Prompts
A prompt is the input provided to a language model, where your input data is structured in a way that the model can understand.
A prompt template offers a reproducible method for generating prompts.
Prompt
This component creates a prompt template with dynamic variables. This is useful for structuring prompts and passing dynamic data to a language model.
Parameters
Name | Display Name | Info |
---|---|---|
template |
Template |
The prompt template with dynamic variables |
Name | Display Name | Info |
---|---|---|
prompt |
Prompt Message |
The built prompt message |
Prompt template field
The template
field allows you to create other fields dynamically by using curly brackets. For example, if you have a template like Hello {name}, how are you?
, a new field called name
is created. Prompt variables can be created with any name inside curly brackets, e.g. {variable_name}
.
Component code
prompt.py
from langflow.base.prompts.api_utils import process_prompt_template
from langflow.custom import Component
from langflow.inputs.inputs import DefaultPromptField
from langflow.io import Output, PromptInput
from langflow.schema.message import Message
from langflow.template.utils import update_template_values
class PromptComponent(Component):
display_name: str = "Prompt"
description: str = "Create a prompt template with dynamic variables."
icon = "prompts"
trace_type = "prompt"
name = "Prompt"
inputs = [
PromptInput(name="template", display_name="Template"),
]
outputs = [
Output(display_name="Prompt Message", name="prompt", method="build_prompt"),
]
async def build_prompt(self) -> Message:
prompt = Message.from_template(**self._attributes)
self.status = prompt.text
return prompt
def _update_template(self, frontend_node: dict):
prompt_template = frontend_node["template"]["template"]["value"]
custom_fields = frontend_node["custom_fields"]
frontend_node_template = frontend_node["template"]
_ = process_prompt_template(
template=prompt_template,
name="template",
custom_fields=custom_fields,
frontend_node_template=frontend_node_template,
)
return frontend_node
def post_code_processing(self, new_frontend_node: dict, current_frontend_node: dict):
"""This function is called after the code validation is done."""
frontend_node = super().post_code_processing(new_frontend_node, current_frontend_node)
template = frontend_node["template"]["template"]["value"]
# Kept it duplicated for backwards compatibility
_ = process_prompt_template(
template=template,
name="template",
custom_fields=frontend_node["custom_fields"],
frontend_node_template=frontend_node["template"],
)
# Now that template is updated, we need to grab any values that were set in the current_frontend_node
# and update the frontend_node with those values
update_template_values(new_template=frontend_node, previous_template=current_frontend_node["template"])
return frontend_node
def _get_fallback_input(self, **kwargs):
return DefaultPromptField(**kwargs)
Langchain Hub prompt
This component allows you to use prompts from LangChain Hub in your flow.
Parameters
Name | Type | Description |
---|---|---|
langchain_api_key |
SecretString |
Your LangChain API key for authentication |
langchain_hub_prompt |
String |
The LangChain Hub prompt to use (e.g., "efriis/my-first-prompt") |
Name | Type | Description |
---|---|---|
prompt |
Message |
The built prompt from LangChain Hub |
Component code
langchain_hub.py
import re
from langchain_core.prompts import HumanMessagePromptTemplate
from langflow.custom import Component
from langflow.inputs import DefaultPromptField, SecretStrInput, StrInput
from langflow.io import Output
from langflow.schema.message import Message
class LangChainHubPromptComponent(Component):
display_name: str = "Prompt Hub"
description: str = "Prompt Component that uses LangChain Hub prompts"
beta = True
icon = "LangChain"
trace_type = "prompt"
name = "LangChain Hub Prompt"
inputs = [
SecretStrInput(
name="langchain_api_key",
display_name="Your LangChain API Key",
info="The LangChain API Key to use.",
required=True,
),
StrInput(
name="langchain_hub_prompt",
display_name="LangChain Hub Prompt",
info="The LangChain Hub prompt to use, i.e., 'efriis/my-first-prompt'",
refresh_button=True,
required=True,
),
]
outputs = [
Output(display_name="Build Prompt", name="prompt", method="build_prompt"),
]
def update_build_config(self, build_config: dict, field_value: str, field_name: str | None = None):
# If the field is not langchain_hub_prompt or the value is empty, return the build config as is
if field_name != "langchain_hub_prompt" or not field_value:
return build_config
# Fetch the template
template = self._fetch_langchain_hub_template()
# Get the template's messages
if hasattr(template, "messages"):
template_messages = template.messages
else:
template_messages = [HumanMessagePromptTemplate(prompt=template)]
# Extract the messages from the prompt data
prompt_template = [message_data.prompt for message_data in template_messages]
# Regular expression to find all instances of {<string>}
pattern = r"\{(.*?)\}"
# Get all the custom fields
custom_fields: list[str] = []
full_template = ""
for message in prompt_template:
# Find all matches
matches = re.findall(pattern, message.template)
custom_fields += matches
# Create a string version of the full template
full_template = full_template + "\n" + message.template
# No need to reprocess if we have them already
if all("param_" + custom_field in build_config for custom_field in custom_fields):
return build_config
# Easter egg: Show template in info popup
build_config["langchain_hub_prompt"]["info"] = full_template
# Remove old parameter inputs if any
for key in build_config.copy():
if key.startswith("param_"):
del build_config[key]
# Now create inputs for each
for custom_field in custom_fields:
new_parameter = DefaultPromptField(
name=f"param_{custom_field}",
display_name=custom_field,
info="Fill in the value for {" + custom_field + "}",
).to_dict()
# Add the new parameter to the build config
build_config[f"param_{custom_field}"] = new_parameter
return build_config
async def build_prompt(
self,
) -> Message:
# Fetch the template
template = self._fetch_langchain_hub_template()
# Get the parameters from the attributes
params_dict = {param: getattr(self, "param_" + param, f"{{{param}}}") for param in template.input_variables}
original_params = {k: v.text if hasattr(v, "text") else v for k, v in params_dict.items() if v is not None}
prompt_value = template.invoke(original_params)
# Update the template with the new value
original_params["template"] = prompt_value.to_string()
# Now pass the filtered attributes to the function
prompt = Message.from_template(**original_params)
self.status = prompt.text
return prompt
def _fetch_langchain_hub_template(self):
import langchain.hub
# Check if the api key is provided
if not self.langchain_api_key:
msg = "Please provide a LangChain API Key"
raise ValueError(msg)
# Pull the prompt from LangChain Hub
return langchain.hub.pull(self.langchain_hub_prompt, api_key=self.langchain_api_key)