Tools

This Langflow feature is currently in public preview. Development is ongoing, and the features and functionality are subject to change. Langflow, and the use of such, is subject to the DataStax Preview Terms.

Tool components are used to interact with external services, APIs, and tools. They can be used to search the web, query databases, and perform other tasks.

Bing Search API

This component allows you to call the Bing Search API.

Parameters

Inputs
Name Type Description

bing_subscription_key

SecretString

Bing API subscription key

input_value

String

Search query input

bing_search_url

String

Custom Bing Search URL (optional)

k

Integer

Number of search results to return

Outputs
Name Type Description

results

List[Data]

List of search results

tool

Tool

Bing Search tool for use in LangChain

Component code

bing_search_api.py
from typing import cast

from langchain_community.tools.bing_search import BingSearchResults
from langchain_community.utilities import BingSearchAPIWrapper

from langflow.base.langchain_utilities.model import LCToolComponent
from langflow.field_typing import Tool
from langflow.inputs import IntInput, MessageTextInput, MultilineInput, SecretStrInput
from langflow.schema import Data


class BingSearchAPIComponent(LCToolComponent):
    display_name = "Bing Search API"
    description = "Call the Bing Search API."
    name = "BingSearchAPI"

    inputs = [
        SecretStrInput(name="bing_subscription_key", display_name="Bing Subscription Key"),
        MultilineInput(
            name="input_value",
            display_name="Input",
        ),
        MessageTextInput(name="bing_search_url", display_name="Bing Search URL", advanced=True),
        IntInput(name="k", display_name="Number of results", value=4, required=True),
    ]

    def run_model(self) -> list[Data]:
        if self.bing_search_url:
            wrapper = BingSearchAPIWrapper(
                bing_search_url=self.bing_search_url, bing_subscription_key=self.bing_subscription_key
            )
        else:
            wrapper = BingSearchAPIWrapper(bing_subscription_key=self.bing_subscription_key)
        results = wrapper.results(query=self.input_value, num_results=self.k)
        data = [Data(data=result, text=result["snippet"]) for result in results]
        self.status = data
        return data

    def build_tool(self) -> Tool:
        if self.bing_search_url:
            wrapper = BingSearchAPIWrapper(
                bing_search_url=self.bing_search_url, bing_subscription_key=self.bing_subscription_key
            )
        else:
            wrapper = BingSearchAPIWrapper(bing_subscription_key=self.bing_subscription_key)
        return cast(Tool, BingSearchResults(api_wrapper=wrapper, num_results=self.k))

Calculator Tool

This component allows you to evaluate basic arithmetic expressions. It supports addition, subtraction, multiplication, division, and exponentiation. The tool uses a secure evaluation method that prevents the execution of arbitrary Python code.

Parameters

Inputs
Name Type Description

expression

String

The arithmetic expression to evaluate (for example, 4*4*(33/22)+12-20).

Outputs
Name Type Description

result

Tool

Calculator tool for use in LangChain.

Component code

calculator.py
import ast
import operator

from langchain.tools import StructuredTool
from langchain_core.tools import ToolException
from loguru import logger
from pydantic import BaseModel, Field

from langflow.base.langchain_utilities.model import LCToolComponent
from langflow.field_typing import Tool
from langflow.inputs import MessageTextInput
from langflow.schema import Data


class CalculatorToolComponent(LCToolComponent):
    display_name = "Calculator"
    description = "Perform basic arithmetic operations on a given expression."
    icon = "calculator"
    name = "CalculatorTool"

    inputs = [
        MessageTextInput(
            name="expression",
            display_name="Expression",
            info="The arithmetic expression to evaluate (e.g., '4*4*(33/22)+12-20').",
        ),
    ]

    class CalculatorToolSchema(BaseModel):
        expression: str = Field(..., description="The arithmetic expression to evaluate.")

    def run_model(self) -> list[Data]:
        return self._evaluate_expression(self.expression)

    def build_tool(self) -> Tool:
        return StructuredTool.from_function(
            name="calculator",
            description="Evaluate basic arithmetic expressions. Input should be a string containing the expression.",
            func=self._eval_expr_with_error,
            args_schema=self.CalculatorToolSchema,
        )

    def _eval_expr(self, node):
        # Define the allowed operators
        operators = {
            ast.Add: operator.add,
            ast.Sub: operator.sub,
            ast.Mult: operator.mul,
            ast.Div: operator.truediv,
            ast.Pow: operator.pow,
        }
        if isinstance(node, ast.Num):
            return node.n
        if isinstance(node, ast.BinOp):
            return operators[type(node.op)](self._eval_expr(node.left), self._eval_expr(node.right))
        if isinstance(node, ast.UnaryOp):
            return operators[type(node.op)](self._eval_expr(node.operand))
        if isinstance(node, ast.Call):
            msg = (
                "Function calls like sqrt(), sin(), cos() etc. are not supported. "
                "Only basic arithmetic operations (+, -, *, /, **) are allowed."
            )
            raise TypeError(msg)
        msg = f"Unsupported operation or expression type: {type(node).__name__}"
        raise TypeError(msg)

    def _eval_expr_with_error(self, expression: str) -> list[Data]:
        try:
            return self._evaluate_expression(expression)
        except Exception as e:
            raise ToolException(str(e)) from e

    def _evaluate_expression(self, expression: str) -> list[Data]:
        try:
            # Parse the expression and evaluate it
            tree = ast.parse(expression, mode="eval")
            result = self._eval_expr(tree.body)

            # Format the result to a reasonable number of decimal places
            formatted_result = f"{result:.6f}".rstrip("0").rstrip(".")

            self.status = formatted_result
            return [Data(data={"result": formatted_result})]

        except (SyntaxError, TypeError, KeyError) as e:
            error_message = f"Invalid expression: {e}"
            self.status = error_message
            return [Data(data={"error": error_message, "input": expression})]
        except ZeroDivisionError:
            error_message = "Error: Division by zero"
            self.status = error_message
            return [Data(data={"error": error_message, "input": expression})]
        except Exception as e:  # noqa: BLE001
            logger.opt(exception=True).debug("Error evaluating expression")
            error_message = f"Error: {e}"
            self.status = error_message
            return [Data(data={"error": error_message, "input": expression})]

Glean Search API

This component allows you to call the Glean Search API.

Parameters

Inputs
Name Type Description

glean_api_url

String

URL of the Glean API

glean_access_token

SecretString

Access token for Glean API authentication

query

String

Search query input

page_size

Integer

Number of results per page (default: 10)

request_options

Dict

Additional options for the API request (optional)

Outputs
Name Type Description

results

List[Data]

List of search results

tool

Tool

Glean Search tool for use in LangChain

Component code

glean_search_api.py
import json
from typing import Any
from urllib.parse import urljoin

import httpx
from langchain_core.tools import StructuredTool, ToolException
from pydantic import BaseModel
from pydantic.v1 import Field

from langflow.base.langchain_utilities.model import LCToolComponent
from langflow.field_typing import Tool
from langflow.inputs import IntInput, MultilineInput, NestedDictInput, SecretStrInput, StrInput
from langflow.schema import Data


class GleanSearchAPISchema(BaseModel):
    query: str = Field(..., description="The search query")
    page_size: int = Field(10, description="Maximum number of results to return")
    request_options: dict[str, Any] | None = Field(default_factory=dict, description="Request Options")


class GleanAPIWrapper(BaseModel):
    """Wrapper around Glean API."""

    glean_api_url: str
    glean_access_token: str
    act_as: str = "langflow-component@datastax.com"  # TODO: Detect this

    def _prepare_request(
        self,
        query: str,
        page_size: int = 10,
        request_options: dict[str, Any] | None = None,
    ) -> dict:
        # Ensure there's a trailing slash
        url = self.glean_api_url
        if not url.endswith("/"):
            url += "/"

        return {
            "url": urljoin(url, "search"),
            "headers": {
                "Authorization": f"Bearer {self.glean_access_token}",
                "X-Scio-ActAs": self.act_as,
            },
            "payload": {
                "query": query,
                "pageSize": page_size,
                "requestOptions": request_options,
            },
        }

    def results(self, query: str, **kwargs: Any) -> list[dict[str, Any]]:
        results = self._search_api_results(query, **kwargs)

        if len(results) == 0:
            msg = "No good Glean Search Result was found"
            raise AssertionError(msg)

        return results

    def run(self, query: str, **kwargs: Any) -> list[dict[str, Any]]:
        try:
            results = self.results(query, **kwargs)

            processed_results = []
            for result in results:
                if "title" in result:
                    result["snippets"] = result.get("snippets", [{"snippet": {"text": result["title"]}}])
                    if "text" not in result["snippets"][0]:
                        result["snippets"][0]["text"] = result["title"]

                processed_results.append(result)
        except Exception as e:
            error_message = f"Error in Glean Search API: {e!s}"
            raise ToolException(error_message) from e

        return processed_results

    def _search_api_results(self, query: str, **kwargs: Any) -> list[dict[str, Any]]:
        request_details = self._prepare_request(query, **kwargs)

        response = httpx.post(
            request_details["url"],
            json=request_details["payload"],
            headers=request_details["headers"],
        )

        response.raise_for_status()
        response_json = response.json()

        return response_json.get("results", [])

    @staticmethod
    def _result_as_string(result: dict) -> str:
        return json.dumps(result, indent=4)


class GleanSearchAPIComponent(LCToolComponent):
    display_name = "Glean Search API"
    description = "Call Glean Search API"
    name = "GleanAPI"

    inputs = [
        StrInput(
            name="glean_api_url",
            display_name="Glean API URL",
            required=True,
        ),
        SecretStrInput(name="glean_access_token", display_name="Glean Access Token", required=True),
        MultilineInput(name="query", display_name="Query", required=True),
        IntInput(name="page_size", display_name="Page Size", value=10),
        NestedDictInput(name="request_options", display_name="Request Options", required=False),
    ]

    def build_tool(self) -> Tool:
        wrapper = self._build_wrapper(
            glean_api_url=self.glean_api_url,
            glean_access_token=self.glean_access_token,
        )

        tool = StructuredTool.from_function(
            name="glean_search_api",
            description="Search Glean for relevant results.",
            func=wrapper.run,
            args_schema=GleanSearchAPISchema,
        )

        self.status = "Glean Search API Tool for Langchain"

        return tool

    def run_model(self) -> list[Data]:
        tool = self.build_tool()

        results = tool.run(
            {
                "query": self.query,
                "page_size": self.page_size,
                "request_options": self.request_options,
            }
        )

        # Build the data
        data = [Data(data=result, text=result["snippets"][0]["text"]) for result in results]
        self.status = data  # type: ignore[assignment]

        return data

    def _build_wrapper(
        self,
        glean_api_url: str,
        glean_access_token: str,
    ):
        return GleanAPIWrapper(
            glean_api_url=glean_api_url,
            glean_access_token=glean_access_token,
        )

Google search API

This component allows you to call the Google Search API.

Parameters

Inputs
Name Type Description

google_api_key

SecretString

Google API key for authentication

google_cse_id

SecretString

Google Custom Search Engine ID

input_value

String

Search query input

k

Integer

Number of search results to return

Outputs
Name Type Description

results

List[Data]

List of search results

tool

Tool

Google Search tool for use in LangChain

Component code

google_search_api.py
from langchain_core.tools import Tool

from langflow.base.langchain_utilities.model import LCToolComponent
from langflow.inputs import IntInput, MultilineInput, SecretStrInput
from langflow.schema import Data


class GoogleSearchAPIComponent(LCToolComponent):
    display_name = "Google Search API"
    description = "Call Google Search API."
    name = "GoogleSearchAPI"

    inputs = [
        SecretStrInput(name="google_api_key", display_name="Google API Key", required=True),
        SecretStrInput(name="google_cse_id", display_name="Google CSE ID", required=True),
        MultilineInput(
            name="input_value",
            display_name="Input",
        ),
        IntInput(name="k", display_name="Number of results", value=4, required=True),
    ]

    def run_model(self) -> Data | list[Data]:
        wrapper = self._build_wrapper()
        results = wrapper.results(query=self.input_value, num_results=self.k)
        data = [Data(data=result, text=result["snippet"]) for result in results]
        self.status = data
        return data

    def build_tool(self) -> Tool:
        wrapper = self._build_wrapper()
        return Tool(
            name="google_search",
            description="Search Google for recent results.",
            func=wrapper.run,
        )

    def _build_wrapper(self):
        try:
            from langchain_google_community import GoogleSearchAPIWrapper
        except ImportError as e:
            msg = "Please install langchain-google-community to use GoogleSearchAPIWrapper."
            raise ImportError(msg) from e
        return GoogleSearchAPIWrapper(google_api_key=self.google_api_key, google_cse_id=self.google_cse_id, k=self.k)

Google serper API

This component allows you to call the Serper.dev Google Search API.

Parameters

Inputs
Name Type Description

serper_api_key

SecretString

API key for Serper.dev authentication

input_value

String

Search query input

k

Integer

Number of search results to return

Outputs
Name Type Description

results

List[Data]

List of search results

tool

Tool

Google Serper search tool for use in LangChain

Component code

google_serper_api.py
from langchain_community.utilities.google_serper import GoogleSerperAPIWrapper

from langflow.base.langchain_utilities.model import LCToolComponent
from langflow.field_typing import Tool
from langflow.inputs import IntInput, MultilineInput, SecretStrInput
from langflow.schema import Data


class GoogleSerperAPIComponent(LCToolComponent):
    display_name = "Google Serper API"
    description = "Call the Serper.dev Google Search API."
    name = "GoogleSerperAPI"

    inputs = [
        SecretStrInput(name="serper_api_key", display_name="Serper API Key", required=True),
        MultilineInput(
            name="input_value",
            display_name="Input",
        ),
        IntInput(name="k", display_name="Number of results", value=4, required=True),
    ]

    def run_model(self) -> Data | list[Data]:
        wrapper = self._build_wrapper()
        results = wrapper.results(query=self.input_value)
        list_results = results.get("organic", [])
        data = [Data(data=result, text=result["snippet"]) for result in list_results]
        self.status = data
        return data

    def build_tool(self) -> Tool:
        wrapper = self._build_wrapper()
        return Tool(
            name="google_search",
            description="Search Google for recent results.",
            func=wrapper.run,
        )

    def _build_wrapper(self):
        return GoogleSerperAPIWrapper(serper_api_key=self.serper_api_key, k=self.k)

Python code structured tool

This component creates a structured tool from Python code using a dataclass.

The component dynamically updates its configuration based on the provided Python code, allowing for custom function arguments and descriptions.

Parameters

Inputs
Name Type Description

tool_code

String

Python code for the tool’s dataclass

tool_name

String

Name of the tool

tool_description

String

Description of the tool

return_direct

Boolean

Whether to return the function output directly

tool_function

String

Selected function for the tool

global_variables

Dict

Global variables or data for the tool

Outputs
Name Type Description

result_tool

Tool

Structured tool created from the Python code

Component code

python_code_structured_tool.py
import ast
import json
from typing import Any

from langchain.agents import Tool
from langchain_core.tools import StructuredTool
from loguru import logger
from pydantic.v1 import Field, create_model
from pydantic.v1.fields import Undefined
from typing_extensions import override

from langflow.base.langchain_utilities.model import LCToolComponent
from langflow.inputs.inputs import (
    BoolInput,
    DropdownInput,
    FieldTypes,
    HandleInput,
    MessageTextInput,
    MultilineInput,
)
from langflow.io import Output
from langflow.schema import Data
from langflow.schema.dotdict import dotdict


class PythonCodeStructuredTool(LCToolComponent):
    DEFAULT_KEYS = [
        "code",
        "_type",
        "text_key",
        "tool_code",
        "tool_name",
        "tool_description",
        "return_direct",
        "tool_function",
        "global_variables",
        "_classes",
        "_functions",
    ]
    display_name = "Python Code Structured"
    description = "structuredtool dataclass code to tool"
    documentation = "https://python.langchain.com/docs/modules/tools/custom_tools/#structuredtool-dataclass"
    name = "PythonCodeStructuredTool"
    icon = "🐍"
    field_order = ["name", "description", "tool_code", "return_direct", "tool_function"]
    legacy: bool = True

    inputs = [
        MultilineInput(
            name="tool_code",
            display_name="Tool Code",
            info="Enter the dataclass code.",
            placeholder="def my_function(args):\n    pass",
            required=True,
            real_time_refresh=True,
            refresh_button=True,
        ),
        MessageTextInput(
            name="tool_name",
            display_name="Tool Name",
            info="Enter the name of the tool.",
            required=True,
        ),
        MessageTextInput(
            name="tool_description",
            display_name="Description",
            info="Enter the description of the tool.",
            required=True,
        ),
        BoolInput(
            name="return_direct",
            display_name="Return Directly",
            info="Should the tool return the function output directly?",
        ),
        DropdownInput(
            name="tool_function",
            display_name="Tool Function",
            info="Select the function for additional expressions.",
            options=[],
            required=True,
            real_time_refresh=True,
            refresh_button=True,
        ),
        HandleInput(
            name="global_variables",
            display_name="Global Variables",
            info="Enter the global variables or Create Data Component.",
            input_types=["Data"],
            field_type=FieldTypes.DICT,
            is_list=True,
        ),
        MessageTextInput(name="_classes", display_name="Classes", advanced=True),
        MessageTextInput(name="_functions", display_name="Functions", advanced=True),
    ]

    outputs = [
        Output(display_name="Tool", name="result_tool", method="build_tool"),
    ]

    @override
    def update_build_config(self, build_config: dotdict, field_value: Any, field_name: str | None = None) -> dotdict:
        if field_name is None:
            return build_config

        if field_name not in {"tool_code", "tool_function"}:
            return build_config

        try:
            named_functions = {}
            [classes, functions] = self._parse_code(build_config["tool_code"]["value"])
            existing_fields = {}
            if len(build_config) > len(self.DEFAULT_KEYS):
                for key in build_config.copy():
                    if key not in self.DEFAULT_KEYS:
                        existing_fields[key] = build_config.pop(key)

            names = []
            for func in functions:
                named_functions[func["name"]] = func
                names.append(func["name"])

                for arg in func["args"]:
                    field_name = f"{func['name']}|{arg['name']}"
                    if field_name in existing_fields:
                        build_config[field_name] = existing_fields[field_name]
                        continue

                    field = MessageTextInput(
                        display_name=f"{arg['name']}: Description",
                        name=field_name,
                        info=f"Enter the description for {arg['name']}",
                        required=True,
                    )
                    build_config[field_name] = field.to_dict()
            build_config["_functions"]["value"] = json.dumps(named_functions)
            build_config["_classes"]["value"] = json.dumps(classes)
            build_config["tool_function"]["options"] = names
        except Exception as e:  # noqa: BLE001
            self.status = f"Failed to extract names: {e}"
            logger.opt(exception=True).debug(self.status)
            build_config["tool_function"]["options"] = ["Failed to parse", str(e)]
        return build_config

    async def build_tool(self) -> Tool:
        _local_namespace = {}  # type: ignore[var-annotated]
        modules = self._find_imports(self.tool_code)
        import_code = ""
        for module in modules["imports"]:
            import_code += f"global {module}\nimport {module}\n"
        for from_module in modules["from_imports"]:
            for alias in from_module.names:
                import_code += f"global {alias.name}\n"
            import_code += (
                f"from {from_module.module} import {', '.join([alias.name for alias in from_module.names])}\n"
            )
        exec(import_code, globals())
        exec(self.tool_code, globals(), _local_namespace)

        class PythonCodeToolFunc:
            params: dict = {}

            def run(**kwargs):
                for key, arg in kwargs.items():
                    if key not in PythonCodeToolFunc.params:
                        PythonCodeToolFunc.params[key] = arg
                return _local_namespace[self.tool_function](**PythonCodeToolFunc.params)

        _globals = globals()
        _local = {}
        _local[self.tool_function] = PythonCodeToolFunc
        _globals.update(_local)

        if isinstance(self.global_variables, list):
            for data in self.global_variables:
                if isinstance(data, Data):
                    _globals.update(data.data)
        elif isinstance(self.global_variables, dict):
            _globals.update(self.global_variables)

        classes = json.loads(self._attributes["_classes"])
        for class_dict in classes:
            exec("\n".join(class_dict["code"]), _globals)

        named_functions = json.loads(self._attributes["_functions"])
        schema_fields = {}

        for attr in self._attributes:
            if attr in self.DEFAULT_KEYS:
                continue

            func_name = attr.split("|")[0]
            field_name = attr.split("|")[1]
            func_arg = self._find_arg(named_functions, func_name, field_name)
            if func_arg is None:
                msg = f"Failed to find arg: {field_name}"
                raise ValueError(msg)

            field_annotation = func_arg["annotation"]
            field_description = self._get_value(self._attributes[attr], str)

            if field_annotation:
                exec(f"temp_annotation_type = {field_annotation}", _globals)
                schema_annotation = _globals["temp_annotation_type"]
            else:
                schema_annotation = Any
            schema_fields[field_name] = (
                schema_annotation,
                Field(
                    default=func_arg.get("default", Undefined),
                    description=field_description,
                ),
            )

        if "temp_annotation_type" in _globals:
            _globals.pop("temp_annotation_type")

        python_code_tool_schema = None
        if schema_fields:
            python_code_tool_schema = create_model("PythonCodeToolSchema", **schema_fields)

        return StructuredTool.from_function(
            func=_local[self.tool_function].run,
            args_schema=python_code_tool_schema,
            name=self.tool_name,
            description=self.tool_description,
            return_direct=self.return_direct,
        )

    def post_code_processing(self, new_frontend_node: dict, current_frontend_node: dict):
        """This function is called after the code validation is done."""
        frontend_node = super().post_code_processing(new_frontend_node, current_frontend_node)
        frontend_node["template"] = self.update_build_config(
            frontend_node["template"],
            frontend_node["template"]["tool_code"]["value"],
            "tool_code",
        )
        frontend_node = super().post_code_processing(new_frontend_node, current_frontend_node)
        for key in frontend_node["template"]:
            if key in self.DEFAULT_KEYS:
                continue
            frontend_node["template"] = self.update_build_config(
                frontend_node["template"], frontend_node["template"][key]["value"], key
            )
            frontend_node = super().post_code_processing(new_frontend_node, current_frontend_node)
        return frontend_node

    def _parse_code(self, code: str) -> tuple[list[dict], list[dict]]:
        parsed_code = ast.parse(code)
        lines = code.split("\n")
        classes = []
        functions = []
        for node in parsed_code.body:
            if isinstance(node, ast.ClassDef):
                class_lines = lines[node.lineno - 1 : node.end_lineno]
                class_lines[-1] = class_lines[-1][: node.end_col_offset]
                class_lines[0] = class_lines[0][node.col_offset :]
                classes.append(
                    {
                        "name": node.name,
                        "code": class_lines,
                    }
                )
                continue

            if not isinstance(node, ast.FunctionDef):
                continue

            func = {"name": node.name, "args": []}
            for arg in node.args.args:
                if arg.lineno != arg.end_lineno:
                    msg = "Multiline arguments are not supported"
                    raise ValueError(msg)

                func_arg = {
                    "name": arg.arg,
                    "annotation": None,
                }

                for default in node.args.defaults:
                    if (
                        arg.lineno > default.lineno
                        or arg.col_offset > default.col_offset
                        or (
                            arg.end_lineno is not None
                            and default.end_lineno is not None
                            and arg.end_lineno < default.end_lineno
                        )
                        or (
                            arg.end_col_offset is not None
                            and default.end_col_offset is not None
                            and arg.end_col_offset < default.end_col_offset
                        )
                    ):
                        continue

                    if isinstance(default, ast.Name):
                        func_arg["default"] = default.id
                    elif isinstance(default, ast.Constant):
                        func_arg["default"] = default.value

                if arg.annotation:
                    annotation_line = lines[arg.annotation.lineno - 1]
                    annotation_line = annotation_line[: arg.annotation.end_col_offset]
                    annotation_line = annotation_line[arg.annotation.col_offset :]
                    func_arg["annotation"] = annotation_line
                    if isinstance(func_arg["annotation"], str) and func_arg["annotation"].count("=") > 0:
                        func_arg["annotation"] = "=".join(func_arg["annotation"].split("=")[:-1]).strip()
                if isinstance(func["args"], list):
                    func["args"].append(func_arg)
            functions.append(func)

        return classes, functions

    def _find_imports(self, code: str) -> dotdict:
        imports: list[str] = []
        from_imports = []
        parsed_code = ast.parse(code)
        for node in parsed_code.body:
            if isinstance(node, ast.Import):
                imports.extend(alias.name for alias in node.names)
            elif isinstance(node, ast.ImportFrom):
                from_imports.append(node)
        return dotdict({"imports": imports, "from_imports": from_imports})

    def _get_value(self, value: Any, annotation: Any) -> Any:
        return value if isinstance(value, annotation) else value["value"]

    def _find_arg(self, named_functions: dict, func_name: str, arg_name: str) -> dict | None:
        for arg in named_functions[func_name]["args"]:
            if arg["name"] == arg_name:
                return arg
        return None

Python REPL Tool

This component creates a Python REPL (Read-Eval-Print Loop) tool for executing Python code.

Parameters

Inputs
Name Type Description

name

String

The name of the tool (default: "python_repl")

description

String

A description of the tool’s functionality

global_imports

List[String]

List of modules to import globally (default: ["math"])

Outputs
Name Type Description

tool

Tool

Python REPL tool for use in LangChain

Component code

python_repl.py
import importlib

from langchain.tools import StructuredTool
from langchain_core.tools import ToolException
from langchain_experimental.utilities import PythonREPL
from loguru import logger
from pydantic import BaseModel, Field

from langflow.base.langchain_utilities.model import LCToolComponent
from langflow.field_typing import Tool
from langflow.inputs import StrInput
from langflow.schema import Data


class PythonREPLToolComponent(LCToolComponent):
    display_name = "Python REPL"
    description = "A tool for running Python code in a REPL environment."
    name = "PythonREPLTool"

    inputs = [
        StrInput(
            name="name",
            display_name="Tool Name",
            info="The name of the tool.",
            value="python_repl",
        ),
        StrInput(
            name="description",
            display_name="Tool Description",
            info="A description of the tool.",
            value="A Python shell. Use this to execute python commands. "
            "Input should be a valid python command. "
            "If you want to see the output of a value, you should print it out with `print(...)`.",
        ),
        StrInput(
            name="global_imports",
            display_name="Global Imports",
            info="A comma-separated list of modules to import globally, e.g. 'math,numpy'.",
            value="math",
        ),
        StrInput(
            name="code",
            display_name="Python Code",
            info="The Python code to execute.",
            value="print('Hello, World!')",
        ),
    ]

    class PythonREPLSchema(BaseModel):
        code: str = Field(..., description="The Python code to execute.")

    def get_globals(self, global_imports: str | list[str]) -> dict:
        global_dict = {}
        if isinstance(global_imports, str):
            modules = [module.strip() for module in global_imports.split(",")]
        elif isinstance(global_imports, list):
            modules = global_imports
        else:
            msg = "global_imports must be either a string or a list"
            raise TypeError(msg)

        for module in modules:
            try:
                imported_module = importlib.import_module(module)
                global_dict[imported_module.__name__] = imported_module
            except ImportError as e:
                msg = f"Could not import module {module}"
                raise ImportError(msg) from e
        return global_dict

    def build_tool(self) -> Tool:
        _globals = self.get_globals(self.global_imports)
        python_repl = PythonREPL(_globals=_globals)

        def run_python_code(code: str) -> str:
            try:
                return python_repl.run(code)
            except Exception as e:
                logger.opt(exception=True).debug("Error running Python code")
                raise ToolException(str(e)) from e

        tool = StructuredTool.from_function(
            name=self.name,
            description=self.description,
            func=run_python_code,
            args_schema=self.PythonREPLSchema,
        )

        self.status = f"Python REPL Tool created with global imports: {self.global_imports}"
        return tool

    def run_model(self) -> list[Data]:
        tool = self.build_tool()
        result = tool.run(self.code)
        return [Data(data={"result": result})]

Retriever Tool

This component creates a tool for interacting with a retriever in LangChain.

Parameters

Inputs
Name Type Description

retriever

BaseRetriever

The retriever to interact with

name

String

The name of the tool

description

String

A description of the tool’s functionality

Outputs
Name Type Description

tool

Tool

Retriever tool for use in LangChain

Component code

retriever.py
from langchain_core.tools import create_retriever_tool

from langflow.custom import CustomComponent
from langflow.field_typing import BaseRetriever, Tool


class RetrieverToolComponent(CustomComponent):
    display_name = "RetrieverTool"
    description = "Tool for interacting with retriever"
    name = "RetrieverTool"

    def build_config(self):
        return {
            "retriever": {
                "display_name": "Retriever",
                "info": "Retriever to interact with",
                "type": BaseRetriever,
                "input_types": ["Retriever"],
            },
            "name": {"display_name": "Name", "info": "Name of the tool"},
            "description": {"display_name": "Description", "info": "Description of the tool"},
        }

    def build(self, retriever: BaseRetriever, name: str, description: str, **kwargs) -> Tool:
        _ = kwargs
        return create_retriever_tool(
            retriever=retriever,
            name=name,
            description=description,
        )

SearXNG Search Tool

This component creates a tool for searching using SearXNG, a metasearch engine.

Parameters

Inputs
Name Type Description

url

String

The URL of the SearXNG instance

max_results

Integer

Maximum number of results to return

categories

List[String]

Categories to search in

language

String

Language for the search results

Outputs
Name Type Description

result_tool

Tool

SearXNG search tool for use in LangChain

Component code

searxng.py
import json
from collections.abc import Sequence
from typing import Any

import requests
from langchain.agents import Tool
from langchain_core.tools import StructuredTool
from loguru import logger
from pydantic.v1 import Field, create_model

from langflow.base.langchain_utilities.model import LCToolComponent
from langflow.inputs import DropdownInput, IntInput, MessageTextInput, MultiselectInput
from langflow.io import Output
from langflow.schema.dotdict import dotdict


class SearXNGToolComponent(LCToolComponent):
    search_headers: dict = {}
    display_name = "SearXNG Search"
    description = "A component that searches for tools using SearXNG."
    name = "SearXNGTool"
    legacy: bool = True

    inputs = [
        MessageTextInput(
            name="url",
            display_name="URL",
            value="http://localhost",
            required=True,
            refresh_button=True,
        ),
        IntInput(
            name="max_results",
            display_name="Max Results",
            value=10,
            required=True,
        ),
        MultiselectInput(
            name="categories",
            display_name="Categories",
            options=[],
            value=[],
        ),
        DropdownInput(
            name="language",
            display_name="Language",
            options=[],
        ),
    ]

    outputs = [
        Output(display_name="Tool", name="result_tool", method="build_tool"),
    ]

    def update_build_config(self, build_config: dotdict, field_value: Any, field_name: str | None = None) -> dotdict:
        if field_name is None:
            return build_config

        if field_name != "url":
            return build_config

        try:
            url = f"{field_value}/config"

            response = requests.get(url=url, headers=self.search_headers.copy(), timeout=10)
            data = None
            if response.headers.get("Content-Encoding") == "zstd":
                data = json.loads(response.content)
            else:
                data = response.json()
            build_config["categories"]["options"] = data["categories"].copy()
            for selected_category in build_config["categories"]["value"]:
                if selected_category not in build_config["categories"]["options"]:
                    build_config["categories"]["value"].remove(selected_category)
            languages = list(data["locales"])
            build_config["language"]["options"] = languages.copy()
        except Exception as e:  # noqa: BLE001
            self.status = f"Failed to extract names: {e}"
            logger.opt(exception=True).debug(self.status)
            build_config["categories"]["options"] = ["Failed to parse", str(e)]
        return build_config

    def build_tool(self) -> Tool:
        class SearxSearch:
            _url: str = ""
            _categories: list[str] = []
            _language: str = ""
            _headers: dict = {}
            _max_results: int = 10

            @staticmethod
            def search(query: str, categories: Sequence[str] = ()) -> list:
                if not SearxSearch._categories and not categories:
                    msg = "No categories provided."
                    raise ValueError(msg)
                all_categories = SearxSearch._categories + list(set(categories) - set(SearxSearch._categories))
                try:
                    url = f"{SearxSearch._url}/"
                    headers = SearxSearch._headers.copy()
                    response = requests.get(
                        url=url,
                        headers=headers,
                        params={
                            "q": query,
                            "categories": ",".join(all_categories),
                            "language": SearxSearch._language,
                            "format": "json",
                        },
                        timeout=10,
                    ).json()

                    num_results = min(SearxSearch._max_results, len(response["results"]))
                    return [response["results"][i] for i in range(num_results)]
                except Exception as e:  # noqa: BLE001
                    logger.opt(exception=True).debug("Error running SearXNG Search")
                    return [f"Failed to search: {e}"]

        SearxSearch._url = self.url
        SearxSearch._categories = self.categories.copy()
        SearxSearch._language = self.language
        SearxSearch._headers = self.search_headers.copy()
        SearxSearch._max_results = self.max_results

        _globals = globals()
        _local = {}
        _local["SearxSearch"] = SearxSearch
        _globals.update(_local)

        schema_fields = {
            "query": (str, Field(..., description="The query to search for.")),
            "categories": (
                list[str],
                Field(default=[], description="The categories to search in."),
            ),
        }

        searx_search_schema = create_model("SearxSearchSchema", **schema_fields)

        return StructuredTool.from_function(
            func=_local["SearxSearch"].search,
            args_schema=searx_search_schema,
            name="searxng_search_tool",
            description="A tool that searches for tools using SearXNG.\nThe available categories are: "
            + ", ".join(self.categories),
        )

Search API

This component calls the searchapi.io API. It can be used to search the web for information.

For more information, see the SearchAPI documentation.

Parameters

Inputs
Name Display Name Info

engine

Engine

The search engine to use (default: "google")

api_key

SearchAPI API Key

The API key for authenticating with SearchAPI

input_value

Input

The search query or input for the API call

search_params

Search parameters

Additional parameters for customizing the search

Outputs
Name Display Name Info

data

Search Results

List of Data objects containing search results

tool

Search API Tool

A Tool object for use in LangChain workflows

Component code

search_api.py
from typing import Any

from langchain.tools import StructuredTool
from langchain_community.utilities.searchapi import SearchApiAPIWrapper
from pydantic import BaseModel, Field

from langflow.base.langchain_utilities.model import LCToolComponent
from langflow.field_typing import Tool
from langflow.inputs import DictInput, IntInput, MessageTextInput, MultilineInput, SecretStrInput
from langflow.schema import Data


class SearchAPIComponent(LCToolComponent):
    display_name: str = "Search API"
    description: str = "Call the searchapi.io API with result limiting"
    name = "SearchAPI"
    documentation: str = "https://www.searchapi.io/docs/google"

    inputs = [
        MessageTextInput(name="engine", display_name="Engine", value="google"),
        SecretStrInput(name="api_key", display_name="SearchAPI API Key", required=True),
        MultilineInput(
            name="input_value",
            display_name="Input",
        ),
        DictInput(name="search_params", display_name="Search parameters", advanced=True, is_list=True),
        IntInput(name="max_results", display_name="Max Results", value=5, advanced=True),
        IntInput(name="max_snippet_length", display_name="Max Snippet Length", value=100, advanced=True),
    ]

    class SearchAPISchema(BaseModel):
        query: str = Field(..., description="The search query")
        params: dict[str, Any] = Field(default_factory=dict, description="Additional search parameters")
        max_results: int = Field(5, description="Maximum number of results to return")
        max_snippet_length: int = Field(100, description="Maximum length of each result snippet")

    def _build_wrapper(self):
        return SearchApiAPIWrapper(engine=self.engine, searchapi_api_key=self.api_key)

    def build_tool(self) -> Tool:
        wrapper = self._build_wrapper()

        def search_func(
            query: str, params: dict[str, Any] | None = None, max_results: int = 5, max_snippet_length: int = 100
        ) -> list[dict[str, Any]]:
            params = params or {}
            full_results = wrapper.results(query=query, **params)
            organic_results = full_results.get("organic_results", [])[:max_results]

            limited_results = []
            for result in organic_results:
                limited_result = {
                    "title": result.get("title", "")[:max_snippet_length],
                    "link": result.get("link", ""),
                    "snippet": result.get("snippet", "")[:max_snippet_length],
                }
                limited_results.append(limited_result)

            return limited_results

        tool = StructuredTool.from_function(
            name="search_api",
            description="Search for recent results using searchapi.io with result limiting",
            func=search_func,
            args_schema=self.SearchAPISchema,
        )

        self.status = f"Search API Tool created with engine: {self.engine}"
        return tool

    def run_model(self) -> list[Data]:
        tool = self.build_tool()
        results = tool.run(
            {
                "query": self.input_value,
                "params": self.search_params or {},
                "max_results": self.max_results,
                "max_snippet_length": self.max_snippet_length,
            }
        )

        data_list = [Data(data=result, text=result.get("snippet", "")) for result in results]

        self.status = data_list
        return data_list

Serp Search API

This component creates a tool for searching using the Serp API.

Parameters

Inputs
Name Type Description

serpapi_api_key

SecretString

API key for Serp API authentication

input_value

String

Search query input

search_params

Dict

Additional search parameters (optional)

Outputs
Name Type Description

results

List[Data]

List of search results

tool

Tool

Serp API search tool for use in LangChain

Component code

serp_api.py
from typing import Any

from langchain.tools import StructuredTool
from langchain_community.utilities.serpapi import SerpAPIWrapper
from langchain_core.tools import ToolException
from loguru import logger
from pydantic import BaseModel, Field

from langflow.base.langchain_utilities.model import LCToolComponent
from langflow.field_typing import Tool
from langflow.inputs import DictInput, IntInput, MultilineInput, SecretStrInput
from langflow.schema import Data


class SerpAPISchema(BaseModel):
    """Schema for SerpAPI search parameters."""

    query: str = Field(..., description="The search query")
    params: dict[str, Any] | None = Field(
        default={
            "engine": "google",
            "google_domain": "google.com",
            "gl": "us",
            "hl": "en",
        },
        description="Additional search parameters",
    )
    max_results: int = Field(5, description="Maximum number of results to return")
    max_snippet_length: int = Field(100, description="Maximum length of each result snippet")


class SerpAPIComponent(LCToolComponent):
    display_name = "Serp Search API"
    description = "Call Serp Search API with result limiting"
    name = "SerpAPI"

    inputs = [
        SecretStrInput(name="serpapi_api_key", display_name="SerpAPI API Key", required=True),
        MultilineInput(
            name="input_value",
            display_name="Input",
        ),
        DictInput(name="search_params", display_name="Parameters", advanced=True, is_list=True),
        IntInput(name="max_results", display_name="Max Results", value=5, advanced=True),
        IntInput(name="max_snippet_length", display_name="Max Snippet Length", value=100, advanced=True),
    ]

    def _build_wrapper(self, params: dict[str, Any] | None = None) -> SerpAPIWrapper:
        """Build a SerpAPIWrapper with the provided parameters."""
        params = params or {}
        if params:
            return SerpAPIWrapper(
                serpapi_api_key=self.serpapi_api_key,
                params=params,
            )
        return SerpAPIWrapper(serpapi_api_key=self.serpapi_api_key)

    def build_tool(self) -> Tool:
        wrapper = self._build_wrapper(self.search_params)  # noqa: F841

        def search_func(
            query: str, params: dict[str, Any] | None = None, max_results: int = 5, max_snippet_length: int = 100
        ) -> list[dict[str, Any]]:
            try:
                # rebuild the wrapper if params are provided
                if params:
                    wrapper = self._build_wrapper(params)

                full_results = wrapper.results(query)
                organic_results = full_results.get("organic_results", [])[:max_results]

                limited_results = []
                for result in organic_results:
                    limited_result = {
                        "title": result.get("title", "")[:max_snippet_length],
                        "link": result.get("link", ""),
                        "snippet": result.get("snippet", "")[:max_snippet_length],
                    }
                    limited_results.append(limited_result)

            except Exception as e:
                error_message = f"Error in SerpAPI search: {e!s}"
                logger.debug(error_message)
                raise ToolException(error_message) from e
            return limited_results

        tool = StructuredTool.from_function(
            name="serp_search_api",
            description="Search for recent results using SerpAPI with result limiting",
            func=search_func,
            args_schema=SerpAPISchema,
        )

        self.status = "SerpAPI Tool created"
        return tool

    def run_model(self) -> list[Data]:
        tool = self.build_tool()
        try:
            results = tool.run(
                {
                    "query": self.input_value,
                    "params": self.search_params or {},
                    "max_results": self.max_results,
                    "max_snippet_length": self.max_snippet_length,
                }
            )

            data_list = [Data(data=result, text=result.get("snippet", "")) for result in results]

        except Exception as e:  # noqa: BLE001
            logger.opt(exception=True).debug("Error running SerpAPI")
            self.status = f"Error: {e}"
            return [Data(data={"error": str(e)}, text=str(e))]

        self.status = data_list  # type: ignore[assignment]
        return data_list

Wikipedia API

This component creates a tool for searching and retrieving information from Wikipedia.

Parameters

Inputs
Name Type Description

input_value

String

Search query input

lang

String

Language code for Wikipedia (default: "en")

k

Integer

Number of results to return

load_all_available_meta

Boolean

Whether to load all available metadata (advanced)

doc_content_chars_max

Integer

Maximum number of characters for document content (advanced)

Outputs
Name Type Description

results

List[Data]

List of Wikipedia search results

tool

Tool

Wikipedia search tool for use in LangChain

Component code

wikipedia_api.py
from typing import cast

from langchain_community.tools import WikipediaQueryRun
from langchain_community.utilities.wikipedia import WikipediaAPIWrapper

from langflow.base.langchain_utilities.model import LCToolComponent
from langflow.field_typing import Tool
from langflow.inputs import BoolInput, IntInput, MessageTextInput, MultilineInput
from langflow.schema import Data


class WikipediaAPIComponent(LCToolComponent):
    display_name = "Wikipedia API"
    description = "Call Wikipedia API."
    name = "WikipediaAPI"

    inputs = [
        MultilineInput(
            name="input_value",
            display_name="Input",
        ),
        MessageTextInput(name="lang", display_name="Language", value="en"),
        IntInput(name="k", display_name="Number of results", value=4, required=True),
        BoolInput(name="load_all_available_meta", display_name="Load all available meta", value=False, advanced=True),
        IntInput(
            name="doc_content_chars_max", display_name="Document content characters max", value=4000, advanced=True
        ),
    ]

    def run_model(self) -> list[Data]:
        wrapper = self._build_wrapper()
        docs = wrapper.load(self.input_value)
        data = [Data.from_document(doc) for doc in docs]
        self.status = data
        return data

    def build_tool(self) -> Tool:
        wrapper = self._build_wrapper()
        return cast(Tool, WikipediaQueryRun(api_wrapper=wrapper))

    def _build_wrapper(self) -> WikipediaAPIWrapper:
        return WikipediaAPIWrapper(
            top_k_results=self.k,
            lang=self.lang,
            load_all_available_meta=self.load_all_available_meta,
            doc_content_chars_max=self.doc_content_chars_max,
        )

Wolfram Alpha API

This component creates a tool for querying the Wolfram Alpha API.

Parameters

Inputs
Name Type Description

input_value

String

Query input for Wolfram Alpha

app_id

SecretString

Wolfram Alpha API App ID

Outputs
Name Type Description

results

List[Data]

List containing the Wolfram Alpha API response

tool

Tool

Wolfram Alpha API tool for use in LangChain

Component code

wolfram_alpha_api.py
from langchain_community.utilities.wolfram_alpha import WolframAlphaAPIWrapper

from langflow.base.langchain_utilities.model import LCToolComponent
from langflow.field_typing import Tool
from langflow.inputs import MultilineInput, SecretStrInput
from langflow.schema import Data


class WolframAlphaAPIComponent(LCToolComponent):
    display_name = "WolframAlpha API"
    description = """Enables queries to Wolfram Alpha for computational data, facts, and calculations across various \
topics, delivering structured responses."""
    name = "WolframAlphaAPI"

    inputs = [
        MultilineInput(
            name="input_value", display_name="Input Query", info="Example query: 'What is the population of France?'"
        ),
        SecretStrInput(name="app_id", display_name="App ID", required=True),
    ]

    def run_model(self) -> list[Data]:
        wrapper = self._build_wrapper()
        result_str = wrapper.run(self.input_value)
        data = [Data(text=result_str)]
        self.status = data
        return data

    def build_tool(self) -> Tool:
        wrapper = self._build_wrapper()
        return Tool(name="wolfram_alpha_api", description="Answers mathematical questions.", func=wrapper.run)

    def _build_wrapper(self) -> WolframAlphaAPIWrapper:
        return WolframAlphaAPIWrapper(wolfram_alpha_appid=self.app_id)

Yahoo Finance News Tool

This component creates a tool for retrieving news from Yahoo Finance.

Parameters

This component does not have any input parameters.

Outputs
Name Type Description

tool

Tool

Yahoo Finance News tool for use in LangChain

Component code

yahoo_finance.py
import ast
import pprint
from enum import Enum

import yfinance as yf
from langchain.tools import StructuredTool
from langchain_core.tools import ToolException
from loguru import logger
from pydantic import BaseModel, Field

from langflow.base.langchain_utilities.model import LCToolComponent
from langflow.field_typing import Tool
from langflow.inputs import DropdownInput, IntInput, MessageTextInput
from langflow.schema import Data


class YahooFinanceMethod(Enum):
    GET_INFO = "get_info"
    GET_NEWS = "get_news"
    GET_ACTIONS = "get_actions"
    GET_ANALYSIS = "get_analysis"
    GET_BALANCE_SHEET = "get_balance_sheet"
    GET_CALENDAR = "get_calendar"
    GET_CASHFLOW = "get_cashflow"
    GET_INSTITUTIONAL_HOLDERS = "get_institutional_holders"
    GET_RECOMMENDATIONS = "get_recommendations"
    GET_SUSTAINABILITY = "get_sustainability"
    GET_MAJOR_HOLDERS = "get_major_holders"
    GET_MUTUALFUND_HOLDERS = "get_mutualfund_holders"
    GET_INSIDER_PURCHASES = "get_insider_purchases"
    GET_INSIDER_TRANSACTIONS = "get_insider_transactions"
    GET_INSIDER_ROSTER_HOLDERS = "get_insider_roster_holders"
    GET_DIVIDENDS = "get_dividends"
    GET_CAPITAL_GAINS = "get_capital_gains"
    GET_SPLITS = "get_splits"
    GET_SHARES = "get_shares"
    GET_FAST_INFO = "get_fast_info"
    GET_SEC_FILINGS = "get_sec_filings"
    GET_RECOMMENDATIONS_SUMMARY = "get_recommendations_summary"
    GET_UPGRADES_DOWNGRADES = "get_upgrades_downgrades"
    GET_EARNINGS = "get_earnings"
    GET_INCOME_STMT = "get_income_stmt"


class YahooFinanceSchema(BaseModel):
    symbol: str = Field(..., description="The stock symbol to retrieve data for.")
    method: YahooFinanceMethod = Field(YahooFinanceMethod.GET_INFO, description="The type of data to retrieve.")
    num_news: int | None = Field(5, description="The number of news articles to retrieve.")


class YfinanceToolComponent(LCToolComponent):
    display_name = "Yahoo Finance"
    description = """Uses [yfinance](https://pypi.org/project/yfinance/) (unofficial package) \
to access financial data and market information from Yahoo Finance."""
    icon = "trending-up"
    name = "YahooFinanceTool"

    inputs = [
        MessageTextInput(
            name="symbol",
            display_name="Stock Symbol",
            info="The stock symbol to retrieve data for (e.g., AAPL, GOOG).",
        ),
        DropdownInput(
            name="method",
            display_name="Data Method",
            info="The type of data to retrieve.",
            options=list(YahooFinanceMethod),
            value="get_news",
        ),
        IntInput(
            name="num_news",
            display_name="Number of News",
            info="The number of news articles to retrieve (only applicable for get_news).",
            value=5,
        ),
    ]

    def run_model(self) -> list[Data]:
        return self._yahoo_finance_tool(
            self.symbol,
            self.method,
            self.num_news,
        )

    def build_tool(self) -> Tool:
        return StructuredTool.from_function(
            name="yahoo_finance",
            description="Access financial data and market information from Yahoo Finance.",
            func=self._yahoo_finance_tool,
            args_schema=YahooFinanceSchema,
        )

    def _yahoo_finance_tool(
        self,
        symbol: str,
        method: YahooFinanceMethod,
        num_news: int | None = 5,
    ) -> list[Data]:
        ticker = yf.Ticker(symbol)

        try:
            if method == YahooFinanceMethod.GET_INFO:
                result = ticker.info
            elif method == YahooFinanceMethod.GET_NEWS:
                result = ticker.news[:num_news]
            else:
                result = getattr(ticker, method.value)()

            result = pprint.pformat(result)

            if method == YahooFinanceMethod.GET_NEWS:
                data_list = [Data(data=article) for article in ast.literal_eval(result)]
            else:
                data_list = [Data(data={"result": result})]

        except Exception as e:
            error_message = f"Error retrieving data: {e}"
            logger.debug(error_message)
            self.status = error_message
            raise ToolException(error_message) from e

        return data_list

Was this helpful?

Give Feedback

How can we improve the documentation?

© 2024 DataStax | Privacy policy | Terms of use

Apache, Apache Cassandra, Cassandra, Apache Tomcat, Tomcat, Apache Lucene, Apache Solr, Apache Hadoop, Hadoop, Apache Pulsar, Pulsar, Apache Spark, Spark, Apache TinkerPop, TinkerPop, Apache Kafka and Kafka are either registered trademarks or trademarks of the Apache Software Foundation or its subsidiaries in Canada, the United States and/or other countries. Kubernetes is the registered trademark of the Linux Foundation.

General Inquiries: +1 (650) 389-6000, info@datastax.com