding Model

Specify the embedding model. This is not required for collections embedded with Astra vectorize.

vector_store

Vector Store Connection

Connection to the vector store.

edge_definition

Edge Definition

Edge definition for the graph traversal. For more information, see the GraphRAG documentation.

strategy

Traversal Strategies

The strategy to use for graph traversal. Strategy options are dynamically loaded from available strategies.

search_query

Search Query

The query to search for in the vector store.

graphrag_strategy_kwargs

Strategy Parameters

Optional dictionary of additional parameters for the retrieval strategy. For more information, see the strategy documentation.

Outputs
Name Type Description

search_results

List[Data]

Results of the graph-based document retrieval as a list of data objects.

Component code

graph_rag.py
404: Not Found

Hyper-Converged Database (HCD) Vector Store

This component implements a Vector Store using Hyper-Converged Database (HCD).

To use the HCD vector store, add your deployment’s collection name, username, password, and HCD Data API endpoint. The endpoint must be formatted like http[s]://DOMAIN_NAME or IP_ADDRESS[:port], for example, http://192.0.2.250:8181.

Replace DOMAIN_NAME or IP_ADDRESS with the domain name or IP address of your HCD Data API connection.

To use the HCD vector store for embeddings ingestion, connect it to an embeddings model and a file loader:

An HCD vector store in a flow

Parameters

Inputs
Name Display Name Info

collection_name

Collection Name

The name of the collection within HCD where the vectors will be stored (required)

username

HCD Username

Authentication username for accessing HCD (default: "hcd-superuser", required)

password

HCD Password

Authentication password for accessing HCD (required)

api_endpoint

HCD API Endpoint

API endpoint URL for the HCD service (required)

search_input

Search Input

Query string for similarity search

ingest_data

Ingest Data

Data to be ingested into the vector store

namespace

Namespace

Optional namespace within HCD to use for the collection (default: "default_namespace")

ca_certificate

CA Certificate

Optional CA certificate for TLS connections to HCD

metric

Metric

Optional distance metric for vector comparisons (options: "cosine", "dot_product", "euclidean")

batch_size

Batch Size

Optional number of data to process in a single batch

bulk_insert_batch_concurrency

Bulk Insert Batch Concurrency

Optional concurrency level for bulk insert operations

bulk_insert_overwrite_concurrency

Bulk Insert Overwrite Concurrency

Optional concurrency level for bulk insert operations that overwrite existing data

bulk_delete_concurrency

Bulk Delete Concurrency

Optional concurrency level for bulk delete operations

setup_mode

Setup Mode

Configuration mode for setting up the vector store (options: "Sync", "Async", "Off", default: "Sync")

pre_delete_collection

Pre Delete Collection

Boolean flag to determine whether to delete the collection before creating a new one

metadata_indexing_include

Metadata Indexing Include

Optional list of metadata fields to include in the indexing

embedding

Embedding or Astra Vectorize

Allows either an embedding model or an Astra Vectorize configuration

metadata_indexing_exclude

Metadata Indexing Exclude

Optional list of metadata fields to exclude from the indexing

collection_indexing_policy

Collection Indexing Policy

Optional dictionary defining the indexing policy for the collection

number_of_results

Number of Results

Number of results to return in similarity search (default: 4)

search_type

Search Type

Search type to use (options: "Similarity", "Similarity with score threshold", "MMR (Max Marginal Relevance)", default: "Similarity")

search_score_threshold

Search Score Threshold

Minimum similarity score threshold for search results (default: 0)

search_filter

Search Metadata Filter

Optional dictionary of filters to apply to the search query

Outputs
Name Display Name Info

vector_store

Vector Store

Built HCD vector store instance

search_results

Search Results

Results of similarity search as a list of Data objects

Component code

hcd.py
404: Not Found

Local DB

This component is a local Vector Store (Chroma) with search capabilities.

Parameters

Inputs
Name Display Name Info

mode

Mode

Select the operation mode. Options: ["Ingest", "Retrieve"]. Type: TabInput

collection_name

Collection Name

Name of the collection. Default: "langflow". Type: MessageTextInput

persist_directory

Persist Directory

Custom base directory to save the vector store. Collections are stored under '{directory}/vector_stores/{collection_name}'. Uses system’s cache folder if not specified. Type: MessageTextInput

existing_collections

Existing Collections

Select a previously created collection to search through its stored data. Type: DropdownInput

embedding

Embedding

Embedding model to use. Type: HandleInput (Embeddings)

allow_duplicates

Allow Duplicates

If false, will not add documents that are already in the Vector Store. Type: BoolInput

search_type

Search Type

Type of search to perform. Options: ["Similarity", "MMR"]. Default: "Similarity". Type: DropdownInput

ingest_data

Ingest Data

Data to store. It will be embedded and indexed for semantic search. Type: HandleInput (Data, DataFrame)

search_query

Search Query

Enter text to search for similar content in the selected collection. Type: MultilineInput

number_of_results

Number of Results

Number of results to return. Default: 10. Type: IntInput

limit

Limit

Limit the number of records to compare when Allow Duplicates is False. Type: IntInput

Outputs
Name Display Name Info

dataframe

DataFrame

The results as a DataFrame. Method: as_dataframe

Component code

local_db.py
404: Not Found

Milvus

This component creates a Milvus Vector Store with search capabilities.

For more information, see the Milvus documentation.

Parameters

Inputs
Name Type Description

collection_name

String

Name of the Milvus collection

collection_description

String

Description of the Milvus collection

uri

String

Connection URI for Milvus

password

SecretString

Connection password (if required)

connection_args

Dict

Additional connection arguments

primary_field

String

Name of the primary field

text_field

String

Name of the text field

vector_field

String

Name of the vector field

consistency_level

String

Consistency level for operations

index_params

Dict

Parameters for indexing

search_params

Dict

Parameters for searching

drop_old

Boolean

Whether to drop old collection

timeout

Float

Timeout for operations

search_query

String

Query for similarity search

ingest_data

Data

Data to be ingested into the vector store

embedding

Embeddings

Embedding function to use

number_of_results

Integer

Number of results to return in search

Outputs
Name Type Description

vector_store

Milvus

Milvus vector store instance

search_results

List[Data]

Results of similarity search

Component code

milvus.py
404: Not Found

MongoDB Atlas

This component creates a MongoDB Atlas Vector Store with search capabilities. For more information, see the MongoDB Atlas documentation.

Parameters

Inputs
Name Type Description

mongodb_atlas_cluster_uri

SecretString

MongoDB Atlas Cluster URI

db_name

String

Database name

collection_name

String

Collection name

index_name

String

Index name

search_query

String

Query for similarity search

ingest_data

Data

Data to be ingested into the vector store

embedding

Embeddings

Embedding function to use

number_of_results

Integer

Number of results to return in search

Outputs
Name Type Description

vector_store

MongoDBAtlasVectorSearch

MongoDB Atlas vector store instance

search_results

List[Data]

Results of similarity search

Component code

mongodb_atlas.py
404: Not Found

Opensearch

This component creates an OpenSearch Vector Store with search capabilities. For more information, see the Opensearch vector store documentation.

Parameters

Inputs
Name Type Description

opensearch_url

String

URL for OpenSearch cluster, for example https://192.168.1.1:9200.

index_name

String

The index name where the vectors will be stored in OpenSearch cluster.

search_input

Multiline

Enter a search query. Leave empty to retrieve all documents.

ingest_data

Data

Data to be ingested into the vector store.

embedding

Handle

Embedding model to use.

search_type

Dropdown

Search type to use (similarity, similarity_score_threshold, or mmr).

number_of_results

Integer

Number of results to return.

search_score_threshold

Float

Minimum similarity score threshold for search results.

username

String

Username for OpenSearch authentication.

password

SecretString

Password for OpenSearch authentication.

use_ssl

Boolean

Whether to use SSL for connection.

verify_certs

Boolean

Whether to verify SSL certificates.

hybrid_search_query

Multiline

Custom hybrid search query in JSON format.

Outputs
Name Type Description

vector_store

VectorStore

An instance of OpenSearchVectorSearch for storing and searching vectors.

Component code

opensearch.py
404: Not Found

PGVector

This component creates a PGVector Vector Store with search capabilities. For more information, see the PGVector documentation.

Parameters

Inputs
Name Type Description

pg_server_url

SecretString

PostgreSQL server connection string

collection_name

String

Table name for the vector store

search_query

String

Query for similarity search

ingest_data

Data

Data to be ingested into the vector store

embedding

Embeddings

Embedding function to use

number_of_results

Integer

Number of results to return in search

Outputs
Name Type Description

vector_store

PGVector

PGVector vector store instance

search_results

List[Data]

Results of similarity search

Component code

pgvector.py
404: Not Found

Pinecone

This component creates a Pinecone Vector Store with search capabilities.

For more information, see the Pinecone documentation.

Parameters

Inputs
Name Type Description

index_name

String

Name of the Pinecone index

namespace

String

Namespace for the index

distance_strategy

String

Strategy for calculating distance between vectors

pinecone_api_key

SecretString

API key for Pinecone

text_key

String

Key in the record to use as text

search_query

String

Query for similarity search

ingest_data

Data

Data to be ingested into the vector store

embedding

Embeddings

Embedding function to use

number_of_results

Integer

Number of results to return in search

Outputs
Name Type Description

vector_store

Pinecone

Pinecone vector store instance

search_results

List[Data]

Results of similarity search

Component code

pinecone.py
404: Not Found

Qdrant

This component creates a Qdrant Vector Store with search capabilities. For more information, see the Qdrant documentation.

Parameters

Inputs
Name Type Description

collection_name

String

Name of the Qdrant collection

host

String

Qdrant server host

port

Integer

Qdrant server port

grpc_port

Integer

Qdrant gRPC port

api_key

SecretString

API key for Qdrant

prefix

String

Prefix for Qdrant

timeout

Integer

Timeout for Qdrant operations

path

String

Path for Qdrant

url

String

URL for Qdrant

distance_func

String

Distance function for vector similarity

content_payload_key

String

Key for content payload

metadata_payload_key

String

Key for metadata payload

search_query

String

Query for similarity search

ingest_data

Data

Data to be ingested into the vector store

embedding

Embeddings

Embedding function to use

number_of_results

Integer

Number of results to return in search

Outputs
Name Type Description

vector_store

Qdrant

Qdrant vector store instance

search_results

List[Data]

Results of similarity search

Component code

qdrant.py
404: Not Found

Redis

This component creates a Redis Vector Store with search capabilities. For more information, see the Redis documentation.

Parameters

Inputs
Name Type Description

redis_server_url

SecretString

Redis server connection string

redis_index_name

String

Name of the Redis index

code

String

Custom code for Redis (advanced)

schema

String

Schema for Redis index

search_query

String

Query for similarity search

ingest_data

Data

Data to be ingested into the vector store

number_of_results

Integer

Number of results to return in search

embedding

Embeddings

Embedding function to use

Outputs
Name Type Description

vector_store

Redis

Redis vector store instance

search_results

List[Data]

Results of similarity search

Component code

redis.py
404: Not Found

Supabase

This component creates a connection to a Supabase Vector Store with search capabilities.

For more information, see the Supabase documentation.

Parameters

Inputs
Name Type Description

supabase_url

String

URL of the Supabase instance

supabase_service_key

SecretString

Service key for Supabase authentication

table_name

String

Name of the table in Supabase

query_name

String

Name of the query to use

search_query

String

Query for similarity search

ingest_data

Data

Data to be ingested into the vector store

embedding

Embeddings

Embedding function to use

number_of_results

Integer

Number of results to return in search

Outputs
Name Type Description

vector_store

SupabaseVectorStore

Supabase vector store instance

search_results

List[Data]

Results of similarity search

Component code

supabase.py
404: Not Found

Upstash

This component creates an Upstash Vector Store with search capabilities. For more information, see the Upstash documentation.

Parameters

Inputs
Name Type Description

index_url

String

The URL of the Upstash index

index_token

SecretString

The token for the Upstash index

text_key

String

The key in the record to use as text

namespace

String

Namespace for the index

search_query

String

Query for similarity search

metadata_filter

String

Filters documents by metadata

ingest_data

Data

Data to be ingested into the vector store

embedding

Embeddings

Embedding function to use (optional)

number_of_results

Integer

Number of results to return in search

Outputs
Name Type Description

vector_store

UpstashVectorStore

Upstash vector store instance

search_results

List[Data]

Results of similarity search

Component code

upstash.py
404: Not Found

Vectara

This component creates a Vectara Vector Store with search capabilities. For more information, see the Vectara documentation.

Parameters

Inputs
Name Type Description

vectara_customer_id

String

Vectara customer ID

vectara_corpus_id

String

Vectara corpus ID

vectara_api_key

SecretString

Vectara API key

embedding

Embeddings

Embedding function to use (optional)

ingest_data

List[Document/Data]

Data to be ingested into the vector store

search_query

String

Query for similarity search

number_of_results

Integer

Number of results to return in search

Outputs
Name Type Description

vector_store

Vectara

Vectara vector store instance

search_results

List[Data]

Results of similarity search

Component code

vectara.py
404: Not Found

Vectara RAG

This component creates a Vectara RAG pipeline. For more information, see the Vectara documentation.

Parameters

Inputs
Name Type Description

vectara_customer_id

String

Vectara customer ID

vectara_corpus_id

String

Vectara corpus ID

vectara_api_key

SecretString

Vectara API key

search_query

String

The query to receive an answer on

lexical_interpolation

Float

Hybrid search factor

filter

String

Metadata filters for narrowing search

reranker

String

Type of reranker to use

reranker_k

Integer

Number of results to rerank

diversity_bias

Float

Diversity bias for MMR reranker

max_results

Integer

Maximum results to summarize

response_lang

String

Language code for response

prompt

String

Name of the summarizer prompt

Outputs
Name Type Description

answer

Message

Generated response from Vectara RAG

Component code

vectara_rag.py
404: Not Found

Was this helpful?

Give Feedback

How can we improve the documentation?

© 2025 DataStax, an IBM Company | Privacy policy | Terms of use | Manage Privacy Choices

Apache, Apache Cassandra, Cassandra, Apache Tomcat, Tomcat, Apache Lucene, Apache Solr, Apache Hadoop, Hadoop, Apache Pulsar, Pulsar, Apache Spark, Spark, Apache TinkerPop, TinkerPop, Apache Kafka and Kafka are either registered trademarks or trademarks of the Apache Software Foundation or its subsidiaries in Canada, the United States and/or other countries. Kubernetes is the registered trademark of the Linux Foundation.

General Inquiries: +1 (650) 389-6000, info@datastax.com