Insert a row
This Astra DB Serverless feature is currently in public preview. Development is ongoing, and the features and functionality are subject to change. Astra DB Serverless, and the use of such, is subject to the DataStax Preview Terms. The Data API tables commands are available through HTTP and the clients. If you use a client, tables commands are available only in client versions 2.0-preview or later. For more information, see Data API client upgrade guide. |
Insert a new row in a table.
If a row with the described primary key already exists in the table, the row will be overwritten with the specified column values. Unspecified columns will remain unchanged.
You can use this command to insert a row in an existing CQL table, but the Data API does not support all CQL data types or modifiers. For more information, see Column data types.
A row represents a single record of data in a table in an Astra DB Serverless database.
You use the Table
class to work with rows through the Data API clients.
For instructions to get a Table
object, see Work with tables.
For general information about working with rows, including common operations and operators, see Work with rows.
For more information about the Data API and clients, see Get started with the Data API.
-
Python
-
TypeScript
-
Java
-
curl
For more information, see the Client reference.
Insert a row with values specified for all columns:
insert_result = my_table.insert_one(
{
"match_id": "match_0",
"round": 1,
"m_vector": DataAPIVector([0.4, -0.6, 0.2]),
"score": 18,
"when": DataAPITimestamp.from_string("2024-11-28T11:30:00Z"),
"winner": "Victor",
"fighters": DataAPISet([
UUID("0193539a-2770-8c09-a32a-111111111111"),
]),
},
)
Insert a row with values specified for some columns and unspecified columns set to null
:
my_table.insert_one(
{
"match_id": "match_0",
"round": 1,
"winner": "Victor Vector",
"fighters": DataAPISet([
UUID("0193539a-2770-8c09-a32a-111111111111"),
UUID("0193539a-2880-8875-9f07-222222222222"),
]),
},
)
Parameters:
Name | Type | Summary |
---|---|---|
|
|
Defines the row to insert.
Contains key-value pairs for each column in the table.
At minimum, primary key values are required.
Any unspecified columns are set to The table definition determines the available columns, the primary key, and each column’s type. For more information, see Create a table and Column data types. |
|
|
A timeout, in milliseconds, to impose on the underlying API request. If not provided, the Table defaults apply. This parameter is aliased as |
Returns:
TableInsertOneResult
- An instance of TableInsertOneResult
detailing the primary key of the inserted row, both as a dictionary and an ordered tuple.
If any of the inserted columns are of the wrong datatype, or wrongly encoded, the entire insert will fail.
Example response (reformatted for clarity)
TableInsertOneResult(
inserted_id={'match_id': 'match_0', 'round': 1},
inserted_id_tuple=('match_0', 1),
raw_results=...
)
Full example script
from astrapy import DataAPIClient
client = DataAPIClient("TOKEN")
database = client.get_database("API_ENDPOINT")
from astrapy.constants import SortMode
from astrapy.info import (
CreateTableDefinition,
ColumnType,
)
my_table = database.create_table(
"games",
definition=(
CreateTableDefinition.builder()
.add_column("match_id", ColumnType.TEXT)
.add_column("round", ColumnType.TINYINT)
.add_vector_column("m_vector", dimension=3)
.add_column("score", ColumnType.INT)
.add_column("when", ColumnType.TIMESTAMP)
.add_column("winner", ColumnType.TEXT)
.add_set_column("fighters", ColumnType.UUID)
.add_partition_by(["match_id"])
.add_partition_sort({"round": SortMode.ASCENDING})
.build()
),
)
# a full-row insert using astrapy's datatypes
from astrapy.data_types import (
DataAPISet,
DataAPITimestamp,
DataAPIVector,
)
from astrapy.ids import UUID
insert_result = my_table.insert_one(
{
"match_id": "match_0",
"round": 1,
"m_vector": DataAPIVector([0.4, -0.6, 0.2]),
"score": 18,
"when": DataAPITimestamp.from_string("2024-11-28T11:30:00Z"),
"winner": "Victor",
"fighters": DataAPISet([
UUID("0193539a-2770-8c09-a32a-111111111111"),
]),
},
)
insert_result.inserted_id
# {'match_id': 'match_0', 'round': 1}
insert_result.inserted_id_tuple
# ('match_0', 1)
# a partial-row (which in this case overwrites some of the values)
my_table.insert_one(
{
"match_id": "match_0",
"round": 1,
"winner": "Victor Vector",
"fighters": DataAPISet([
UUID("0193539a-2770-8c09-a32a-111111111111"),
UUID("0193539a-2880-8875-9f07-222222222222"),
]),
},
)
# TableInsertOneResult(inserted_id={'match_id': 'match_0', 'round': 1} ...
# another insertion demonstrating standard-library datatypes in values
import datetime
my_table.insert_one(
{
"match_id": "match_0",
"round": 2,
"winner": "Angela",
"score": 25,
"when": datetime.datetime(
2024, 7, 13, 12, 55, 30, 889,
tzinfo=datetime.timezone.utc,
),
"fighters": {
UUID("019353cb-8e01-8276-a190-333333333333"),
},
"m_vector": [0.4, -0.6, 0.2],
},
)
# TableInsertOneResult(inserted_id={'match_id': 'match_0', 'round': 2}, ...
Example:
# a full-row insert using astrapy's datatypes
from astrapy.data_types import (
DataAPISet,
DataAPITimestamp,
DataAPIVector,
)
from astrapy.ids import UUID
insert_result = my_table.insert_one(
{
"match_id": "match_0",
"round": 1,
"m_vector": DataAPIVector([0.4, -0.6, 0.2]),
"score": 18,
"when": DataAPITimestamp.from_string("2024-11-28T11:30:00Z"),
"winner": "Victor",
"fighters": DataAPISet([
UUID("0193539a-2770-8c09-a32a-111111111111"),
]),
},
)
insert_result.inserted_id
# {'match_id': 'match_0', 'round': 1}
insert_result.inserted_id_tuple
# ('match_0', 1)
# a partial-row (which in this case overwrites some of the values)
my_table.insert_one(
{
"match_id": "match_0",
"round": 1,
"winner": "Victor Vector",
"fighters": DataAPISet([
UUID("0193539a-2770-8c09-a32a-111111111111"),
UUID("0193539a-2880-8875-9f07-222222222222"),
]),
},
)
# TableInsertOneResult(inserted_id={'match_id': 'match_0', 'round': 1} ...
# another insertion demonstrating standard-library datatypes in values
import datetime
my_table.insert_one(
{
"match_id": "match_0",
"round": 2,
"winner": "Angela",
"score": 25,
"when": datetime.datetime(
2024, 7, 13, 12, 55, 30, 889,
tzinfo=datetime.timezone.utc,
),
"fighters": {
UUID("019353cb-8e01-8276-a190-333333333333"),
},
"m_vector": [0.4, -0.6, 0.2],
},
)
# TableInsertOneResult(inserted_id={'match_id': 'match_0', 'round': 2}, ...
For more information, see the Client reference.
Insert a row with only the primary keys specified and all other columns set to null
:
await table.insertOne({ matchId: 'match_0', round: 1 });
Insert a row with values for all columns:
await table.insertOne({
matchId: 'match_0',
round: 1,
score: 18,
when: timestamp(),
winner: 'Victor',
fighters: new Set([
uuid('a4e4e5b0-1f3b-4b4d-8e1b-4e6b3f1f3b4d'),
uuid(4),
]),
mVector: vector([0.2, -0.3, -0.5]),
});
Parameters:
Name | Type | Summary |
---|---|---|
|
|
Defines the row to insert.
Contains key-value pairs for each column in the table.
At minimum, primary key values are required.
Any unspecified columns are set to The table definition determines the available columns, the primary key, and each column’s type. For more information, see Create a table and Column data types. |
|
|
The client-side timeout for this operation. |
Returns:
Promise<TableInsertOneResult<PKey>>
- An object detailing the primary key of the inserted row, typed as inferred from the PKey
of the table’s type, or Partial<RSchema>
if it cannot be inferred.
If any of the inserted columns are of the wrong datatype, or wrongly encoded, the entire insert will fail.
Example response
{
insertedId: { matchId: 'match_0', round: 1 },
}
Example:
Full script
import { CreateTableDefinition, DataAPIClient, InferTablePrimaryKey, InferTableSchema, timestamp, uuid, vector } from '@datastax/astra-db-ts';
// Instantiate the client and connect to the database
const client = new DataAPIClient();
const db = client.db(process.env.CLIENT_DB_URL!, { token: process.env.CLIENT_DB_TOKEN! });
// Create table schema using bespoke Data API table definition syntax, and then infer the type.
// For information about table typing and definitions, see the documentation for createTable.
const TableDefinition = <const>{
columns: {
matchId: 'text'
round: 'tinyint',
mVector: { type: 'vector', dimension: 3 },
score: 'int',
when: 'timestamp',
winner: 'text',
fighters: { type: 'set', valueType: 'uuid' },
},
primaryKey: {
partitionBy: ['matchId'],
partitionSort: { round: 1 },
},
} satisfies CreateTableDefinition;
type TableSchema = InferTableSchema<typeof TableDefinition>;
type TablePK = InferTablePrimaryKey<typeof TableDefinition>;
(async function () {
// Create a table with the given TableSchema type if a 'games' table doesn't already exist
const table = await db.createTable<TableSchema, TablePK>('games', { definition: TableDefinition, ifNotExists: true });
// Use insertOne and insertMany to insert rows into tables.
// Inserts are also upserts for tables.
// insertOne examples
// Inserts a single row
const res = await table.insertOne({
matchId: 'match_0',
round: 1, // All non-varint/decimal numbers are represented as JS numbers
score: 18,
when: timestamp(), // Shorthand for new DataAPITimestamp(new Date())
winner: 'Victor',
fighters: new Set([ // Use native Maps, Sets, and Arrays for maps, sets, and lists.
uuid('a4e4e5b0-1f3b-4b4d-8e1b-4e6b3f1f3b4d'), // You can nest datatypes in maps, sets, and lists.
uuid(4), // Shorthand for UUID.v4()
]),
mVector: vector([0.2, -0.3, -0.5]), // Shorthand for new DataAPIVector([0.2, -0.3, -0.5])
}); // Use this instead of plain arrays to enable vector-specific optimizations
// Returns primary key of type { id: string, time: DataAPITimestamp }
const primaryKey = res.insertedId;
console.log(primaryKey.matchId);
// Inserts are also upserts in tables.
// If the winner of round 1 was actually 'Cham P. Yun' instead of 'Victor',
// you can use insertOne to modify the row identified by its primary key.
await table.insertOne({
matchId: 'match_0',
round: 1,
score: null, // Set score
to null
to clear the previously inserted value
winner: 'Cham P. Yun',
mVector: [-0.6, 0.2, -0.7],
});
// The upserted row now has the following values:
// { matchId: 'match_0', round: 1, score: null, when: <timestamp>, winner: 'Cham P. Yun', fighters: <uuid[]>, mVector: [-0.6, 0.2, -0.7] }
// insertMany examples
// Inserts two rows in an unordered fashion.
// Primary keys are required.
// Unspecified columns are set to null.
await table.insertMany([{
matchId: 'fight4',
round: 1,
winner: 'Victor',
score: 18,
when: timestamp('2024-11-28T11:30:00Z'),
fighters: new Set([
uuid('0193539a-2770-8c09-a32a-111111111111'),
uuid('019353e3-00b4-83f9-a127-222222222222'),
]),
mVector: vector([0.4, -0.6, 0.2]),
},
// Insert with the primary key and 2 other values.
{
matchId: 'challenge6',
round: 2,
winner: 'Wynn Uhr',
},
]);
// Performs two inserts against the same row in an ordered fashion ('ordered: true').
// Because inserts are also upserts in tables, if an ordered insert modifies the same row multiple times,
// subsequent inserts overwrite prior inserts if the inserts modify the same columns.
// In this example, the second insert overwrites the winner
and mVector
values from the first insert.
//
// In unordered inserts, upserts still occur, but the order is not guaranteed and the outcome is unpredictable.
// However, unordered inserts are parallelized on the client and server.
// They are generally more performant and recommended for most use cases.
const res = await table.insertMany([
{
matchId: 'match_0',
round: 1, // All numbers are represented as JS numbers except varint and decimal
score: 18,
when: timestamp(), // Shorthand for new DataAPITimestamp(new Date())
winner: 'Victor',
fighters: new Set([ // Use native Maps, Sets, and Arrays for maps, sets, and lists.
uuid('a4e4e5b0-1f3b-4b4d-8e1b-4e6b3f1f3b4d'), // You can nest datatypes in maps, sets, and lists.
uuid(7), // Shorthand for UUID.v7()
]),
mVector: vector([0.2, -0.3, -0.5]), // Shorthand for new DataAPIVector([0.2, -0.3, -0.5])
}, // Use this instead of plain arrays to enable vector-specific optimizations
{
matchId: 'match_0',
round: 1,
score: null, // Set score
to null
to insert no value or clear a previously-inserted value
winner: 'Cham P. Yun',
mVector: [-0.6, 0.2, -0.7],
}],
{
timeout: 60000,
ordered: true,
});
// Returns primary key of type { matchId: string, round: number }[]
// Because both inserts have the same matchId, the primary key is 'match_0' for both
const primaryKey = res.insertedIds;
console.log(primaryKey[0].matchId, primaryKey[1].matchId);
// After both inserts, the row has the following values:
// { matchId: 'match_0', round: 1, score: null, when: <timestamp>, winner: 'Cham P. Yun', fighters: <uuid[]>, mVector: [-0.6, 0.2, -0.7] }
const docs: TableSchema[] = Array.from({ length: 101 }, (_, i) => ({
matchId: `match_${i}`,
round: 1,
}));
await table.insertMany(docs);
// Uncomment the following line to drop the table and any related indexes.
// await table.drop();
})();
// Inserts a single row
const res = await table.insertOne({
matchId: 'match_0',
round: 1, // All non-varint/decimal numbers are represented as JS numbers
score: 18,
when: timestamp(), // Shorthand for new DataAPITimestamp(new Date())
winner: 'Victor',
fighters: new Set([ // Use native Maps, Sets, and Arrays for maps, sets, and lists.
uuid('a4e4e5b0-1f3b-4b4d-8e1b-4e6b3f1f3b4d'), // You can nest datatypes in maps, sets, and lists.
uuid(4), // Shorthand for UUID.v4()
]),
mVector: vector([0.2, -0.3, -0.5]), // Shorthand for new DataAPIVector([0.2, -0.3, -0.5])
}); // Use this instead of plain arrays to enable vector-specific optimizations
// Returns primary key of type { id: string, time: DataAPITimestamp }
const primaryKey = res.insertedId;
console.log(primaryKey.matchId);
// Inserts are also upserts in tables.
// If the winner of round 1 was actually 'Cham P. Yun' instead of 'Victor',
// you can use insertOne to modify the row identified by its primary key.
await table.insertOne({
matchId: 'match_0',
round: 1,
score: null, // Set score
to null
to clear the previously inserted value
winner: 'Cham P. Yun',
mVector: [-0.6, 0.2, -0.7],
});
// The upserted row now has the following values:
// { matchId: 'match_0', round: 1, score: null, when: <timestamp>, winner: 'Cham P. Yun', fighters: <uuid[]>, mVector: [-0.6, 0.2, -0.7] }
For more information, see the Client reference.
Insert a row with a value for every column:
Table<Row> table = db.getTable("games");
table.insertOne(new Row()
.addText("match_id", "match_0")
.addInt("round", 1)
.addVector("m_vector", new DataAPIVector(new float[]{0.4f, -0.6f, 0.2f}))
.addInt("score", 18)
.addTimeStamp("when", Instant.now())
.addText("winner", "Victor")
.addSet("fighters", Set
.of(UUID.fromString("0193539a-2770-8c09-a32a-111111111111"))));
Insert a row with some columns specified and unspecified columns set to null
:
Table<Row> table = db.getTable("games");
table.insertOne(new Row()
.addText("match_id", "match_0")
.addInt("round", 1)
.addText("winner", "Victor Vector")
.addSet("fighters", Set
.of(UUID.fromString("0193539a-2770-8c09-a32a-111111111111"),
UUID.fromString("0193539a-2880-8875-9f07-222222222222")
)
)
);
Parameters:
Name | Type | Summary |
---|---|---|
|
|
Defines the row to insert.
This object is similar to a Map where you can add the object you like with utilities methods.
At minimum, you must specify the primary key values in full.
Any unspecified columns are set to The table definition determines the available columns, the primary key, and each column’s type. For more information, see Create a table and Column data types. |
|
Specialization of the |
Returns:
TableInsertOneResult
: An instance presenting the primary key of the inserted row and also the schema of the primary key.
If any of the inserted columns are of the wrong datatype, or wrongly encoded, the entire insert will fail.
{
"status": {
"primaryKeySchema": {
"match_id": {
"type": "text"
},
"round": {
"type": "int"
}
},
"insertedIds": [
[
"match_1",
2
]
]
}
}
Example:
package com.datastax.astra.client.tables;
import com.datastax.astra.client.DataAPIClient;
import com.datastax.astra.client.DataAPIClients;
import com.datastax.astra.client.core.vector.DataAPIVector;
import com.datastax.astra.client.databases.Database;
import com.datastax.astra.client.tables.commands.results.TableInsertOneResult;
import com.datastax.astra.client.tables.definition.columns.ColumnDefinition;
import com.datastax.astra.client.tables.definition.rows.Row;
import java.time.Instant;
import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.UUID;
public class InsertRow {
public static void main(String[] args) {
Database db = new DataAPIClient("token").getDatabase("endpoint");
Table<Row> table = db.getTable("games");
TableInsertOneResult result = table.insertOne(new Row()
.addText("match_id", "mtch_0")
.addInt("round", 1)
.addVector("m_vector", new DataAPIVector(new float[]{0.4f, -0.6f, 0.2f}))
.addInt("score", 18)
.addTimeStamp("when", Instant.now())
.addText("winner", "Victor")
.addSet("fighters", Set.of(UUID.fromString("0193539a-2770-8c09-a32a-111111111111"))));
List<Object> youPk = result.getInsertedId();
Map<String, ColumnDefinition> yourPkSchema = result.getPrimaryKeySchema();
// Leveraging object mapping
Game match1 = new Game()
.matchId("mtch_1")
.round(2)
.score(20)
.when(Instant.now())
.winner("Victor")
.fighters(Set.of(UUID.fromString("0193539a-2770-8c09-a32a-111111111111")))
.vector(new DataAPIVector(new float[]{0.4f, -0.6f, 0.2f}));
db.getTable("games", Game.class).insertOne(match1);
}
}
To insert a row, define a document
object containing key-value pairs of column names and values to insert.
Primary key values are required.
Any unspecified columns are set to null
.
The following example inserts a row with scalar, map
, list
, and set
data.
The format of the values for each column depend on the column’s data type.
curl -sS -L -X POST "ASTRA_DB_API_ENDPOINT/api/json/v1/ASTRA_DB_KEYSPACE/ASTRA_DB_TABLE" \
--header "Token: ASTRA_DB_APPLICATION_TOKEN" \
--header "Content-Type: application/json" \
--data '{
"insertOne": {
"document": {
"string_column": "value",
"int_column": 2,
"boolean_column": true,
"float_column": "NaN",
"map_column": {
"key1": "value1",
"key2": "value2"
},
"list_column": [ 10, 11, 12 ],
"set_column": [ 9, 8, 7 ]
}
}
}' | jq
You can insert pre-generated vector data into a vector
column as an array or as a binary encoded value.
Alternatively, if the column has a vectorize integration, you can automatically generate an embedding from a string.
# Insert vector data as an array
"vector_column": [ 0.1, -0.2, 0.3 ]
# Insert vector data with $binary
"vector_column": { "$binary": "PczMzb5MzM0+mZma" }
# Generate an embedding with vectorize
"vector_column": "Text to vectorize"
For more information, see Vector type.
Parameters:
Name | Type | Summary |
---|---|---|
|
|
Data API command to insert one row in a table. |
|
|
Defines the row to insert.
Contains key-value pairs for each column in the table.
At minimum, primary key values are required.
Any unspecified columns are set to The table definition determines the available columns, the primary key, and each column’s type. For more information, see Create a table and Column data types. |
Returns:
A successful response contains primaryKeySchema
and insertedIds
:
-
primaryKeySchema
is an object that describes the table’s primary key definition, including column names and types. -
insertedIds
is a nested array containing the values inserted for each primary key column. IfprimaryKeySchema
has multiple columns, theninsertedIds
contains the value for each column.
If any of the inserted columns are of the wrong datatype, or wrongly encoded, the entire insert will fail.
Example response for a single-column primary key
{
"status": {
"primaryKeySchema": {
"email": {
"type": "ascii"
}
},
"insertedIds": [
[
"tal@example.com"
]
]
}
}
Example response for a multi-column primary key
{
"status": {
"primaryKeySchema": {
"email": {
"type": "ascii"
},
"graduation_year": {
"type": "int"
}
},
"insertedIds": [
[
"tal@example.com",
2014
]
]
}
}
Example:
curl -sS -L -X POST "ASTRA_DB_API_ENDPOINT/api/json/v1/default_keyspace/students" \
--header "Token: ASTRA_DB_APPLICATION_TOKEN" \
--header "Content-Type: application/json" \
--data '{
"insertOne": {
"document": {
"name": "Tal Noor",
"email": "tal@example.com",
"graduated": true,
"graduation_year": 2014,
"grades": {
"biology_101": 98,
"math_202": 91
},
"extracurriculars": [ "Robotics club", "Cycling team" ],
"semester_gpas": [ 3.9, 4.0, 3.7 ]
}
}
}' | jq