Create a table
This Astra DB Serverless feature is currently in public preview. Development is ongoing, and the features and functionality are subject to change. Astra DB Serverless, and the use of such, is subject to the DataStax Preview Terms. The Data API tables commands are available through HTTP and the clients. If you use a client, tables commands are available only in client versions 2.0-preview or later. For more information, see Data API client upgrade guide. |
Creates a new table in a keyspace in a Serverless (Vector) database.
After you create a table, index columns that you want to sort or filter. This optimizes your queries and avoids resource intensive, long running allow filtering operations.
You can also modify the table columns later. To add data to your table, insert rows.
Method signature
-
Python
-
TypeScript
-
Java
-
curl
The following method belongs to the astrapy.Database
class.
create_table(
name: str,
*,
definition: CreateTableDefinition | dict[str, Any],
row_type: type[Any],
keyspace: str,
if_not_exists: bool,
table_admin_timeout_ms: int,
request_timeout_ms: int,
timeout_ms: int,
embedding_api_key: str | EmbeddingHeadersProvider,
spawn_api_options: APIOptions,
) -> Table[ROW]
The following method belongs to the Db
class.
async createTable<const Def extends CreateTableDefinition>(
name: string,
options: {
definition: CreateTableDefinition,
ifNotExists: boolean,
embeddingApiKey?: string | EmbeddingHeadersProvider,
logging?: DataAPILoggingConfig,
serdes?: TableSerDesConfig,
timeoutDefaults?: Partial<TimeoutDescriptor>,
keyspace?: string,
}
): Table<InferTableSchema<Def>, InferTablePrimaryKey<Def>>
The following methods belong to the com.datastax.astra.client.databases.Database
class.
<T> Table<T> createTable(
String tableName,
TableDefinition tableDefinition,
Class<T> rowClass,
CreateTableOptions createTableOptions
)
<T> Table<T> createTable(
String tableName,
TableDefinition tableDefinition,
Class<T> rowClass
)
<T> Table<T> createTable(Class<T> rowClass)
<T> Table<T> createTable(
Class<T> rowClass,
CreateTableOptions createTableOptions
)
<T> Table<T> createTable(
String tableName,
Class<T> rowClass,
CreateTableOptions createTableOptions
)
Table<Row> createTable(
String tableName,
TableDefinition tableDefinition,
CreateTableOptions options
)
Table<Row> createTable(
String tableName,
TableDefinition tableDefinition
)
curl -sS -L -X POST "ASTRA_DB_API_ENDPOINT/api/json/v1/ASTRA_DB_KEYSPACE" \
--header "Token: ASTRA_DB_APPLICATION_TOKEN" \
--header "Content-Type: application/json" \
--data '{
"createTable": {
"name": "TABLE_NAME",
"definition": {
"columns": {
"COLUMN_NAME": "DATA_TYPE",
"COLUMN_NAME": "DATA_TYPE"
},
"primaryKey": "PRIMARY_KEY_DEFINITION"
}
}
}'
Result
-
Python
-
TypeScript
-
Java
-
curl
Creates a table with the specified parameters.
Returns a Table
object.
You can use this object to work with rows in the table.
Unless you specify the row_type
parameter, the table is typed as Table[dict]
.
For more information, see Typing support.
Creates a table with the specified parameters.
Returns a promise that resolves to a <Table<Schema, PKey>>
object.
You can use this object to work with rows in the table.
Unless you specify the Schema
, the table is typed as Table<Record<string, any>>
.
Creates a table with the specified parameters.
Returns a Table<T>
object.
You can use this object to work with rows in the table.
Unless you specify the rowClass
parameter, the table is typed as Table<Row>
.
Creates a table with the specified parameters.
If the command succeeds, the response indicates the success.
Example response:
{
"status": {
"ok": 1
}
}
Parameters
When you create a table, you specify the following:
-
Table name
-
Column names and data types
-
Primary keys in tables, which is the unique identifier for the rows in the table
-
Additional table, command, or client-specific settings, which can be optional
-
Python
-
TypeScript
-
Java
-
curl
Name | Type | Summary | ||
---|---|---|---|---|
|
|
The name of the table. |
||
|
|
A complete table definition for the table, including the column names, data types, other column settings, and the primary key. This can be an instance of Some types require specific column definitions, particularly maps, lists, sets, and vector columns. For more information about all types, see Data types in tables. |
||
|
|
This parameter acts a formal specifier for the type checker.
If omitted, the resulting |
||
|
|
The keyspace where the table is to be created. If not specified, the general keyspace setting for the database is used. |
||
|
|
If If
|
||
|
|
A timeout, in milliseconds, to impose on the underlying API request.
If not provided, the |
||
|
|
Optional parameter for tables that have a As an alternative to Astra DB KMS authentication, use Most embedding provider integrations accept a plain |
||
|
|
A complete or partial specification of the APIOptions to override the defaults inherited from the |
Parameters:
Name | Type | Summary |
---|---|---|
|
|
The name of the table. |
|
|
The options for spawning the |
Options (CreateTableOptions<Schema>
):
Name | Type | Summary | ||
---|---|---|---|---|
|
|
A TypeScript object defining the table to create, including the following:
|
||
|
|
If If
|
||
|
|
The keyspace where you want to create the table.
If not specified, the working keyspace of the |
||
|
|
Optional parameter for tables that have a As an alternative to Astra DB KMS authentication, use Most embedding provider integrations accept a plain |
||
|
|
The configuration for logging events emitted by the |
||
|
|
The default timeout options for any operation performed on this |
||
|
|
Lower-level serialization/deserialization configuration for this table. For more information, see Custom Ser/Des. |
Name | Type | Summary | ||
---|---|---|---|---|
|
|
The name of the table. |
||
|
A complete table definition for the table, including the column names, data types, other column settings, and the primary key. Some types require specific column definitions, particularly maps, lists, sets, and vector columns. For more information about all types, see Data types in tables. |
|||
|
|
An optional specification of the class of the table’s row object.
If not provided, the default is |
||
|
Options and additional parameters for the
|
Name | Type | Summary |
---|---|---|
|
|
The Data API command to create a table in a Serverless (Vector) database. It acts as a container for all the attributes and settings required to create the table. |
|
|
The name of the table. This must be unique within the database specified in the request URL. |
|
|
Contains the columns and primary key definition for the table. |
|
|
Defines the table’s columns as a series of key-value pairs where each key is a column name and each value is the column’s data type. Column names must be unique within a table. The Data API accepts column definitions in two formats:
Data types are enums of supported data types, such as For For the |
|
|
Defines the primary key for the table. For more information, see Primary keys in tables. |
Examples
The following examples demonstrate how to create a table.
Create a table with a single-column primary key
A single-column primary key is a primary key consisting of one column. For more information, see Primary keys.
-
Python
-
TypeScript
-
Java
-
curl
The Python client supports multiple ways to create a table.
In all cases, you must define the table schema, and then pass the definition to the create_table
method.
-
CreateTableDefinition object
-
Fluent interface
-
Dictionary
You can define the table as a CreateTableDefinition
and then build the table from the CreateTableDefinition
object.
from astrapy import DataAPIClient
from astrapy.info import (
CreateTableDefinition,
ColumnType,
TableKeyValuedColumnType,
TableKeyValuedColumnTypeDescriptor,
TableScalarColumnTypeDescriptor,
TableValuedColumnTypeDescriptor,
TableValuedColumnType,
TablePrimaryKeyDescriptor,
)
# Get an existing database
client = DataAPIClient("ASTRA_DB_APPLICATION_TOKEN")
database = client.get_database("ASTRA_DB_API_ENDPOINT")
table_definition = CreateTableDefinition(
# Define all of the columns in the table
columns={
"title": TableScalarColumnTypeDescriptor(
column_type=ColumnType.TEXT
),
"number_of_pages": TableScalarColumnTypeDescriptor(
column_type=ColumnType.INT
),
"rating": TableScalarColumnTypeDescriptor(
column_type=ColumnType.FLOAT
),
"genres": TableValuedColumnTypeDescriptor(
column_type=TableValuedColumnType.SET,
value_type=ColumnType.TEXT,
),
"metadata": TableKeyValuedColumnTypeDescriptor(
column_type=TableKeyValuedColumnType.MAP,
key_type=ColumnType.TEXT,
value_type=ColumnType.TEXT,
),
"is_checked_out": TableScalarColumnTypeDescriptor(
column_type=ColumnType.BOOLEAN
),
"due_date": TableScalarColumnTypeDescriptor(
column_type=ColumnType.DATE
),
},
# Define the primary key for the table.
# In this case, the table uses a single-column primary key.
primary_key=TablePrimaryKeyDescriptor(
partition_by=["title"],
partition_sort={}
),
)
table = database.create_table(
"example_table",
definition=table_definition,
)
You can use a fluent interface to build the table definition and then create the table from the definition.
from astrapy import DataAPIClient
from astrapy.info import CreateTableDefinition, ColumnType
# Get an existing database
client = DataAPIClient("ASTRA_DB_APPLICATION_TOKEN")
database = client.get_database("ASTRA_DB_API_ENDPOINT")
table_definition = (
CreateTableDefinition.builder()
# Define all of the columns in the table
.add_column("title", ColumnType.TEXT)
.add_column("number_of_pages", ColumnType.INT)
.add_column("rating", ColumnType.FLOAT)
.add_set_column(
"genres",
ColumnType.TEXT,
)
.add_map_column(
"metadata",
# This is the key type for the map column
ColumnType.TEXT,
# This is the value type for the map column
ColumnType.TEXT,
)
.add_column("is_checked_out", ColumnType.BOOLEAN)
.add_column("due_date", ColumnType.DATE)
# Define the primary key for the table.
# In this case, the table uses a single-column primary key.
.add_partition_by(["title"])
# Finally, build the table definition.
.build()
)
table = database.create_table(
"example_table",
definition=table_definition,
)
You can define the table as a dictionary and then build the table from the dictionary.
from astrapy import DataAPIClient
# Get an existing database
client = DataAPIClient("ASTRA_DB_APPLICATION_TOKEN")
database = client.get_database("ASTRA_DB_API_ENDPOINT")
# Define the columns and primary key for the table
table_definition = {
"columns": {
"title": {"type": "text"},
"number_of_pages": {"type": "int"},
"rating": {"type": "float"},
"genres": {"type": "set", "valueType": "text"},
"metadata": {"type": "map", "keyType": "text", "valueType": "text"},
"is_checked_out": {"type": "boolean"},
"due_date": {"type": "date"},
},
"primaryKey": {
"partitionBy": ["title"],
"partitionSort": {},
},
}
table = database.create_table(
"example_table",
definition=table_definition,
)
The TypeScript client supports multiple ways to create a table. The method you choose depends on your typing preferences and whether you modified the ser/des configuration.
For more information, see Collection and table typing.
-
Automatic type inference
-
Manually typed tables
-
Untyped tables
The TypeScript client can automatically infer the TypeScript-equivalent type of the table’s schema and primary key.
To do this, first create the table definition.
Then, use InferTableSchema
and InferTablePrimaryKey
to infer the type of the table and of the primary key.
To create the table, provide the table definition and the inferred types to the createTable
method.
import {
DataAPIClient,
InferTablePrimaryKey,
InferTableSchema,
Table,
} from "@datastax/astra-db-ts";
// Get an existing database
const client = new DataAPIClient("ASTRA_DB_APPLICATION_TOKEN");
const database = client.db("ASTRA_DB_API_ENDPOINT");
const tableDefinition = Table.schema({
// Define all of the columns in the table
columns: {
title: "text",
number_of_pages: "int",
rating: "float",
genres: { type: "set", valueType: "text" },
metadata: {
type: "map",
keyType: "text",
valueType: "text",
},
is_checked_out: "boolean",
due_date: "date",
},
// Define the primary key for the table.
// In this case, the table uses a single-column primary key.
primaryKey: {
partitionBy: ["title"],
},
});
// Infer the TypeScript-equivalent type of the table's schema and primary key
type TableSchema = InferTableSchema<typeof tableDefinition>;
type TablePrimaryKey = InferTablePrimaryKey<typeof tableDefinition>;
(async function () {
// Provide the types and the definition
const table = await database.createTable<TableSchema, TablePrimaryKey>(
"example_table",
{ definition: tableDefinition },
);
})();
You can use the TableSchema type as you would any other type.
For example, this gives a type error since the TableSchema
type from the previous example does not include bad_field
:
const row: TableSchema = {
title: "Wind with No Name",
number_of_pages: 193,
bad_field: "I will error",
};
You can manually define the type for your table’s schema and primary key.
To create the table, provide the table definition and the types to the createTable
method.
This may be necessary if you modify the table’s default ser/des configuration.
import { DataAPIClient, DataAPIDate, Table } from "@datastax/astra-db-ts";
// Get an existing database
const client = new DataAPIClient("ASTRA_DB_APPLICATION_TOKEN");
const database = client.db("ASTRA_DB_API_ENDPOINT");
const tableDefinition = Table.schema({
// Define all of the columns in the table
columns: {
title: "text",
number_of_pages: "int",
rating: "float",
genres: { type: "set", valueType: "text" },
metadata: {
type: "map",
keyType: "text",
valueType: "text",
},
is_checked_out: "boolean",
due_date: "date",
},
// Define the primary key for the table.
// In this case, the table uses a single-column primary key.
primaryKey: {
partitionBy: ["title"],
},
});
// Manually define the type of the table's schema and primary key
type TableSchema = {
title: string;
number_of_pages?: number | null | undefined;
rating?: number | null | undefined;
genres?: Set<string> | undefined;
metadata?: Map<string, string> | undefined;
is_checked_out?: boolean | null | undefined;
due_date?: DataAPIDate | null | undefined;
};
type TablePrimaryKey = Pick<TableSchema, "title">;
(async function () {
// Provide the types and the definition to create the table
const table = await database.createTable<TableSchema, TablePrimaryKey>(
"example_table",
{ definition: tableDefinition },
);
})();
You can use the TableSchema type as you would any other type.
For example, this gives a type error since the TableSchema
type from the previous example does not include bad_field
:
const row: TableSchema = {
title: "Wind with No Name",
number_of_pages: 193,
bad_field: "I will error",
};
To create a table without any typing, pass SomeRow
as the single generic type parameter to the createTable
method.
This types the table’s rows as Record<string, any>
.
This is the most flexible but least type-safe option.
import { DataAPIClient, SomeRow, Table } from "@datastax/astra-db-ts";
// Get an existing database
const client = new DataAPIClient("ASTRA_DB_APPLICATION_TOKEN");
const database = client.db("ASTRA_DB_API_ENDPOINT");
const tableDefinition = Table.schema({
// Define all of the columns in the table
columns: {
title: "text",
number_of_pages: "int",
rating: "float",
genres: { type: "set", valueType: "text" },
metadata: {
type: "map",
keyType: "text",
valueType: "text",
},
is_checked_out: "boolean",
due_date: "date",
},
// Define the primary key for the table.
// In this case, the table uses a single-column primary key.
primaryKey: {
partitionBy: ["title"],
},
});
(async function () {
// Provide the types and the definition to create the table
const table = await database.createTable<SomeRow>(
"example_table",
{ definition: tableDefinition },
);
})();
The Java client supports multiple ways to create a table. In all cases, you must define the table schema.
-
Use a generic type
-
Define the row type
If you don’t specify the Class
parameter when creating an instance of the generic class Table
, the client defaults Table
as the type.
In this case, the working object type T
is Row.class
.
package com.examples;
import com.datastax.astra.client.DataAPIClient;
import com.datastax.astra.client.databases.Database;
import com.datastax.astra.client.tables.Table;
import com.datastax.astra.client.tables.definition.TableDefinition;
import com.datastax.astra.client.tables.definition.columns.ColumnTypes;
import com.datastax.astra.client.tables.definition.rows.Row;
public class CreateTable {
public static void main(String[] args) {
// Get an existing database
Database database =
new DataAPIClient("ASTRA_DB_APPLICATION_TOKEN")
.getDatabase("ASTRA_DB_API_ENDPOINT");
TableDefinition tableDefinition =
new TableDefinition()
// Define all of the columns in the table
.addColumnText("title")
.addColumnInt("number_of_pages")
.addColumn("rating", ColumnTypes.FLOAT)
.addColumnSet("genres", ColumnTypes.TEXT)
.addColumnMap("metadata", ColumnTypes.TEXT, ColumnTypes.TEXT)
.addColumnBoolean("is_checked_out")
.addColumn("due_date", ColumnTypes.DATE)
// Define the primary key for the table.
// In this case, the table uses a single-column primary key.
.addPartitionBy("title");
Table<Row> table = database.createTable("example_table", tableDefinition);
}
}
Instead of using the default type Row.class
, you can define your own working object, which will be serialized as a Row
.
This working object can be annotated when the field names do not exactly match the column names or when you want to fully describe your table to enable its creation solely from the entity definition.
The following example defines a Book
class and then uses it to create the table.
package com.examples;
import com.datastax.astra.client.tables.definition.columns.ColumnTypes;
import com.datastax.astra.client.tables.mapping.Column;
import com.datastax.astra.client.DataAPIClient;
import com.datastax.astra.client.databases.Database;
import com.datastax.astra.client.tables.mapping.EntityTable;
import com.datastax.astra.client.tables.mapping.PartitionBy;
import com.datastax.astra.client.tables.Table;
import lombok.Data;
import java.util.Date;
import java.util.Map;
import java.util.Set;
public class CreateTable {
@EntityTable("example_table")
@Data
public class Book {
@PartitionBy(0)
@Column(name = "title", type = ColumnTypes.TEXT)
private String title;
@Column(name = "number_of_pages", type = ColumnTypes.INT)
private Integer numberOfPages;
@Column(name = "rating", type = ColumnTypes.FLOAT)
private Float rating;
@Column(name = "genres", type = ColumnTypes.SET, valueType = ColumnTypes.TEXT)
private Set<String> genres;
@Column(
name = "metadata",
type = ColumnTypes.MAP,
keyType = ColumnTypes.TEXT,
valueType = ColumnTypes.TEXT)
private Map<String, String> metadata;
@Column(name = "is_checked_out", type = ColumnTypes.BOOLEAN)
private Boolean isCheckedOut;
@Column(name = "due_date", type = ColumnTypes.DATE)
private Date dueDate;
}
public static void main(String[] args) {
// Get an existing database
Database database =
new DataAPIClient("ASTRA_DB_APPLICATION_TOKEN")
.getDatabase("ASTRA_DB_API_ENDPOINT");
Table<Book> table = database.createTable(Book.class);
}
}
curl -sS -L -X POST "ASTRA_DB_API_ENDPOINT/api/json/v1/ASTRA_DB_KEYSPACE" \
--header "Token: ASTRA_DB_APPLICATION_TOKEN" \
--header "Content-Type: application/json" \
--data '{
"createTable": {
"name": "example_table",
"definition": {
"columns": {
"title": {
"type": "text"
},
"number_of_pages": {
"type": "int"
},
"rating": {
"type": "float"
},
"metadata": {
"type": "map",
"keyType": "text",
"valueType": "text"
},
"genres": {
"type": "set",
"valueType": "text"
},
"is_checked_out": {
"type": "boolean"
},
"due_date": {
"type": "date"
}
},
"primaryKey": "title"
}
}
}'
Create a table with a composite primary key
A composite primary key is a primary key consisting of multiple columns. For more information, see Primary keys.
-
Python
-
TypeScript
-
Java
-
curl
The Python client supports multiple ways to create a table.
In all cases, you must define the table schema, and then pass the definition to the create_table
method.
-
CreateTableDefinition object
-
Fluent interface
-
Dictionary
You can define the table as a CreateTableDefinition
and then build the table from the CreateTableDefinition
object.
from astrapy import DataAPIClient
from astrapy.info import (
CreateTableDefinition,
ColumnType,
TableKeyValuedColumnType,
TableKeyValuedColumnTypeDescriptor,
TableScalarColumnTypeDescriptor,
TableValuedColumnTypeDescriptor,
TableValuedColumnType,
TablePrimaryKeyDescriptor,
)
# Get an existing database
client = DataAPIClient("ASTRA_DB_APPLICATION_TOKEN")
database = client.get_database("ASTRA_DB_API_ENDPOINT")
table_definition = CreateTableDefinition(
# Define all of the columns in the table
columns={
"title": TableScalarColumnTypeDescriptor(
column_type=ColumnType.TEXT
),
"number_of_pages": TableScalarColumnTypeDescriptor(
column_type=ColumnType.INT
),
"rating": TableScalarColumnTypeDescriptor(
column_type=ColumnType.FLOAT
),
"genres": TableValuedColumnTypeDescriptor(
column_type=TableValuedColumnType.SET,
value_type=ColumnType.TEXT,
),
"metadata": TableKeyValuedColumnTypeDescriptor(
column_type=TableKeyValuedColumnType.MAP,
key_type=ColumnType.TEXT,
value_type=ColumnType.TEXT,
),
"is_checked_out": TableScalarColumnTypeDescriptor(
column_type=ColumnType.BOOLEAN
),
"due_date": TableScalarColumnTypeDescriptor(
column_type=ColumnType.DATE
),
},
# Define the primary key for the table.
# In this case, the table uses a composite primary key.
primary_key=TablePrimaryKeyDescriptor(
partition_by=["title", "rating"],
partition_sort={}
),
)
table = database.create_table(
"example_table",
definition=table_definition,
)
You can use a fluent interface to build the table definition and then create the table from the definition.
from astrapy import DataAPIClient
from astrapy.info import CreateTableDefinition, ColumnType
# Get an existing database
client = DataAPIClient("ASTRA_DB_APPLICATION_TOKEN")
database = client.get_database("ASTRA_DB_API_ENDPOINT")
table_definition = (
CreateTableDefinition.builder()
# Define all of the columns in the table
.add_column("title", ColumnType.TEXT)
.add_column("number_of_pages", ColumnType.INT)
.add_column("rating", ColumnType.FLOAT)
.add_set_column(
"genres",
ColumnType.TEXT,
)
.add_map_column(
"metadata",
# This is the key type for the map column
ColumnType.TEXT,
# This is the value type for the map column
ColumnType.TEXT,
)
.add_column("is_checked_out", ColumnType.BOOLEAN)
.add_column("due_date", ColumnType.DATE)
# Define the primary key for the table.
# In this case, the table uses a composite primary key.
.add_partition_by(["title", "rating"])
# Finally, build the table definition.
.build()
)
table = database.create_table(
"example_table",
definition=table_definition,
)
You can define the table as a dictionary and then build the table from the dictionary.
from astrapy import DataAPIClient
# Get an existing database
client = DataAPIClient("ASTRA_DB_APPLICATION_TOKEN")
database = client.get_database("ASTRA_DB_API_ENDPOINT")
# Define the columns and primary key for the table
table_definition = {
"columns": {
"title": {"type": "text"},
"number_of_pages": {"type": "int"},
"rating": {"type": "float"},
"genres": {"type": "set", "valueType": "text"},
"metadata": {"type": "map", "keyType": "text", "valueType": "text"},
"is_checked_out": {"type": "boolean"},
"due_date": {"type": "date"},
},
"primaryKey": {
"partitionBy": ["title", "rating"],
"partitionSort": {},
},
}
table = database.create_table(
"example_table",
definition=table_definition,
)
The TypeScript client supports multiple ways to create a table. The method you choose depends on your typing preferences and whether you modified the ser/des configuration.
For more information, see Collection and table typing.
-
Automatic type inference
-
Manually typed tables
-
Untyped tables
The TypeScript client can automatically infer the TypeScript-equivalent type of the table’s schema and primary key.
To do this, first create the table definition.
Then, use InferTableSchema
and InferTablePrimaryKey
to infer the type of the table and of the primary key.
To create the table, provide the table definition and the inferred types to the createTable
method.
import {
DataAPIClient,
InferTablePrimaryKey,
InferTableSchema,
Table,
} from "@datastax/astra-db-ts";
// Get an existing database
const client = new DataAPIClient("ASTRA_DB_APPLICATION_TOKEN");
const database = client.db("ASTRA_DB_API_ENDPOINT");
const tableDefinition = Table.schema({
// Define all of the columns in the table
columns: {
title: "text",
number_of_pages: "int",
rating: "float",
genres: { type: "set", valueType: "text" },
metadata: {
type: "map",
keyType: "text",
valueType: "text",
},
is_checked_out: "boolean",
due_date: "date",
},
// Define the primary key for the table.
// In this case, the table uses a composite primary key.
primaryKey: {
partitionBy: ["title", "rating"],
},
});
// Infer the TypeScript-equivalent type of the table's schema and primary key
type TableSchema = InferTableSchema<typeof tableDefinition>;
type TablePrimaryKey = InferTablePrimaryKey<typeof tableDefinition>;
(async function () {
// Provide the types and the definition
const table = await database.createTable<TableSchema, TablePrimaryKey>(
"example_table",
{ definition: tableDefinition },
);
})();
You can use the TableSchema type as you would any other type.
For example, this gives a type error since the TableSchema
type from the previous example does not include bad_field
:
const row: TableSchema = {
title: "Wind with No Name",
number_of_pages: 193,
bad_field: "I will error",
};
You can manually define the type for your table’s schema and primary key.
To create the table, provide the table definition and the types to the createTable
method.
This may be necessary if you modify the table’s default ser/des configuration.
import { DataAPIClient, DataAPIDate, Table } from "@datastax/astra-db-ts";
// Get an existing database
const client = new DataAPIClient("ASTRA_DB_APPLICATION_TOKEN");
const database = client.db("ASTRA_DB_API_ENDPOINT");
const tableDefinition = Table.schema({
// Define all of the columns in the table
columns: {
title: "text",
number_of_pages: "int",
rating: "float",
genres: { type: "set", valueType: "text" },
metadata: {
type: "map",
keyType: "text",
valueType: "text",
},
is_checked_out: "boolean",
due_date: "date",
},
// Define the primary key for the table.
// In this case, the table uses a composite primary key.
primaryKey: {
partitionBy: ["title", "rating"],
},
});
// Manually define the type of the table's schema and primary key
type TableSchema = {
title: string;
number_of_pages?: number | null | undefined;
rating?: number | null | undefined;
genres?: Set<string> | undefined;
metadata?: Map<string, string> | undefined;
is_checked_out?: boolean | null | undefined;
due_date?: DataAPIDate | null | undefined;
};
type TablePrimaryKey = Pick<TableSchema, "title" | "rating">;
(async function () {
// Provide the types and the definition to create the table
const table = await database.createTable<TableSchema, TablePrimaryKey>(
"example_table",
{ definition: tableDefinition },
);
})();
You can use the TableSchema type as you would any other type.
For example, this gives a type error since the TableSchema
type from the previous example does not include bad_field
:
const row: TableSchema = {
title: "Wind with No Name",
number_of_pages: 193,
bad_field: "I will error",
};
To create a table without any typing, pass SomeRow
as the single generic type parameter to the createTable
method.
This types the table’s rows as Record<string, any>
.
This is the most flexible but least type-safe option.
import { DataAPIClient, SomeRow, Table } from "@datastax/astra-db-ts";
// Get an existing database
const client = new DataAPIClient("ASTRA_DB_APPLICATION_TOKEN");
const database = client.db("ASTRA_DB_API_ENDPOINT");
const tableDefinition = Table.schema({
// Define all of the columns in the table
columns: {
title: "text",
number_of_pages: "int",
rating: "float",
genres: { type: "set", valueType: "text" },
metadata: {
type: "map",
keyType: "text",
valueType: "text",
},
is_checked_out: "boolean",
due_date: "date",
},
// Define the primary key for the table.
// In this case, the table uses a composite primary key.
primaryKey: {
partitionBy: ["title", "rating"],
},
});
(async function () {
// Provide the types and the definition to create the table
const table = await database.createTable<SomeRow>(
"example_table",
{ definition: tableDefinition },
);
})();
The Java client supports multiple ways to create a table. In all cases, you must define the table schema.
-
Use a generic type
-
Define the row type
If you don’t specify the Class
parameter when creating an instance of the generic class Table
, the client defaults Table
as the type.
In this case, the working object type T
is Row.class
.
package com.examples;
import com.datastax.astra.client.DataAPIClient;
import com.datastax.astra.client.databases.Database;
import com.datastax.astra.client.tables.Table;
import com.datastax.astra.client.tables.definition.TableDefinition;
import com.datastax.astra.client.tables.definition.columns.ColumnTypes;
import com.datastax.astra.client.tables.definition.rows.Row;
public class CreateTable {
public static void main(String[] args) {
// Get an existing database
Database database =
new DataAPIClient("ASTRA_DB_APPLICATION_TOKEN")
.getDatabase("ASTRA_DB_API_ENDPOINT");
TableDefinition tableDefinition =
new TableDefinition()
// Define all of the columns in the table
.addColumnText("title")
.addColumnInt("number_of_pages")
.addColumn("rating", ColumnTypes.FLOAT)
.addColumnSet("genres", ColumnTypes.TEXT)
.addColumnMap("metadata", ColumnTypes.TEXT, ColumnTypes.TEXT)
.addColumnBoolean("is_checked_out")
.addColumn("due_date", ColumnTypes.DATE)
// Define the primary key for the table.
// In this case, the table uses a composite primary key.
.addPartitionBy("title")
.addPartitionBy("rating");
Table<Row> table = database.createTable("example_table", tableDefinition);
}
}
Instead of using the default type Row.class
, you can define your own working object, which will be serialized as a Row
.
This working object can be annotated when the field names do not exactly match the column names or when you want to fully describe your table to enable its creation solely from the entity definition.
The following example defines a Book
class and then uses it to create the table.
package com.examples;
import com.datastax.astra.client.tables.definition.columns.ColumnTypes;
import com.datastax.astra.client.tables.mapping.Column;
import com.datastax.astra.client.DataAPIClient;
import com.datastax.astra.client.databases.Database;
import com.datastax.astra.client.tables.mapping.EntityTable;
import com.datastax.astra.client.tables.mapping.PartitionBy;
import com.datastax.astra.client.tables.Table;
import lombok.Data;
import java.util.Date;
import java.util.Map;
import java.util.Set;
public class CreateTable {
@EntityTable("example_table")
@Data
public class Book {
@PartitionBy(0)
@Column(name = "title", type = ColumnTypes.TEXT)
private String title;
@Column(name = "number_of_pages", type = ColumnTypes.INT)
private Integer numberOfPages;
@PartitionBy(1)
@Column(name = "rating", type = ColumnTypes.FLOAT)
private Float rating;
@Column(name = "genres", type = ColumnTypes.SET, valueType = ColumnTypes.TEXT)
private Set<String> genres;
@Column(
name = "metadata",
type = ColumnTypes.MAP,
keyType = ColumnTypes.TEXT,
valueType = ColumnTypes.TEXT)
private Map<String, String> metadata;
@Column(name = "is_checked_out", type = ColumnTypes.BOOLEAN)
private Boolean isCheckedOut;
@Column(name = "due_date", type = ColumnTypes.DATE)
private Date dueDate;
}
public static void main(String[] args) {
// Get an existing database
Database database =
new DataAPIClient("ASTRA_DB_APPLICATION_TOKEN")
.getDatabase("ASTRA_DB_API_ENDPOINT");
Table<Book> table = database.createTable(Book.class);
}
}
curl -sS -L -X POST "ASTRA_DB_API_ENDPOINT/api/json/v1/ASTRA_DB_KEYSPACE" \
--header "Token: ASTRA_DB_APPLICATION_TOKEN" \
--header "Content-Type: application/json" \
--data '{
"createTable": {
"name": "example_table",
"definition": {
"columns": {
"title": {
"type": "text"
},
"number_of_pages": {
"type": "int"
},
"rating": {
"type": "float"
},
"metadata": {
"type": "map",
"keyType": "text",
"valueType": "text"
},
"genres": {
"type": "set",
"valueType": "text"
},
"is_checked_out": {
"type": "boolean"
},
"due_date": {
"type": "date"
}
},
"primaryKey": {
"partitionBy": [
"title", "rating"
]
}
}
}
}'
Create a table with a compound primary key
A compound primary key is a primary key consisting of partition (grouping) columns and clustering (sorting) columns. For more information, see Primary keys.
-
Python
-
TypeScript
-
Java
-
curl
The Python client supports multiple ways to create a table.
In all cases, you must define the table schema, and then pass the definition to the create_table
method.
-
CreateTableDefinition object
-
Fluent interface
-
Dictionary
You can define the table as a CreateTableDefinition
and then build the table from the CreateTableDefinition
object.
from astrapy import DataAPIClient
from astrapy.constants import SortMode
from astrapy.info import (
CreateTableDefinition,
ColumnType,
TableKeyValuedColumnType,
TableKeyValuedColumnTypeDescriptor,
TableScalarColumnTypeDescriptor,
TableValuedColumnTypeDescriptor,
TableValuedColumnType,
TablePrimaryKeyDescriptor,
)
# Get an existing database
client = DataAPIClient("ASTRA_DB_APPLICATION_TOKEN")
database = client.get_database("ASTRA_DB_API_ENDPOINT")
table_definition = CreateTableDefinition(
# Define all of the columns in the table
columns={
"title": TableScalarColumnTypeDescriptor(
column_type=ColumnType.TEXT
),
"number_of_pages": TableScalarColumnTypeDescriptor(
column_type=ColumnType.INT
),
"rating": TableScalarColumnTypeDescriptor(
column_type=ColumnType.FLOAT
),
"genres": TableValuedColumnTypeDescriptor(
column_type=TableValuedColumnType.SET,
value_type=ColumnType.TEXT,
),
"metadata": TableKeyValuedColumnTypeDescriptor(
column_type=TableKeyValuedColumnType.MAP,
key_type=ColumnType.TEXT,
value_type=ColumnType.TEXT,
),
"is_checked_out": TableScalarColumnTypeDescriptor(
column_type=ColumnType.BOOLEAN
),
"due_date": TableScalarColumnTypeDescriptor(
column_type=ColumnType.DATE
),
},
# Define the primary key for the table.
# In this case, the table uses a compound primary key.
primary_key=TablePrimaryKeyDescriptor(
partition_by=["title", "rating"],
partition_sort={
"number_of_pages": SortMode.ASCENDING,
"is_checked_out": SortMode.DESCENDING,
}
),
)
table = database.create_table(
"example_table",
definition=table_definition,
)
You can use a fluent interface to build the table definition and then create the table from the definition.
from astrapy import DataAPIClient
from astrapy.constants import SortMode
from astrapy.info import CreateTableDefinition, ColumnType
# Get an existing database
client = DataAPIClient("ASTRA_DB_APPLICATION_TOKEN")
database = client.get_database("ASTRA_DB_API_ENDPOINT")
table_definition = (
CreateTableDefinition.builder()
# Define all of the columns in the table
.add_column("title", ColumnType.TEXT)
.add_column("number_of_pages", ColumnType.INT)
.add_column("rating", ColumnType.FLOAT)
.add_set_column(
"genres",
ColumnType.TEXT,
)
.add_map_column(
"metadata",
# This is the key type for the map column
ColumnType.TEXT,
# This is the value type for the map column
ColumnType.TEXT,
)
.add_column("is_checked_out", ColumnType.BOOLEAN)
.add_column("due_date", ColumnType.DATE)
# Define the primary key for the table.
# In this case, the table uses a compound primary key.
.add_partition_by(["title", "rating"])
.add_partition_sort({
"number_of_pages": SortMode.ASCENDING,
"is_checked_out": SortMode.DESCENDING,
})
# Finally, build the table definition.
.build()
)
table = database.create_table(
"example_table",
definition=table_definition,
)
You can define the table as a dictionary and then build the table from the dictionary.
from astrapy import DataAPIClient
# Get an existing database
client = DataAPIClient("ASTRA_DB_APPLICATION_TOKEN")
database = client.get_database("ASTRA_DB_API_ENDPOINT")
# Define the columns and primary key for the table
table_definition = {
"columns": {
"title": {"type": "text"},
"number_of_pages": {"type": "int"},
"rating": {"type": "float"},
"genres": {"type": "set", "valueType": "text"},
"metadata": {"type": "map", "keyType": "text", "valueType": "text"},
"is_checked_out": {"type": "boolean"},
"due_date": {"type": "date"},
},
"primaryKey": {
"partitionBy": ["title", "rating"],
"partitionSort": {"number_of_pages": 1, "is_checked_out": -1},
},
}
table = database.create_table(
"example_table",
definition=table_definition,
)
The TypeScript client supports multiple ways to create a table. The method you choose depends on your typing preferences and whether you modified the ser/des configuration.
For more information, see Collection and table typing.
-
Automatic type inference
-
Manually typed tables
-
Untyped tables
The TypeScript client can automatically infer the TypeScript-equivalent type of the table’s schema and primary key.
To do this, first create the table definition.
Then, use InferTableSchema
and InferTablePrimaryKey
to infer the type of the table and of the primary key.
To create the table, provide the table definition and the inferred types to the createTable
method.
import {
DataAPIClient,
InferTablePrimaryKey,
InferTableSchema,
Table,
} from "@datastax/astra-db-ts";
// Get an existing database
const client = new DataAPIClient("ASTRA_DB_APPLICATION_TOKEN");
const database = client.db("ASTRA_DB_API_ENDPOINT");
const tableDefinition = Table.schema({
// Define all of the columns in the table
columns: {
title: "text",
number_of_pages: "int",
rating: "float",
genres: { type: "set", valueType: "text" },
metadata: {
type: "map",
keyType: "text",
valueType: "text",
},
is_checked_out: "boolean",
due_date: "date",
},
// Define the primary key for the table.
// In this case, the table uses a compound primary key.
primaryKey: {
partitionBy: ["title", "rating"],
partitionSort: { number_of_pages: 1, is_checked_out: -1},
},
});
// Infer the TypeScript-equivalent type of the table's schema and primary key
type TableSchema = InferTableSchema<typeof tableDefinition>;
type TablePrimaryKey = InferTablePrimaryKey<typeof tableDefinition>;
(async function () {
// Provide the types and the definition
const table = await database.createTable<TableSchema, TablePrimaryKey>(
"example_table",
{ definition: tableDefinition },
);
})();
You can use the TableSchema type as you would any other type.
For example, this gives a type error since the TableSchema
type from the previous example does not include bad_field
:
const row: TableSchema = {
title: "Wind with No Name",
number_of_pages: 193,
bad_field: "I will error",
};
You can manually define the type for your table’s schema and primary key.
To create the table, provide the table definition and the types to the createTable
method.
This may be necessary if you modify the table’s default ser/des configuration.
import { DataAPIClient, DataAPIDate, Table } from "@datastax/astra-db-ts";
// Get an existing database
const client = new DataAPIClient("ASTRA_DB_APPLICATION_TOKEN");
const database = client.db("ASTRA_DB_API_ENDPOINT");
const tableDefinition = Table.schema({
// Define all of the columns in the table
columns: {
title: "text",
number_of_pages: "int",
rating: "float",
genres: { type: "set", valueType: "text" },
metadata: {
type: "map",
keyType: "text",
valueType: "text",
},
is_checked_out: "boolean",
due_date: "date",
},
// Define the primary key for the table.
// In this case, the table uses a compound primary key.
primaryKey: {
partitionBy: ["title", "rating"],
partitionSort: { number_of_pages: 1, is_checked_out: -1 },
},
});
// Manually define the type of the table's schema and primary key
type TableSchema = {
title: string;
number_of_pages?: number | null | undefined;
rating?: number | null | undefined;
genres?: Set<string> | undefined;
metadata?: Map<string, string> | undefined;
is_checked_out?: boolean | null | undefined;
due_date?: DataAPIDate | null | undefined;
};
type TablePrimaryKey = Pick<TableSchema, "title" | "rating">;
(async function () {
// Provide the types and the definition to create the table
const table = await database.createTable<TableSchema, TablePrimaryKey>(
"example_table",
{ definition: tableDefinition },
);
})();
You can use the TableSchema type as you would any other type.
For example, this gives a type error since the TableSchema
type from the previous example does not include bad_field
:
const row: TableSchema = {
title: "Wind with No Name",
number_of_pages: 193,
bad_field: "I will error",
};
To create a table without any typing, pass SomeRow
as the single generic type parameter to the createTable
method.
This types the table’s rows as Record<string, any>
.
This is the most flexible but least type-safe option.
import { DataAPIClient, SomeRow, Table } from "@datastax/astra-db-ts";
// Get an existing database
const client = new DataAPIClient("ASTRA_DB_APPLICATION_TOKEN");
const database = client.db("ASTRA_DB_API_ENDPOINT");
const tableDefinition = Table.schema({
// Define all of the columns in the table
columns: {
title: "text",
number_of_pages: "int",
rating: "float",
genres: { type: "set", valueType: "text" },
metadata: {
type: "map",
keyType: "text",
valueType: "text",
},
is_checked_out: "boolean",
due_date: "date",
},
// Define the primary key for the table.
// In this case, the table uses a compound primary key.
primaryKey: {
partitionBy: ["title", "rating"],
partitionSort: { number_of_pages: 1, is_checked_out: -1 },
},
});
(async function () {
// Provide the types and the definition to create the table
const table = await database.createTable<SomeRow>(
"example_table",
{ definition: tableDefinition },
);
})();
The Java client supports multiple ways to create a table. In all cases, you must define the table schema.
-
Use a generic type
-
Define the row type
If you don’t specify the Class
parameter when creating an instance of the generic class Table
, the client defaults Table
as the type.
In this case, the working object type T
is Row.class
.
package com.examples;
import com.datastax.astra.client.DataAPIClient;
import com.datastax.astra.client.databases.Database;
import com.datastax.astra.client.tables.Table;
import com.datastax.astra.client.tables.definition.TableDefinition;
import com.datastax.astra.client.tables.definition.columns.ColumnTypes;
import com.datastax.astra.client.tables.definition.rows.Row;
import static com.datastax.astra.client.core.query.Sort.ascending;
import static com.datastax.astra.client.core.query.Sort.descending;
public class CreateTable {
public static void main(String[] args) {
// Get an existing database
Database database =
new DataAPIClient("ASTRA_DB_APPLICATION_TOKEN")
.getDatabase("ASTRA_DB_API_ENDPOINT");
TableDefinition tableDefinition =
new TableDefinition()
// Define all of the columns in the table
.addColumnText("title")
.addColumnInt("number_of_pages")
.addColumn("rating", ColumnTypes.FLOAT)
.addColumnSet("genres", ColumnTypes.TEXT)
.addColumnMap("metadata", ColumnTypes.TEXT, ColumnTypes.TEXT)
.addColumnBoolean("is_checked_out")
.addColumn("due_date", ColumnTypes.DATE)
// Define the primary key for the table.
// In this case, the table uses a compound primary key.
.addPartitionBy("title")
.addPartitionBy("rating")
.addPartitionSort(ascending("number_of_pages"))
.addPartitionSort(descending("is_checked_out"));
Table<Row> table = database.createTable("example_table", tableDefinition);
}
}
Instead of using the default type Row.class
, you can define your own working object, which will be serialized as a Row
.
This working object can be annotated when the field names do not exactly match the column names or when you want to fully describe your table to enable its creation solely from the entity definition.
The following example defines a Book
class and then uses it to create the table.
package com.examples;
import com.datastax.astra.client.tables.definition.columns.ColumnTypes;
import com.datastax.astra.client.tables.mapping.Column;
import com.datastax.astra.client.DataAPIClient;
import com.datastax.astra.client.databases.Database;
import com.datastax.astra.client.tables.mapping.EntityTable;
import com.datastax.astra.client.tables.mapping.PartitionBy;
import com.datastax.astra.client.tables.mapping.PartitionSort;
import com.datastax.astra.client.tables.Table;
import com.datastax.astra.client.core.query.SortOrder;
import lombok.Data;
import java.util.Date;
import java.util.Map;
import java.util.Set;
public class CreateTable {
@EntityTable("example_table")
@Data
public class Book {
@PartitionBy(0)
@Column(name = "title", type = ColumnTypes.TEXT)
private String title;
@PartitionSort(position = 0, order= SortOrder.ASCENDING)
@Column(name = "number_of_pages", type = ColumnTypes.INT)
private Integer numberOfPages;
@PartitionBy(1)
@Column(name = "rating", type = ColumnTypes.FLOAT)
private Float rating;
@Column(name = "genres", type = ColumnTypes.SET, valueType = ColumnTypes.TEXT)
private Set<String> genres;
@Column(
name = "metadata",
type = ColumnTypes.MAP,
keyType = ColumnTypes.TEXT,
valueType = ColumnTypes.TEXT)
private Map<String, String> metadata;
@PartitionSort(position = 1, order= SortOrder.DESCENDING)
@Column(name = "is_checked_out", type = ColumnTypes.BOOLEAN)
private Boolean isCheckedOut;
@Column(name = "due_date", type = ColumnTypes.DATE)
private Date dueDate;
}
public static void main(String[] args) {
// Get an existing database
Database database =
new DataAPIClient("ASTRA_DB_APPLICATION_TOKEN")
.getDatabase("ASTRA_DB_API_ENDPOINT");
Table<Book> table = database.createTable(Book.class);
}
}
curl -sS -L -X POST "ASTRA_DB_API_ENDPOINT/api/json/v1/ASTRA_DB_KEYSPACE" \
--header "Token: ASTRA_DB_APPLICATION_TOKEN" \
--header "Content-Type: application/json" \
--data '{
"createTable": {
"name": "example_table",
"definition": {
"columns": {
"title": {
"type": "text"
},
"number_of_pages": {
"type": "int"
},
"rating": {
"type": "float"
},
"metadata": {
"type": "map",
"keyType": "text",
"valueType": "text"
},
"genres": {
"type": "set",
"valueType": "text"
},
"is_checked_out": {
"type": "boolean"
},
"due_date": {
"type": "date"
}
},
"primaryKey": {
"partitionBy": [
"title",
"rating"
],
"partitionSort": {
"number_of_pages": 1,
"is_checked_out": -1
}
}
}
}
}'
Create a table with a column to store vector embeddings
If you want to store pre-generated vector embeddings in a table, create a table with a vector column. A table can include more than one vector column.
-
Python
-
TypeScript
-
Java
-
curl
The Python client supports multiple ways to create a table.
In all cases, you must define the table schema, and then pass the definition to the create_table
method.
-
CreateTableDefinition object
-
Fluent interface
-
Dictionary
You can define the table as a CreateTableDefinition
and then build the table from the CreateTableDefinition
object.
from astrapy import DataAPIClient
from astrapy.info import (
CreateTableDefinition,
ColumnType,
TableScalarColumnTypeDescriptor,
TablePrimaryKeyDescriptor,
TableVectorColumnTypeDescriptor,
)
# Get an existing database
client = DataAPIClient("ASTRA_DB_APPLICATION_TOKEN")
database = client.get_database("ASTRA_DB_API_ENDPOINT")
table_definition = CreateTableDefinition(
# Define all of the columns in the table
columns={
"example_vector": TableVectorColumnTypeDescriptor(
dimension=1024,
),
"example_non_vector": TableScalarColumnTypeDescriptor(
column_type=ColumnType.TEXT
)
},
# Define the primary key for the table.
# In this case, the table uses a single-column primary key.
primary_key=TablePrimaryKeyDescriptor(
partition_by=["example_non_vector"],
partition_sort={}
),
)
table = database.create_table(
"example_table",
definition=table_definition,
)
You can use a fluent interface to build the table definition and then create the table from the definition.
from astrapy import DataAPIClient
from astrapy.info import CreateTableDefinition, ColumnType
# Get an existing database
client = DataAPIClient("ASTRA_DB_APPLICATION_TOKEN")
database = client.get_database("ASTRA_DB_API_ENDPOINT")
table_definition = (
CreateTableDefinition.builder()
# Define all of the columns in the table
.add_vector_column("example_vector", dimension=1024)
.add_column("example_non_vector", ColumnType.TEXT)
# Define the primary key for the table.
# In this case, the table uses a single-column primary key.
.add_partition_by(["example_non_vector"])
# Finally, build the table definition.
.build()
)
table = database.create_table(
"example_table",
definition=table_definition,
)
You can define the table as a dictionary and then build the table from the dictionary.
from astrapy import DataAPIClient
# Get an existing database
client = DataAPIClient("ASTRA_DB_APPLICATION_TOKEN")
database = client.get_database("ASTRA_DB_API_ENDPOINT")
# Define the columns and primary key for the table
table_definition = {
"columns": {
"example_vector": {"type": "vector", "dimension": 1024},
"example_non_vector": {"type": "text"},
},
"primaryKey": {
"partitionBy": ["example_non_vector"],
"partitionSort": {},
},
}
table = database.create_table(
"example_table",
definition=table_definition,
)
The TypeScript client supports multiple ways to create a table. The method you choose depends on your typing preferences and whether you modified the ser/des configuration.
For more information, see Collection and table typing.
-
Automatic type inference
-
Manually typed tables
-
Untyped tables
The TypeScript client can automatically infer the TypeScript-equivalent type of the table’s schema and primary key.
To do this, first create the table definition.
Then, use InferTableSchema
and InferTablePrimaryKey
to infer the type of the table and of the primary key.
To create the table, provide the table definition and the inferred types to the createTable
method.
import {
DataAPIClient,
InferTablePrimaryKey,
InferTableSchema,
Table,
} from "@datastax/astra-db-ts";
// Get an existing database
const client = new DataAPIClient("ASTRA_DB_APPLICATION_TOKEN");
const database = client.db("ASTRA_DB_API_ENDPOINT");
const tableDefinition = Table.schema({
// Define all of the columns in the table
columns: {
example_vector: { type: 'vector', dimension: 1024 },
example_non_vector: "text",
},
// Define the primary key for the table.
// In this case, the table uses a single-column primary key.
primaryKey: {
partitionBy: ["example_non_vector"],
},
});
// Infer the TypeScript-equivalent type of the table's schema and primary key
type TableSchema = InferTableSchema<typeof tableDefinition>;
type TablePrimaryKey = InferTablePrimaryKey<typeof tableDefinition>;
(async function () {
// Provide the types and the definition
const table = await database.createTable<TableSchema, TablePrimaryKey>(
"example_table",
{ definition: tableDefinition },
);
})();
You can manually define the type for your table’s schema and primary key.
To create the table, provide the table definition and the types to the createTable
method.
This may be necessary if you modify the table’s default ser/des configuration.
import { DataAPIClient, DataAPIVector, Table } from "@datastax/astra-db-ts";
// Get an existing database
const client = new DataAPIClient("ASTRA_DB_APPLICATION_TOKEN");
const database = client.db("ASTRA_DB_API_ENDPOINT");
const tableDefinition = Table.schema({
// Define all of the columns in the table
columns: {
example_vector: { type: 'vector', dimension: 1024 },
example_non_vector: "text",
},
// Define the primary key for the table.
// In this case, the table uses a single-column primary key.
primaryKey: {
partitionBy: ["example_non_vector"],
},
});
// Manually define the type of the table's schema and primary key
type TableSchema = {
example_vector: DataAPIVector,
example_non_vector: string;
};
type TablePrimaryKey = Pick<TableSchema, "example_non_vector">;
(async function () {
// Provide the types and the definition to create the table
const table = await database.createTable<TableSchema, TablePrimaryKey>(
"example_table",
{ definition: tableDefinition },
);
})();
To create a table without any typing, pass SomeRow
as the single generic type parameter to the createTable
method.
This types the table’s rows as Record<string, any>
.
This is the most flexible but least type-safe option.
import { DataAPIClient, SomeRow, Table } from "@datastax/astra-db-ts";
// Get an existing database
const client = new DataAPIClient("ASTRA_DB_APPLICATION_TOKEN");
const database = client.db("ASTRA_DB_API_ENDPOINT");
const tableDefinition = Table.schema({
// Define all of the columns in the table
columns: {
example_vector: { type: 'vector', dimension: 1024 },
example_non_vector: "text",
},
// Define the primary key for the table.
// In this case, the table uses a single-column primary key.
primaryKey: {
partitionBy: ["example_non_vector"],
},
});
(async function () {
// Provide the types and the definition to create the table
const table = await database.createTable<SomeRow>(
"example_table",
{ definition: tableDefinition },
);
})();
The Java client supports multiple ways to create a table. In all cases, you must define the table schema.
-
Use a generic type
-
Define the row type
If you don’t specify the Class
parameter when creating an instance of the generic class Table
, the client defaults Table
as the type.
In this case, the working object type T
is Row.class
.
package com.examples;
import com.datastax.astra.client.DataAPIClient;
import com.datastax.astra.client.databases.Database;
import com.datastax.astra.client.tables.Table;
import com.datastax.astra.client.tables.definition.TableDefinition;
import com.datastax.astra.client.tables.definition.columns.ColumnDefinitionVector;
import com.datastax.astra.client.tables.definition.rows.Row;
import com.datastax.astra.client.core.vector.SimilarityMetric;
public class CreateTable {
public static void main(String[] args) {
// Get an existing database
Database database =
new DataAPIClient("ASTRA_DB_APPLICATION_TOKEN")
.getDatabase("ASTRA_DB_API_ENDPOINT");
TableDefinition tableDefinition =
new TableDefinition()
// Define all of the columns in the table
.addColumnVector(
"example_vector",
new ColumnDefinitionVector()
.dimension(1024)
.metric(SimilarityMetric.COSINE)
)
.addColumnText("example_non_vector")
// Define the primary key for the table.
// In this case, the table uses a single-column primary key.
.addPartitionBy("example_non_vector");
Table<Row> table = database.createTable("example_table", tableDefinition);
}
}
Instead of using the default type Row.class
, you can define your own working object, which will be serialized as a Row
.
This working object can be annotated when the field names do not exactly match the column names or when you want to fully describe your table to enable its creation solely from the entity definition.
The following example defines a Book
class and then uses it to create the table.
package com.examples;
import com.datastax.astra.client.tables.definition.columns.ColumnTypes;
import com.datastax.astra.client.tables.mapping.Column;
import com.datastax.astra.client.DataAPIClient;
import com.datastax.astra.client.core.vector.DataAPIVector;
import com.datastax.astra.client.databases.Database;
import com.datastax.astra.client.tables.mapping.EntityTable;
import com.datastax.astra.client.tables.mapping.PartitionBy;
import com.datastax.astra.client.core.vector.SimilarityMetric;
import com.datastax.astra.client.tables.Table;
import lombok.Data;
public class CreateTable {
@EntityTable("example_table")
@Data
public class Book {
@Column(name ="example_vector", type=ColumnTypes.VECTOR, dimension = 1024, metric = SimilarityMetric.COSINE)
private DataAPIVector vector;
@PartitionBy(0)
@Column(name = "example_non_vector", type = ColumnTypes.TEXT)
private String exampleNonVector;
}
public static void main(String[] args) {
// Get an existing database
Database database =
new DataAPIClient("ASTRA_DB_APPLICATION_TOKEN")
.getDatabase("ASTRA_DB_API_ENDPOINT");
Table<Book> table = database.createTable(Book.class);
}
}
curl -sS -L -X POST "ASTRA_DB_API_ENDPOINT/api/json/v1/ASTRA_DB_KEYSPACE" \
--header "Token: ASTRA_DB_APPLICATION_TOKEN" \
--header "Content-Type: application/json" \
--data '{
"createTable": {
"name": "example_table",
"definition": {
"columns": {
"example_vector": {
"type": "vector",
"dimension": 1024
},
"example_non_vector": {
"type": "text"
}
},
"primaryKey": "example_non_vector"
}
}
}'
Create a table with a column to automatically generate vector embeddings
If you want to automatically generate vector embeddings, create a table with a vector column and configure an embedding provider integration for the column.
The configuration depends on the embedding provider. For the configuration and an example for each provider, see Supported embedding providers.
You can also configure an embedding provider integration after table creation. For more information, see Alter a table.
If you want to store the original text in addition to the vector embeddings that were generated from the text, then you need to create a separate column to store the text.
You can also store pre-generated vector embeddings in the column. If you store pre-generated and automatically generated embeddings in the same column, make sure all embeddings have the same provider, model, and dimensions. Mismatched embeddings can cause inaccurate vector searches.
-
Python
-
TypeScript
-
Java
-
curl
The Python client supports multiple ways to create a table.
In all cases, you must define the table schema, and then pass the definition to the create_table
method.
-
CreateTableDefinition object
-
Fluent interface
-
Dictionary
You can define the table as a CreateTableDefinition
and then build the table from the CreateTableDefinition
object.
from astrapy import DataAPIClient
from astrapy.info import (
CreateTableDefinition,
ColumnType,
TableScalarColumnTypeDescriptor,
TablePrimaryKeyDescriptor,
TableVectorColumnTypeDescriptor,
TableVectorIndexOptions,
VectorServiceOptions
)
# Get an existing database
client = DataAPIClient("ASTRA_DB_APPLICATION_TOKEN")
database = client.get_database("ASTRA_DB_API_ENDPOINT")
table_definition = CreateTableDefinition(
columns={
# This column will store vector embeddings.
# The embedding provider integration
# will automatically generate vector embeddings
# for any text inserted to this column.
"example_vector": TableVectorColumnTypeDescriptor(
dimension=MODEL_DIMENSIONS,
service=VectorServiceOptions(
provider="PROVIDER",
model_name="MODEL_NAME",
authentication={
"providerKey": "API_KEY_NAME",
},
parameters=PARAMETERS
),
),
# If you want to store the original text
# in addition to the generated embeddings
# you must create a separate column.
"original_text": TableScalarColumnTypeDescriptor(
column_type=ColumnType.TEXT
),
},
# Define the primary key for the table.
# You should change the primary key definition to meet the needs of your data.
primary_key=TablePrimaryKeyDescriptor(
partition_by=["original_text"],
partition_sort={}
),
)
table = database.create_table(
"example_table",
definition=table_definition,
)
You can use a fluent interface to build the table definition and then create the table from the definition.
from astrapy import DataAPIClient
from astrapy.info import CreateTableDefinition, ColumnType
# Get an existing database
client = DataAPIClient("ASTRA_DB_APPLICATION_TOKEN")
database = client.get_database("ASTRA_DB_API_ENDPOINT")
table_definition = (
CreateTableDefinition.builder()
# This column will store vector embeddings.
# The embedding provider integration
# will automatically generate vector embeddings
# for any text inserted to this column.
.add_vector_column("example_vector",
dimension=MODEL_DIMENSIONS,
service=VectorServiceOptions(
provider="PROVIDER",
model_name="MODEL_NAME",
authentication={
"providerKey": "API_KEY_NAME",
},
parameters=PARAMETERS
),
)
# If you want to store the original text
# in addition to the generated embeddings
# you must create a separate column.
.add_column("original_text", ColumnType.TEXT)
# Define the primary key for the table.
# You should change the primary key definition to meet the needs of your data.
.add_partition_by(["original_text"])
# Finally, build the table definition.
.build()
)
table = database.create_table(
"example_table",
definition=table_definition,
)
You can define the table as a dictionary and then build the table from the dictionary.
from astrapy import DataAPIClient
# Get an existing database
client = DataAPIClient("ASTRA_DB_APPLICATION_TOKEN")
database = client.get_database("ASTRA_DB_API_ENDPOINT")
# Define the columns and primary key for the table
table_definition = {
"columns": {
# This column will store vector embeddings.
# The embedding provider integration
# will automatically generate vector embeddings
# for any text inserted to this column.
"example_vector": {
"type": "vector",
"dimension": MODEL_DIMENSIONS
"service": {
"provider": "PROVIDER",
"model_name": "MODEL_NAME",
"authentication": {
"providerKey": "API_KEY_NAME",
},
"parameters": PARAMETERS
}
},
# If you want to store the original text
# in addition to the generated embeddings
# you must create a separate column.
"original_text": {"type": "text"},
},
# Define the primary key for the table.
# You should change the primary key definition to meet the needs of your data.
"primaryKey": {
"partitionBy": ["original_text"],
"partitionSort": {},
},
}
table = database.create_table(
"example_table",
definition=table_definition,
)
The TypeScript client supports multiple ways to create a table. The method you choose depends on your typing preferences and whether you modified the ser/des configuration.
For more information, see Collection and table typing.
-
Automatic type inference
-
Manually typed tables
-
Untyped tables
The TypeScript client can automatically infer the TypeScript-equivalent type of the table’s schema and primary key.
To do this, first create the table definition.
Then, use InferTableSchema
and InferTablePrimaryKey
to infer the type of the table and of the primary key.
To create the table, provide the table definition and the inferred types to the createTable
method.
import {
DataAPIClient,
InferTablePrimaryKey,
InferTableSchema,
Table,
} from "@datastax/astra-db-ts";
// Get an existing database
const client = new DataAPIClient("ASTRA_DB_APPLICATION_TOKEN");
const database = client.db("ASTRA_DB_API_ENDPOINT");
const tableDefinition = Table.schema({
columns: {
// This column will store vector embeddings.
// The embedding provider integration
// will automatically generate vector embeddings
// for any text inserted to this column.
example_vector: {
type: 'vector',
dimension: MODEL_DIMENSIONS,
service: {
provider: 'PROVIDER',
modelName: 'MODEL_NAME',
authentication: {
providerKey: 'API_KEY_NAME',
},
parameters: PARAMETERS,
},
},
// If you want to store the original text
// in addition to the generated embeddings
// you must create a separate column.
original_text: "text",
},
// Define the primary key for the table.
// You should change the primary key definition to meet the needs of your data.
primaryKey: {
partitionBy: ["original_text"],
},
});
// Infer the TypeScript-equivalent type of the table's schema and primary key
type TableSchema = InferTableSchema<typeof tableDefinition>;
type TablePrimaryKey = InferTablePrimaryKey<typeof tableDefinition>;
(async function () {
// Provide the types and the definition
const table = await database.createTable<TableSchema, TablePrimaryKey>(
"example_table",
{ definition: tableDefinition },
);
})();
You can manually define the type for your table’s schema and primary key.
To create the table, provide the table definition and the types to the createTable
method.
This may be necessary if you modify the table’s default ser/des configuration.
import { DataAPIClient, DataAPIVector, Table } from "@datastax/astra-db-ts";
// Get an existing database
const client = new DataAPIClient("ASTRA_DB_APPLICATION_TOKEN");
const database = client.db("ASTRA_DB_API_ENDPOINT");
const tableDefinition = Table.schema({
columns: {
// This column will store vector embeddings.
// The embedding provider integration
// will automatically generate vector embeddings
// for any text inserted to this column.
example_vector: {
type: 'vector',
dimension: MODEL_DIMENSIONS,
service: {
provider: 'PROVIDER',
modelName: 'MODEL_NAME',
authentication: {
providerKey: 'API_KEY_NAME',
},
parameters: PARAMETERS,
},
},
// If you want to store the original text
// in addition to the generated embeddings
// you must create a separate column.
original_text: "text",
},
// Define the primary key for the table.
// You should change the primary key definition to meet the needs of your data.
primaryKey: {
partitionBy: ["original_text"],
},
});
// Manually define the type of the table's schema and primary key
type TableSchema = {
example_vector: DataAPIVector,
example_non_vector: string;
};
type TablePrimaryKey = Pick<TableSchema, "example_non_vector">;
(async function () {
// Provide the types and the definition to create the table
const table = await database.createTable<TableSchema, TablePrimaryKey>(
"example_table",
{ definition: tableDefinition },
);
})();
To create a table without any typing, pass SomeRow
as the single generic type parameter to the createTable
method.
This types the table’s rows as Record<string, any>
.
This is the most flexible but least type-safe option.
import { DataAPIClient, SomeRow, Table } from "@datastax/astra-db-ts";
// Get an existing database
const client = new DataAPIClient("ASTRA_DB_APPLICATION_TOKEN");
const database = client.db("ASTRA_DB_API_ENDPOINT");
const tableDefinition = Table.schema({
columns: {
// This column will store vector embeddings.
// The embedding provider integration
// will automatically generate vector embeddings
// for any text inserted to this column.
example_vector: {
type: 'vector',
dimension: MODEL_DIMENSIONS,
service: {
provider: 'PROVIDER',
modelName: 'MODEL_NAME',
authentication: {
providerKey: 'API_KEY_NAME',
},
parameters: PARAMETERS,
},
},
// If you want to store the original text
// in addition to the generated embeddings
// you must create a separate column.
original_text: "text",
},
// Define the primary key for the table.
// You should change the primary key definition to meet the needs of your data.
primaryKey: {
partitionBy: ["original_text"],
},
});
(async function () {
// Provide the types and the definition to create the table
const table = await database.createTable<SomeRow>(
"example_table",
{ definition: tableDefinition },
);
})();
The Java client supports multiple ways to create a table. In all cases, you must define the table schema.
-
Use a generic type
-
Define the row type
If you don’t specify the Class
parameter when creating an instance of the generic class Table
, the client defaults Table
as the type.
In this case, the working object type T
is Row.class
.
package com.examples;
import com.datastax.astra.client.DataAPIClient;
import com.datastax.astra.client.databases.Database;
import com.datastax.astra.client.tables.Table;
import com.datastax.astra.client.tables.definition.TableDefinition;
import com.datastax.astra.client.tables.definition.columns.ColumnDefinitionVector;
import com.datastax.astra.client.tables.definition.rows.Row;
import com.datastax.astra.client.core.vector.SimilarityMetric;
public class CreateTable {
public static void main(String[] args) {
// Get an existing database
Database database =
new DataAPIClient("ASTRA_DB_APPLICATION_TOKEN")
.getDatabase("ASTRA_DB_API_ENDPOINT");
TableDefinition tableDefinition =
new TableDefinition()
// This column will store vector embeddings.
// The embedding provider integration
// will automatically generate vector embeddings
// for any text inserted to this column.
.addColumnVector(
"example_vector",
new ColumnDefinitionVector()
.dimension(MODEL_DIMENSIONS)
.metric(SimilarityMetric.SIMILARITY_METRIC)
.service(
new VectorServiceOptions()
.provider("PROVIDER")
.modelName("MODEL_NAME")
.authentication(Map.of("providerKey", "API_KEY_NAME"))
.parameters(PARAMETERS)
)
)
// If you want to store the original text
// in addition to the generated embeddings
// you must create a separate column.
.addColumnText("original_text")
// Define the primary key for the table.
// You should change the primary key definition to meet the needs of your data.
.addPartitionBy("original_text");
Table<Row> table = database.createTable("example_table", tableDefinition);
}
}
This method of table creation does not support the configuration of an embedding provider integration.
curl -sS -L -X POST "ASTRA_DB_API_ENDPOINT/api/json/v1/ASTRA_DB_KEYSPACE" \
--header "Token: ASTRA_DB_APPLICATION_TOKEN" \
--header "Content-Type: application/json" \
--data '{
"createTable": {
"name": "example_table",
"definition": {
"columns": {
# This column will store vector embeddings.
# The {embedding-provider-name} integration
# will automatically generate vector embeddings
# for any text inserted to this column.
"example_vector": {
"type": "vector",
"dimension": MODEL_DIMENSIONS,
"service": {
"provider": "PROVIDER",
"modelName": "MODEL_NAME",
"authentication": {
"providerKey": "API_KEY_NAME"
},
"parameters": PARAMETERS
}
},
# If you want to store the original text
# in addition to the generated embeddings
# you must create a separate column.
"original_text": "text"
},
# Define the primary key for the table.
# You should change the primary key definition to meet the needs of your data.
"primaryKey": "original_text"
}
}
}'
Client reference
-
Python
-
TypeScript
-
Java
-
curl
For more information, see the client reference.
For more information, see the client reference.
For more information, see the client reference.
Client reference documentation is not applicable for HTTP.