Integrate Unstructured Serverless with Astra DB Serverless
This tutorial explains how to integrate the Unstructured Serverless API and Astra DB Serverless to quickly convert common unstructured file types, such as PDF and document files, into LLM-ready vector data for highly relevant GenAI similarity searches. Unstructured.io provides a no-code platform and cloud service that handles any complex enterprise document type. Unstructured.io then transforms, cleans, and generates embeddings with Astra DB Serverless serving as the vector data store destination.
You can also use the built-in Unstructured data loader integration to load unstructured data into your Serverless (Vector) databases. |
In this Python tutorial, you will use the Unstructured Serverless API to process a PDF document, load the extracted vector data into a Astra DB Serverless vector store, and then query the index with LangChain.
Prerequisites
This tutorial requires the following:
-
An active Serverless (Vector) database
-
Your database’s API Endpoint, in the form of
https://ASTRA_DB_ID-ASTRA_DB_REGION.apps.astra.datastax.com
. -
An application token with the Database Administrator role.
-
An OpenAI API key.
Install dependencies
-
RAGStack package
-
Manual install
You can install the RAGStack package to install the Unstructured.io Python client, the Astra DB Data API Python client, and the required LangChain dependencies.
pip install ragstack-ai
If you don’t want to use the RAGStack package, you must manually install the following:
-
Python LangChain dependencies, including
langchain
,langchain-core
,langchain-community
,langchain-astradb
, andlangchain-openai
Set up your environment
Define the required environment variables in an .env
file in your application directory or in the Colab environment for this tutorial’s Google Colab notebook.
UNSTRUCTURED_API_KEY=UNSTRUCTURED_API_KEY
UNSTRUCTURED_API_URL=https://api.unstructuredapp.io/general/v0/general
ASTRA_DB_API_ENDPOINT=https://ASTRA_DB_ID-ASTRA_DB_REGION.apps.astra.datastax.com
ASTRA_DB_APPLICATION_TOKEN=APPLICATION_TOKEN
OPENAI_API_KEY=OPENAI_API_KEY
Create a RAG pipeline
-
Import dependencies and load environment variables:
import os import requests from dotenv import load_dotenv from langchain_astradb import AstraDBVectorStore from langchain_core.documents import Document from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import PromptTemplate from langchain_core.runnables import RunnablePassthrough from langchain_community.document_loaders import ( unstructured, UnstructuredAPIFileLoader, ) from langchain_openai import ( ChatOpenAI, OpenAIEmbeddings, ) load_dotenv()
-
For this tutorial, download a PDF to parse:
url = "https://raw.githubusercontent.com/datastax/ragstack-ai/48bc55e7dc4de6a8b79fcebcedd242dc1254dd63/examples/notebooks/resources/attention_pages_9_10.pdf" file_path = "./attention_pages_9_10.pdf" response = requests.get(url) if response.status_code == 200: with open(file_path, "wb") as file: file.write(response.content) print("Download complete.") else: print("Error downloading the file.")
This file contains pages nine and ten from a PDF from arXiv.
-
Use Unstructured to parse the PDF into elements for indexing. You can use either Simple Parsing or Advanced Parsing. This tutorial uses Advanced Parsing.
-
Simple parsing
-
Advanced parsing
Simple Parsing mode is best for documents that don’t contain complex formatting or tables.
loader = UnstructuredAPIFileLoader( file_path="./attention_pages_9_10.pdf", api_key=os.getenv("UNSTRUCTURED_API_KEY"), server_url = os.getenv("UNSTRUCTURED_API_URL"), ) simple_docs = loader.load() print(len(simple_docs)) print(simple_docs[0].page_content[0:400])
By default, the parser returns one document per PDF file, and the output includes a sample of the document content. For this tutorial, the simple parsing output shows the first table’s description and the start of a poorly formatted table.
If you change the processing strategy and response mode, you get a more detailed document structure. Unstructured can break the document into elements of different types, which can be helpful for improving your RAG system.
For example, the
Table
element type can format tables as simple HTML, which can help the LLM answer questions from the table data, and you can excludeFooter
type elements from your vector store. See the Unstructured documentation for a list of accepted element types.elements = unstructured.get_elements_from_api( file_path="./attention_pages_9_10.pdf", api_key=os.getenv("UNSTRUCTURED_API_KEY"), server_url=os.getenv("UNSTRUCTURED_API_URL"), strategy="hi_res", # default "auto" pdf_infer_table_structure=True, ) print(len(elements)) tables = [el for el in elements if el.category == "Table"] print(tables[1].metadata.text_as_html)
With Advanced Parsing mode, you get 27 elements instead of a single document, and the table structure is available as HTML.
For more information about the benefits of Advanced Parsing mode, see this tutorial’s Colab notebook.
-
-
Create a Serverless (Vector) store instance:
astra_db_store = AstraDBVectorStore( collection_name="langchain_unstructured", embedding=OpenAIEmbeddings(), token=os.getenv("ASTRA_DB_APPLICATION_TOKEN"), api_endpoint=os.getenv("ASTRA_DB_API_ENDPOINT") )
-
Use the following code to create LangChain documents. This code chunks the text after
Table
elements and beforeTitle
elements, uses the HTML output format for table data, and then inserts the documents into the Astra DB vector store instance.documents = [] current_doc = None for el in elements: if el.category in ["Header", "Footer"]: continue # skip these if el.category == "Title": if current_doc is not None: documents.append(current_doc) current_doc = None if not current_doc: current_doc = Document(page_content="", metadata=el.metadata.to_dict()) current_doc.page_content += el.metadata.text_as_html if el.category == "Table" else el.text if el.category == "Table": if current_doc is not None: documents.append(current_doc) current_doc = None astra_db_store.add_documents(documents)
-
Build a RAG pipeline using the populated vector store:
prompt = """ Answer the question based only on the supplied context. If you don't know the answer, say "I don't know". Context: {context} Question: {question} Your answer: """ llm = ChatOpenAI(model="gpt-3.5-turbo-16k", streaming=False, temperature=0) chain = ( {"context": astra_db_store.as_retriever(), "question": RunnablePassthrough()} | PromptTemplate.from_template(prompt) | llm | StrOutputParser() )
Query the vector store with LangChain
-
Ask a question that the model can answer from the text in the parsed document:
response_1 = chain.invoke("What does reducing the attention key size do?") print("\n***********New Unstructured Basic Query Engine***********") print(response_1)
This query should return
Reducing the attention key size hurts model quality.
-
Ask a question that the model can answer from the table data in the parsed document:
response_2 = chain.invoke("For the transformer to English constituency results, what was the 'WSJ 23 F1' value for 'Dyer et al. (2016) [8]'?") print("\n***********New Unstructured Basic Query Engine***********") print(response_2)
This query should return
The 'WSJ 23 F1' value for 'Dyer et al. (2016) [8]' was 91.7
, which comes from the second table in the parsed PDF. -
Ask a question with an expected lack of context. This can be any query that has no relationship to the data in the parsed document.
response_3 = chain.invoke("When was George Washington born?") print("\n***********New Unstructured Basic Query Engine***********") print(response_3)
Queries that the model can’t answer return
I don’t know. The context does not provide any information about UNRELATED_QUERY.
Complete code example
The following Python script includes commands to Create a RAG pipeline with advanced parsing, and then Query the vector store with LangChain. To use this script, make sure that you complete the Prerequisites, Install dependencies, and Set up your environment.
import os
import requests
from dotenv import load_dotenv
from langchain_astradb import AstraDBVectorStore
from langchain_core.documents import Document
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import PromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_community.document_loaders import (
unstructured,
UnstructuredAPIFileLoader,
)
from langchain_openai import (
ChatOpenAI,
OpenAIEmbeddings,
)
load_dotenv()
# download pdf
url = "https://raw.githubusercontent.com/datastax/ragstack-ai/48bc55e7dc4de6a8b79fcebcedd242dc1254dd63/examples/notebooks/resources/attention_pages_9_10.pdf"
file_path = "./attention_pages_9_10.pdf"
response = requests.get(url)
if response.status_code == 200:
with open(file_path, "wb") as file:
file.write(response.content)
print("Download complete.")
else:
print("Error downloading the file.")
# simple parse
loader = UnstructuredAPIFileLoader(
file_path="./attention_pages_9_10.pdf",
api_key=os.getenv("UNSTRUCTURED_API_KEY"),
url = os.getenv("UNSTRUCTURED_API_URL"),
)
simple_docs = loader.load()
print(len(simple_docs))
print(simple_docs[0].page_content[0:400])
# complex parse
elements = unstructured.get_elements_from_api(
file_path="./attention_pages_9_10.pdf",
api_key=os.getenv("UNSTRUCTURED_API_KEY"),
api_url=os.getenv("UNSTRUCTURED_API_URL"),
strategy="hi_res", # default "auto"
pdf_infer_table_structure=True,
)
print(len(elements))
tables = [el for el in elements if el.category == "Table"]
print(tables[1].metadata.text_as_html)
# create vector store
astra_db_store = AstraDBVectorStore(
collection_name="langchain_unstructured",
embedding=OpenAIEmbeddings(),
token=os.getenv("ASTRA_DB_APPLICATION_TOKEN"),
api_endpoint=os.getenv("ASTRA_DB_API_ENDPOINT")
)
# load documents
documents = []
current_doc = None
for el in elements:
if el.category in ["Header", "Footer"]:
continue # skip these
if el.category == "Title":
if current_doc is not None:
documents.append(current_doc)
current_doc = None
if not current_doc:
current_doc = Document(page_content="", metadata=el.metadata.to_dict())
current_doc.page_content += el.metadata.text_as_html if el.category == "Table" else el.text
if el.category == "Table":
if current_doc is not None:
documents.append(current_doc)
current_doc = None
astra_db_store.add_documents(documents)
# prompt and query
prompt = """
Answer the question based only on the supplied context. If you don't know the answer, say "I don't know".
Context: {context}
Question: {question}
Your answer:
"""
llm = ChatOpenAI(model="gpt-3.5-turbo-16k", streaming=False, temperature=0)
chain = (
{"context": astra_db_store.as_retriever(), "question": RunnablePassthrough()}
| PromptTemplate.from_template(prompt)
| llm
| StrOutputParser()
)
response_1 = chain.invoke("What does reducing the attention key size do?")
print("\n***********New Unstructured Basic Query Engine***********")
print(response_1)
response_2 = chain.invoke("For the transformer to English constituency results, what was the 'WSJ 23 F1' value for 'Dyer et al. (2016) (5]'?")
print("\n***********New Unstructured Basic Query Engine***********")
print(response_2)
response_3 = chain.invoke("When was George Washington born?")
print("\n***********New Unstructured Basic Query Engine***********")
print(response_3)