Processing components in Langflow
Processing components process and transform data within a flow.
Use a processing component in a flow
The Split Text processing component in this flow splits the incoming Data
into chunks to be embedded into the vector store component.
The component offers control over chunk size, overlap, and separator, which affect context and granularity in vector store retrieval results.
Combine Text
This component concatenates two text sources into a single text chunk using a specified delimiter.
Parameters
Name | Display Name | Info |
---|---|---|
first_text |
First Text |
The first text input to concatenate. |
second_text |
Second Text |
The second text input to concatenate. |
delimiter |
Delimiter |
A string used to separate the two text inputs. Defaults to a space. |
Component code
combine_text.py
from langflow.custom import Component
from langflow.io import MessageTextInput, Output
from langflow.schema.message import Message
class CombineTextComponent(Component):
display_name = "Combine Text"
description = "Concatenate two text sources into a single text chunk using a specified delimiter."
icon = "merge"
name = "CombineText"
inputs = [
MessageTextInput(
name="text1",
display_name="First Text",
info="The first text input to concatenate.",
),
MessageTextInput(
name="text2",
display_name="Second Text",
info="The second text input to concatenate.",
),
MessageTextInput(
name="delimiter",
display_name="Delimiter",
info="A string used to separate the two text inputs. Defaults to a whitespace.",
value=" ",
),
]
outputs = [
Output(display_name="Combined Text", name="combined_text", method="combine_texts"),
]
def combine_texts(self) -> Message:
combined = self.delimiter.join([self.text1, self.text2])
self.status = combined
return Message(text=combined)
Filter data
The FilterData component filters a data object based on a list of specified keys. This component allows for selective extraction of data from a data object, retaining only the key-value pairs that match the provided filter criteria.
Parameters
Name | Display Name | Info |
---|---|---|
data |
data |
data object to filter |
filter_criteria |
Filter Criteria |
List of keys to filter by. |
Name | Display Name | Info |
---|---|---|
filtered_data |
Filtered data |
The resulting filtered data object. |
Component code
filter_data.py
from langflow.custom import Component
from langflow.io import DataInput, MessageTextInput, Output
from langflow.schema import Data
class FilterDataComponent(Component):
display_name = "Filter Data"
description = "Filters a Data object based on a list of keys."
icon = "filter"
beta = True
name = "FilterData"
inputs = [
DataInput(
name="data",
display_name="Data",
info="Data object to filter.",
),
MessageTextInput(
name="filter_criteria",
display_name="Filter Criteria",
info="List of keys to filter by.",
is_list=True,
),
]
outputs = [
Output(display_name="Filtered Data", name="filtered_data", method="filter_data"),
]
def filter_data(self) -> Data:
filter_criteria: list[str] = self.filter_criteria
data = self.data.data if isinstance(self.data, Data) else {}
# Filter the data
filtered = {key: value for key, value in data.items() if key in filter_criteria}
# Create a new Data object with the filtered data
filtered_data = Data(data=filtered)
self.status = filtered_data
return filtered_data
Filter Values
The Filter Values component filters a list of data items based on a specified key, filter value, and comparison operator.
Parameters
Name | Display Name | Info |
---|---|---|
input_data |
Input data |
The list of data items to filter. |
filter_key |
Filter Key |
The key to filter on (for example, 'route'). |
filter_value |
Filter Value |
The value to filter by (for example, 'CMIP'). |
operator |
Comparison Operator |
The operator to apply for comparing the values. |
Name | Display Name | Info |
---|---|---|
filtered_data |
Filtered data |
The resulting list of filtered data items. |
Component code
filter_data_values.py
from typing import Any
from langflow.custom import Component
from langflow.io import DataInput, DropdownInput, MessageTextInput, Output
from langflow.schema import Data
class DataFilterComponent(Component):
display_name = "Filter Values"
description = (
"Filter a list of data items based on a specified key, filter value,"
" and comparison operator. Check advanced options to select match comparision."
)
icon = "filter"
beta = True
name = "FilterDataValues"
inputs = [
DataInput(name="input_data", display_name="Input Data", info="The list of data items to filter.", is_list=True),
MessageTextInput(
name="filter_key",
display_name="Filter Key",
info="The key to filter on (e.g., 'route').",
value="route",
input_types=["Data"],
),
MessageTextInput(
name="filter_value",
display_name="Filter Value",
info="The value to filter by (e.g., 'CMIP').",
value="CMIP",
input_types=["Data"],
),
DropdownInput(
name="operator",
display_name="Comparison Operator",
options=["equals", "not equals", "contains", "starts with", "ends with"],
info="The operator to apply for comparing the values.",
value="equals",
advanced=True,
),
]
outputs = [
Output(display_name="Filtered Data", name="filtered_data", method="filter_data"),
]
def compare_values(self, item_value: Any, filter_value: str, operator: str) -> bool:
if operator == "equals":
return str(item_value) == filter_value
if operator == "not equals":
return str(item_value) != filter_value
if operator == "contains":
return filter_value in str(item_value)
if operator == "starts with":
return str(item_value).startswith(filter_value)
if operator == "ends with":
return str(item_value).endswith(filter_value)
return False
def filter_data(self) -> list[Data]:
# Extract inputs
input_data: list[Data] = self.input_data
filter_key: str = self.filter_key.text
filter_value: str = self.filter_value.text
operator: str = self.operator
# Validate inputs
if not input_data:
self.status = "Input data is empty."
return []
if not filter_key or not filter_value:
self.status = "Filter key or value is missing."
return input_data
# Filter the data
filtered_data = []
for item in input_data:
if isinstance(item.data, dict) and filter_key in item.data:
if self.compare_values(item.data[filter_key], filter_value, operator):
filtered_data.append(item)
else:
self.status = f"Warning: Some items don't have the key '{filter_key}' or are not dictionaries."
self.status = filtered_data
return filtered_data
JSON Cleaner
The JSON Cleaner component cleans JSON strings to ensure they are fully compliant with the JSON specification.
Parameters
Name | Display Name | Info |
---|---|---|
json_str |
JSON String |
The JSON string to be cleaned. This can be a raw, potentially malformed JSON string produced by language models or other sources that may not fully comply with JSON specifications. |
remove_control_chars |
Remove Control Characters |
If set to True, this option removes control characters (ASCII characters 0-31 and 127) from the JSON string. This can help eliminate invisible characters that might cause parsing issues or make the JSON invalid. |
normalize_unicode |
Normalize Unicode |
When enabled, this option normalizes Unicode characters in the JSON string to their canonical composition form (NFC). This ensures consistent representation of Unicode characters across different systems and prevents potential issues with character encoding. |
validate_json |
Validate JSON |
If set to True, this option attempts to parse the JSON string to ensure it is well-formed before applying the final repair operation. It raises a ValueError if the JSON is invalid, allowing for early detection of major structural issues in the JSON. |
Name | Display Name | Info |
---|---|---|
output |
Cleaned JSON String |
The resulting cleaned, repaired, and validated JSON string that fully complies with the JSON specification. |
Component code
json_cleaner.py
import json
import unicodedata
from langflow.custom import Component
from langflow.inputs import BoolInput, MessageTextInput
from langflow.schema.message import Message
from langflow.template import Output
class JSONCleaner(Component):
icon = "braces"
display_name = "JSON Cleaner"
description = (
"Cleans the messy and sometimes incorrect JSON strings produced by LLMs "
"so that they are fully compliant with the JSON spec."
)
inputs = [
MessageTextInput(
name="json_str", display_name="JSON String", info="The JSON string to be cleaned.", required=True
),
BoolInput(
name="remove_control_chars",
display_name="Remove Control Characters",
info="Remove control characters from the JSON string.",
required=False,
),
BoolInput(
name="normalize_unicode",
display_name="Normalize Unicode",
info="Normalize Unicode characters in the JSON string.",
required=False,
),
BoolInput(
name="validate_json",
display_name="Validate JSON",
info="Validate the JSON string to ensure it is well-formed.",
required=False,
),
]
outputs = [
Output(display_name="Cleaned JSON String", name="output", method="clean_json"),
]
def clean_json(self) -> Message:
try:
from json_repair import repair_json
except ImportError as e:
msg = "Could not import the json_repair package. Please install it with `pip install json_repair`."
raise ImportError(msg) from e
"""Clean the input JSON string based on provided options and return the cleaned JSON string."""
json_str = self.json_str
remove_control_chars = self.remove_control_chars
normalize_unicode = self.normalize_unicode
validate_json = self.validate_json
start = json_str.find("{")
end = json_str.rfind("}")
if start == -1 or end == -1:
msg = "Invalid JSON string: Missing '{' or '}'"
raise ValueError(msg)
try:
json_str = json_str[start : end + 1]
if remove_control_chars:
json_str = self._remove_control_characters(json_str)
if normalize_unicode:
json_str = self._normalize_unicode(json_str)
if validate_json:
json_str = self._validate_json(json_str)
cleaned_json_str = repair_json(json_str)
result = str(cleaned_json_str)
self.status = result
return Message(text=result)
except Exception as e:
msg = f"Error cleaning JSON string: {e}"
raise ValueError(msg) from e
def _remove_control_characters(self, s: str) -> str:
"""Remove control characters from the string."""
return s.translate(self.translation_table)
def _normalize_unicode(self, s: str) -> str:
"""Normalize Unicode characters in the string."""
return unicodedata.normalize("NFC", s)
def _validate_json(self, s: str) -> str:
"""Validate the JSON string."""
try:
json.loads(s)
except json.JSONDecodeError as e:
msg = f"Invalid JSON string: {e}"
raise ValueError(msg) from e
return s
def __init__(self, *args, **kwargs):
# Create a translation table that maps control characters to None
super().__init__(*args, **kwargs)
self.translation_table = str.maketrans("", "", "".join(chr(i) for i in range(32)) + chr(127))
Message to data
The message to data component converts a message object to a data object.
Parameters
Name | Display Name | Info |
---|---|---|
message |
message |
The message object to convert to a data object. |
Name | Display Name | Info |
---|---|---|
data |
data |
The resulting data object converted from the input message. |
Component code
message_to_data.py
from loguru import logger
from langflow.custom import Component
from langflow.io import MessageInput, Output
from langflow.schema import Data
from langflow.schema.message import Message
class MessageToDataComponent(Component):
display_name = "Message to Data"
description = "Convert a Message object to a Data object"
icon = "message-square-share"
beta = True
name = "MessagetoData"
inputs = [
MessageInput(
name="message",
display_name="Message",
info="The Message object to convert to a Data object",
),
]
outputs = [
Output(display_name="Data", name="data", method="convert_message_to_data"),
]
def convert_message_to_data(self) -> Data:
if isinstance(self.message, Message):
# Convert Message to Data
return Data(data=self.message.data)
msg = "Error converting Message to Data: Input must be a Message object"
logger.opt(exception=True).debug(msg)
self.status = msg
return Data(data={"error": msg})
Merge data
The Merge data component combines multiple data objects into a unified list of data objects.
Parameters
Name | Display Name | Info |
---|---|---|
data_inputs |
data Inputs |
A list of data input objects to be merged. |
Name | Display Name | Info |
---|---|---|
merged_data |
Merged data |
The resulting list of merged data objects with consistent keys. |
Component code
merge_data.py
from enum import Enum
from typing import cast
from loguru import logger
from langflow.custom import Component
from langflow.io import DataInput, DropdownInput, Output
from langflow.schema import DataFrame
class DataOperation(str, Enum):
CONCATENATE = "Concatenate"
APPEND = "Append"
MERGE = "Merge"
JOIN = "Join"
class MergeDataComponent(Component):
display_name = "Data Combiner"
description = "Combines data using different operations"
icon = "merge"
MIN_INPUTS_REQUIRED = 2
inputs = [
DataInput(name="data_inputs", display_name="Data Inputs", info="Data to combine", is_list=True, required=True),
DropdownInput(
name="operation",
display_name="Operation Type",
options=[op.value for op in DataOperation],
value=DataOperation.CONCATENATE.value,
),
]
outputs = [Output(display_name="DataFrame", name="combined_data", method="combine_data")]
def combine_data(self) -> DataFrame:
if not self.data_inputs or len(self.data_inputs) < self.MIN_INPUTS_REQUIRED:
empty_dataframe = DataFrame()
self.status = empty_dataframe
return empty_dataframe
operation = DataOperation(self.operation)
try:
combined_dataframe = self._process_operation(operation)
self.status = combined_dataframe
except Exception as e:
logger.error(f"Error during operation {operation}: {e!s}")
raise
else:
return combined_dataframe
def _process_operation(self, operation: DataOperation) -> DataFrame:
if operation == DataOperation.CONCATENATE:
combined_data: dict[str, str | object] = {}
for data_input in self.data_inputs:
for key, value in data_input.data.items():
if key in combined_data:
if isinstance(combined_data[key], str) and isinstance(value, str):
combined_data[key] = f"{combined_data[key]}\n{value}"
else:
combined_data[key] = value
else:
combined_data[key] = value
return DataFrame([combined_data])
if operation == DataOperation.APPEND:
rows = [data_input.data for data_input in self.data_inputs]
return DataFrame(rows)
if operation == DataOperation.MERGE:
result_data: dict[str, str | list[str] | object] = {}
for data_input in self.data_inputs:
for key, value in data_input.data.items():
if key in result_data and isinstance(value, str):
if isinstance(result_data[key], list):
cast("list[str]", result_data[key]).append(value)
else:
result_data[key] = [result_data[key], value]
else:
result_data[key] = value
return DataFrame([result_data])
if operation == DataOperation.JOIN:
combined_data = {}
for idx, data_input in enumerate(self.data_inputs, 1):
for key, value in data_input.data.items():
new_key = f"{key}_doc{idx}" if idx > 1 else key
combined_data[new_key] = value
return DataFrame([combined_data])
return DataFrame()
Parse data
The ParseData component converts data objects into plain text using a specified template. This component transforms structured data into human-readable text formats, allowing for customizable output through the use of templates.
Parameters
Name | Display Name | Info |
---|---|---|
data |
data |
The data to convert to text. |
template |
Template |
The template to use for formatting the data. It can contain the keys {text}, {data} or any other key in the data. |
sep |
Separator |
The separator to use between multiple data items. |
Name | Display Name | Info |
---|---|---|
text |
Text |
The resulting formatted text string as a message object. |
Component code
parse_data.py
from langflow.custom import Component
from langflow.helpers.data import data_to_text, data_to_text_list
from langflow.io import DataInput, MultilineInput, Output, StrInput
from langflow.schema import Data
from langflow.schema.message import Message
class ParseDataComponent(Component):
display_name = "Data to Message"
description = "Convert Data objects into Messages using any {field_name} from input data."
icon = "message-square"
name = "ParseData"
inputs = [
DataInput(name="data", display_name="Data", info="The data to convert to text.", is_list=True, required=True),
MultilineInput(
name="template",
display_name="Template",
info="The template to use for formatting the data. "
"It can contain the keys {text}, {data} or any other key in the Data.",
value="{text}",
required=True,
),
StrInput(name="sep", display_name="Separator", advanced=True, value="\n"),
]
outputs = [
Output(
display_name="Message",
name="text",
info="Data as a single Message, with each input Data separated by Separator",
method="parse_data",
),
Output(
display_name="Data List",
name="data_list",
info="Data as a list of new Data, each having `text` formatted by Template",
method="parse_data_as_list",
),
]
def _clean_args(self) -> tuple[list[Data], str, str]:
data = self.data if isinstance(self.data, list) else [self.data]
template = self.template
sep = self.sep
return data, template, sep
def parse_data(self) -> Message:
data, template, sep = self._clean_args()
result_string = data_to_text(template, data, sep)
self.status = result_string
return Message(text=result_string)
def parse_data_as_list(self) -> list[Data]:
data, template, _ = self._clean_args()
text_list, data_list = data_to_text_list(template, data)
for item, text in zip(data_list, text_list, strict=True):
item.set_text(text)
self.status = data_list
return data_list
Parse JSON
This component converts and extracts JSON fields using JQ queries.
Parameters
Name | Display Name | Info |
---|---|---|
input_value |
Input |
The data object to filter. It can be a message or data object. |
query |
JQ Query |
JQ Query to filter the data. The input is always a JSON list. |
Name | Display Name | Info |
---|---|---|
filtered_data |
Filtered data |
Filtered data as a list of data objects. |
Component code
parse_json_data.py
import json
from json import JSONDecodeError
import jq
from json_repair import repair_json
from loguru import logger
from langflow.custom import Component
from langflow.inputs import HandleInput, MessageTextInput
from langflow.io import Output
from langflow.schema import Data
from langflow.schema.message import Message
class ParseJSONDataComponent(Component):
display_name = "Parse JSON"
description = "Convert and extract JSON fields."
icon = "braces"
name = "ParseJSONData"
legacy: bool = True
inputs = [
HandleInput(
name="input_value",
display_name="Input",
info="Data object to filter.",
required=True,
input_types=["Message", "Data"],
),
MessageTextInput(
name="query",
display_name="JQ Query",
info="JQ Query to filter the data. The input is always a JSON list.",
required=True,
),
]
outputs = [
Output(display_name="Filtered Data", name="filtered_data", method="filter_data"),
]
def _parse_data(self, input_value) -> str:
if isinstance(input_value, Message) and isinstance(input_value.text, str):
return input_value.text
if isinstance(input_value, Data):
return json.dumps(input_value.data)
return str(input_value)
def filter_data(self) -> list[Data]:
to_filter = self.input_value
if not to_filter:
return []
# Check if input is a list
if isinstance(to_filter, list):
to_filter = [self._parse_data(f) for f in to_filter]
else:
to_filter = self._parse_data(to_filter)
# If input is not a list, don't wrap it in a list
if not isinstance(to_filter, list):
to_filter = repair_json(to_filter)
try:
to_filter_as_dict = json.loads(to_filter)
except JSONDecodeError:
try:
to_filter_as_dict = json.loads(repair_json(to_filter))
except JSONDecodeError as e:
msg = f"Invalid JSON: {e}"
raise ValueError(msg) from e
else:
to_filter = [repair_json(f) for f in to_filter]
to_filter_as_dict = []
for f in to_filter:
try:
to_filter_as_dict.append(json.loads(f))
except JSONDecodeError:
try:
to_filter_as_dict.append(json.loads(repair_json(f)))
except JSONDecodeError as e:
msg = f"Invalid JSON: {e}"
raise ValueError(msg) from e
to_filter = to_filter_as_dict
full_filter_str = json.dumps(to_filter_as_dict)
logger.info("to_filter: ", to_filter)
results = jq.compile(self.query).input_text(full_filter_str).all()
logger.info("results: ", results)
return [Data(data=value) if isinstance(value, dict) else Data(text=str(value)) for value in results]
Split Text
This component splits text into chunks of a specified length.
Parameters
Name | Display Name | Info |
---|---|---|
texts |
Texts |
Texts to split. |
separators |
Separators |
Characters to split on. Defaults to a space. |
max_chunk_size |
Max Chunk Size |
The maximum length (in characters) of each chunk. |
chunk_overlap |
Chunk Overlap |
The amount of character overlap between chunks. |
recursive |
Recursive |
Whether to split recursively. |
Component code
split_text.py
from langchain_text_splitters import CharacterTextSplitter
from langflow.custom import Component
from langflow.io import HandleInput, IntInput, MessageTextInput, Output
from langflow.schema import Data, DataFrame
from langflow.utils.util import unescape_string
class SplitTextComponent(Component):
display_name: str = "Split Text"
description: str = "Split text into chunks based on specified criteria."
icon = "scissors-line-dashed"
name = "SplitText"
inputs = [
HandleInput(
name="data_inputs",
display_name="Data Inputs",
info="The data to split.",
input_types=["Data"],
is_list=True,
required=True,
),
IntInput(
name="chunk_overlap",
display_name="Chunk Overlap",
info="Number of characters to overlap between chunks.",
value=200,
),
IntInput(
name="chunk_size",
display_name="Chunk Size",
info="The maximum number of characters in each chunk.",
value=1000,
),
MessageTextInput(
name="separator",
display_name="Separator",
info="The character to split on. Defaults to newline.",
value="\n",
),
]
outputs = [
Output(display_name="Chunks", name="chunks", method="split_text"),
Output(display_name="DataFrame", name="dataframe", method="as_dataframe"),
]
def _docs_to_data(self, docs):
return [Data(text=doc.page_content, data=doc.metadata) for doc in docs]
def split_text(self) -> list[Data]:
separator = unescape_string(self.separator)
documents = [_input.to_lc_document() for _input in self.data_inputs if isinstance(_input, Data)]
splitter = CharacterTextSplitter(
chunk_overlap=self.chunk_overlap,
chunk_size=self.chunk_size,
separator=separator,
)
docs = splitter.split_documents(documents)
data = self._docs_to_data(docs)
self.status = data
return data
def as_dataframe(self) -> DataFrame:
return DataFrame(self.split_text())
Update data
The Update data component dynamically updates or appends data with specified fields.
Parameters
Name | Display Name | Info |
---|---|---|
old_data |
data |
The records to update. It can be a single data object or a list of data objects. |
number_of_fields |
Number of Fields |
Number of fields to be added to the record (range: 1-15). |
text_key |
Text Key |
Key that identifies the field to be used as the text content. |
text_key_validator |
Text Key Validator |
If enabled, checks if the given 'Text Key' is present in the given 'data' object. |
Name | Display Name | Info |
---|---|---|
data |
data |
The resulting updated data objects. |
Component code
update_data.py
from typing import Any
from langflow.custom import Component
from langflow.field_typing.range_spec import RangeSpec
from langflow.inputs.inputs import (
BoolInput,
DataInput,
DictInput,
IntInput,
MessageTextInput,
)
from langflow.io import Output
from langflow.schema import Data
from langflow.schema.dotdict import dotdict
class UpdateDataComponent(Component):
display_name: str = "Update Data"
description: str = "Dynamically update or append data with the specified fields."
name: str = "UpdateData"
MAX_FIELDS = 15 # Define a constant for maximum number of fields
icon = "FolderSync"
inputs = [
DataInput(
name="old_data",
display_name="Data",
info="The record to update.",
is_list=True, # Changed to True to handle list of Data objects
),
IntInput(
name="number_of_fields",
display_name="Number of Fields",
info="Number of fields to be added to the record.",
real_time_refresh=True,
value=0,
range_spec=RangeSpec(min=1, max=MAX_FIELDS, step=1, step_type="int"),
),
MessageTextInput(
name="text_key",
display_name="Text Key",
info="Key that identifies the field to be used as the text content.",
advanced=True,
),
BoolInput(
name="text_key_validator",
display_name="Text Key Validator",
advanced=True,
info="If enabled, checks if the given 'Text Key' is present in the given 'Data'.",
),
]
outputs = [
Output(display_name="Data", name="data", method="build_data"),
]
def update_build_config(self, build_config: dotdict, field_value: Any, field_name: str | None = None):
"""Update the build configuration when the number of fields changes.
Args:
build_config (dotdict): The current build configuration.
field_value (Any): The new value for the field.
field_name (Optional[str]): The name of the field being updated.
"""
if field_name == "number_of_fields":
default_keys = {
"code",
"_type",
"number_of_fields",
"text_key",
"old_data",
"text_key_validator",
}
try:
field_value_int = int(field_value)
except ValueError:
return build_config
if field_value_int > self.MAX_FIELDS:
build_config["number_of_fields"]["value"] = self.MAX_FIELDS
msg = f"Number of fields cannot exceed {self.MAX_FIELDS}. Try using a Component to combine two Data."
raise ValueError(msg)
existing_fields = {}
# Back up the existing template fields
for key in list(build_config.keys()):
if key not in default_keys:
existing_fields[key] = build_config.pop(key)
for i in range(1, field_value_int + 1):
key = f"field_{i}_key"
if key in existing_fields:
field = existing_fields[key]
build_config[key] = field
else:
field = DictInput(
display_name=f"Field {i}",
name=key,
info=f"Key for field {i}.",
input_types=["Message", "Data"],
)
build_config[field.name] = field.to_dict()
build_config["number_of_fields"]["value"] = field_value_int
return build_config
async def build_data(self) -> Data | list[Data]:
"""Build the updated data by combining the old data with new fields."""
new_data = self.get_data()
if isinstance(self.old_data, list):
for data_item in self.old_data:
if not isinstance(data_item, Data):
continue # Skip invalid items
data_item.data.update(new_data)
if self.text_key:
data_item.text_key = self.text_key
self.validate_text_key(data_item)
self.status = self.old_data
return self.old_data # Returns List[Data]
if isinstance(self.old_data, Data):
self.old_data.data.update(new_data)
if self.text_key:
self.old_data.text_key = self.text_key
self.status = self.old_data
self.validate_text_key(self.old_data)
return self.old_data # Returns Data
msg = "old_data is not a Data object or list of Data objects."
raise ValueError(msg)
def get_data(self):
"""Function to get the Data from the attributes."""
data = {}
default_keys = {
"code",
"_type",
"number_of_fields",
"text_key",
"old_data",
"text_key_validator",
}
for attr_name, attr_value in self._attributes.items():
if attr_name in default_keys:
continue # Skip default attributes
if isinstance(attr_value, dict):
for key, value in attr_value.items():
data[key] = value.get_text() if isinstance(value, Data) else value
elif isinstance(attr_value, Data):
data[attr_name] = attr_value.get_text()
else:
data[attr_name] = attr_value
return data
def validate_text_key(self, data: Data) -> None:
"""This function validates that the Text Key is one of the keys in the Data."""
data_keys = data.data.keys()
if self.text_key and self.text_key not in data_keys:
msg = f"Text Key: '{self.text_key}' not found in the Data keys: {', '.join(data_keys)}"
raise ValueError(msg)