Agents

This Langflow feature is currently in public preview. Development is ongoing, and the features and functionality are subject to change. Langflow, and the use of such, is subject to the DataStax Preview Terms.

Agent components are used to define the behavior and capabilities of AI agents in your flow. Agents can interact with APIs, databases, and other services, but can also use LLMs as a reasoning engine to decide which course to take in your flow.

CSV Agent

This component creates a CSV agent from a CSV file and LLM.

Parameters

Inputs
Name Type Description

llm

LanguageModel

Language model to use for the agent

path

File

Path to the CSV file

agent_type

String

Type of agent to create (zero-shot-react-description, openai-functions, or openai-tools)

Outputs
Name Type Description

agent

AgentExecutor

CSV agent instance

Component code

CSVAgent.py
from langchain_experimental.agents.agent_toolkits.csv.base import create_csv_agent

from langflow.base.agents.agent import LCAgentComponent
from langflow.field_typing import AgentExecutor
from langflow.inputs import HandleInput, FileInput, DropdownInput


class CSVAgentComponent(LCAgentComponent):
    display_name = "CSVAgent"
    description = "Construct a CSV agent from a CSV and tools."
    documentation = "https://python.langchain.com/docs/modules/agents/toolkits/csv"
    name = "CSVAgent"

    inputs = LCAgentComponent._base_inputs + [
        HandleInput(name="llm", display_name="Language Model", input_types=["LanguageModel"], required=True),
        FileInput(name="path", display_name="File Path", file_types=["csv"], required=True),
        DropdownInput(
            name="agent_type",
            display_name="Agent Type",
            advanced=True,
            options=["zero-shot-react-description", "openai-functions", "openai-tools"],
            value="openai-tools",
        ),
    ]

    def build_agent(self) -> AgentExecutor:
        return create_csv_agent(llm=self.llm, path=self.path, agent_type=self.agent_type, **self.get_agent_kwargs())

CrewAI Agent

This component represents an Agent of CrewAI, allowing for the creation of specialized AI agents with defined roles, goals, and capabilities within a crew.

For more information, see the CrewAI documentation.

Parameters

Inputs
Name Display Name Info

role

Role

The role of the agent

goal

Goal

The objective of the agent

backstory

Backstory

The backstory of the agent

tools

Tools

Tools at agent’s disposal

llm

Language Model

Language model that will run the agent

memory

Memory

Whether the agent should have memory or not

verbose

Verbose

Enables verbose output

allow_delegation

Allow Delegation

Whether the agent is allowed to delegate tasks to other agents

allow_code_execution

Allow Code Execution

Whether the agent is allowed to execute code

kwargs

kwargs

Additional keyword arguments for the agent

Outputs
Name Display Name Info

output

Agent

The constructed CrewAI Agent object

Component code

CrewAIAgent.py
from crewai import Agent  # type: ignore

from langflow.custom import Component
from langflow.io import BoolInput, DictInput, HandleInput, MultilineInput, Output


class CrewAIAgentComponent(Component):
    display_name = "CrewAI Agent"
    description = "Represents an agent of CrewAI."
    documentation: str = "https://docs.crewai.com/how-to/LLM-Connections/"
    icon = "CrewAI"

    inputs = [
        MultilineInput(name="role", display_name="Role", info="The role of the agent."),
        MultilineInput(name="goal", display_name="Goal", info="The objective of the agent."),
        MultilineInput(name="backstory", display_name="Backstory", info="The backstory of the agent."),
        HandleInput(
            name="tools",
            display_name="Tools",
            input_types=["Tool"],
            is_list=True,
            info="Tools at agents disposal",
            value=[],
        ),
        HandleInput(
            name="llm",
            display_name="Language Model",
            info="Language model that will run the agent.",
            input_types=["LanguageModel"],
        ),
        BoolInput(
            name="memory",
            display_name="Memory",
            info="Whether the agent should have memory or not",
            advanced=True,
            value=True,
        ),
        BoolInput(
            name="verbose",
            display_name="Verbose",
            advanced=True,
            value=False,
        ),
        BoolInput(
            name="allow_delegation",
            display_name="Allow Delegation",
            info="Whether the agent is allowed to delegate tasks to other agents.",
            value=True,
        ),
        BoolInput(
            name="allow_code_execution",
            display_name="Allow Code Execution",
            info="Whether the agent is allowed to execute code.",
            value=False,
            advanced=True,
        ),
        DictInput(
            name="kwargs",
            display_name="kwargs",
            info="kwargs of agent.",
            is_list=True,
            advanced=True,
        ),
    ]

    outputs = [
        Output(display_name="Agent", name="output", method="build_output"),
    ]

    def build_output(self) -> Agent:
        kwargs = self.kwargs if self.kwargs else {}
        agent = Agent(
            role=self.role,
            goal=self.goal,
            backstory=self.backstory,
            llm=self.llm,
            verbose=self.verbose,
            memory=self.memory,
            tools=self.tools if self.tools else [],
            allow_delegation=self.allow_delegation,
            allow_code_execution=self.allow_code_execution,
            **kwargs,
        )
        self.status = repr(agent)
        return agent

Hierarchical Crew

This component represents a group of agents, managing how they should collaborate and the tasks they should perform in a hierarchical structure. This component allows for the creation of a crew with a manager overseeing the task execution.

For more information, see the CrewAI documentation.

Parameters

Inputs
Name Display Name Info

agents

Agents

List of Agent objects representing the crew members

tasks

Tasks

List of HierarchicalTask objects representing the tasks to be executed

manager_llm

Manager LLM

Language model for the manager agent (optional)

manager_agent

Manager Agent

Specific agent to act as the manager (optional)

verbose

Verbose

Enables verbose output for detailed logging

memory

Memory

Specifies the memory configuration for the crew

use_cache

Use Cache

Enables caching of results

max_rpm

Max RPM

Sets the maximum requests per minute

share_crew

Share Crew

Determines if the crew information is shared among agents

function_calling_llm

Function Calling LLM

Specifies the language model for function calling

Outputs
Name Display Name Info

crew

Crew

The constructed Crew object with hierarchical task execution

Component code

HierarchicalCrew.py
from crewai import Crew, Process  # type: ignore

from langflow.base.agents.crewai.crew import BaseCrewComponent
from langflow.io import HandleInput


class HierarchicalCrewComponent(BaseCrewComponent):
    display_name: str = "Hierarchical Crew"
    description: str = (
        "Represents a group of agents, defining how they should collaborate and the tasks they should perform."
    )
    documentation: str = "https://docs.crewai.com/how-to/Hierarchical/"
    icon = "CrewAI"

    inputs = BaseCrewComponent._base_inputs + [
        HandleInput(name="agents", display_name="Agents", input_types=["Agent"], is_list=True),
        HandleInput(name="tasks", display_name="Tasks", input_types=["HierarchicalTask"], is_list=True),
        HandleInput(name="manager_llm", display_name="Manager LLM", input_types=["LanguageModel"], required=False),
        HandleInput(name="manager_agent", display_name="Manager Agent", input_types=["Agent"], required=False),
    ]

    def build_crew(self) -> Crew:
        tasks, agents = self.get_tasks_and_agents()
        crew = Crew(
            agents=agents,
            tasks=tasks,
            process=Process.hierarchical,
            verbose=self.verbose,
            memory=self.memory,
            cache=self.use_cache,
            max_rpm=self.max_rpm,
            share_crew=self.share_crew,
            function_calling_llm=self.function_calling_llm,
            manager_agent=self.manager_agent,
            manager_llm=self.manager_llm,
            step_callback=self.get_step_callback(),
            task_callback=self.get_task_callback(),
        )
        return crew

JSON Agent

This component creates a JSON agent from a JSON or YAML file and an LLM.

Parameters

Inputs
Name Type Description

llm

LanguageModel

Language model to use for the agent

path

File

Path to the JSON or YAML file

Outputs
Name Type Description

agent

AgentExecutor

JSON agent instance

Component code

JsonAgent.py
from pathlib import Path

import yaml
from langchain.agents import AgentExecutor
from langchain_community.agent_toolkits import create_json_agent
from langchain_community.agent_toolkits.json.toolkit import JsonToolkit
from langchain_community.tools.json.tool import JsonSpec

from langflow.base.agents.agent import LCAgentComponent
from langflow.inputs import HandleInput, FileInput


class JsonAgentComponent(LCAgentComponent):
    display_name = "JsonAgent"
    description = "Construct a json agent from an LLM and tools."
    name = "JsonAgent"

    inputs = LCAgentComponent._base_inputs + [
        HandleInput(name="llm", display_name="Language Model", input_types=["LanguageModel"], required=True),
        FileInput(name="path", display_name="File Path", file_types=["json", "yaml", "yml"], required=True),
    ]

    def build_agent(self) -> AgentExecutor:
        if self.path.endswith("yaml") or self.path.endswith("yml"):
            with open(self.path, "r") as file:
                yaml_dict = yaml.load(file, Loader=yaml.FullLoader)
            spec = JsonSpec(dict_=yaml_dict)
        else:
            spec = JsonSpec.from_file(Path(self.path))
        toolkit = JsonToolkit(spec=spec)

        return create_json_agent(llm=self.llm, toolkit=toolkit, **self.get_agent_kwargs())

OpenAI Tools Agent

This component creates an OpenAI Tools Agent using LangChain. For more information, see the LangChain documentation.

Parameters

Inputs
Name Type Description

llm

LanguageModel

Language model to use for the agent (must be tool-enabled)

system_prompt

String

System prompt for the agent

user_prompt

String

User prompt template (must contain 'input' key)

chat_history

List[Data]

Optional chat history for the agent

tools

List[Tool]

List of tools available to the agent

Outputs
Name Type Description

agent

AgentExecutor

OpenAI Tools Agent instance

Component code

OpenAIToolsAgent.py
from typing import Optional, List

from langchain.agents import create_openai_tools_agent
from langchain_core.prompts import ChatPromptTemplate, PromptTemplate, HumanMessagePromptTemplate

from langflow.base.agents.agent import LCToolsAgentComponent
from langflow.inputs import MultilineInput
from langflow.inputs.inputs import HandleInput, DataInput
from langflow.schema import Data


class OpenAIToolsAgentComponent(LCToolsAgentComponent):
    display_name: str = "OpenAI Tools Agent"
    description: str = "Agent that uses tools via openai-tools."
    icon = "LangChain"
    beta = True
    name = "OpenAIToolsAgent"

    inputs = LCToolsAgentComponent._base_inputs + [
        HandleInput(
            name="llm",
            display_name="Language Model",
            input_types=["LanguageModel", "ToolEnabledLanguageModel"],
            required=True,
        ),
        MultilineInput(
            name="system_prompt",
            display_name="System Prompt",
            info="System prompt for the agent.",
            value="You are a helpful assistant",
        ),
        MultilineInput(
            name="user_prompt", display_name="Prompt", info="This prompt must contain 'input' key.", value="{input}"
        ),
        DataInput(name="chat_history", display_name="Chat History", is_list=True, advanced=True),
    ]

    def get_chat_history_data(self) -> Optional[List[Data]]:
        return self.chat_history

    def create_agent_runnable(self):
        if "input" not in self.user_prompt:
            raise ValueError("Prompt must contain 'input' key.")
        messages = [
            ("system", self.system_prompt),
            ("placeholder", "{chat_history}"),
            HumanMessagePromptTemplate(prompt=PromptTemplate(input_variables=["input"], template=self.user_prompt)),
            ("placeholder", "{agent_scratchpad}"),
        ]
        prompt = ChatPromptTemplate.from_messages(messages)
        return create_openai_tools_agent(self.llm, self.tools, prompt)

OpenAPI Agent

This component creates an OpenAPI Agent to interact with APIs defined by OpenAPI specifications. For more information, see the LangChain documentation on OpenAPI Agents.

Parameters

Inputs
Name Type Description

llm

LanguageModel

Language model to use for the agent

path

File

Path to the OpenAPI specification file (JSON or YAML)

allow_dangerous_requests

Boolean

Whether to allow potentially dangerous API requests

Outputs
Name Type Description

agent

AgentExecutor

OpenAPI Agent instance

Component code

OpenAPIAgent.py
from pathlib import Path

import yaml
from langchain.agents import AgentExecutor
from langchain_community.agent_toolkits import create_openapi_agent
from langchain_community.tools.json.tool import JsonSpec
from langchain_community.agent_toolkits.openapi.toolkit import OpenAPIToolkit

from langflow.base.agents.agent import LCAgentComponent
from langflow.inputs import BoolInput, HandleInput, FileInput
from langchain_community.utilities.requests import TextRequestsWrapper


class OpenAPIAgentComponent(LCAgentComponent):
    display_name = "OpenAPI Agent"
    description = "Agent to interact with OpenAPI API."
    name = "OpenAPIAgent"

    inputs = LCAgentComponent._base_inputs + [
        HandleInput(name="llm", display_name="Language Model", input_types=["LanguageModel"], required=True),
        FileInput(name="path", display_name="File Path", file_types=["json", "yaml", "yml"], required=True),
        BoolInput(name="allow_dangerous_requests", display_name="Allow Dangerous Requests", value=False, required=True),
    ]

    def build_agent(self) -> AgentExecutor:
        if self.path.endswith("yaml") or self.path.endswith("yml"):
            with open(self.path, "r") as file:
                yaml_dict = yaml.load(file, Loader=yaml.FullLoader)
            spec = JsonSpec(dict_=yaml_dict)
        else:
            spec = JsonSpec.from_file(Path(self.path))
        requests_wrapper = TextRequestsWrapper()
        toolkit = OpenAPIToolkit.from_llm(
            llm=self.llm,
            json_spec=spec,
            requests_wrapper=requests_wrapper,
            allow_dangerous_requests=self.allow_dangerous_requests,
        )

        agent_args = self.get_agent_kwargs()

        # This is bit weird - generally other create_*_agent functions have max_iterations in the
        # `agent_executor_kwargs`, but openai has this parameter passed directly.
        agent_args["max_iterations"] = agent_args["agent_executor_kwargs"]["max_iterations"]
        del agent_args["agent_executor_kwargs"]["max_iterations"]
        return create_openapi_agent(llm=self.llm, toolkit=toolkit, **agent_args)

SQL Agent

This component creates a SQL Agent to interact with SQL databases.

Parameters

Inputs
Name Type Description

llm

LanguageModel

Language model to use for the agent

database_uri

String

URI of the SQL database to connect to

extra_tools

List[Tool]

Additional tools to provide to the agent (optional)

Outputs
Name Type Description

agent

AgentExecutor

SQL Agent instance

Component code

SQLAgent.py
from langchain.agents import AgentExecutor
from langchain_community.agent_toolkits import SQLDatabaseToolkit
from langchain_community.agent_toolkits.sql.base import create_sql_agent
from langchain_community.utilities import SQLDatabase

from langflow.base.agents.agent import LCAgentComponent
from langflow.inputs import MessageTextInput, HandleInput


class SQLAgentComponent(LCAgentComponent):
    display_name = "SQLAgent"
    description = "Construct an SQL agent from an LLM and tools."
    name = "SQLAgent"

    inputs = LCAgentComponent._base_inputs + [
        HandleInput(name="llm", display_name="Language Model", input_types=["LanguageModel"], required=True),
        MessageTextInput(name="database_uri", display_name="Database URI", required=True),
        HandleInput(
            name="extra_tools",
            display_name="Extra Tools",
            input_types=["Tool", "BaseTool"],
            is_list=True,
            advanced=True,
        ),
    ]

    def build_agent(self) -> AgentExecutor:
        db = SQLDatabase.from_uri(self.database_uri)
        toolkit = SQLDatabaseToolkit(db=db, llm=self.llm)
        agent_args = self.get_agent_kwargs()
        agent_args["max_iterations"] = agent_args["agent_executor_kwargs"]["max_iterations"]
        del agent_args["agent_executor_kwargs"]["max_iterations"]
        return create_sql_agent(llm=self.llm, toolkit=toolkit, extra_tools=self.extra_tools or [], **agent_args)

Sequential Crew

This component represents a group of agents with tasks that are executed sequentially. This component allows for the creation of a crew that performs tasks in a specific order.

For more information, see the CrewAI documentation.

Parameters

Inputs
Name Display Name Info

tasks

Tasks

List of SequentialTask objects representing the tasks to be executed

verbose

Verbose

Enables verbose output for detailed logging

memory

Memory

Specifies the memory configuration for the crew

use_cache

Use Cache

Enables caching of results

max_rpm

Max RPM

Sets the maximum requests per minute

share_crew

Share Crew

Determines if the crew information is shared among agents

function_calling_llm

Function Calling LLM

Specifies the language model for function calling

Outputs
Name Display Name Info

crew

Crew

The constructed Crew object with sequential task execution

Component code

SequentialCrew.py
from crewai import Agent, Crew, Process, Task  # type: ignore

from langflow.base.agents.crewai.crew import BaseCrewComponent
from langflow.io import HandleInput
from langflow.schema.message import Message


class SequentialCrewComponent(BaseCrewComponent):
    display_name: str = "Sequential Crew"
    description: str = "Represents a group of agents with tasks that are executed sequentially."
    documentation: str = "https://docs.crewai.com/how-to/Sequential/"
    icon = "CrewAI"

    inputs = BaseCrewComponent._base_inputs + [
        HandleInput(name="tasks", display_name="Tasks", input_types=["SequentialTask"], is_list=True),
    ]

    def get_tasks_and_agents(self) -> tuple[list[Task], list[Agent]]:
        return self.tasks, [task.agent for task in self.tasks]

    def build_crew(self) -> Message:
        tasks, agents = self.get_tasks_and_agents()
        crew = Crew(
            agents=agents,
            tasks=tasks,
            process=Process.sequential,
            verbose=self.verbose,
            memory=self.memory,
            cache=self.use_cache,
            max_rpm=self.max_rpm,
            share_crew=self.share_crew,
            function_calling_llm=self.function_calling_llm,
            step_callback=self.get_step_callback(),
            task_callback=self.get_task_callback(),
        )
        return crew

Sequential task agent

This component creates a CrewAI Task and its associated Agent, allowing for the definition of sequential tasks with specific agent roles and capabilities.

For more information, see the CrewAI documentation.

Parameters

Inputs
Name Display Name Info

role

Role

The role of the agent

goal

Goal

The objective of the agent

backstory

Backstory

The backstory of the agent

tools

Tools

Tools at agent’s disposal

llm

Language Model

Language model that will run the agent

memory

Memory

Whether the agent should have memory or not

verbose

Verbose

Enables verbose output

allow_delegation

Allow Delegation

Whether the agent is allowed to delegate tasks to other agents

allow_code_execution

Allow Code Execution

Whether the agent is allowed to execute code

agent_kwargs

Agent kwargs

Additional kwargs for the agent

task_description

Task Description

Descriptive text detailing task’s purpose and execution

expected_output

Expected Task Output

Clear definition of expected task outcome

async_execution

Async Execution

Boolean flag indicating asynchronous task execution

previous_task

Previous Task

The previous task in the sequence (for chaining)

Outputs
Name Display Name Info

task_output

Sequential Task

List of SequentialTask objects representing the created task(s)

Component code

SequentialTaskAgent.py
from crewai import Agent, Task

from langflow.base.agents.crewai.tasks import SequentialTask
from langflow.custom import Component
from langflow.io import BoolInput, DictInput, HandleInput, MultilineInput, Output


class SequentialTaskAgentComponent(Component):
    display_name = "Sequential Task Agent"
    description = "Creates a CrewAI Task and its associated Agent."
    documentation = "https://docs.crewai.com/how-to/LLM-Connections/"
    icon = "CrewAI"

    inputs = [
        # Agent inputs
        MultilineInput(name="role", display_name="Role", info="The role of the agent."),
        MultilineInput(name="goal", display_name="Goal", info="The objective of the agent."),
        MultilineInput(
            name="backstory",
            display_name="Backstory",
            info="The backstory of the agent.",
        ),
        HandleInput(
            name="tools",
            display_name="Tools",
            input_types=["Tool"],
            is_list=True,
            info="Tools at agent's disposal",
            value=[],
        ),
        HandleInput(
            name="llm",
            display_name="Language Model",
            info="Language model that will run the agent.",
            input_types=["LanguageModel"],
        ),
        BoolInput(
            name="memory",
            display_name="Memory",
            info="Whether the agent should have memory or not",
            advanced=True,
            value=True,
        ),
        BoolInput(
            name="verbose",
            display_name="Verbose",
            advanced=True,
            value=True,
        ),
        BoolInput(
            name="allow_delegation",
            display_name="Allow Delegation",
            info="Whether the agent is allowed to delegate tasks to other agents.",
            value=False,
            advanced=True,
        ),
        BoolInput(
            name="allow_code_execution",
            display_name="Allow Code Execution",
            info="Whether the agent is allowed to execute code.",
            value=False,
            advanced=True,
        ),
        DictInput(
            name="agent_kwargs",
            display_name="Agent kwargs",
            info="Additional kwargs for the agent.",
            is_list=True,
            advanced=True,
        ),
        # Task inputs
        MultilineInput(
            name="task_description",
            display_name="Task Description",
            info="Descriptive text detailing task's purpose and execution.",
        ),
        MultilineInput(
            name="expected_output",
            display_name="Expected Task Output",
            info="Clear definition of expected task outcome.",
        ),
        BoolInput(
            name="async_execution",
            display_name="Async Execution",
            value=False,
            advanced=True,
            info="Boolean flag indicating asynchronous task execution.",
        ),
        # Chaining input
        HandleInput(
            name="previous_task",
            display_name="Previous Task",
            input_types=["SequentialTask"],
            info="The previous task in the sequence (for chaining).",
            required=False,
        ),
    ]

    outputs = [
        Output(
            display_name="Sequential Task",
            name="task_output",
            method="build_agent_and_task",
        ),
    ]

    def build_agent_and_task(self) -> list[SequentialTask]:
        # Build the agent
        agent_kwargs = self.agent_kwargs or {}
        agent = Agent(
            role=self.role,
            goal=self.goal,
            backstory=self.backstory,
            llm=self.llm,
            verbose=self.verbose,
            memory=self.memory,
            tools=self.tools if self.tools else [],
            allow_delegation=self.allow_delegation,
            allow_code_execution=self.allow_code_execution,
            **agent_kwargs,
        )

        # Build the task
        task = Task(
            description=self.task_description,
            expected_output=self.expected_output,
            agent=agent,
            async_execution=self.async_execution,
        )

        # If there's a previous task, create a list of tasks
        if self.previous_task:
            if isinstance(self.previous_task, list):
                tasks = self.previous_task + [task]
            else:
                tasks = [self.previous_task, task]
        else:
            tasks = [task]

        self.status = f"Agent: {repr(agent)}\nTask: {repr(task)}"
        return tasks

Tool Calling Agent

This component creates a Tool Calling Agent using LangChain.

Parameters

Inputs
Name Type Description

llm

LanguageModel

Language model to use for the agent

system_prompt

String

System prompt for the agent

user_prompt

String

User prompt template (must contain 'input' key)

chat_history

List[Data]

Optional chat history for the agent

tools

List[Tool]

List of tools available to the agent

Outputs
Name Type Description

agent

AgentExecutor

Tool Calling Agent instance

Component code

ToolCallingAgent.py
from typing import Optional, List

from langchain.agents import create_tool_calling_agent
from langchain_core.prompts import ChatPromptTemplate, PromptTemplate, HumanMessagePromptTemplate
from langflow.base.agents.agent import LCToolsAgentComponent
from langflow.inputs import MultilineInput
from langflow.inputs.inputs import HandleInput, DataInput
from langflow.schema import Data


class ToolCallingAgentComponent(LCToolsAgentComponent):
    display_name: str = "Tool Calling Agent"
    description: str = "Agent that uses tools"
    icon = "LangChain"
    beta = True
    name = "ToolCallingAgent"

    inputs = LCToolsAgentComponent._base_inputs + [
        HandleInput(name="llm", display_name="Language Model", input_types=["LanguageModel"], required=True),
        MultilineInput(
            name="system_prompt",
            display_name="System Prompt",
            info="System prompt for the agent.",
            value="You are a helpful assistant",
        ),
        MultilineInput(
            name="user_prompt", display_name="Prompt", info="This prompt must contain 'input' key.", value="{input}"
        ),
        DataInput(name="chat_history", display_name="Chat History", is_list=True, advanced=True),
    ]

    def get_chat_history_data(self) -> Optional[List[Data]]:
        return self.chat_history

    def create_agent_runnable(self):
        if "input" not in self.user_prompt:
            raise ValueError("Prompt must contain 'input' key.")
        messages = [
            ("system", self.system_prompt),
            ("placeholder", "{chat_history}"),
            HumanMessagePromptTemplate(prompt=PromptTemplate(input_variables=["input"], template=self.user_prompt)),
            ("placeholder", "{agent_scratchpad}"),
        ]
        prompt = ChatPromptTemplate.from_messages(messages)
        return create_tool_calling_agent(self.llm, self.tools, prompt)

Vector Store Agent

This component creates a Vector Store Agent using LangChain.

Parameters

Inputs
Name Type Description

llm

LanguageModel

Language model to use for the agent

vectorstore

VectorStoreInfo

Vector store information for the agent to use

Outputs
Name Type Description

agent

AgentExecutor

Vector Store Agent instance

Component code

VectorStoreAgent.py
from langchain.agents import AgentExecutor, create_vectorstore_agent
from langchain.agents.agent_toolkits.vectorstore.toolkit import VectorStoreToolkit
from langflow.base.agents.agent import LCAgentComponent
from langflow.inputs import HandleInput


class VectorStoreAgentComponent(LCAgentComponent):
    display_name = "VectorStoreAgent"
    description = "Construct an agent from a Vector Store."
    name = "VectorStoreAgent"

    inputs = LCAgentComponent._base_inputs + [
        HandleInput(name="llm", display_name="Language Model", input_types=["LanguageModel"], required=True),
        HandleInput(name="vectorstore", display_name="Vector Store", input_types=["VectorStoreInfo"], required=True),
    ]

    def build_agent(self) -> AgentExecutor:
        toolkit = VectorStoreToolkit(vectorstore_info=self.vectorstore, llm=self.llm)
        return create_vectorstore_agent(llm=self.llm, toolkit=toolkit, **self.get_agent_kwargs())

Vector Store Router Agent

This component creates a Vector Store Router Agent using LangChain.

Parameters

Inputs
Name Type Description

llm

LanguageModel

Language model to use for the agent

vectorstores

List[VectorStoreInfo]

List of vector store information for the agent to route between

Outputs
Name Type Description

agent

AgentExecutor

Vector Store Router Agent instance

Component code

VectorStoreRouterAgent.py
from langchain.agents import create_vectorstore_router_agent
from langchain.agents.agent_toolkits.vectorstore.toolkit import VectorStoreRouterToolkit

from langflow.base.agents.agent import LCAgentComponent
from langchain.agents import AgentExecutor
from langflow.inputs import HandleInput


class VectorStoreRouterAgentComponent(LCAgentComponent):
    display_name = "VectorStoreRouterAgent"
    description = "Construct an agent from a Vector Store Router."
    name = "VectorStoreRouterAgent"

    inputs = LCAgentComponent._base_inputs + [
        HandleInput(name="llm", display_name="Language Model", input_types=["LanguageModel"], required=True),
        HandleInput(
            name="vectorstores",
            display_name="Vector Stores",
            input_types=["VectorStoreInfo"],
            is_list=True,
            required=True,
        ),
    ]

    def build_agent(self) -> AgentExecutor:
        toolkit = VectorStoreRouterToolkit(vectorstores=self.vectorstores, llm=self.llm)
        return create_vectorstore_router_agent(llm=self.llm, toolkit=toolkit, **self.get_agent_kwargs())

XML Agent

This component creates an XML Agent using LangChain. The agent uses XML formatting for tool instructions to the Language Model.

Parameters

Inputs
Name Type Description

llm

LanguageModel

Language model to use for the agent

user_prompt

String

Custom prompt template for the agent (includes XML formatting instructions)

tools

List[Tool]

List of tools available to the agent

Outputs
Name Type Description

agent

AgentExecutor

XML Agent instance

Component code

XMLAgent.py
from langchain.agents import create_xml_agent
from langchain_core.prompts import ChatPromptTemplate, PromptTemplate, HumanMessagePromptTemplate

from langflow.base.agents.agent import LCToolsAgentComponent
from langflow.inputs import MultilineInput
from langflow.inputs.inputs import HandleInput


class XMLAgentComponent(LCToolsAgentComponent):
    display_name: str = "XML Agent"
    description: str = "Agent that uses tools formatting instructions as xml to the Language Model."
    icon = "LangChain"
    beta = True
    name = "XMLAgent"

    inputs = LCToolsAgentComponent._base_inputs + [
        HandleInput(name="llm", display_name="Language Model", input_types=["LanguageModel"], required=True),
        MultilineInput(
            name="user_prompt",
            display_name="Prompt",
            value="""
You are a helpful assistant. Help the user answer any questions.

You have access to the following tools:

{tools}

In order to use a tool, you can use <tool></tool> and <tool_input></tool_input> tags. You will then get back a response in the form <observation></observation>

For example, if you have a tool called 'search' that could run a google search, in order to search for the weather in SF you would respond:

<tool>search</tool><tool_input>weather in SF</tool_input>

<observation>64 degrees</observation>

When you are done, respond with a final answer between <final_answer></final_answer>. For example:

<final_answer>The weather in SF is 64 degrees</final_answer>

Begin!

Question: {input}

{agent_scratchpad}
            """,
        ),
    ]

    def create_agent_runnable(self):
        messages = [
            HumanMessagePromptTemplate(prompt=PromptTemplate(input_variables=["input"], template=self.user_prompt))
        ]
        prompt = ChatPromptTemplate.from_messages(messages)
        return create_xml_agent(self.llm, self.tools, prompt)

Was this helpful?

Give Feedback

How can we improve the documentation?

© 2024 DataStax | Privacy policy | Terms of use

Apache, Apache Cassandra, Cassandra, Apache Tomcat, Tomcat, Apache Lucene, Apache Solr, Apache Hadoop, Hadoop, Apache Pulsar, Pulsar, Apache Spark, Spark, Apache TinkerPop, TinkerPop, Apache Kafka and Kafka are either registered trademarks or trademarks of the Apache Software Foundation or its subsidiaries in Canada, the United States and/or other countries. Kubernetes is the registered trademark of the Linux Foundation.

General Inquiries: +1 (650) 389-6000, info@datastax.com