Create a table
This Astra DB Serverless feature is currently in public preview. Development is ongoing, and the features and functionality are subject to change. Astra DB Serverless, and the use of such, is subject to the DataStax Preview Terms. The Data API tables commands are available through HTTP and the clients. If you use a client, tables commands are available only in client versions 2.0-preview or later. For more information, see Data API client upgrade guide. |
Creates a new table in a keyspace in a Serverless (Vector) database.
Method signature
-
Python
-
TypeScript
-
Java
-
curl
database.create_table(
name: str,
*,
definition: CreateTableDefinition | dict[str, Any],
row_type: type[Any],
keyspace: str,
if_not_exists: bool,
table_admin_timeout_ms: int,
request_timeout_ms: int,
timeout_ms: int,
embedding_api_key: str | EmbeddingHeadersProvider | UnsetType,
spawn_api_options: APIOptions | UnsetType,
) -> Table[ROW]
database.createTable<const Def extends CreateTableDefinition>(
name: string,
options: {
definition: CreateTableDefinition,
ifNotExists: boolean,
embeddingApiKey?: string | EmbeddingHeadersProvider,
logging?: DataAPILoggingConfig,
serdes?: TableSerDesConfig,
timeoutDefaults?: Partial<TimeoutDescriptor>,
keyspace?: string,
}
): Promise<Table<InferTableSchema<Def>, InferTablePrimaryKey<Def>>>
<T> Table<T> createTable(
String tableName,
TableDefinition tableDefinition,
Class<T> rowClass,
CreateTableOptions createTableOptions
)
<T> Table<T> createTable(
String tableName,
TableDefinition tableDefinition,
Class<T> rowClass
)
<T> Table<T> createTable(Class<T> rowClass)
<T> Table<T> createTable(
Class<T> rowClass,
CreateTableOptions createTableOptions
)
<T> Table<T> createTable(
String tableName,
Class<T> rowClass,
CreateTableOptions createTableOptions
)
Table<Row> createTable(
String tableName,
TableDefinition tableDefinition,
CreateTableOptions options
)
Table<Row> createTable(
String tableName,
TableDefinition tableDefinition
)
curl -sS -L -X POST "ASTRA_DB_API_ENDPOINT/api/json/v1/ASTRA_DB_KEYSPACE" \
--header "Token: ASTRA_DB_APPLICATION_TOKEN" \
--header "Content-Type: application/json" \
--data '{
"createTable": {
"name": "TABLE_NAME",
"definition": {
"columns": {
"COLUMN_NAME": "DATA_TYPE",
"COLUMN_NAME": "DATA_TYPE"
},
"primaryKey": "COLUMN_NAME"
}
}
}'
Result
-
Python
-
TypeScript
-
Java
-
curl
Creates a table with the specified parameters.
Returns a Table
object.
You can use this object to work with rows in the table.
Unless you specify the row_type
parameter, the table is typed as Table[dict]
.
For more information, see Typing support.
Creates a table with the specified parameters.
Returns a promise that resolves to a <Table<Schema, PKey>>
object.
You can use this object to work with rows in the table.
Unless you specify the Schema
, the table is typed as Table<Record<string, any>>
.
Creates a table with the specified parameters.
Returns a Table<T>
object.
You can use this object to work with rows in the table.
Unless you specify the rowClass
parameter, the table is typed as Table<Row>
.
Creates a table with the specified parameters.
If the command succeeds, the response indicates the success.
Example response:
{
"status": {
"ok": 1
}
}
Parameters
When you create a table, you specify the following:
-
Table name
-
Column names and data types
-
Primary key, which is the unique identifier for the rows in the table
-
Additional table, command, or client-specific settings, which can be optional
-
Python
-
TypeScript
-
Java
-
curl
Name | Type | Summary | ||
---|---|---|---|---|
|
|
The name of the table. |
||
|
|
A complete table definition for the table, including the column names, data types, other column settings, and the primary key. This can be an instance of Some types require specific column definitions, particularly maps, lists, sets, and vector columns. For more information about all types, see Column data types. |
||
|
|
This parameter acts a formal specifier for the type checker.
If omitted, the resulting |
||
|
|
The keyspace where the table is to be created. If not specified, the general keyspace setting for the database is used. |
||
|
|
If If
|
||
|
|
A timeout, in milliseconds, to impose on the underlying API request.
If not provided, the |
||
|
|
Optional parameter for tables that have a As an alternative to Astra DB KMS authentication, use Most embedding provider integrations accept a plain |
||
|
|
A complete or partial specification of the APIOptions to override the defaults inherited from the |
Parameters:
Name | Type | Summary |
---|---|---|
|
|
The name of the table. |
|
|
The options for spawning the |
Options (CreateTableOptions<Schema>
):
Name | Type | Summary | ||
---|---|---|---|---|
|
|
A TypeScript object defining the table to create, including the following:
|
||
|
|
If If
|
||
|
|
The keyspace where you want to create the table.
If not specified, the working keyspace of the |
||
|
|
Optional parameter for tables that have a As an alternative to Astra DB KMS authentication, use Most embedding provider integrations accept a plain |
||
|
|
The configuration for logging events emitted by the |
||
|
|
The default timeout options for any operation performed on this |
||
|
|
Lower-level serialization/deserialization configuration for this table. For more information, see Custom Ser/Des. |
Name | Type | Summary | ||
---|---|---|---|---|
|
|
The name of the table. |
||
|
A complete table definition for the table, including the column names, data types, other column settings, and the primary key. Some types require specific column definitions, particularly maps, lists, sets, and vector columns. For more information about all types, see Column data types. |
|||
|
|
An optional specification of the class of the table’s row object.
If not provided, the default is |
||
|
Options and additional parameters for the
|
Name | Type | Summary |
---|---|---|
|
|
The Data API command to create a table in a Serverless (Vector) database. It acts as a container for all the attributes and settings required to create the table. |
|
|
The name of the table. This must be unique within the database specified in the request URL. |
|
|
Contains the columns and primary key definition for the table. |
|
|
Defines the table’s columns as a series of key-value pairs where each key is a column name and each value is the column’s data type. Column names must be unique within a table. The Data API accepts column definitions in two formats:
Data types are enums of supported data types, such as For For the |
|
|
Defines the primary key for the table. For more information, see Primary keys. |
Examples
The following examples demonstrate how to create a table.
-
Python
-
TypeScript
-
Java
-
curl
Create a table using a fluent interface for its definition
:
table_definition = (
CreateTableDefinition.builder()
.add_column("match_id", ColumnType.TEXT)
.add_column("round", ColumnType.INT)
.add_vector_column("m_vector", dimension=3)
.add_column("score", ColumnType.INT)
.add_column("when", ColumnType.TIMESTAMP)
.add_column("winner", ColumnType.TEXT)
.add_set_column("fighters", ColumnType.UUID)
.add_partition_by(["match_id"])
.add_partition_sort({"round": SortMode.ASCENDING})
.build()
)
my_table = database.create_table(
"games",
definition=table_definition,
)
Use if_not_exists
to call create_table
without throwing an error if a table with the given name already exists.
In which case, the request silently does nothing.
table_definition = ... # (omitted)
my_table = database.create_table(
"games",
definition=table_definition,
if_not_exists=True,
)
Example:
from astrapy import DataAPIClient
client = DataAPIClient("TOKEN")
database = client.get_database("API_ENDPOINT")
# Create a table using the fluent syntax for definition:
from astrapy.constants import SortMode
from astrapy.info import (
CreateTableDefinition,
ColumnType,
)
table_definition = (
CreateTableDefinition.builder()
.add_column("match_id", ColumnType.TEXT)
.add_column("round", ColumnType.INT)
.add_vector_column("m_vector", dimension=3)
.add_column("score", ColumnType.INT)
.add_column("when", ColumnType.TIMESTAMP)
.add_column("winner", ColumnType.TEXT)
.add_set_column("fighters", ColumnType.UUID)
.add_partition_by(["match_id"])
.add_partition_sort({"round": SortMode.ASCENDING})
.build()
)
my_table = database.create_table(
"games",
definition=table_definition,
)
# Create a table with the definition as object:
# (and do not raise an error if the table exists already)
from astrapy.info import (
CreateTableDefinition,
TablePrimaryKeyDescriptor,
TableScalarColumnTypeDescriptor,
TableValuedColumnType,
TableValuedColumnTypeDescriptor,
TableVectorColumnTypeDescriptor,
)
table_definition_1 = CreateTableDefinition(
columns={
"match_id": TableScalarColumnTypeDescriptor(
ColumnType.TEXT,
),
"round": TableScalarColumnTypeDescriptor(
ColumnType.INT,
),
"m_vector": TableVectorColumnTypeDescriptor(
column_type="vector", dimension=3
),
"score": TableScalarColumnTypeDescriptor(
ColumnType.INT,
),
"when": TableScalarColumnTypeDescriptor(
ColumnType.TIMESTAMP,
),
"winner": TableScalarColumnTypeDescriptor(
ColumnType.TEXT,
),
"fighters": TableValuedColumnTypeDescriptor(
column_type=TableValuedColumnType.SET,
value_type=ColumnType.UUID,
),
},
primary_key=TablePrimaryKeyDescriptor(
partition_by=["match_id"],
partition_sort={"round": SortMode.ASCENDING},
),
)
my_table_1 = database.create_table(
"games",
definition=table_definition_1,
if_not_exists=True,
)
# Create a table with the definition as plain dictionary:
# (and do not raise an error if the table exists already)
table_definition_2 = {
"columns": {
"match_id": {"type": "text"},
"round": {"type": "int"},
"m_vector": {"type": "vector", "dimension": 3},
"score": {"type": "int"},
"when": {"type": "timestamp"},
"winner": {"type": "text"},
"fighters": {"type": "set", "valueType": "uuid"},
},
"primaryKey": {
"partitionBy": ["match_id"],
"partitionSort": {"round": 1},
},
}
my_table_2 = database.create_table(
"games",
definition=table_definition_2,
if_not_exists=True,
)
The TypeScript client provides multiple ways to create create tables, depending on your typing preferences and ser/des configuration (if modified). The following strategies and examples focus on typing your tables. For details about other parameters, such as table definitions, see the Parameters and Example for this command.
-
Automatic type inference
-
Manually typed tables
-
Untyped tables
Like Zod or arktype, the Data API TypeScript client can automatically infer the type of the table’s schema.
By default, the client infers TS-equivalent type of the table’s schema from the definition
object that you provide.
There are several ways to extract this type to reuse within your application.
Infer from definition object
To infer the type from the definition
object, you must specify the definition with a <const>
assertion so that TypeScript can infer the exact unwidened type of the object.
Additionally, DataStax strongly recommends using satisfies CreateTableDefinition
for typechecking purposes.
import { CreateTableDefinition, DataAPIClient, InferTablePrimaryKey, InferTableSchema } from '@datastax/astra-db-ts';
// Instantiate the client and connect to the database
const client = new DataAPIClient();
const db = client.db('ENDPOINT', { token: 'TOKEN' });
// Create table schema using bespoke Data API table definition syntax
const TableDefinition = <const>{
columns: {
matchId: 'text'
round: 'tinyint',
mVector: { type: 'vector', dimension: 3 },
score: 'int',
when: 'timestamp',
winner: 'text',
fighters: { type: 'set', valueType: 'uuid' },
},
primaryKey: {
partitionBy: ['matchId'],
partitionSort: { round: 1 },
},
} satisfies CreateTableDefinition;
// Infer the TS-equivalent type from the table definition. Equivalent to:
//
// interface TableSchema {
// matchId: string, // Primary key components are not nullable
// round: number,
// score?: number | null, // Non-primary key columns are optional and can return as null
// winner?: string | null,
// when?: DataAPITimestamp | null,
// fighters?: Set<UUID>, // Maps, lists, and sets are optional to insert, but returns as empty instead of null
// mVector?: DataAPIVector | null, // Vectors can be null.
// }
//
// The preceding definition uses some custom types, like DataAPITimestamp, UUID, and DataAPIVector.
// If necessary, you can modify the ser/des logic to use different datatypes instead.
// However, you must provide your own types in that case.
// For more information, see the Typescript client usage documentation.
type TableSchema = InferTableSchema<typeof TableDefinition>;
// Infer the TS-equivalent type of the primary key from the table definition. Equivalent to:
// type TablePK = Pick<TableSchema, 'matchId' | 'round'>;
type TablePK = InferTablePrimaryKey<typeof TableDefinition>;
// Main function
(async function bootstrap() {
// Provide the type explicitly, so TypeScript doesn't have to run any additional typechecking, just to get the same result
const table = await db.createTable<TableSchema, TablePK>('games', { definition: TableDefinition });
// You can then use TableSchema
as you would any other type.
// @ts-expect-error - 'badfield' is not a valid column as per the table's type
const row: TableSchema = { matchId: 'match01', round: 1, badfield: 'Shhh!' }
// res.insertedId :: { matchId: string, round: number }
const res = await table.insertOne(row);
})();
Infer from created table
For this strategy, you must write the table definition inline or create it with a <const>
assertion.
For an example of <const>
, see Infer from definition object.
import { DataAPIClient, InferTablePrimaryKey, InferTableSchema } from '@datastax/astra-db-ts';
// Instantiate the client and connect to the database
const client = new DataAPIClient();
const db = client.db('ENDPOINT', { token: 'TOKEN' });
// You must put createTable in its own function with no explicit return type annotation.
// This ensures that the type of the table is available from the top-level scope.
//
// If the environment doesn't allow top-level awaits, then you can't call createTable from the top level
// (without creating an unawaited promise) to then extract the type from.
//
// Therefore, you must extract the type from the function itself, and then the function called.
async function mkGamesTable() {
return await db.createTable('games', {
definition: {
columns: {
matchId: 'text'
round: 'tinyint',
mVector: { type: 'vector', dimension: 3 },
score: 'int',
when: 'timestamp',
winner: 'text',
fighters: { type: 'set', valueType: 'uuid' },
},
primaryKey: {
partitionBy: ['matchId'],
partitionSort: { round: 1 },
},
}
});
}
// Infer the TS-equivalent type from the table definition. Equivalent to:
//
// interface TableSchema {
// matchId: string, // Primary key components are not nullable
// round: number,
// score?: number | null, // Non-primary key columns are optional and can return as null
// winner?: string | null,
// when?: DataAPITimestamp | null,
// fighters?: Set<UUID>, // Maps, lists, and sets are optional to insert, but returns as empty instead of null
// mVector?: DataAPIVector | null, // Vectors can be null.
// }
//
// The preceding definition uses some custom types, like DataAPITimestamp, UUID, and DataAPIVector.
// If necessary, you can modify the ser/des logic to use different datatypes instead.
// However, you must provide your own types in that case.
// For more information, see the Typescript client usage documentation.
type TableSchema = InferTableSchema<typeof mkGamesTable>;
// Infer the TS-equivalent type of the primary key from the table definition. Equivalent to:
// type TablePK = Pick<TableSchema, 'matchId' | 'round'>;
type TablePK = InferTablePrimaryKey<typeof mkGamesTable>;
// Main function
(async function bootstrap() {
// Call the function to actually create the table
const table = await mkGamesTable();
// You can then use TableSchema
as you would any other type.
// @ts-expect-error - 'badfield' is not a valid column as per the table's type
const row: TableSchema = { matchId: 'match01', round: 1, badfield: 'Shhh!' }
// res.insertedId :: { matchId: string, round: number }
const res = await table.insertOne(row);
})();
Infer from created table with ES2022 top-level await
For this strategy, you must write the table definition inline or create it with a <const>
assertion.
For an example of <const>
, see Infer from definition object.
import { DataAPIClient, InferTablePrimaryKey, InferTableSchema } from '@datastax/astra-db-ts';
// Instantiate the client and connect to the database
const client = new DataAPIClient();
const db = client.db('ENDPOINT', { token: 'TOKEN' });
// You can use this if top-level awaits are allowed in your environment
const table = await db.createTable('games', {
definition: {
columns: {
matchId: 'text'
round: 'tinyint',
mVector: { type: 'vector', dimension: 3 },
score: 'int',
when: 'timestamp',
winner: 'text',
fighters: { type: 'set', valueType: 'uuid' },
},
primaryKey: {
partitionBy: ['matchId'],
partitionSort: { round: 1 },
},
}
});
// Infer the TS-equivalent type from the table definition. Equivalent to:
//
// interface TableSchema {
// matchId: string, // Primary key components are not nullable
// round: number,
// score?: number | null, // Non-primary key columns are optional and can return as null
// winner?: string | null,
// when?: DataAPITimestamp | null,
// fighters?: Set<UUID>, // Maps, lists, and sets are optional to insert, but returns as empty instead of null
// mVector?: DataAPIVector | null, // Vectors can be null.
// }
//
// The preceding definition uses some custom types, like DataAPITimestamp, UUID, and DataAPIVector.
// If necessary, you can modify the ser/des logic to use different datatypes instead.
// However, you must provide your own types in that case.
// For more information, see the Typescript client usage documentation.
type TableSchema = InferTableSchema<typeof table>;
// Infer the TS-equivalent type of the primary key from the table definition. Equivalent to:
// type TablePK = Pick<TableSchema, 'matchId' | 'round'>;
type TablePK = InferTablePrimaryKey<typeof table>;
// You can then use `TableSchema` as you would any other type.
// @ts-expect-error - 'badfield' is not a valid column as per the table's type
const row: TableSchema = { matchId: 'match01', round: 1, badfield: 'Shhh!' }
// res.insertedId :: { matchId: string, round: number }
const res = await table.insertOne(row);
With any of these strategies, you can use InferTableSchema
and InferTableReadSchema
to extract the exact read/write schemas.
For more information, see Collection and Table typing.
You can manually provide your own type for your tables by passing the type as a generic parameter to the createTable
method.
Optionally, you can provide your own type for the table’s primary key as a string literal union type of the primary key column names. For more information, see Get a table.
This may be necessary if you modify the table’s default ser/des configuration.
The following example passes the manual types MySchema
and MyPK
to createTable
:
interface MySchema {
matchId: string,
round: number,
score: number,
winner: string,
when: DataAPITimestamp,
fighters: Set<UUID>,
mVector: DataAPIVector,
}
interface MyPK = Pick<MySchema, 'matchId' | 'round'>;
(async function bootstrap() {
const table = await db.createTable<MySchema, MyPK>('games', {
definition: {
columns: {
matchId: 'text'
round: 'tinyint',
mVector: { type: 'vector', dimension: 3 },
score: 'int',
when: 'timestamp',
winner: 'text',
fighters: { type: 'set', valueType: 'uuid' },
},
primaryKey: {
partitionBy: ['matchId'],
partitionSort: { round: 1 },
},
}
});
// Use MySchema
as you would any other type
// @ts-expect-error - 'badfield' is not a valid column as per the table's type
const row: MySchema = { matchId: 'match01', round: 1, badfield: 'Shhh!' }
// res.insertedId :: { matchId: string, round: number }
const res = await table.insertOne(row);
})();
If you need to provide different schemas for reads and writes, see Collection and Table typing.
If you want to create a table without any typing, then you must pass SomeRow
as the single generic type parameter.
This types the table’s rows as Record<string, any>
, which is the most flexible but least type-safe option.
(async function bootstrap() {
const table = await db.createTable<SomeRow>('games', {
definition: {
columns: {
matchId: 'text'
round: 'tinyint',
mVector: { type: 'vector', dimension: 3 },
score: 'int',
when: 'timestamp',
winner: 'text',
fighters: { type: 'set', valueType: 'uuid' },
},
primaryKey: {
partitionBy: ['matchId'],
partitionSort: { round: 1 },
},
}
});
// No typechecking anymore
await table.insertOne({ matchId: 'match01', round: 1, badfield: 'Shhh!' })
// res.insertedId :: SomeRow
const res = await table.insertOne(row);
})();
By default, the client creates the table in the database’s working keyspace.
To create a table in a specific keyspace, include keyspace
:
const table = await db.createTable<SomeRow>('games', {
definition: /* omitted for brevity \*/,
keyspace: 'KEYSPACE_NAME',
});
Example:
Full script
import { CreateTableDefinition, DataAPIClient, InferTableSchema, SomeRow, timestamp, uuid, vector } from '@datastax/astra-db-ts';
// Instantiate the client and connect to the database
const client = new DataAPIClient();
const db = client.db(process.env.CLIENT_DB_URL!, { token: process.env.CLIENT_DB_TOKEN! });
// Create table schema using bespoke Data API table definition syntax
const TableDefinition = <const>{ // <const> ensures the exact literal type of the object is used, not a widened type
columns: {
matchId: 'text', // Represented by a native JS string
round: 'tinyint', // All non-varint/decimal numbers are represented as JS numbers
mVector: { type: 'vector', dimension: 3 }, // Vectors are represented as DataAPIVectors by default to enable some optimizations
score: 'int',
when: 'timestamp', // Represented by DataAPITimestamps instead of Dates
winner: 'text',
fighters: { type: 'set', valueType: 'uuid' }, // Sets/maps/lists are represented as native JS Sets/Maps/Arrays
}, // But the UUID is represented as a provided UUID class.
primaryKey: {
partitionBy: ['matchId'], // 'matchId' is the sole partition key
partitionSort: { round: 1 }, // 'round' is the sole clustering key
},
} satisfies CreateTableDefinition; // Ensures the table definition is valid
// Infer the TS-equivalent type from the table definition. Equivalent to:
//
// interface TableSchema {
// matchId: string, // Primary key components are not nullable
// round: number,
// score?: number | null, // Non-primary key columns are optional and can return as null
// winner?: string | null,
// when?: DataAPITimestamp | null,
// fighters?: Set<UUID>, // Maps, lists, and sets are optional to insert, but returns as empty instead of null
// mVector?: DataAPIVector | null, // Vectors can be null.
// }
//
// The preceding definition uses some custom types, like DataAPITimestamp, UUID, and DataAPIVector.
// If necessary, you can modify the ser/des logic to use different datatypes instead.
// However, you must provide your own types in that case.
// For more information, see the Typescript client usage documentation.
type TableSchema = InferTableSchema<typeof TableDefinition>;
(async function () {
// Create a table using the given TableSchema type or error if a 'games' table already exists
const table = await db.createTable<TableSchema>('games', { definition: TableDefinition });
// Attempt to create the same table again.
// This errors because a table with the given name already exists,
// and it uses the default of 'ifNotExists: false'.
await db.createTable<TableSchema>('games', { definition: TableDefinition })
.catch((e => console.error(e.message)));
// Attempt to create the same table again.
// Because 'ifNotExists: true', the command does not throw an error
// if the working keyspace already has an table named 'games'.
await db.createTable<TableSchema>('games', { definition: TableDefinition, ifNotExists: true });
// Insert a single row
await table.insertOne({
matchId: 'match_0',
round: 1, // All non-varint/decimal numbers are represented as JS numbers
score: 18,
when: timestamp(), // Shorthand for new DataAPITimestamp(new Date())
winner: 'Victor',
fighters: new Set([ // Uses native Maps/Sets/Arrays for collections
uuid('a4e4e5b0-1f3b-4b4d-8e1b-4e6b3f1f3b4d'), // You can nest datatypes in collections
uuid(4), // Shorthand for UUID.v4()
]),
mVector: vector([0.2, -0.3, -0.5]), // Shorthand for new DataAPIVector([0.2, -0.3, -0.5])
});
// Use createTable to create an untyped reference to the table.
const untypedTable = await db.createTable<SomeRow>('games', { definition: TableDefinition, ifNotExists: true });
// Attempt to insert a row into the untyped table.
// This errors at runtime (not statically) because it's untyped.
await untypedTable.insertOne({ matchId: '32', round: 1, badfield: 3 })
.catch((e => console.error(e.message)));
// The following examples demonstrate various ways to get a reference to a table (a Table object)
// Create the table if it doesn't already exist, but don't retain the Table
object
await db.createTable('games', { definition: TableDefinition, ifNotExists: true });
// Create an untyped table object
const untypedTable = db.table('games');
// Flexible but not type-safe, errors at runtime
const inserted1 = await untypedTable.insertOne({ matchId: 'fight7' });
// Return type of inserted primary key not known either
console.log(inserted1.insertedId["I don't know who I am..."]);
// Return types of find operations, not type-safe
const found1 = await untypedTable.findOne({ matchId: 'fight7', round: 3 });
console.log(found1?.["I guess you could say that I'm having an IDentity crisis :)"]);
// Create a typed table object
const typedTable = db.table<TableSchema, TablePK>('games');
// @ts-expect-error
// Type-safe, errors when compiling
// You must ensure the types are correct
const inserted2 = await typedTable.insertOne({ matchId: 'fight7' });
// @ts-expect-error
// Type-safe, errors when compiling
console.log(inserted2.insertedId["uh oh I've been caught"]);
// Still type-safe
const found2 = await typedTable.findOne({ matchId: 'fight7', round: 3 })
console.log(found2?.winner);
// Uncomment the following line to drop the table and any related indexes.
// await table.drop();
})();
// Create a table using the given TableSchema type or error if a 'games' table already exists
const table = await db.createTable<TableSchema>('games', { definition: TableDefinition });
// Attempt to create the same table again.
// This errors because a table with the given name already exists,
// and it uses the default of 'ifNotExists: false'.
await db.createTable<TableSchema>('games', { definition: TableDefinition })
.catch((e => console.error(e.message)));
// Attempt to create the same table again.
// Because 'ifNotExists: true', the command does not throw an error
// if the working keyspace already has an table named 'games'.
await db.createTable<TableSchema>('games', { definition: TableDefinition, ifNotExists: true });
// Insert a single row
await table.insertOne({
matchId: 'match_0',
round: 1, // All non-varint/decimal numbers are represented as JS numbers
score: 18,
when: timestamp(), // Shorthand for new DataAPITimestamp(new Date())
winner: 'Victor',
fighters: new Set([ // Uses native Maps/Sets/Arrays for collections
uuid('a4e4e5b0-1f3b-4b4d-8e1b-4e6b3f1f3b4d'), // You can nest datatypes in collections
uuid(4), // Shorthand for UUID.v4()
]),
mVector: vector([0.2, -0.3, -0.5]), // Shorthand for new DataAPIVector([0.2, -0.3, -0.5])
});
// Use createTable to create an untyped reference to the table.
const untypedTable = await db.createTable<SomeRow>('games', { definition: TableDefinition, ifNotExists: true });
// Attempt to insert a row into the untyped table.
// This errors at runtime (not statically) because it's untyped.
await untypedTable.insertOne({ matchId: '32', round: 1, badfield: 3 })
.catch((e => console.error(e.message)));
Create a table in the database’s working keyspace by providing a TableDefinition
and specializations through options:
TableDefinition tableDefinition = new TableDefinition()
.addColumnText("match_id")
.addColumnInt("round")
.addColumnVector("m_vector",
new ColumnDefinitionVector().dimension(3).metric(COSINE))
.addColumn("score", ColumnTypes.INT)
.addColumn("when", ColumnTypes.TIMESTAMP)
.addColumn("winner", ColumnTypes.TEXT)
.addColumnSet("fighters", ColumnTypes.UUID)
.addPartitionBy("match_id")
.addPartitionSort(ascending("round"));
// Default Table Creation
Table<Row> tableGames = database
.createTable("games", tableDefinition);
You can use the following optional parameters to customize the createTable
operation:
-
Class<T>
(rowClass): Specify the type of the table’s row object. If not provided, the default isRow
. -
CreateTableOptions
: Granular control over thecreateTable
operation itself, such astimeouts
. -
TableOptions
: Options for the returnedTable<T>
object, such as specific timeouts for that object.
// Specify options at creation
CreateTableOptions createTableOptions = new CreateTableOptions()
.ifNotExists(true)
.embeddingAuthProvider(new EmbeddingAPIKeyHeaderProvider("api-key"))
.timeout(ofSeconds(5));
Table<Row> tableGames = database
.createTable("games", tableDefinition, createTableOptions);
// Change the Type of objects in use instead of default Row
Table<Game> tableGames = database
.createTable(
"games", // table name
tableDefinition, // table definition
Game.class, // bean for row
createTableOptions);
Additionally, instead of explicitly defining the TableDefinition
, you can use annotations to define the schema directly in your POJOs.
For example, given the following bean:
@EntityTable("game_ann1")
public class GameAnn1 {
@PartitionBy(0)
@Column(name ="match_id", type=TEXT )
private String matchId;
@PartitionSort(position = 0, order= SortOrder.ASCENDING)
@Column(name ="round", type=INT)
private Integer round;
@Column(name ="score", type=INT)
private Integer score;
@Column(name ="when", type=TIMESTAMP)
private Instant when;
@Column(name ="winner", type=TEXT)
private String winner;
@Column(name ="fighters", type=SET, valueType = UUID)
private Set<java.util.UUID> fighters;
@Column(name ="m_vector", type=VECTOR, dimension = 3, metric = SimilarityMetric.COSINE)
private DataAPIVector vector;
}
The following command creates a table with the name game_ann1
using the schema defined in the previously described GameAnn1
class:
Table<GameAnn1> tablGameAnn1 = database
.createTable(GameAnn1.class);
However, there are two ways to optimize the class:
-
If the column names in the POJO match the field names, then you can omit the property
name
in the@Column
annotation. -
If the column types in the POJO aren’t ambiguous, then you can omit the property
type
in the@Column
annotation.
The resulting simplified class is as follows:
@Data
@EntityTable("game_ann2")
public class Game {
private Integer score;
private Instant when;
private String winner;
private Set<UUID> fighters;
@PartitionBy(0)
@Column(name ="match_id")
private String matchId;
@PartitionSort(position = 0, order = SortOrder.ASCENDING)
private Integer round;
@Column(name ="m_vector", dimension = 3)
private DataAPIVector vector;
// getter, setters, constructor
}
Example:
package com.datastax.astra.client.database;
import com.datastax.astra.client.DataAPIClients;
import com.datastax.astra.client.core.auth.EmbeddingAPIKeyHeaderProvider;
import com.datastax.astra.client.databases.Database;
import com.datastax.astra.client.tables.Game;
import com.datastax.astra.client.tables.Table;
import com.datastax.astra.client.tables.definition.TableDefinition;
import com.datastax.astra.client.tables.TableOptions;
import com.datastax.astra.client.tables.definition.columns.ColumnDefinitionVector;
import com.datastax.astra.client.tables.definition.columns.ColumnTypes;
import com.datastax.astra.client.tables.commands.options.CreateTableOptions;
import com.datastax.astra.client.tables.definition.rows.Row;
import static com.datastax.astra.client.core.query.Sort.ascending;
import static com.datastax.astra.client.core.vector.SimilarityMetric.COSINE;
import static java.time.Duration.ofSeconds;
public class CreateTable {
public static void main(String[] args) {
// Database astraDb = new DataAPIClient(token).getDatabase(endpoint);
Database db = DataAPIClients.localDbWithDefaultKeyspace();
// Definition of the table in fluent style
TableDefinition tableDefinition = new TableDefinition()
.addColumnText("match_id")
.addColumnInt("round")
.addColumnVector("m_vector",
new ColumnDefinitionVector().dimension(3).metric(COSINE))
.addColumn("score", ColumnTypes.INT)
.addColumn("when", ColumnTypes.TIMESTAMP)
.addColumn("winner", ColumnTypes.TEXT)
.addColumnSet("fighters", ColumnTypes.UUID)
.addPartitionBy("match_id")
.addPartitionSort(ascending("round"));
// Minimal creation
Table<Row> table1 =
db.createTable("games", tableDefinition);
// Minimal Creation with a Bean
Table<Game> table2 =
db.createTable("game2", tableDefinition, Game.class);
// One can add options to setup the creation with finer grained:
CreateTableOptions createTableOptions = new CreateTableOptions()
.keyspace("ks2")
.ifNotExists(true)
.embeddingAuthProvider(new EmbeddingAPIKeyHeaderProvider("api-key"))
.timeout(ofSeconds(5));
Table<Row> table3 =
db.createTable("game3", tableDefinition, createTableOptions);
}
}
To create a table, the JSON payload must include the table name, column definitions, and primary key definition.
The format of column definitions depends on the column’s data type.
For more information, see definition.columns
in this command’s Parameters table.
The primary key definition depends on the primary key type. The following examples demonstrate the JSON for the three primary key types. For more information, see Primary keys.
-
Single-column primary key
-
Composite primary key
-
Compound primary key
Create a table with a single-column primary key:
curl -sS -L -X POST "ASTRA_DB_API_ENDPOINT/api/json/v1/ASTRA_DB_KEYSPACE" \
--header "Token: ASTRA_DB_APPLICATION_TOKEN" \
--header "Content-Type: application/json" \
--data '{
"createTable": {
"name": "TABLE_NAME",
"definition": {
"columns": {
"COLUMN_NAME": "DATA_TYPE",
"COLUMN_NAME": "DATA_TYPE"
},
"primaryKey": "COLUMN_NAME"
}
}
}' | jq
Create a table with a composite primary key:
curl -sS -L -X POST "ASTRA_DB_API_ENDPOINT/api/json/v1/ASTRA_DB_KEYSPACE" \
--header "Token: ASTRA_DB_APPLICATION_TOKEN" \
--header "Content-Type: application/json" \
--data '{
"createTable": {
"name": "TABLE_NAME",
"definition": {
"columns": {
"COLUMN_NAME": {
"type": "DATA_TYPE"
},
"COLUMN_NAME": {
"type": "DATA_TYPE"
}
},
"primaryKey": {
"partitionBy": [
"COLUMN_NAME", "COLUMN_NAME"
]
}
}
}
}' | jq
Create a table with a compound primary key:
curl -sS -L -X POST "ASTRA_DB_API_ENDPOINT/api/json/v1/ASTRA_DB_KEYSPACE" \
--header "Token: ASTRA_DB_APPLICATION_TOKEN" \
--header "Content-Type: application/json" \
--data '{
"createTable": {
"name": "TABLE_NAME",
"definition": {
"columns": {
"COLUMN_NAME": {
"type": "DATA_TYPE"
},
"COLUMN_NAME": {
"type": "DATA_TYPE"
}
},
"primaryKey": {
"partitionBy": [
"PARTITION_COLUMN_NAME"
]
"partitionSort": {
"SORT_COLUMN_NAME": -1
}
}
}
}
}' | jq
To store pre-generated vectors in a table, you must define a vector
column:
"columns": {
"COLUMN_NAME": "DATA_TYPE",
"COLUMN_NAME": "DATA_TYPE",
"VECTOR_COLUMN_NAME": {
"type": "vector",
"dimension": NUM_DIMENSIONS
}
}
To automatically generate embeddings with vectorize, define a vector
column with embedding provider service
options.
Astra DB stores the automatically-generated embeddings in this column.
"columns": {
"COLUMN_NAME": "DATA_TYPE",
"COLUMN_NAME": "DATA_TYPE",
"VECTOR_COLUMN_NAME": {
"type": "vector",
"dimension": NUM_DIMENSIONS,
"service": {
"provider": "EMBEDDINGS_PROVIDER_NAME",
"modelName": "MODEL_NAME",
"authentication": {
"providerKey": "ASTRA_KMS_API_KEY_NAME",
}
}
}
}
You can alter vector
columns at any time to change the vector configuration, including adding or removing a vectorize integration.
For more information about all aspects of vectors in tables, see Vector type.
Examples:
Create a table with a single-column primary key
curl -sS -L -X POST "ASTRA_DB_API_ENDPOINT/api/json/v1/default_keyspace" \
--header "Token: ASTRA_DB_APPLICATION_TOKEN" \
--header "Content-Type: application/json" \
--data '{
"createTable": {
"name": "students",
"definition": {
"columns": {
"name": "text",
"email": "text",
"graduated": "boolean",
"graduation_year": {
"type": "int"
},
"semester_gpas": {
"type": "list",
"valueType": "decimal"
},
"grades": {
"type": "map",
"keyType": "text",
"valueType": "int"
},
"extracurriculars": {
"type": "set",
"valueType": "text"
},
"vect_emb": {
"type": "vector",
"dimension": 1024
}
},
"primaryKey": "email"
}
}
}' | jq
Create a table with a composite primary key
curl -sS -L -X POST "ASTRA_DB_API_ENDPOINT/api/json/v1/default_keyspace" \
--header "Token: ASTRA_DB_APPLICATION_TOKEN" \
--header "Content-Type: application/json" \
--data '{
"createTable": {
"name": "students",
"definition": {
"columns": {
"name": "text",
"email": "text",
"graduated": "boolean",
"graduation_year": {
"type": "int"
},
"semester_gpas": {
"type": "list",
"valueType": "decimal"
},
"grades": {
"type": "map",
"keyType": "text",
"valueType": "int"
},
"extracurriculars": {
"type": "set",
"valueType": "text"
},
"vect_emb": {
"type": "vector",
"dimension": 1024
}
},
"primaryKey": {
"partitionBy": [
"name", "email"
]
}
}
}
}' | jq
Create a table with a compound primary key
curl -sS -L -X POST "ASTRA_DB_API_ENDPOINT/api/json/v1/default_keyspace" \
--header "Token: ASTRA_DB_APPLICATION_TOKEN" \
--header "Content-Type: application/json" \
--data '{
"createTable": {
"name": "students",
"definition": {
"columns": {
"name": "text",
"email": "text",
"graduated": "boolean",
"graduation_year": {
"type": "int"
},
"semester_gpas": {
"type": "list",
"valueType": "decimal"
},
"grades": {
"type": "map",
"keyType": "text",
"valueType": "int"
},
"extracurriculars": {
"type": "set",
"valueType": "text"
},
"vect_emb": {
"type": "vector",
"dimension": 1024
}
},
"primaryKey": {
"partitionBy": [
"graduation_year"
],
"partitionSort": {
"email": -1
}
}
}
}
}' | jq
Client reference
-
Python
-
TypeScript
-
Java
-
curl
For more information, see the client reference.
For more information, see the client reference.
For more information, see the client reference.
Client reference documentation is not applicable for HTTP.