Integrate Azure Functions with Astra DB Serverless
Azure Functions is Microsoft Azure’s function-as-a-service offering that provides a serverless execution environment for your code. You can use Azure Functions for actions such as the following:
-
Extend Astra DB Serverless with additional data processing capabilities, such as aggregating, summarizing, and validating data periodically.
-
Connect Astra DB Serverless with other cloud services into data pipelines that move, process, and analyze data.
Prerequisites
-
You have an active Astra account.
-
You have created a Serverless (Vector) database.
-
You have created an application token with the Database Administrator role.
-
You have downloaded the secure connect bundle for your database and noted the path to the downloaded
secure-connect-DATABASE_NAME.zip
file.
Create a local Azure Functions project
Create a local project, based on the Azure Functions Python quickstart, to develop and test your Azure Functions before you deploy them to the cloud.
-
Install the Azure CLI.
-
Install the Azure functions package version 4.0 or later.
-
Windows
-
macOS
-
Linux
These steps use a Windows installer (MSI) to install Core Tools v4.x. For information about other package-based installers, see the Core Tools readme.
If you previously used Windows installer (MSI) to install Core Tools on Windows, uninstall the old version before installing the latest version.
-
Download and run the Core Tools installer for your version of Windows:
-
v4.x - Windows 64-bit (Recommended. Visual Studio Code debugging requires 64-bit.)
-
brew tap azure/functions brew install azure-functions-core-tools@4 # if upgrading on a machine that has 2.x or 3.x installed: brew link --overwrite azure-functions-core-tools@4
These steps use APT to install Core Tools on an Ubuntu or Debian Linux distribution. For other Linux distributions, see the Core Tools readme.
-
Install the Microsoft package repository GPG key to validate package integrity:
curl https://packages.microsoft.com/keys/microsoft.asc | gpg --dearmor > microsoft.gpg sudo mv microsoft.gpg /etc/apt/trusted.gpg.d/microsoft.gpg
-
Set up the APT source list before doing an APT update.
-
Ubuntu:
sudo sh -c 'echo "deb [arch=amd64] https://packages.microsoft.com/repos/microsoft-ubuntu-$(lsb_release -cs)-prod $(lsb_release -cs) main" > /etc/apt/sources.list.d/dotnetdev.list'
-
Debian:
sudo sh -c 'echo "deb [arch=amd64] https://packages.microsoft.com/debian/$(lsb_release -rs | cut -d'.' -f 1)/prod $(lsb_release -cs) main" > /etc/apt/sources.list.d/dotnetdev.list'
-
-
Check the
/etc/apt/sources.list.d/dotnetdev.list
file for your Linux version.Linux distribution Version Debian 11
bullseye
Debian 10
buster
Debian 9
stretch
Ubuntu 22.04
jammy
Ubuntu 20.04
focal
Ubuntu 19.04
disco
Ubuntu 18.10
cosmic
Ubuntu 18.04
bionic
Ubuntu 17.04/Linux Mint 18
xenial
-
Start the APT source update:
sudo apt-get update
-
Install the Core Tools package:
sudo apt-get install azure-functions-core-tools-4
-
-
Create and activate a new Python virtual environment:
python -m venv .venv source .venv/bin/activate
-
Initialize a new Azure Functions project with the Python runtime:
func init --python
This command initializes a project directory with a
function_app.py
file, arequirements.txt
file, and other necessary Python files. -
Use
func new
to add a function to your project.The
--name
argument is the unique name of your function, and the--template
argument specifies the function’s trigger.In this example,
func new
adds an HTTP trigger endpoint namedHttpExample
to thefunction_app.py
file, which is accessible without authentication.For more information, see the Azure functionapp CLI reference.
func new --name HttpExample --template "HTTP trigger" --authlevel "ANONYMOUS"
-
Replace the contents of
function_app.py
with the following code:import azure.functions as func import datetime import json import logging app = func.FunctionApp() @app.route(route="HttpExample", auth_level=func.AuthLevel.ANONYMOUS) def HttpExample(req: func.HttpRequest) -> func.HttpResponse: logging.info('Python HTTP trigger function processed a request.') name = req.params.get('name') if not name: try: req_body = req.get_json() except ValueError: pass else: name = req_body.get('name') if name: return func.HttpResponse(f"Hello, {name}. This HTTP triggered function executed successfully.") else: return func.HttpResponse( "This HTTP triggered function executed successfully. Pass a name in the query string or in the request body for a personalized response.", status_code=200 )
-
Run the function locally:
func start
From the output, you can visit the HttpExample endpoint, which prints a message like
This HTTP triggered function executed successfully. Pass a name in the query string or in the request body for a personalized response.
.Found Python version 3.9.6 (python3). Azure Functions Core Tools Core Tools Version: 4.0.5907 Commit hash: N/A +807e89766a92b14fd07b9f0bc2bea1d8777ab209 (64-bit) Function Runtime Version: 4.834.3.22875 [2024-07-25T14:48:34.922Z] Worker process started and initialized. Functions: HttpExample: http://localhost:7071/api/HttpExample
You might get an error like
No job functions found. Try making your job classes and methods public.
If this happens, check yourlocal.settings.json
file and make sureUseDevelopmentStorage
is set totrue
. Thelocal.settings.json
file is in the root of the project directory you created withfunc init
.{ "IsEncrypted": false, "Values": { "FUNCTIONS_WORKER_RUNTIME": "python", "AzureWebJobsFeatureFlags": "EnableWorkerIndexing", "AzureWebJobsStorage": "UseDevelopmentStorage=true" } }
Deploy the function to the cloud
-
Sign into your Azure account:
az login
-
Create a resource group named
AzureFunctionsQuickstart-rg
in your chosen region. Replace<REGION>
with a region near you, using an available region code returned from theaz account list-locations
command.az group create --name AzureFunctionsQuickstart --location <REGION>
-
Create a general-purpose storage account in your resource group and region. Replace
<STORAGE_NAME>
with a name that’s appropriate to you and unique in Azure Storage.--sku Standard_LRS
specifies a general-purpose account supported by Azure Functions.az storage account create --name <STORAGE_NAME> --location eastus2 --resource-group AzureFunctionsQuickstart --sku Standard_LRS
-
Create the function app in Azure. The
az functionapp create
command creates the function app in Azure. You must supply--os-type linux
because Python functions only run on Linux.az functionapp create --resource-group AzureFunctionsQuickstart --consumption-plan-location eastus2 --runtime python --runtime-version 3.9 --functions-version 4 --name uniqueapplication --os-type linux --storage-account azurequickstartstoragemk
Your template Python application is now deployed to Azure Functions.
-
Publish the application in Azure to make it publicly available:
func azure functionapp publish uniqueapplication
-
To test the deployed application, send a request to the application’s endpoint:
curl "https://uniqueapplication.azurewebsites.net/api/HttpExample?name=datastax"
Response:
Hello, NAME. This HTTP triggered function executed successfully.
You can also view, test, and debug the function in the Azure portal.
Create the Azure function with the Python Cassandra driver
Now that you have a working template application, modify the local application and dependencies to connect to Astra DB with the Python Cassandra driver.
-
Set the following environment variables:
-
APP_NAME
: The name of your application. -
RESOURCE_GROUP_NAME
: The name of the resource group you created. -
ASTRA_DB_CLIENT_ID
: Entertoken
. This must be the exact, all-lowercase word token. -
ASTRA_DB_CLIENT_SECRET
: Your application token, which is prefixed byAstraCS:
.export APP_NAME = APPLICATION_NAME export RESOURCE_GROUP_NAME = AZURE_RESOURCE_GROUP_NAME export ASTRA_DB_CLIENT_ID = token export ASTRA_DB_CLIENT_SECRET = APPLICATION_TOKEN
-
-
Use the Azure CLI to add
ASTRA_DB_CLIENT_ID
andASTRA_DB_CLIENT_SECRET
to the application settings:az functionapp config appsettings set \ --name ${APP_NAME} \ --resource-group ${RESOURCE_GROUP_NAME} \ --settings "ASTRA_DB_CLIENT_ID=${ASTRA_DB_CLIENT_ID}" az functionapp config appsettings set \ --name ${APP_NAME} \ --resource-group ${RESOURCE_GROUP_NAME} \ --settings "ASTRA_DB_CLIENT_SECRET=${ASTRA_DB_CLIENT_SECRET}"
-
In the Azure portal, verify the environment variables in your app settings.
-
Move the secure connect bundle zip file to root of the project directory.
-
Add the Python Cassandra driver to the
requirements.txt
file:echo "cassandra-driver" | cat >> requirements.txt cat requirements.txt
-
Replace the
function_app.py
content with the following code, and then replacesecure-connect-bundle-for-your-database.zip
with the file name for your database’s secure connect bundle:import azure.functions as func from azure.functions import AuthLevel import datetime import json import logging import os from cassandra.cluster import Cluster from cassandra.auth import PlainTextAuthProvider ASTRA_DB_CLIENT_ID = os.environ.get('ASTRA_DB_CLIENT_ID') ASTRA_DB_CLIENT_SECRET = os.environ.get('ASTRA_DB_CLIENT_SECRET') if not ASTRA_DB_CLIENT_ID or not ASTRA_DB_CLIENT_SECRET: raise ValueError("Environment variables ASTRA_DB_CLIENT_ID and ASTRA_DB_CLIENT_SECRET must be set") cloud_config = { 'secure_connect_bundle': 'secure-connect-bundle-for-your-database.zip', 'use_default_tempdir': True } auth_provider = PlainTextAuthProvider(ASTRA_DB_CLIENT_ID, ASTRA_DB_CLIENT_SECRET) cluster = Cluster( cloud=cloud_config, auth_provider=auth_provider, protocol_version=4 ) app = func.FunctionApp() @app.route(route="HttpExample", auth_level=func.AuthLevel.ANONYMOUS) def HttpExample(req: func.HttpRequest) -> func.HttpResponse: session = cluster.connect() session.default_timeout = 60 row = session.execute("SELECT cql_version FROM system.local WHERE key = 'local';").one() cql_version = row[0] logging.info(f"{cql_version} Success") return func.HttpResponse(f"{cql_version} Success")
-
Test the function locally:
func start
From the output, you can visit the HttpExample endpoint, which prints
VERSION Success
, whereVERSION
is your Astra DB CQL version.Found Python version 3.9.6 (python3). Azure Functions Core Tools Core Tools Version: 4.0.5907 Commit hash: N/A +807e89766a92b14fd07b9f0bc2bea1d8777ab209 (64-bit) Function Runtime Version: 4.834.3.22875 [2024-07-25T14:48:34.922Z] Worker process started and initialized. Functions: HttpExample: http://localhost:7071/api/HttpExample
-
Deploy the updated function to Azure:
func azure functionapp publish uniqueapplication
A successful build returns
Remote build succeeded
and an invoke URL for your application. -
To test your application, send a GET request to your application’s endpoint:
curl "https://uniqueapplication.azurewebsites.net/api/HttpExample"
Response
A successful response contains
VERSION Success
, whereVERSION
is your Astra DB CQL version.3.4.5 Success
Your Azure function is now integrated with Astra DB Serverless through the Python Cassandra driver, and you can now extend or modify the Azure function to interact with your Astra DB Serverless database.