Create a vector index

Tables with the Data API are currently in public preview. Development is ongoing, and the features and functionality are subject to change. Hyper-Converged Database (HCD), and the use of such, is subject to the DataStax Preview Terms.

Creates a new index for a vector column in a table in a database. You must create a vector index if you want to perform a vector search on vector embeddings stored in a column.

To create an index on a non-vector column, see Create an index instead.

The username and password used to generate the token must be tied to a role that has sufficient permissions to perform the desired operations.

Ready to write code? See the examples for this method to get started. If you are new to the Data API, check out the quickstart.

Result

  • Python

  • TypeScript

  • Java

  • curl

Creates an index for the specified vector column.

Does not return anything.

Creates an index for the specified vector column.

Returns a promise that resolves once the operation completes.

Creates an index for the specified vector column.

Does not return anything.

Creates an index for the specified vector column.

If the command succeeds, the response indicates the success.

Example response:

{
  "status": {
    "ok": 1
  }
}

Parameters

  • Python

  • TypeScript

  • Java

  • curl

Use the create_vector_index method, which belongs to the astrapy.table.Table class.

Method signature
create_vector_index(
  name: str,
  column: str,
  *,
  definition: TableVectorIndexDefinition | dict[str, Any],
  options: TableVectorIndexOptions | dict[str, Any],
  if_not_exists: bool,
  table_admin_timeout_ms: int,
  request_timeout_ms: int,
  timeout_ms: int,
) -> None
Name Type Summary

name

str

The name of the index.

Index names for tables must follow these rules:

  • Must be unique within the keyspace

  • Can contain letters, numbers, and underscores

  • Must have a length of 1 to 100 characters

column

str

The name of the vector column on which to create the index.

The column name must use snake case, not camel case.

To create indexes on non-vector columns, see Create an index.

definition

TableVectorIndexDefinition | dict

Optional. Specifies the indexed column and index options. If you use this parameter, the column and options parameters are not accepted.

options

TableVectorIndexOptions | dict

Optional. Specifies the index options:

  • metric: The similarity metric to use for vector search.

    Can be one of the values in astrapy.constants.VectorMetric: COSINE, DOT_PRODUCT, EUCLIDEAN.

    Default: COSINE

  • source_model: he model used to generate the embeddings that the indexed column stores. This enables certain vector optimizations on the index.

    Can be one of: "ada002", "bert", "cohere-v3", "gecko", "nv-qa-4", "openai-v3-large", "openai-v3-small", "other".

    Default: "other"

if_not_exists

bool

Optional. Whether the command should silently succeed even if an index with the given name already exists in the keyspace and no new index was created.

This option only checks index names. It does not check index definitions.

Default: false

table_admin_timeout_ms

int

Optional. A timeout, in milliseconds, to impose on the underlying API request. If not provided, the Table defaults apply.

This parameter is aliased as request_timeout_ms and timeout_ms for convenience.

Use the createVectorIndex method, which belongs to the Table class.

Method signature
async createVectorIndex(
  name: string,
  column: keyof Schema | Partial<Record<keyof Schema, string>>,
  options?: {
    ifNotExists?: boolean,
    options?: {
      metric?: string,
      sourceModel?: string,
      timeout?: number | TimeoutDescriptor,
    },
  }
): void
Name Type Summary

name

string

The name of the index.

Index names for tables must follow these rules:

  • Must be unique within the keyspace

  • Can contain letters, numbers, and underscores

  • Must have a length of 1 to 100 characters

column

string

The name of the vector column on which to create the index.

The column name must use snake case, not camel case.

To create indexes on non-vector columns, see Create an index.

options

TableCreateVectorIndexOptions

Optional. The options for this operation. See Properties of options for more details.

Properties of options
Name Type Summary

metric

string

Optional. The similarity metric to use for vector search.

Can be one of: "cosine", "dot_product", "euclidean".

See Create a vector index and specify the source model and similarity metric for an example.

Default: "cosine"

sourceModel

string

Optional. The model used to generate the embeddings that the indexed column stores. This enables certain vector optimizations on the index.

Can be one of: "ada002", "bert", "cohere-v3", "gecko", "nv-qa-4", "openai-v3-large", "openai-v3-small", "other".

See Create a vector index and specify the source model and similarity metric for an example.

Default: "other"

ifNotExists

boolean

Optional. Whether the command should silently succeed even if an index with the given name already exists in the keyspace and no new index was created.

This option only checks index names. It does not check index definitions.

Default: false

timeout

number | TimeoutDescriptor

A timeout, in milliseconds, to impose on the underlying API request.

Use the createVectorIndex method, which belongs to the com.datastax.astra.client.tables.Table class.

Method signature
void createVectorIndex(
  String indexName,
  String columnName
)
void createVectorIndex(
  String indexName,
  TableVectorIndexDefinition indexDefinition
)
void createVectorIndex(
  String indexName,
  TableVectorIndexDefinition indexDefinition,
  CreateVectorIndexOptions indexOptions
)
Name Type Summary

name

str

The name of the index.

Index names for tables must follow these rules:

  • Must be unique within the keyspace

  • Can contain letters, numbers, and underscores

  • Must have a length of 1 to 100 characters

definition

TableVectorIndexDefinition

The index definition. See Methods of the TableVectorIndexDefinition constructor for more details.

options

CreateVectorIndexOptions

The options for this operation. See Methods of the CreateVectorIndexOptions constructor for more details.

Methods of the TableVectorIndexDefinition constructor
Method Type Summary

column()

string

The name of the vector column on which to create the index.

The column name must use snake case, not camel case.

To create indexes on non-vector columns, see Create an index.

metric()

SimilarityMetric

Optional. The similarity metric to use for vector search.

Can be one of: SimilarityMetric.COSINE, SimilarityMetric.DOT_PRODUCT, SimilarityMetric.EUCLIDEAN.

Default: SimilarityMetric.COSINE

sourceModel()

String

Optional. The model used to generate the embeddings that the indexed column stores. This enables certain vector optimizations on the index.

Can be one of: "ada002", "bert", "cohere-v3", "gecko", "nv-qa-4", "openai-v3-large", "openai-v3-small", "other".

Default: "other"

Methods of the CreateVectorIndexOptions constructor
Method Type Summary

ifNotExists()

boolean

Optional. Whether the command should silently succeed even if an index with the given name already exists in the keyspace and no new index was created.

This option only checks index names. It does not check index definitions.

Default: false

Use the createVectorIndex command.

Command signature
curl -sS -L -X POST "API_ENDPOINT/api/json/v1/KEYSPACE_NAME/TABLE_NAME" \
--header "Token: APPLICATION_TOKEN" \
--header "Content-Type: application/json" \
--data '{
  "createVectorIndex": {
    "name": "INDEX_NAME",
    "definition": {
      "column": "VECTOR_COLUMN_NAME",
      "options": {
        "metric": STRING,
        "sourceModel": STRING
      }
    }
  }
}'
Name Type Summary

name

string

The name of the index.

Index names for tables must follow these rules:

  • Must be unique within the keyspace

  • Can contain letters, numbers, and underscores

  • Must have a length of 1 to 100 characters

definition.column

string

The name of the vector column on which to create the index.

The column name must use snake case, not camel case.

To create indexes on non-vector columns, see Create an index.

definition.options.metric

string

Optional. The similarity metric to use for vector search.

Can be one of: "cosine", "dot_product", "euclidean".

See Create a vector index and specify the source model and similarity metric for an example.

Default: "cosine"

definition.options.sourceModel

string

Optional. The model used to generate the embeddings that the indexed column stores. This enables certain vector optimizations on the index.

Can be one of: "ada002", "bert", "cohere-v3", "gecko", "nv-qa-4", "openai-v3-large", "openai-v3-small", "other".

See Create a vector index and specify the source model and similarity metric for an example.

Default: "other"

Examples

The following examples demonstrate how to create a vector index.

Create a vector index with the default source model and similarity metric

If you do not specify the source model and similarity metric, the default values are used. For more information, see Parameters.

  • Python

  • TypeScript

  • Java

  • curl

from astrapy import DataAPIClient
from astrapy.authentication import UsernamePasswordTokenProvider
from astrapy.constants import Environment

# Get an existing table
client = DataAPIClient(environment=Environment.HCD)
database = client.get_database(
    "API_ENDPOINT",
    token=UsernamePasswordTokenProvider("USERNAME", "PASSWORD"),
)
table = database.get_table("TABLE_NAME", keyspace="KEYSPACE_NAME")

# Index a vector column
table.create_vector_index("example_index_name", column="example_vector_column")
import {
  DataAPIClient,
  UsernamePasswordTokenProvider,
} from "@datastax/astra-db-ts";

// Get an existing table
const client = new DataAPIClient({ environment: "hcd" });
const database = client.db("API_ENDPOINT", {
  token: new UsernamePasswordTokenProvider("USERNAME", "PASSWORD"),
});
const table = database.table("TABLE_NAME", {
  keyspace: "KEYSPACE_NAME",
});

// Index a vector column
(async function () {
  await table.createVectorIndex("example_index_name", "example_vector_column");
})();
import com.datastax.astra.client.DataAPIClient;
import com.datastax.astra.client.DataAPIClients;
import com.datastax.astra.client.databases.Database;
import com.datastax.astra.client.tables.Table;
import com.datastax.astra.client.tables.definition.rows.Row;

public class Example {

  public static void main(String[] args) {
    // Get an existing table
    DataAPIClient client = DataAPIClients.clientHCD("USERNAME", "PASSWORD");
    Database database = client.getDatabase("API_ENDPOINT", "KEYSPACE_NAME");
    Table<Row> table = database.getTable("TABLE_NAME");

    // Index a vector column
    table.createVectorIndex("example_index_name", "example_vector_column");
  }
}
curl -sS -L -X POST "API_ENDPOINT/v1/KEYSPACE_NAME/TABLE_NAME" \
  --header "Token: APPLICATION_TOKEN" \
  --header "Content-Type: application/json" \
  --data '{
  "createVectorIndex": {
    "name": "example_index_name",
    "definition": {
      "column": "example_vector_column"
    }
  }
}'

Create a vector index and specify the source model and similarity metric

You can specify the embedding source model and the similarity metric when you create a vector index.

  • Python

  • TypeScript

  • Java

  • curl

from astrapy import DataAPIClient
from astrapy.authentication import UsernamePasswordTokenProvider
from astrapy.constants import Environment
from astrapy.constants import VectorMetric
from astrapy.info import TableVectorIndexOptions

# Get an existing table
client = DataAPIClient(environment=Environment.HCD)
database = client.get_database(
    "API_ENDPOINT",
    token=UsernamePasswordTokenProvider("USERNAME", "PASSWORD"),
)
table = database.get_table("TABLE_NAME", keyspace="KEYSPACE_NAME")

# Index a vector column
table.create_vector_index(
    "example_index_name",
    column="example_vector_column",
    options=TableVectorIndexOptions(
        metric=VectorMetric.DOT_PRODUCT,
        source_model="nv-qa-4",
    ),
)
import {
  DataAPIClient,
  UsernamePasswordTokenProvider,
} from "@datastax/astra-db-ts";

// Get an existing table
const client = new DataAPIClient({ environment: "hcd" });
const database = client.db("API_ENDPOINT", {
  token: new UsernamePasswordTokenProvider("USERNAME", "PASSWORD"),
});
const table = database.table("TABLE_NAME", {
  keyspace: "KEYSPACE_NAME",
});

// Index a vector column
(async function () {
  await table.createVectorIndex("example_index_name", "example_vector_column", {
    options: {
      metric: "dot_product",
      sourceModel: "nv-qa-4",
    },
  });
})();
import com.datastax.astra.client.DataAPIClient;
import com.datastax.astra.client.DataAPIClients;
import com.datastax.astra.client.core.vector.SimilarityMetric;
import com.datastax.astra.client.databases.Database;
import com.datastax.astra.client.tables.Table;
import com.datastax.astra.client.tables.commands.options.CreateVectorIndexOptions;
import com.datastax.astra.client.tables.definition.indexes.TableVectorIndexDefinition;
import com.datastax.astra.client.tables.definition.rows.Row;

public class Example {

  public static void main(String[] args) {
    // Get an existing table
    DataAPIClient client = DataAPIClients.clientHCD("USERNAME", "PASSWORD");
    Database database = client.getDatabase("API_ENDPOINT", "KEYSPACE_NAME");
    Table<Row> table = database.getTable("TABLE_NAME");

    // Index a vector column
    TableVectorIndexDefinition definition =
        new TableVectorIndexDefinition()
            .column("example_vector_column")
            .metric(SimilarityMetric.COSINE)
            .sourceModel("openai-v3-large");
    CreateVectorIndexOptions options = new CreateVectorIndexOptions();
    table.createVectorIndex("example_index_name", definition, options);
  }
}
curl -sS -L -X POST "API_ENDPOINT/v1/KEYSPACE_NAME/TABLE_NAME" \
  --header "Token: APPLICATION_TOKEN" \
  --header "Content-Type: application/json" \
  --data '{
  "createVectorIndex": {
    "name": "example_index_name",
    "definition": {
      "column": "example_vector_column",
      "options": {
        "metric": "dot_product",
        "sourceModel": "ada002"
      }
    }
  }
}'

Create an index only if the index does not exist

Use this option to silently do nothing if an index with the specified name already exists.

This option only checks index names. It doesn’t check the type or content of any existing indexes.

  • Python

  • TypeScript

  • Java

  • curl

from astrapy import DataAPIClient
from astrapy.authentication import UsernamePasswordTokenProvider
from astrapy.constants import Environment

# Get an existing table
client = DataAPIClient(environment=Environment.HCD)
database = client.get_database(
    "API_ENDPOINT",
    token=UsernamePasswordTokenProvider("USERNAME", "PASSWORD"),
)
table = database.get_table("TABLE_NAME", keyspace="KEYSPACE_NAME")

# Index a vector column
table.create_vector_index(
    "example_index_name",
    column="example_vector_column",
    if_not_exists=True,
)
import {
  DataAPIClient,
  UsernamePasswordTokenProvider,
} from "@datastax/astra-db-ts";

// Get an existing table
const client = new DataAPIClient({ environment: "hcd" });
const database = client.db("API_ENDPOINT", {
  token: new UsernamePasswordTokenProvider("USERNAME", "PASSWORD"),
});
const table = database.table("TABLE_NAME", {
  keyspace: "KEYSPACE_NAME",
});

// Index a vector column
(async function () {
  await table.createVectorIndex("example_index_name", "example_vector_column", {
    ifNotExists: true,
  });
})();
import com.datastax.astra.client.DataAPIClient;
import com.datastax.astra.client.DataAPIClients;
import com.datastax.astra.client.databases.Database;
import com.datastax.astra.client.tables.Table;
import com.datastax.astra.client.tables.commands.options.CreateVectorIndexOptions;
import com.datastax.astra.client.tables.definition.indexes.TableVectorIndexDefinition;
import com.datastax.astra.client.tables.definition.rows.Row;

public class Example {

  public static void main(String[] args) {
    // Get an existing table
    DataAPIClient client = DataAPIClients.clientHCD("USERNAME", "PASSWORD");
    Database database = client.getDatabase("API_ENDPOINT", "KEYSPACE_NAME");
    Table<Row> table = database.getTable("TABLE_NAME");

    // Index a vector column
    TableVectorIndexDefinition definition =
        new TableVectorIndexDefinition().column("example_vector_column");
    CreateVectorIndexOptions options = new CreateVectorIndexOptions().ifNotExists(true);
    table.createVectorIndex("example_index_name", definition, options);
  }
}

This option has no literal equivalent in HTTP. Instead, you can list the index names to see if an index with the name already exists.

Client reference

  • Python

  • TypeScript

  • Java

  • curl

For more information, see the client reference.

For more information, see the client reference.

For more information, see the client reference.

Client reference documentation is not applicable for HTTP.

Was this helpful?

Give Feedback

How can we improve the documentation?

© 2025 DataStax, an IBM Company | Privacy policy | Terms of use | Manage Privacy Choices

Apache, Apache Cassandra, Cassandra, Apache Tomcat, Tomcat, Apache Lucene, Apache Solr, Apache Hadoop, Hadoop, Apache Pulsar, Pulsar, Apache Spark, Spark, Apache TinkerPop, TinkerPop, Apache Kafka and Kafka are either registered trademarks or trademarks of the Apache Software Foundation or its subsidiaries in Canada, the United States and/or other countries. Kubernetes is the registered trademark of the Linux Foundation.

General Inquiries: +1 (650) 389-6000, info@datastax.com