Alter a table
Alters a table by doing one of the following:
-
Adding one or more columns to a table
-
Dropping one or more columns from a table
-
Adding automatic embedding generation for one or more vector columns
-
Removing automatic embedding generation for one or more vector columns
You cannot change a column’s type. Instead, you must drop the column and add a new column.
After you add a column, you should index the column if you want to filter or sort on the column. All indexed column names must use snake case, not camel case. For more information, see Create an index and Create a vector index.
Ready to write code? See the examples for this method to get started. If you are new to the Data API, check out the quickstart. |
Result
-
Python
-
TypeScript
-
Java
-
curl
Adds or drops columns, or adds or removes a vectorize integration for vector columns. Removing a vectorize integration for a column does not remove the vector embeddings stored in the column.
Returns a Table
instance that represents the table after the modification.
Although the Table
instance that you used to perform the alteration will still work, it will not reflect the updated typing if you added or dropped columns.
To reflect the new typing, use the row_type
parameter.
Adds or drops columns, or adds or removes a vectorize integration for vector columns. Removing a vectorize integration for a column does not remove the vector embeddings stored in the column.
Returns a promise that resolves to a Table
instance that represents the table after the modification.
Although the Table
instance that you used to perform the alteration will still work, it will not reflect the updated typing if you added or dropped columns.
To reflect the new typing, provide the new type of the table to the alter
method.
For example:
const newTable = await table.alter<NewSchema>({
operation: {
add: {
columns: {
venue: 'text',
},
},
},
});
Adds or drops columns, or adds or removes a vectorize integration for vector columns. Removing a vectorize integration for a column does not remove the vector embeddings stored in the column.
Returns a Table<T>
instance that represents the table after the schema change.
Although the Table
instance that you used to perform the alteration will still work, it will not reflect the updated typing if you added or dropped columns.
To reflect the new typing, use the rowClass
parameter.
Adds or drops columns, or adds or removes a vectorize integration for vector columns. Removing a vectorize integration for a column does not remove the vector embeddings stored in the column.
If the command succeeds, the response indicates the success.
Example response:
{
"status": {
"ok": 1
}
}
Parameters
-
Python
-
TypeScript
-
Java
-
curl
Use the alter
method, which belongs to the astrapy.Table
class.
Method signature
alter(
operation: AlterTableOperation | dict[str, Any],
*,
row_type: type[Any] = DefaultRowType,
table_admin_timeout_ms: int,
request_timeout_ms: int,
timeout_ms: int,
) -> Table[NEW_ROW]
Name | Type | Summary |
---|---|---|
|
|
The alter operation to perform. Can be one of the following:
|
|
|
Optional.
A formal specifier for the type checker.
If provided, |
|
|
Optional.
A timeout, in milliseconds, for the underlying HTTP request.
If not provided, the |
Use the alter
method, which belongs to the Table
class.
Method signature
async alter(
options: AlterTableOptions<Schema>
): Table<Schema, PKey>
Name | Type | Summary |
---|---|---|
|
|
The alter operation to perform. Can be one of the following:
|
|
|
The timeout(s) to apply to HTTP request(s) originating from this method. |
Use the alter
method, which belongs to the com.datastax.astra.client.tables.Table
class.
Method signature
Table<T> alter(AlterTableOperation operation)
Table<T> alter(
AlterTableOperation operation,
AlterTableOptions options
)
<R> Table<R> alter(
AlterTableOperation operation,
AlterTableOptions options,
Class<R> clazz
)
Name | Type | Summary |
---|---|---|
|
|
The alter operation to perform. Can be one of the following:
|
|
Optional. The options for this operation, including the timeout. |
|
|
|
Optional. A specification of the class of the table’s row object. Default: |
Use the alterTable
command.
Command signature
curl -sS -L -X POST "API_ENDPOINT/api/json/v1/KEYSPACE_NAME/TABLE_NAME" \
--header "Token: APPLICATION_TOKEN" \
--header "Content-Type: application/json" \
--data '{
"alterTable": {
"operation": {
"add": {
"columns": {
"NEW_COLUMN_NAME": "DATA_TYPE",
"NEW_COLUMN_NAME": "DATA_TYPE"
}
}
}
}
}'
curl -sS -L -X POST "API_ENDPOINT/api/json/v1/KEYSPACE_NAME/TABLE_NAME" \
--header "Token: APPLICATION_TOKEN" \
--header "Content-Type: application/json" \
--data '{
"alterTable": {
"operation": {
"drop": {
"columns": [ "COLUMN_NAME", "COLUMN_NAME" ]
}
}
}
}'
curl -sS -L -X POST "API_ENDPOINT/api/json/v1/KEYSPACE_NAME/TABLE_NAME" \
--header "Token: APPLICATION_TOKEN" \
--header "Content-Type: application/json" \
--data '{
"alterTable": {
"operation": {
"addVectorize": {
"columns": {
"VECTOR_COLUMN_NAME": {
"provider": "PROVIDER",
"modelName": "MODEL_NAME",
"authentication": {
"providerKey": "API_KEY_NAME"
},
"parameters": PARAMETERS
}
}
}
}
}
}'
curl -sS -L -X POST "API_ENDPOINT/api/json/v1/KEYSPACE_NAME/TABLE_NAME" \
--header "Token: APPLICATION_TOKEN" \
--header "Content-Type: application/json" \
--data '{
"alterTable": {
"operation": {
"dropVectorize": {
"columns": [ "VECTOR_COLUMN_NAME", "VECTOR_COLUMN_NAME" ]
}
}
}
}'
Name | Type | Summary |
---|---|---|
|
|
The alter operation to perform. Can be one of the following:
|
Examples
The following examples demonstrate how to alter a table.
Add columns to a table
When you add columns, the columns are defined in the same way as they are when you create a table.
After you add a column, you should index the column if you want to filter or sort on the column. For more information, see Create an index and Create a vector index.
-
Python
-
TypeScript
-
Java
-
curl
from astrapy import DataAPIClient
from astrapy.info import (
AlterTableAddColumns,
ColumnType,
TableScalarColumnTypeDescriptor,
)
# Get an existing table
client = DataAPIClient("APPLICATION_TOKEN")
database = client.get_database("API_ENDPOINT")
table = database.get_table("TABLE_NAME")
# Add columns
table.alter(
AlterTableAddColumns(
columns={
"is_summer_reading": TableScalarColumnTypeDescriptor(
column_type=ColumnType.BOOLEAN,
),
"library_branch": TableScalarColumnTypeDescriptor(
column_type=ColumnType.TEXT,
),
},
),
)
import { DataAPIClient } from "@datastax/astra-db-ts";
// Get an existing table
const client = new DataAPIClient("APPLICATION_TOKEN");
const database = client.db("API_ENDPOINT");
const table = database.table("TABLE_NAME");
// Add columns
(async function () {
await table.alter({
operation: {
add: {
columns: {
is_summer_reading: "boolean",
library_branch: "text",
},
},
},
});
})();
import com.datastax.astra.client.DataAPIClient;
import com.datastax.astra.client.tables.Table;
import com.datastax.astra.client.tables.commands.AlterTableAddColumns;
import com.datastax.astra.client.tables.definition.rows.Row;
public class Example {
public static void main(String[] args) {
// Get an existing table
Table<Row> table =
new DataAPIClient("APPLICATION_TOKEN")
.getDatabase("API_ENDPOINT")
.getTable("TABLE_NAME");
// Add columns
AlterTableAddColumns alterOperation =
new AlterTableAddColumns()
.addColumnBoolean("is_summer_reading")
.addColumnText("library_branch");
table.alter(alterOperation);
}
}
curl -sS -L -X POST "API_ENDPOINT/api/json/v1/KEYSPACE_NAME/TABLE_NAME" \
--header "Token: APPLICATION_TOKEN" \
--header "Content-Type: application/json" \
--data '{
"alterTable": {
"operation": {
"add": {
"columns": {
"is_summer_reading": "boolean",
"library_branch": "text"
}
}
}
}
}'
Add a vector column and configure an embedding provider integration
When you add a vector column to a table, you can configure an embedding provider integration for the column. The integration will automatically generate vector embeddings for any data inserted into the column.
The configuration depends on the embedding provider. For the configuration and an example for each provider, see Supported embedding providers.
After you add a column, you should index the column if you want to filter or sort on the column. For more information, see Create an index and Create a vector index.
-
Python
-
TypeScript
-
Java
-
curl
from astrapy import DataAPIClient
from astrapy.info import (
AlterTableAddColumns,
TableVectorColumnTypeDescriptor,
VectorServiceOptions
)
# Get an existing table
client = DataAPIClient("APPLICATION_TOKEN")
database = client.get_database("API_ENDPOINT")
table = database.get_table("TABLE_NAME")
# Add a vector column and configure an embedding provider integration
table.alter(
AlterTableAddColumns(
columns={
"plot_synopsis": TableVectorColumnTypeDescriptor(
dimension=MODEL_DIMENSIONS,
service=VectorServiceOptions(
provider="PROVIDER",
model_name="MODEL_NAME",
authentication={
"providerKey": "API_KEY_NAME",
},
parameters=PARAMETERS
),
),
},
),
)
import { DataAPIClient } from '@datastax/astra-db-ts';
// Get an existing table
const client = new DataAPIClient('APPLICATION_TOKEN');
const database = client.db('API_ENDPOINT');
const table = database.table('TABLE_NAME');
// Add a vector column and configure an embedding provider integration
(async function () {
await table.alter({
operation: {
add: {
columns: {
plot_synopsis: {
type: 'vector',
dimension: MODEL_DIMENSIONS,
service: {
provider: 'PROVIDER',
modelName: 'MODEL_NAME',
authentication: {
providerKey: 'API_KEY_NAME',
},
parameters: PARAMETERS,
},
},
},
},
},
});
})();
import com.datastax.astra.client.DataAPIClient;
import com.datastax.astra.client.tables.Table;
import com.datastax.astra.client.tables.definition.columns.ColumnDefinitionVector;
import com.datastax.astra.client.tables.definition.rows.Row;
import com.datastax.astra.client.core.vector.SimilarityMetric;
import com.datastax.astra.client.tables.commands.AlterTableAddColumns;
import com.datastax.astra.client.core.vectorize.VectorServiceOptions;
public class Example {
public static void main(String[] args) {
// Get an existing table
Table<Row> table = new DataAPIClient("APPLICATION_TOKEN")
.getDatabase("API_ENDPOINT")
.getTable("TABLE_NAME");
// Add a vector column and configure an embedding provider integration
AlterTableAddColumns alterOperation = new AlterTableAddColumns()
.addColumnVector(
"plot_synopsis",
new ColumnDefinitionVector()
.dimension(MODEL_DIMENSIONS)
.metric(SimilarityMetric.SIMILARITY_METRIC)
.service(
new VectorServiceOptions()
.provider("PROVIDER")
.modelName("MODEL_NAME")
.authentication(Map.of("providerKey", "API_KEY_NAME"))
.parameters(PARAMETERS)
)
);
table.alter(alterOperation);
}
}
curl -sS -L -X POST "API_ENDPOINT/api/json/v1/KEYSPACE_NAME/TABLE_NAME" \
--header "Token: APPLICATION_TOKEN" \
--header "Content-Type: application/json" \
--data '{
"alterTable": {
"operation": {
"add": {
"columns": {
"plot_synopsis": {
"type": "vector",
"dimension": MODEL_DIMENSIONS,
"service": {
"provider": "PROVIDER",
"modelName": "MODEL_NAME",
"authentication": {
"providerKey": "API_KEY_NAME"
},
"parameters": PARAMETERS
}
}
}
}
}
}
}'
Drop columns from a table
-
Python
-
TypeScript
-
Java
-
curl
from astrapy import DataAPIClient
from astrapy.info import AlterTableDropColumns
# Get an existing table
client = DataAPIClient("APPLICATION_TOKEN")
database = client.get_database("API_ENDPOINT")
table = database.get_table("TABLE_NAME")
# Drop columns
table.alter(
AlterTableDropColumns(
columns=["is_summer_reading", "library_branch"],
),
)
import { DataAPIClient } from "@datastax/astra-db-ts";
// Get an existing table
const client = new DataAPIClient("APPLICATION_TOKEN");
const database = client.db("API_ENDPOINT");
const table = database.table("TABLE_NAME");
// Drop columns
(async function () {
await table.alter({
operation: {
drop: {
columns: ["is_summer_reading", "library_branch"],
},
},
});
})();
import com.datastax.astra.client.DataAPIClient;
import com.datastax.astra.client.tables.Table;
import com.datastax.astra.client.tables.commands.AlterTableDropColumns;
import com.datastax.astra.client.tables.definition.rows.Row;
public class Example {
public static void main(String[] args) {
// Get an existing table
Table<Row> table =
new DataAPIClient("APPLICATION_TOKEN")
.getDatabase("API_ENDPOINT")
.getTable("TABLE_NAME");
// Drop columns
AlterTableDropColumns alterOperation =
new AlterTableDropColumns("is_summer_reading", "library_branch");
table.alter(alterOperation);
}
}
curl -sS -L -X POST "API_ENDPOINT/api/json/v1/KEYSPACE_NAME/TABLE_NAME" \
--header "Token: APPLICATION_TOKEN" \
--header "Content-Type: application/json" \
--data '{
"alterTable": {
"operation": {
"drop": {
"columns": ["is_summer_reading", "library_branch"]
}
}
}
}'
Add automatic embedding generation to existing vector columns
You can configure an embedding provider integration for an existing vector column. The integration will automatically generate vector embeddings for any data inserted into the column.
The configuration depends on the embedding provider. For the configuration and an example for each provider, see Supported embedding providers.
If your vector column already includes vector data, make sure the service options are compatible with the existing embeddings. This ensures accurate vector search results.
-
Python
-
TypeScript
-
Java
-
curl
from astrapy import DataAPIClient
from astrapy.info import (
AlterTableAddVectorize,
VectorServiceOptions,
)
# Get an existing table
client = DataAPIClient("APPLICATION_TOKEN")
database = client.get_database("API_ENDPOINT")
table = database.get_table("TABLE_NAME")
# Configure an embedding provider integration for a vector column
table.alter(
AlterTableAddVectorize(
columns={
"plot_synopsis": VectorServiceOptions(
provider="PROVIDER",
model_name="MODEL_NAME",
authentication={
"providerKey": "API_KEY_NAME",
},
parameters=PARAMETERS
),
},
),
)
import { DataAPIClient } from '@datastax/astra-db-ts';
// Get an existing table
const client = new DataAPIClient('APPLICATION_TOKEN');
const database = client.db('API_ENDPOINT');
const table = database.table('TABLE_NAME');
// Configure an embedding provider integration for a vector column
(async function () {
await table.alter({
operation: {
addVectorize: {
columns: {
plot_synopsis: {
provider: 'PROVIDER',
modelName: 'MODEL_NAME',
authentication: {
providerKey: 'API_KEY_NAME',
},
parameters: PARAMETERS,
},
},
},
},
});
})();
import com.datastax.astra.client.DataAPIClient;
import com.datastax.astra.client.tables.definition.rows.Row;
import com.datastax.astra.client.tables.Table;
import com.datastax.astra.client.tables.commands.AlterTableAddVectorize;
import com.datastax.astra.client.core.vectorize.VectorServiceOptions;
public class Example {
public static void main(String[] args) {
// Get an existing table
Table<Row> table = new DataAPIClient("APPLICATION_TOKEN")
.getDatabase("API_ENDPOINT")
.getTable("TABLE_NAME");
// Configure an embedding provider integration for a vector column
AlterTableAddVectorize alterOperation =
new AlterTableAddVectorize()
.columns(
Map.of(
"plot_synopsis",
new VectorServiceOptions()
.provider("PROVIDER")
.modelName("MODEL_NAME")
.authentication(Map.of("providerKey", "API_KEY_NAME"))
.parameters(PARAMETERS)
)
);
table.alter(alterOperation);
}
}
curl -sS -L -X POST "API_ENDPOINT/api/json/v1/KEYSPACE_NAME/TABLE_NAME" \
--header "Token: APPLICATION_TOKEN" \
--header "Content-Type: application/json" \
--data '{
"alterTable": {
"operation": {
"addVectorize": {
"columns": {
"plot_synopsis": {
"provider": "PROVIDER",
"modelName": "MODEL_NAME",
"authentication": {
"providerKey": "API_KEY_NAME"
},
"parameters": PARAMETERS
}
}
}
}
}
}'
Remove automatic embedding generation from vector columns
You can remove automatic embedding generation for one or more vector columns. Removing a vectorize integration from a column does not remove the vector embeddings stored in the column.
-
Python
-
TypeScript
-
Java
-
curl
from astrapy import DataAPIClient
from astrapy.info import AlterTableDropVectorize
# Get an existing table
client = DataAPIClient("APPLICATION_TOKEN")
database = client.get_database("API_ENDPOINT")
table = database.get_table("TABLE_NAME")
# Remove automatic embedding generation
table.alter(
AlterTableDropVectorize(
columns=["plot_synopsis"],
),
)
import { DataAPIClient } from "@datastax/astra-db-ts";
// Get an existing table
const client = new DataAPIClient("APPLICATION_TOKEN");
const database = client.db("API_ENDPOINT");
const table = database.table("TABLE_NAME");
// Remove automatic embedding generation
(async function () {
await table.alter({
operation: {
dropVectorize: {
columns: ["plot_synopsis"],
},
},
});
})();
import com.datastax.astra.client.DataAPIClient;
import com.datastax.astra.client.tables.Table;
import com.datastax.astra.client.tables.commands.AlterTableDropVectorize;
import com.datastax.astra.client.tables.definition.rows.Row;
public class Example {
public static void main(String[] args) {
// Get an existing table
Table<Row> table =
new DataAPIClient("APPLICATION_TOKEN")
.getDatabase("API_ENDPOINT")
.getTable("TABLE_NAME");
// Remove automatic embedding generation
AlterTableDropVectorize alterOperation = new AlterTableDropVectorize("plot_synopsis");
table.alter(alterOperation);
}
}
curl -sS -L -X POST "API_ENDPOINT/api/json/v1/KEYSPACE_NAME/TABLE_NAME" \
--header "Token: APPLICATION_TOKEN" \
--header "Content-Type: application/json" \
--data '{
"alterTable": {
"operation": {
"dropVectorize": {
"columns": ["plot_synopsis"]
}
}
}
}'
Client reference
-
Python
-
TypeScript
-
Java
-
curl
For more information, see the client reference.
For more information, see the client reference.
For more information, see the client reference.
Client reference documentation is not applicable for HTTP.