Alter a table
This Astra DB Serverless feature is currently in public preview. Development is ongoing, and the features and functionality are subject to change. Astra DB Serverless, and the use of such, is subject to the DataStax Preview Terms. The Data API tables commands are available through HTTP and the clients. If you use a client, tables commands are available only in client versions 2.0-preview or later. For more information, see Data API client upgrade guide. |
Alters a table by doing one of the following:
-
Adding one or more columns to a table
-
Dropping one or more columns from a table
-
Adding automatic embedding generation for one or more vector columns
-
Removing automatic embedding generation for one or more vector columns
You cannot change a column’s type. Instead, you must drop the column and add a new column.
Method signature
-
Python
-
TypeScript
-
Java
-
curl
The following method belongs to the astrapy.Table
class.
alter(
operation: AlterTableOperation | dict[str, Any],
*,
row_type: type[Any] = DefaultRowType,
table_admin_timeout_ms: int,
request_timeout_ms: int,
timeout_ms: int,
) -> Table[NEW_ROW]
The following method belongs to the Table
class.
async alter<NewWSchema extends SomeRow, NewRSchema extends SomeRow = FoundRow<NewWSchema>>(
options: AlterTableOptions<SomeRow>
): Table<NewWSchema, PKey, NewRSchema>
The following methods belong to the com.datastax.astra.client.tables.Table
class.
Table<T> alter(AlterTableOperation operation)
Table<T> alter(
AlterTableOperation operation,
AlterTableOptions options
)
<R> Table<R> alter(
AlterTableOperation operation,
AlterTableOptions options,
Class<R> clazz
)
curl -sS -L -X POST "ASTRA_DB_API_ENDPOINT/api/json/v1/ASTRA_DB_KEYSPACE/ASTRA_DB_TABLE" \
--header "Token: ASTRA_DB_APPLICATION_TOKEN" \
--header "Content-Type: application/json" \
--data '{
"alterTable": {
"operation": {
"add": {
"columns": {
"NEW_COLUMN_NAME": "DATA_TYPE",
"NEW_COLUMN_NAME": "DATA_TYPE"
}
}
}
}
}'
curl -sS -L -X POST "ASTRA_DB_API_ENDPOINT/api/json/v1/ASTRA_DB_KEYSPACE/ASTRA_DB_TABLE" \
--header "Token: ASTRA_DB_APPLICATION_TOKEN" \
--header "Content-Type: application/json" \
--data '{
"alterTable": {
"operation": {
"drop": {
"columns": [ "COLUMN_NAME", "COLUMN_NAME" ]
}
}
}
}'
curl -sS -L -X POST "ASTRA_DB_API_ENDPOINT/api/json/v1/ASTRA_DB_KEYSPACE/ASTRA_DB_TABLE" \
--header "Token: ASTRA_DB_APPLICATION_TOKEN" \
--header "Content-Type: application/json" \
--data '{
"alterTable": {
"operation": {
"addVectorize": {
"columns": {
"VECTOR_COLUMN_NAME": {
"provider": "PROVIDER",
"modelName": "MODEL_NAME",
"authentication": {
"providerKey": "API_KEY_NAME"
},
"parameters": PARAMETERS
}
}
}
}
}
}'
curl -sS -L -X POST "ASTRA_DB_API_ENDPOINT/api/json/v1/ASTRA_DB_KEYSPACE/ASTRA_DB_TABLE" \
--header "Token: ASTRA_DB_APPLICATION_TOKEN" \
--header "Content-Type: application/json" \
--data '{
"alterTable": {
"operation": {
"dropVectorize": {
"columns": [ "VECTOR_COLUMN_NAME", "VECTOR_COLUMN_NAME" ]
}
}
}
}'
Result
-
Python
-
TypeScript
-
Java
-
curl
Adds or drops columns, or adds or removes a vectorize integration for vector columns. Removing a vectorize integration for a column does not remove the vector embeddings stored in the column.
Returns a new Table
instance that represents the table after the modification.
Although the Table
instance that you used to perform the alteration will still work, it will not reflect the updated typing if you added or dropped columns.
To reflect the new typing, use the row_type
parameter.
Adds or drops columns, or adds or removes a vectorize integration for vector columns. Removing a vectorize integration for a column does not remove the vector embeddings stored in the column.
Returns a promise that resolves to a Table
instance that represents the table after the modification.
Although the Table
instance that you used to perform the alteration will still work, it will not reflect the updated typing if you added or dropped columns.
To reflect the new typing, provide the new type of the table to the alter
method.
For example:
const newTable = await table.alter<NewSchema>({
operation: {
add: {
columns: {
venue: 'text',
},
},
},
});
Adds or drops columns, or adds or removes a vectorize integration for vector columns. Removing a vectorize integration for a column does not remove the vector embeddings stored in the column.
Returns a Table<T>
instance that represents the table after the schema change.
Although the Table
instance that you used to perform the alteration will still work, it will not reflect the updated typing if you added or dropped columns.
To reflect the new typing, use the rowClass
parameter.
Adds or drops columns, or adds or removes a vectorize integration for columns.
Removing a vectorize integration for a column does not change the column type or remove the vector embeddings stored in the column.
If the command succeeds, the response indicates the success.
Example response:
{
"status": {
"ok": 1
}
}
Parameters
-
Python
-
TypeScript
-
Java
-
curl
Name | Type | Summary |
---|---|---|
|
|
The alter operation to perform. Can be one of the following:
|
|
|
This parameter acts a formal specifier for the type checker.
If omitted, the resulting |
|
|
A timeout, in milliseconds, to impose on the underlying API request.
If not provided, the |
Name | Type | Summary |
---|---|---|
|
|
The alter operation to perform. Can be one of the following:
|
|
|
The client-side timeout for this operation. |
Options (AddColumnOperation
):
Name | Type | Summary |
---|---|---|
|
|
The column names, data types, and other settings (if required) for the new columns. Column are defined in the same way as they are in |
Options (DropColumnOperation
):
Name | Type | Summary |
---|---|---|
|
|
The names of the columns to drop from the table. |
Options (AddVectorizeOperation
):
Name | Type | Summary |
---|---|---|
|
|
Specify the names of the vector columns to alter and the vectorize options for each column.
The definition is the same as when you define |
Options (DropVectorizeOperation
):
Name | Type | Summary |
---|---|---|
|
|
The names of the columns from which to remove vectorize information. |
Name | Type | Summary |
---|---|---|
|
|
The alter operation to perform. Can be one of the following:
|
|
Specialization of the operation, including |
|
|
|
An optional new type for the row object.
If not provided, the default is |
Name | Type | Summary |
---|---|---|
|
|
The Data API command to modify the configuration of a table in a Serverless (Vector) database. It acts as a container for all the attributes and settings required to modify the table. |
|
|
The alter operation to perform. Can be one of the following:
|
|
|
Define columns to add to the table. The format is the same as when you define |
|
|
The names of the columns to remove from the table. |
|
|
Provide the name of the target vector column, the
|
|
|
The name of the vector column from which you want to remove the embedding provider integration. |
Examples
The following examples demonstrate how to alter a table.
Add columns to a table
When you add columns, the columns are defined in the same way as they are when you create a table.
-
Python
-
TypeScript
-
Java
-
curl
from astrapy import DataAPIClient
from astrapy.info import (
AlterTableAddColumns,
ColumnType,
TableScalarColumnTypeDescriptor,
)
# Get an existing table
client = DataAPIClient("ASTRA_DB_APPLICATION_TOKEN")
database = client.get_database("ASTRA_DB_API_ENDPOINT")
table = database.get_table("TABLE_NAME")
# Add columns
table.alter(
AlterTableAddColumns(
columns={
"is_summer_reading": TableScalarColumnTypeDescriptor(
column_type=ColumnType.BOOLEAN,
),
"library_branch": TableScalarColumnTypeDescriptor(
column_type=ColumnType.TEXT,
),
},
),
)
import { DataAPIClient } from '@datastax/astra-db-ts';
// Get an existing table
const client = new DataAPIClient('ASTRA_DB_APPLICATION_TOKEN');
const database = client.db('ASTRA_DB_API_ENDPOINT');
const table = database.table('TABLE_NAME');
// Add columns
(async function () {
await table.alter({
operation: {
add: {
columns: {
is_summer_reading: 'boolean',
library_branch: 'text',
},
},
},
});
})();
package com.example;
import com.datastax.astra.client.DataAPIClient;
import com.datastax.astra.client.tables.definition.rows.Row;
import com.datastax.astra.client.tables.Table;
import com.datastax.astra.client.tables.commands.AlterTableAddColumns;
public class AddColumns {
public static void main(String[] args) {
// Get an existing table
Table<Row> table = new DataAPIClient("ASTRA_DB_APPLICATION_TOKEN")
.getDatabase("ASTRA_DB_API_ENDPOINT")
.getTable("TABLE_NAME");
// Add columns
AlterTableAddColumns alterOperation = new AlterTableAddColumns()
.addColumnBoolean("is_summer_reading")
.addColumnText("library_branch");
table.alter(alterOperation);
}
}
curl -sS -L -X POST "ASTRA_DB_API_ENDPOINT/api/json/v1/default_keyspace/students" \
--header "Token: ASTRA_DB_APPLICATION_TOKEN" \
--header "Content-Type: application/json" \
--data '{
"alterTable": {
"operation": {
"add": {
"columns": {
"is_summer_reading": "boolean",
"library_branch": "text"
}
}
}
}
}'
Add a vector column and configure an embedding provider integration
When you add a vector column to a table, you can configure an embedding provider integration for the column. The integration will automatically generate vector embeddings for any data inserted into the column.
The configuration depends on the embedding provider. For the configuration and an example for each provider, see Supported embedding providers.
-
Python
-
TypeScript
-
Java
-
curl
from astrapy import DataAPIClient
from astrapy.info import (
AlterTableAddColumns,
TableVectorColumnTypeDescriptor,
VectorServiceOptions
)
# Get an existing table
client = DataAPIClient("ASTRA_DB_APPLICATION_TOKEN")
database = client.get_database("ASTRA_DB_API_ENDPOINT")
table = database.get_table("TABLE_NAME")
# Add a vector column and configure an embedding provider integration
table.alter(
AlterTableAddColumns(
columns={
"plot_synopsis": TableVectorColumnTypeDescriptor(
dimension=MODEL_DIMENSIONS,
service=VectorServiceOptions(
provider="PROVIDER",
model_name="MODEL_NAME",
authentication={
"providerKey": "API_KEY_NAME",
},
parameters=PARAMETERS
),
),
},
),
)
import { DataAPIClient } from '@datastax/astra-db-ts';
// Get an existing table
const client = new DataAPIClient('ASTRA_DB_APPLICATION_TOKEN');
const database = client.db('ASTRA_DB_API_ENDPOINT');
const table = database.table('TABLE_NAME');
// Add a vector column and configure an embedding provider integration
(async function () {
await table.alter({
operation: {
add: {
columns: {
plot_synopsis: {
type: 'vector',
dimension: MODEL_DIMENSIONS,
service: {
provider: 'PROVIDER',
modelName: 'MODEL_NAME',
authentication: {
providerKey: 'API_KEY_NAME',
},
parameters: PARAMETERS,
},
},
},
},
},
});
})();
package com.example;
import com.datastax.astra.client.DataAPIClient;
import com.datastax.astra.client.tables.Table;
import com.datastax.astra.client.tables.definition.columns.ColumnDefinitionVector;
import com.datastax.astra.client.tables.definition.rows.Row;
import com.datastax.astra.client.core.vector.SimilarityMetric;
import com.datastax.astra.client.tables.commands.AlterTableAddColumns;
import com.datastax.astra.client.core.vectorize.VectorServiceOptions;
public class AddColumn {
public static void main(String[] args) {
// Get an existing table
Table<Row> table = new DataAPIClient("ASTRA_DB_APPLICATION_TOKEN")
.getDatabase("ASTRA_DB_API_ENDPOINT")
.getTable("TABLE_NAME");
// Add a vector column and configure an embedding provider integration
AlterTableAddColumns alterOperation = new AlterTableAddColumns()
.addColumnVector(
"plot_synopsis",
new ColumnDefinitionVector()
.dimension(MODEL_DIMENSIONS)
.metric(SimilarityMetric.SIMILARITY_METRIC)
.service(
new VectorServiceOptions()
.provider("PROVIDER")
.modelName("MODEL_NAME")
.authentication(Map.of("providerKey", "API_KEY_NAME"))
.parameters(PARAMETERS)
)
);
table.alter(alterOperation);
}
}
curl -sS -L -X POST "ASTRA_DB_API_ENDPOINT/api/json/v1/default_keyspace/students" \
--header "Token: ASTRA_DB_APPLICATION_TOKEN" \
--header "Content-Type: application/json" \
--data '{
"alterTable": {
"operation": {
"add": {
"columns": {
"plot_synopsis": {
"type": "vector",
"dimension": MODEL_DIMENSIONS,
"service": {
"provider": "PROVIDER",
"modelName": "MODEL_NAME",
"authentication": {
"providerKey": "API_KEY_NAME"
},
"parameters": PARAMETERS
}
}
}
}
}
}
}'
Drop columns from a table
-
Python
-
TypeScript
-
Java
-
curl
from astrapy import DataAPIClient
from astrapy.info import AlterTableDropColumns
# Get an existing table
client = DataAPIClient("ASTRA_DB_APPLICATION_TOKEN")
database = client.get_database("ASTRA_DB_API_ENDPOINT")
table = database.get_table("TABLE_NAME")
# Drop columns
table.alter(
AlterTableDropColumns(
columns=["is_summer_reading", "library_branch"],
),
)
import { DataAPIClient } from '@datastax/astra-db-ts';
// Get an existing table
const client = new DataAPIClient('ASTRA_DB_APPLICATION_TOKEN');
const database = client.db('ASTRA_DB_API_ENDPOINT');
const table = database.table('TABLE_NAME');
// Drop columns
(async function () {
await table.alter({
operation: {
drop: {
columns: ["is_summer_reading", "library_branch"],
},
},
});
})();
package com.example;
import com.datastax.astra.client.DataAPIClient;
import com.datastax.astra.client.tables.definition.rows.Row;
import com.datastax.astra.client.tables.Table;
import com.datastax.astra.client.tables.commands.AlterTableDropColumns;
public class DropColumns {
public static void main(String[] args) {
// Get an existing table
Table<Row> table = new DataAPIClient("ASTRA_DB_APPLICATION_TOKEN")
.getDatabase("ASTRA_DB_API_ENDPOINT")
.getTable("TABLE_NAME");
// Drop columns
AlterTableDropColumns alterOperation = new AlterTableDropColumns("is_summer_reading", "library_branch");
table.alter(alterOperation);
}
}
curl -sS -L -X POST "ASTRA_DB_API_ENDPOINT/api/json/v1/default_keyspace/students" \
--header "Token: ASTRA_DB_APPLICATION_TOKEN" \
--header "Content-Type: application/json" \
--data '{
"alterTable": {
"operation": {
"drop": {
"columns": ["is_summer_reading", "library_branch"]
}
}
}
}'
Add automatic embedding generation to existing vector columns
You can configure an embedding provider integration for an existing vector column. The integration will automatically generate vector embeddings for any data inserted into the column.
The configuration depends on the embedding provider. For the configuration and an example for each provider, see Supported embedding providers.
-
Python
-
TypeScript
-
Java
-
curl
from astrapy import DataAPIClient
from astrapy.info import (
AlterTableAddVectorize,
VectorServiceOptions,
)
# Get an existing table
client = DataAPIClient("ASTRA_DB_APPLICATION_TOKEN")
database = client.get_database("ASTRA_DB_API_ENDPOINT")
table = database.get_table("TABLE_NAME")
# Configure an embedding provider integration for a vector column
table.alter(
AlterTableAddVectorize(
columns={
"plot_synopsis": VectorServiceOptions(
provider="PROVIDER",
model_name="MODEL_NAME",
authentication={
"providerKey": "API_KEY_NAME",
},
parameters=PARAMETERS
),
},
),
)
import { DataAPIClient } from '@datastax/astra-db-ts';
// Get an existing table
const client = new DataAPIClient('ASTRA_DB_APPLICATION_TOKEN');
const database = client.db('ASTRA_DB_API_ENDPOINT');
const table = database.table('TABLE_NAME');
// Configure an embedding provider integration for a vector column
(async function () {
await table.alter({
operation: {
addVectorize: {
columns: {
plot_synopsis: {
provider: 'PROVIDER',
modelName: 'MODEL_NAME',
authentication: {
providerKey: 'API_KEY_NAME',
},
parameters: PARAMETERS,
},
},
},
},
});
})();
package com.example;
import com.datastax.astra.client.DataAPIClient;
import com.datastax.astra.client.tables.definition.rows.Row;
import com.datastax.astra.client.tables.Table;
import com.datastax.astra.client.tables.commands.AlterTableAddVectorize;
import com.datastax.astra.client.core.vectorize.VectorServiceOptions;
public class AddVectorize {
public static void main(String[] args) {
// Get an existing table
Table<Row> table = new DataAPIClient("ASTRA_DB_APPLICATION_TOKEN")
.getDatabase("ASTRA_DB_API_ENDPOINT")
.getTable("TABLE_NAME");
// Configure an embedding provider integration for a vector column
AlterTableAddVectorize alterOperation =
new AlterTableAddVectorize()
.columns(
Map.of(
"plot_synopsis",
new VectorServiceOptions()
.provider("PROVIDER")
.modelName("MODEL_NAME")
.authentication(Map.of("providerKey", "API_KEY_NAME"))
.parameters(PARAMETERS)
)
);
table.alter(alterOperation);
}
}
curl -sS -L -X POST "ASTRA_DB_API_ENDPOINT/api/json/v1/default_keyspace/students" \
--header "Token: ASTRA_DB_APPLICATION_TOKEN" \
--header "Content-Type: application/json" \
--data '{
"alterTable": {
"operation": {
"addVectorize": {
"columns": {
"plot_synopsis": {
"provider": "PROVIDER",
"modelName": "MODEL_NAME",
"authentication": {
"providerKey": "API_KEY_NAME"
},
"parameters": PARAMETERS
}
}
}
}
}
}'
Remove automatic embedding generation from vector columns
You can remove automatic embedding generation for one or more vector columns.
-
Python
-
TypeScript
-
Java
-
curl
from astrapy import DataAPIClient
from astrapy.info import AlterTableDropVectorize
# Get an existing table
client = DataAPIClient("ASTRA_DB_APPLICATION_TOKEN")
database = client.get_database("ASTRA_DB_API_ENDPOINT")
table = database.get_table("TABLE_NAME")
# Remove automatic embedding generation
table.alter(
AlterTableDropVectorize(
columns=["plot_synopsis"],
),
)
import { DataAPIClient } from '@datastax/astra-db-ts';
// Get an existing table
const client = new DataAPIClient('ASTRA_DB_APPLICATION_TOKEN');
const database = client.db('ASTRA_DB_API_ENDPOINT');
const table = database.table('TABLE_NAME');
// Remove automatic embedding generation
(async function () {
await table.alter({
operation: {
dropVectorize: {
columns: ["plot_synopsis"],
},
},
});
})();
package com.example;
import com.datastax.astra.client.DataAPIClient;
import com.datastax.astra.client.tables.definition.rows.Row;
import com.datastax.astra.client.tables.Table;
import com.datastax.astra.client.tables.commands.AlterTableDropVectorize;
public class DropColumn {
public static void main(String[] args) {
// Get an existing table
Table<Row> table = new DataAPIClient("ASTRA_DB_APPLICATION_TOKEN")
.getDatabase("ASTRA_DB_API_ENDPOINT")
.getTable("TABLE_NAME");
// Remove automatic embedding generation
AlterTableDropVectorize alterOperation = new AlterTableDropVectorize("plot_synopsis");
table.alter(alterOperation);
}
}
curl -sS -L -X POST "ASTRA_DB_API_ENDPOINT/api/json/v1/default_keyspace/students" \
--header "Token: ASTRA_DB_APPLICATION_TOKEN" \
--header "Content-Type: application/json" \
--data '{
"alterTable": {
"operation": {
"dropVectorize": {
"columns": ["plot_synopsis"]
}
}
}
}'
Client reference
-
Python
-
TypeScript
-
Java
-
curl
For more information, see the client reference.
For more information, see the client reference.
For more information, see the client reference.
Client reference documentation is not applicable for HTTP.