Logic components in Langflow
Logic components provide functionalities for routing, conditional processing, and flow management.
Conditional router
This component routes messages based on text comparison. It evaluates a condition by comparing two text inputs using a specified operator and routes the message accordingly.
Parameters
Name | Type | Description |
---|---|---|
input_text |
String |
The primary text input for the operation. |
match_text |
String |
The text input to compare against. |
operator |
Dropdown |
The operator to apply for comparing the texts. |
case_sensitive |
Boolean |
If true, the comparison will be case sensitive. |
message |
Message |
The message to pass through either route. |
max_iterations |
Integer |
The maximum number of iterations for the conditional router. |
default_route |
Dropdown |
The default route to take when max iterations are reached. |
Name | Type | Description |
---|---|---|
true_result |
Message |
The output when the condition is true. |
false_result |
Message |
The output when the condition is false. |
Component code
conditional_router.py
from langflow.custom import Component
from langflow.io import BoolInput, DropdownInput, IntInput, MessageInput, MessageTextInput, Output
from langflow.schema.message import Message
class ConditionalRouterComponent(Component):
display_name = "If-Else"
description = "Routes an input message to a corresponding output based on text comparison."
icon = "split"
name = "ConditionalRouter"
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.__iteration_updated = False
inputs = [
MessageTextInput(
name="input_text",
display_name="Text Input",
info="The primary text input for the operation.",
),
MessageTextInput(
name="match_text",
display_name="Match Text",
info="The text input to compare against.",
),
DropdownInput(
name="operator",
display_name="Operator",
options=["equals", "not equals", "contains", "starts with", "ends with"],
info="The operator to apply for comparing the texts.",
value="equals",
),
BoolInput(
name="case_sensitive",
display_name="Case Sensitive",
info="If true, the comparison will be case sensitive.",
value=False,
advanced=True,
),
MessageInput(
name="message",
display_name="Message",
info="The message to pass through either route.",
advanced=True,
),
IntInput(
name="max_iterations",
display_name="Max Iterations",
info="The maximum number of iterations for the conditional router.",
value=10,
),
DropdownInput(
name="default_route",
display_name="Default Route",
options=["true_result", "false_result"],
info="The default route to take when max iterations are reached.",
value="false_result",
advanced=True,
),
]
outputs = [
Output(display_name="True", name="true_result", method="true_response"),
Output(display_name="False", name="false_result", method="false_response"),
]
def _pre_run_setup(self):
self.__iteration_updated = False
def evaluate_condition(self, input_text: str, match_text: str, operator: str, *, case_sensitive: bool) -> bool:
if not case_sensitive:
input_text = input_text.lower()
match_text = match_text.lower()
if operator == "equals":
return input_text == match_text
if operator == "not equals":
return input_text != match_text
if operator == "contains":
return match_text in input_text
if operator == "starts with":
return input_text.startswith(match_text)
if operator == "ends with":
return input_text.endswith(match_text)
return False
def iterate_and_stop_once(self, route_to_stop: str):
if not self.__iteration_updated:
self.update_ctx({f"{self._id}_iteration": self.ctx.get(f"{self._id}_iteration", 0) + 1})
self.__iteration_updated = True
if self.ctx.get(f"{self._id}_iteration", 0) >= self.max_iterations and route_to_stop == self.default_route:
# We need to stop the other route
route_to_stop = "true_result" if route_to_stop == "false_result" else "false_result"
self.stop(route_to_stop)
def true_response(self) -> Message:
result = self.evaluate_condition(
self.input_text, self.match_text, self.operator, case_sensitive=self.case_sensitive
)
if result:
self.status = self.message
self.iterate_and_stop_once("false_result")
return self.message
self.iterate_and_stop_once("true_result")
return self.message
def false_response(self) -> Message:
result = self.evaluate_condition(
self.input_text, self.match_text, self.operator, case_sensitive=self.case_sensitive
)
if not result:
self.status = self.message
self.iterate_and_stop_once("true_result")
return self.message
self.iterate_and_stop_once("false_result")
return self.message
Data conditional router
This component routes Data objects based on a condition applied to a specified key, including boolean validation.
Parameters
Name | Type | Description |
---|---|---|
data_input |
Data |
The data object or list of data objects to process. |
key_name |
String |
The name of the key in the data object to check. |
operator |
Dropdown |
The operator to apply for comparing the values. |
compare_value |
String |
The value to compare against (not used for boolean validator). |
Name | Type | Description |
---|---|---|
true_output |
Data/List |
Output when the condition is met. |
false_output |
Data/List |
Output when the condition is not met. |
Component code
data_conditional_router.py
from typing import Any
from langflow.custom import Component
from langflow.io import DataInput, DropdownInput, MessageTextInput, Output
from langflow.schema import Data, dotdict
class DataConditionalRouterComponent(Component):
display_name = "Condition"
description = "Route Data object(s) based on a condition applied to a specified key, including boolean validation."
icon = "split"
name = "DataConditionalRouter"
legacy = True
inputs = [
DataInput(
name="data_input",
display_name="Data Input",
info="The Data object or list of Data objects to process",
is_list=True,
),
MessageTextInput(
name="key_name",
display_name="Key Name",
info="The name of the key in the Data object(s) to check",
),
DropdownInput(
name="operator",
display_name="Operator",
options=["equals", "not equals", "contains", "starts with", "ends with", "boolean validator"],
info="The operator to apply for comparing the values. 'boolean validator' treats the value as a boolean.",
value="equals",
),
MessageTextInput(
name="compare_value",
display_name="Match Text",
info="The value to compare against (not used for boolean validator)",
),
]
outputs = [
Output(display_name="True Output", name="true_output", method="process_data"),
Output(display_name="False Output", name="false_output", method="process_data"),
]
def compare_values(self, item_value: str, compare_value: str, operator: str) -> bool:
if operator == "equals":
return item_value == compare_value
if operator == "not equals":
return item_value != compare_value
if operator == "contains":
return compare_value in item_value
if operator == "starts with":
return item_value.startswith(compare_value)
if operator == "ends with":
return item_value.endswith(compare_value)
if operator == "boolean validator":
return self.parse_boolean(item_value)
return False
def parse_boolean(self, value):
if isinstance(value, bool):
return value
if isinstance(value, str):
return value.lower() in {"true", "1", "yes", "y", "on"}
return bool(value)
def validate_input(self, data_item: Data) -> bool:
if not isinstance(data_item, Data):
self.status = "Input is not a Data object"
return False
if self.key_name not in data_item.data:
self.status = f"Key '{self.key_name}' not found in Data"
return False
return True
def process_data(self) -> Data | list[Data]:
if isinstance(self.data_input, list):
true_output = []
false_output = []
for item in self.data_input:
if self.validate_input(item):
result = self.process_single_data(item)
if result:
true_output.append(item)
else:
false_output.append(item)
self.stop("false_output" if true_output else "true_output")
return true_output or false_output
if not self.validate_input(self.data_input):
return Data(data={"error": self.status})
result = self.process_single_data(self.data_input)
self.stop("false_output" if result else "true_output")
return self.data_input
def process_single_data(self, data_item: Data) -> bool:
item_value = data_item.data[self.key_name]
operator = self.operator
if operator == "boolean validator":
condition_met = self.parse_boolean(item_value)
condition_description = f"Boolean validation of '{self.key_name}'"
else:
compare_value = self.compare_value
condition_met = self.compare_values(str(item_value), compare_value, operator)
condition_description = f"{self.key_name} {operator} {compare_value}"
if condition_met:
self.status = f"Condition met: {condition_description}"
return True
self.status = f"Condition not met: {condition_description}"
return False
def update_build_config(self, build_config: dotdict, field_value: Any, field_name: str | None = None):
if field_name == "operator":
if field_value == "boolean validator":
build_config["compare_value"]["show"] = False
build_config["compare_value"]["advanced"] = True
build_config["compare_value"]["value"] = None
else:
build_config["compare_value"]["show"] = True
build_config["compare_value"]["advanced"] = False
return build_config
Flow as Tool
This component constructs a tool from a function that runs a loaded flow.
Parameters
Name | Type | Description |
---|---|---|
flow_name |
Dropdown |
The name of the flow to run. |
tool_name |
String |
The name of the tool. |
tool_description |
String |
The description of the tool. |
return_direct |
Boolean |
If true, returns the result directly from the tool. |
Name | Type | Description |
---|---|---|
api_build_tool |
Tool |
The constructed tool from the flow. |
Component code
flow_tool.py
from typing import Any
from loguru import logger
from typing_extensions import override
from langflow.base.langchain_utilities.model import LCToolComponent
from langflow.base.tools.flow_tool import FlowTool
from langflow.field_typing import Tool
from langflow.graph.graph.base import Graph
from langflow.helpers.flow import get_flow_inputs
from langflow.io import BoolInput, DropdownInput, Output, StrInput
from langflow.schema import Data
from langflow.schema.dotdict import dotdict
class FlowToolComponent(LCToolComponent):
display_name = "Flow as Tool"
description = "Construct a Tool from a function that runs the loaded Flow."
field_order = ["flow_name", "name", "description", "return_direct"]
trace_type = "tool"
name = "FlowTool"
beta = True
icon = "hammer"
def get_flow_names(self) -> list[str]:
flow_datas = self.list_flows()
return [flow_data.data["name"] for flow_data in flow_datas]
def get_flow(self, flow_name: str) -> Data | None:
"""Retrieves a flow by its name.
Args:
flow_name (str): The name of the flow to retrieve.
Returns:
Optional[Text]: The flow record if found, None otherwise.
"""
flow_datas = self.list_flows()
for flow_data in flow_datas:
if flow_data.data["name"] == flow_name:
return flow_data
return None
@override
def update_build_config(self, build_config: dotdict, field_value: Any, field_name: str | None = None):
if field_name == "flow_name":
build_config["flow_name"]["options"] = self.get_flow_names()
return build_config
inputs = [
DropdownInput(
name="flow_name", display_name="Flow Name", info="The name of the flow to run.", refresh_button=True
),
StrInput(
name="tool_name",
display_name="Name",
info="The name of the tool.",
),
StrInput(
name="tool_description",
display_name="Description",
info="The description of the tool.",
),
BoolInput(
name="return_direct",
display_name="Return Direct",
info="Return the result directly from the Tool.",
advanced=True,
),
]
outputs = [
Output(name="api_build_tool", display_name="Tool", method="build_tool"),
]
def build_tool(self) -> Tool:
FlowTool.model_rebuild()
if "flow_name" not in self._attributes or not self._attributes["flow_name"]:
msg = "Flow name is required"
raise ValueError(msg)
flow_name = self._attributes["flow_name"]
flow_data = self.get_flow(flow_name)
if not flow_data:
msg = "Flow not found."
raise ValueError(msg)
graph = Graph.from_payload(
flow_data.data["data"],
user_id=str(self.user_id),
)
try:
graph.set_run_id(self.graph.run_id)
except Exception: # noqa: BLE001
logger.opt(exception=True).warning("Failed to set run_id")
inputs = get_flow_inputs(graph)
tool = FlowTool(
name=self.tool_name,
description=self.tool_description,
graph=graph,
return_direct=self.return_direct,
inputs=inputs,
flow_id=str(flow_data.id),
user_id=str(self.user_id),
session_id=self.graph.session_id if hasattr(self, "graph") else None,
)
description_repr = repr(tool.description).strip("'")
args_str = "\n".join([f"- {arg_name}: {arg_data['description']}" for arg_name, arg_data in tool.args.items()])
self.status = f"{description_repr}\nArguments:\n{args_str}"
return tool
Listen
This component listens for a notification and retrieves its associated state.
Parameters
Name | Type | Description |
---|---|---|
name |
String |
The name of the notification to listen for. |
Name | Type | Description |
---|---|---|
output |
Data |
The state associated with the notification. |
Component code
listen.py
from langflow.custom import CustomComponent
from langflow.schema import Data
class ListenComponent(CustomComponent):
display_name = "Listen"
description = "A component to listen for a notification."
name = "Listen"
beta: bool = True
icon = "Radio"
def build_config(self):
return {
"name": {
"display_name": "Name",
"info": "The name of the notification to listen for.",
},
}
def build(self, name: str) -> Data:
state = self.get_state(name)
self._set_successors_ids()
self.status = state
return state
def _set_successors_ids(self):
self._vertex.is_state = True
successors = self._vertex.graph.successor_map.get(self._vertex.id, [])
return successors + self._vertex.graph.activated_vertices
Notify
This component generates a notification for the Listen component to use.
Parameters
Name | Type | Description |
---|---|---|
name |
String |
The name of the notification. |
data |
Data |
The data to store in the notification. |
append |
Boolean |
If true, the record will be appended to the existing notification. |
Name | Type | Description |
---|---|---|
output |
Data |
The data stored in the notification. |
Component code
notify.py
from langflow.custom import CustomComponent
from langflow.schema import Data
class NotifyComponent(CustomComponent):
display_name = "Notify"
description = "A component to generate a notification to Get Notified component."
icon = "Notify"
name = "Notify"
beta: bool = True
def build_config(self):
return {
"name": {"display_name": "Name", "info": "The name of the notification."},
"data": {"display_name": "Data", "info": "The data to store."},
"append": {
"display_name": "Append",
"info": "If True, the record will be appended to the notification.",
},
}
def build(self, name: str, *, data: Data | None = None, append: bool = False) -> Data:
if data and not isinstance(data, Data):
if isinstance(data, str):
data = Data(text=data)
elif isinstance(data, dict):
data = Data(data=data)
else:
data = Data(text=str(data))
elif not data:
data = Data(text="")
if data:
if append:
self.append_state(name, data)
else:
self.update_state(name, data)
else:
self.status = "No record provided."
self.status = data
self._set_successors_ids()
return data
def _set_successors_ids(self):
self._vertex.is_state = True
successors = self._vertex.graph.successor_map.get(self._vertex.id, [])
return successors + self._vertex.graph.activated_vertices
Run flow
This component runs a specified flow within a larger workflow with custom inputs and tweaks.
Parameters
Name | Type | Description |
---|---|---|
input_value |
String |
The input value for the flow to process. |
flow_name |
Dropdown |
The name of the flow to run. |
tweaks |
Nested Dict |
Tweaks to apply to the flow. |
Name | Type | Description |
---|---|---|
run_outputs |
List[Data] |
The results generated from running the flow. |
Component code
run_flow.py
from typing import TYPE_CHECKING, Any
from typing_extensions import override
from langflow.base.flow_processing.utils import build_data_from_run_outputs
from langflow.custom import Component
from langflow.io import DropdownInput, MessageTextInput, NestedDictInput, Output
from langflow.schema import Data, dotdict
if TYPE_CHECKING:
from langflow.graph.schema import RunOutputs
class RunFlowComponent(Component):
display_name = "Run Flow"
description = "A component to run a flow."
name = "RunFlow"
legacy: bool = True
icon = "workflow"
def get_flow_names(self) -> list[str]:
flow_data = self.list_flows()
return [flow_data.data["name"] for flow_data in flow_data]
@override
def update_build_config(self, build_config: dotdict, field_value: Any, field_name: str | None = None):
if field_name == "flow_name":
build_config["flow_name"]["options"] = self.get_flow_names()
return build_config
inputs = [
MessageTextInput(
name="input_value",
display_name="Input Value",
info="The input value to be processed by the flow.",
),
DropdownInput(
name="flow_name",
display_name="Flow Name",
info="The name of the flow to run.",
options=[],
refresh_button=True,
),
NestedDictInput(
name="tweaks",
display_name="Tweaks",
info="Tweaks to apply to the flow.",
),
]
outputs = [
Output(display_name="Run Outputs", name="run_outputs", method="generate_results"),
]
async def generate_results(self) -> list[Data]:
if "flow_name" not in self._attributes or not self._attributes["flow_name"]:
msg = "Flow name is required"
raise ValueError(msg)
flow_name = self._attributes["flow_name"]
results: list[RunOutputs | None] = await self.run_flow(
inputs={"input_value": self.input_value}, flow_name=flow_name, tweaks=self.tweaks
)
if isinstance(results, list):
data = []
for result in results:
if result:
data.extend(build_data_from_run_outputs(result))
else:
data = build_data_from_run_outputs()(results)
self.status = data
return data
Sub Flow
This component integrates entire flows as components. It dynamically generates inputs based on the selected flow and executes the flow with provided parameters.
Parameters
Name | Type | Description |
---|---|---|
flow_name |
Dropdown |
The name of the flow to run. |
Name | Type | Description |
---|---|---|
flow_outputs |
List[Data] |
The outputs generated from the flow. |
Component code
sub_flow.py
from typing import Any
from loguru import logger
from langflow.base.flow_processing.utils import build_data_from_result_data
from langflow.custom import Component
from langflow.graph.graph.base import Graph
from langflow.graph.vertex.base import Vertex
from langflow.helpers.flow import get_flow_inputs
from langflow.io import DropdownInput, Output
from langflow.schema import Data, dotdict
class SubFlowComponent(Component):
display_name = "Sub Flow"
description = "Generates a Component from a Flow, with all of its inputs, and "
name = "SubFlow"
beta: bool = True
icon = "Workflow"
def get_flow_names(self) -> list[str]:
flow_data = self.list_flows()
return [flow_data.data["name"] for flow_data in flow_data]
def get_flow(self, flow_name: str) -> Data | None:
flow_datas = self.list_flows()
for flow_data in flow_datas:
if flow_data.data["name"] == flow_name:
return flow_data
return None
def update_build_config(self, build_config: dotdict, field_value: Any, field_name: str | None = None):
if field_name == "flow_name":
build_config["flow_name"]["options"] = self.get_flow_names()
for key in list(build_config.keys()):
if key not in [x.name for x in self.inputs] + ["code", "_type", "get_final_results_only"]:
del build_config[key]
if field_value is not None and field_name == "flow_name":
try:
flow_data = self.get_flow(field_value)
except Exception: # noqa: BLE001
logger.exception(f"Error getting flow {field_value}")
else:
if not flow_data:
msg = f"Flow {field_value} not found."
logger.error(msg)
else:
try:
graph = Graph.from_payload(flow_data.data["data"])
# Get all inputs from the graph
inputs = get_flow_inputs(graph)
# Add inputs to the build config
build_config = self.add_inputs_to_build_config(inputs, build_config)
except Exception: # noqa: BLE001
logger.exception(f"Error building graph for flow {field_value}")
return build_config
def add_inputs_to_build_config(self, inputs_vertex: list[Vertex], build_config: dotdict):
new_fields: list[dotdict] = []
for vertex in inputs_vertex:
new_vertex_inputs = []
field_template = vertex.data["node"]["template"]
for inp in field_template:
if inp not in {"code", "_type"}:
field_template[inp]["display_name"] = (
vertex.display_name + " - " + field_template[inp]["display_name"]
)
field_template[inp]["name"] = vertex.id + "|" + inp
new_vertex_inputs.append(field_template[inp])
new_fields += new_vertex_inputs
for field in new_fields:
build_config[field["name"]] = field
return build_config
inputs = [
DropdownInput(
name="flow_name",
display_name="Flow Name",
info="The name of the flow to run.",
options=[],
refresh_button=True,
real_time_refresh=True,
),
]
outputs = [Output(name="flow_outputs", display_name="Flow Outputs", method="generate_results")]
async def generate_results(self) -> list[Data]:
tweaks: dict = {}
for field in self._attributes:
if field != "flow_name" and "|" in field:
[node, name] = field.split("|")
if node not in tweaks:
tweaks[node] = {}
tweaks[node][name] = self._attributes[field]
flow_name = self._attributes.get("flow_name")
run_outputs = await self.run_flow(
tweaks=tweaks,
flow_name=flow_name,
output_type="all",
)
data: list[Data] = []
if not run_outputs:
return data
run_output = run_outputs[0]
if run_output is not None:
for output in run_output.outputs:
if output:
data.extend(build_data_from_result_data(output))
return data